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Abstract

Recent advances in generative retrieval allow large language models (LLMs) to
recommend items by generating their identifiers token by token, rather than using
nearest-neighbor search over embeddings. This approach requires each item, such
as a music track, to be represented by a compact and semantically meaningful
token sequence that LLMs can generate. We propose a multimodal music tokenizer
(3MToken) that transforms rich metadata from a music database, including audio,
credits, semantic tags, song and artist descriptions, musical characteristics, release
dates, and consumption patterns into discrete tokens using a Residual-Quantized
Variational Autoencoder. Our method learns hierarchical representations, capturing
coarse features in early quantization levels and refining them at later levels, pre-
serving fine-grained information. We train and evaluate our model on a large-scale
dataset of 1.6 million tracks, and it achieves +40.0%, +43.4%, and +15.8% improve-
ments in Precision @k, Recall@k, and Hit@k, respectively, over the baselines.

1 Introduction

With the advancement of generative Al, music streaming services are beginning to offer new user
experiences, such as prompt-based music discovery and recommendation [[1,19]. One of the primary
challenges in this setting is enabling LLMs to interact effectively with the data in the music database
to generate high-quality recommendations [3,[10]. Traditional recommender systems have relied on
continuous embeddings and similarity-based retrieval, where a dense vector represents each item
(e.g., a music track), and retrieval is performed using nearest-neighbor search in the embedding space
[Z, 22]. In contrast, recent research has proposed a new paradigm known as generative retrieval,
which reformulates the recommendation task as a sequence generation problem [2, [13} |15} 23]].

In generative retrieval, an autoregressive model directly generates the identifier of the next item
token by token, similar to how a language model generates words in a sentence. This paradigm
enables a recommender to be built on top of an LLM, which can seamlessly combine dialogue,
reasoning, and recommendation in a single framework [6,[11]]. One approach to generating music
recommendations is to have an LLM directly produce human-readable track titles and artist names
from natural-language prompts [1]. However, this free-text generation faces challenges such as
entity resolution, title ambiguity, multilingual variations, and increased decoding latency in real-
world applications. Due to these limitations, the preferred approach has shifted toward generative
retrieval using learned discrete IDs, where the model directly predicts items [[18} 24]. Rajput et
al. [13] showed that representing items with Semantic IDs (sequences of discrete codes learned
from item embeddings) allows a transformer-based model to generate item IDs as outputs, thereby
unifying recommendation with natural language generation. Similarly, Doh et al. [2]] extended this
concept to music recommendation by expanding the LLM vocabulary with music tokens derived from
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Figure 1: An overview of multimodal music tokenizer (3MToken). The proposed system ingests
diverse modalities in heterogeneous formats and transforms them into embeddings and subsequently
tokenizes them through a multi-stage quantization process.

multimodal data such as audio, lyrics, playlist, metadata, and tags. The proposed model outperforms
unimodal approaches based solely on text or listening history in the music recommendation task.

In this context, the emergence of LLMs has catalyzed interest in developing discrete tokenization
schemes for multimodal domains [25]]. In the case of the music domain, each item (i.e., music
track) is inherently multimodal including audio, lyrics, tags, and co-occurrence consumption. While
recent studies have proposed using discrete tokenization schemes for music recommendation, there is
limited research on systematically evaluating the quality of tokenizers across the diverse modalities
that constitute music data, and prior works have primarily focused on end-task performance.

In this paper, we propose a multimodal music tokenizer (3MToken) based on a Residual-Quantized
Variational Autoencoder (RQ-VAE) [20]. We refer to our method as 3MToken. Recent advances in
neural discrete representation learning, particularly Vector Quantization Variational Autoencoder
(VQ-VAE) and their variants, have shown promise in various domains including image synthesis and
audio generation [16}14]. RQ-VAE extends traditional vector quantization by employing multiple
codebooks in a residual manner. Our approach is motivated by [13| 2] which applies residual
quantization for creating hierarchical semantic ID and enriches LLM vocabularies with music tokens.

2 Method

Our goal is to (1) process raw music catalog data into multimodal embeddings (i.e., vectorization)
and (2) transform each track’s multimodal embedding into a compact sequence of discrete tokens (i.e.,
tokenization). We present an overview in Fig. [l from raw inputs to vectorization and tokenization, as
used in our model. Each modality is processed through a modality-specific encoder and tokenized
through a multi-stage quantization process to generate discrete multimodal music tokens.

Music Data A wide range of track- and artist-level data is available in various formats. In this paper,
we leverage rich metadata aggregated from multiple sources to build a multimodal music tokenizer.
Typically, this metadata is heterogeneous in format - categorical (e.g., genre, mood, music key,
playlist ID, singing language), scalar (e.g., tempo), and textual (e.g., song titles, artist names, credits,
and biographies). To better structure these metadata, we categorize them into nine categories: (1)
Artist Roles & Collaborations (AC) — band members, featured artists, vocalists, and instrumentalists,
(2) Basic Metadata (BM) — track title and artist name, (3) Semantic Tags (ST) — genre, mood, and
activity, (4) Sonic Characteristics (SC) — audio embeddings derived from a pre-trained audio encoder
that capture timbral, rhythmic, and other acoustic properties, (5) Musical Characteristics (MC) —
tempo and musical key, (6) Release Information (R]) — release date of a track, (7) Song Facts (SF) —
recording details such as song history, artist backstory, and production details, (8) Artist Biography
(AB) — artist attributes such as gender, birth year, and origin, (9) Track Consumption (TC) — data
capturing co-listening patterns. We divide the music metadata into nine categories based on common
user demands in music streaming services.



Vectorization After organizing the music data into the nine categories, the next step is to map each
track-level data source into a multimodal embedding space. Since the music data has heterogeneous
formats (ranging from raw audio signals to textual metadata and numerical fields), we apply modality-
specific vectorization techniques that ensure all information is represented as dense vectors. To do
this, we extract modality-specific embeddings with (1) a pre-trained text encoder [17] for textual data,
(2) a CLAP-like audio encoder for audio signal snippets [19], (3) one-hot embedding for categorical
data and binning for scalar data, and (4) a session-based collaborative filtering embedding model for
consumption data. Full details of these vectorization steps are presented in Appendix [A]

Music Tokenizer with RQ-VAE For each modality, we train a RQ-VAE model that consists of
an encoder, a multi-level vector quantizer, and a decoder. Given an input embedding x € RY,
the encoder network fy(-) maps it to a latent representation z. € R% as follows z, = fp(x).
Then, this latent space is quantized by multiple codebooks in series, which is the key to residual
quantization. Instead of a single quantization step, RQ-VAE applies L sequential codebooks to
iteratively refine the approximation. At the [-th level, for a given residual r;_1, the quantizer selects
the closest codeword ey, from a learned codebook & = {eq,...,ek,} in Euclidean distance as
follows: k; = argminy [|r;—1 — ey |3 where k; € {1,2,..., K;} denotes the index of the selected
codeword at the [-th quantization level, K is the size of the codebook, ro = z. is the initial
residual, and r; = r;_; — ey, is the updated residual after quantization. After multi-stage residual
quantization, the final quantized representation is represented by the sum of all selected codewords:
Zg = Zlel ey, . Then, the decoder g4(-) reconstructs the original embedding from the quantized
representation as follows: X = g4(2q).

The total RQ-VAE loss can be defined by combining a reconstruction loss, a codebook loss, and a
commitment loss to encourage the encoder outputs to stay close to the selected codewords:

L
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reconstruction loss codebook loss commitment loss

where sg[-] denotes the stop-gradient operator, /3 is the commitment weight [L6]. During training, the
codebook loss updates codewords by moving them toward the encoder outputs, while the commitment
loss encourages the encoder outputs to remain close to selected codewords. sg|-] is used to control
gradient flow. The discrete token sequence for each modality is obtained by concatenating the indices
from all codebooks such as (kmod,1, kmod,2s -+, Kmod,L.)-

Token Formation Once we have trained a RQ-VAE model for each modality, we can encode
multimodal features of a track into a set of tokens as follows: we (1) pass each modality-specific
embedding through the corresponding encoder and quantize it through L codebooks to get indices
and (2) map each index to a token string of the form "<modality<level>-<index>". For example, for
Sonic Characteristics (SC) modality, if the three quantization levels produce indices 5, 2, and 17, the
resulting tokens would be <SC1-5><SC2-2><SC3-17>.

3 Experiments

Dataset and Setup We conduct experiments on a proprietary large-scale music catalog containing
track- and artist-level metadata, covering 1.6M tracks spanning diverse genres, eras, and popularity
levels. Music data are sourced through a combination of public databases (e.g., Wikipedia), automated
labeling system (e.g., music tagging model), and expert review (e.g., human annotation). After
preparing raw data, we categorize them into the nine categories as explained in Section[2] Then, we
extract modality-specific embeddings with pre-trained text encoder [[17], CLAP-like audio encoder
[19], one-hot embedding for categorical data, binning for scalar data, and session-based collaborative
filtering embedding model. We split the dataset into 80% for training and 20% for testing.

RQ-VAE Configuration We set the latent dimension to d, = 32 and use L = 3 codebooks as done
in Rajput et al. [13]. For each modality, we use (K7, K2, K3) = (32,64, 128) resulting in 224
tokens per modality where the first level captures broad categories and the subsequent levels capture
increasingly subtle differences in a larger codebook. Each modality-specific RQ-VAE was trained for
150 epochs using AdamW optimizer with a learning rate of 1e-4 and a batch size of 512. Further
details of the model architecture are provided in Appendix



Table 1: Performance comparison on content-based retrieval. The last three rows present % improve-
ment with 3MToken relative to the best baseline (underlines denote the second-best metric).

Curated Playlist

Co-occurrence

Method Metric ‘ k=5 k=10 k=20 k=50 ‘ k=5 k=10 k=20 k=50
Precision@k | 0.0678 0.0563 0.0431 0.0266 0.0596 0.0490 0.0366 0.0241
K-means Recall@k 0.0531 0.0848 0.1269 0.1903 0.0480 0.0751 0.1076 0.1604
Hit@k 0.2246 0.2931 0.3856 0.4949 0.2282 0.3092 0.3868 0.4954
Precision@k | 0.0530 0.0442 0.0336 0.0213 0.0447 0.0366 0.0274 0.0180
VQ-VAE Recall@k 0.0417 0.0664 0.0989 0.1523 0.0368 0.0573 0.0808 0.1218
Hit@k 0.1838 0.2577 0.3319 0.4428 0.1782 0.2474 0.3220 0.4298
Precision@k | 0.1059 0.0871 0.0611 0.0340 0.0863 0.0695 0.0497 0.0282
3MToken (ours) Recall@k 0.0834 0.1299 0.1770 0.2412 0.0747 0.1137 0.1523 0.1956
Hit@k 0.2842 0.3523 0.4176 0.5133 0.3004 0.3746 0.4330 0.5096
Precision@k | +56.19% +54.69% +41.76% +27.82% | +44.80% +41.84% +35.79% +17.01%
% Improvement  Recall@k +57.06% +53.24% +39.48% +26.75% | +55.63% +51.40% +41.54% +21.95%
Hit@k +26.53% +20.20% +8.30%  +3.72% | +31.65% +21.15% +11.94% +2.87%

Baselines and Evaluation Metrics K-means clustering is used to quantize embeddings into music
tokens by directly partitioning the embedding space without learned representations [2]. This method
serves as a fundamental comparison point to evaluate whether the added complexity of neural
quantization provides meaningful improvements over the traditional clustering technique. VQ-VAE
serves as an ablation of our model, using a single codebook for quantization. We train one VQ-VAE
per modality using the same encoder-decoder architecture as our RQ-VAE model, but replace the
multi-level residual quantization with a single vector quantizer. We set the codebook size of VQ-VAE
and the number of K-means clusters to 1024 per modality, following [2] which is 4.6 times larger than
that of RQ-VAE. For evaluation, we measure the performance on reconstruction and content-based
retrieval. Reconstruction is assessed using Mean Squared Error (MSE) and cosine similarity, while
retrieval performance is measured on curated playlist and co-occurrence data, reporting Precision @k,
Recall @k, and Hit@k. Further details of the evaluation are provided in Appendix

3.1 Results

Model Training and Qualitative Analysis We analyze the training losses and qualitative properties
of the learned token space in Appendix [D} From the analysis, the training losses vary by modality,
reflecting differing complexity in modality signals. Also, we observe that early-level codes capture
coarse semantics as evidenced by ground-truth labels. Lastly, token usage analysis shows that the
encoder consistently maps test set tracks to codebook regions activated during training.

Reconstruction and Content Retrieval Tasks Our analysis shows that 3MToken achieves the
lowest average reconstruction error and the highest cosine similarity (0.01182/0.9298) compared
to K-means (0.01644/0.8861) and VQ-VAE (0.01911/0.8699), representing a 28.10%/4.9% and
38.15%/6.89% improvement, respectively. These results suggest that the residual quantization
approach effectively captures fine-grained details that are lost in the vector quantization method.
For the retrieval task, we present the results in Table [I| where 3MToken consistently outperforms
the baselines across all metrics at all k values followed by K-means. K-means outperforms VQ-
VAE, which indicates that the direct clustering better preserves the original embedding structure. In
Appendix [El we provide additional analysis including the impact of d, unimodal vs. multimodal
tokens, and ablation study. From the results, 3MToken consistently outperforms unimodal models on
the retrieval tasks, demonstrating the effectiveness of the multimodal approach. In the ablation study,
the full tokens achieves the strongest results with TC showing as the most critical modality.

4 Conclusion

We develop a framework for tokenizing multimodal music data into a set of discrete tokens. Our
approach (3MToken) effectively compresses multimodal information into a sequence of hierarchical
music tokens and demonstrates superior performance on the evaluation tasks while using a lower
number of tokens. In future work, we will evaluate the proposed multimodal music tokens to enable
an LLM to perform generative music retrieval.
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A Embedding Generation for Multimodal Music Data

A.1 Textual Description

For textual data such as Artist Roles & Collaborations, Basic Metadata, Semantic Tags, Song
Facts, Artist Biography, we apply a state-of-the-art pre-trained text encoder [[17] to generate a text
embedding. This encoder maps free-form text into a semantic embedding space, allowing similar
textual descriptions to yield similar embeddings. The model we used generates a vector with a length
of 4096 for a given textual data.

A.2 Audio Signals

For audio-based signals such as Sonic Characteristics, which capture the acoustic properties of a
track, we leverage a CLAP (Contrastive Language—Audio Pretraining) like audio encoder model [19].
The CLAP model aligns raw audio signals and textual descriptions into a shared embedding space
using contrastive learning. In our case, we trained a CLAP-like model with a proprietary dataset
consisting of 1M audio-text pairs where the audio encoder takes the raw audio waveform of a track as
input, while the text encoder takes the track’s description including metadata-derived textual context.
This joint training encourages audio embeddings to remain semantically aligned with text-based
descriptions, improving cross-modal consistency. After training, we only use the audio-encoder tower
to generate a vector with a length of 128 for a given sound recording.

A.3 Categorical Metadata

We have two types of categorical metadata: Release Information and Musical Characteristics. For
categorical data, we apply a simple data binning approach.

First, to capture both fine-grained and coarse-grained time information from the release information,

we transform the release date into a compact temporal embedding. To do this, first, we encode
normalized year where the release year is normalized to a [0, 1] range as year,orm = %,
where 1910 is the earliest possible release year and 2025 is the upper bound. And then, we encode
cyclical month using sine/cosine functions to capture the periodic nature of months by encoding

the month m as sin,,, = sin (2%%) and cos,,, = cos (27r mlgl), while the day d is encoded as

sing = sin(Zw%) and cosy = cos (27r%). In addition, we assign each release year to one of 11
decade bins (pre-1930, 1930s, ..., 2020s), represented by a one-hot vector. Also, we add two binary
flags indicating data quality - an imputation flag (1 if the date is missing or invalid) and an availability
flag (1 if a valid release date is present). By concatenating all components, the final release-date
embedding is represented by an 18-dimensional vector that preserves both exact timing and coarse
historical context.

For Musical Characteristics, we adopt a one-hot binning approach to discretize continuous tempo
values into 220 bins, covering the range from 30 BPM to 249 BPM. Valid tempo values within this
range are mapped to their corresponding bins, while missing or out-of-range values are assigned to a
dedicated imputation bin (i.e., last index). For the musical key, which is categorical (e.g., C major, B
major, A minor), we create a class-to-index mapping for all observed keys and encode each key as a
25-dimensional one-hot vector, reserving the last index for missing or unknown keys. In this work,
the embeddings from tempo and musical key are concatenated to form the representation for Musical
Characteristics.

A4 Consumption Data

For Track Consumption, the consumption patterns which are derived from co-occurrence in a listening
session are used. We built the consumption song embeddings as follows. First, from historical
playback data, we generate track pairs that frequently appear in the same session, recording both
pairwise co-occurrence counts and marginal frequencies. To improve data quality, we filter out pairs
that do not meet a minimum threshold of sessions and distinct listeners. We then compute similarity
scores for each remaining pair using a statistical significance test [5]], retain the top-k most similar
tracks for each seed track, and apply hubness [[12] and popularity bias reduction. To learn track-level
embeddings v;, we define the affinity between two tracks as the dot product of their embeddings.
We optimize a weighted cross-entropy loss over a softmax distribution of top-k similar tracks, using



negative sampling [8] as follows >, ; s; ; log softmax; exp vjv; where s; ; is an increasing function
of the similarity strength of the pair (4, j). Hyperparameters are tuned based on a track-ranking task
on a held-out validation set of track pairs. This approach can be viewed as a session-based skip-gram
embedding model (Track2Vec) where co-listening relationships are learned directly from session
co-occurrence data.

After applying modality-specific encoders, the resulting dimensions of each modality are 4096,
4096, 4096, 128, 247, 18, 4096, 4096, 128 for Artist Roles & Collaborations, Basic Metadata,
Semantic Tags, Sonic Characteristics, Musical Characteristics, Release Information, Song Facts,
Artist Biography, and Track Consumption, respectively.

B Model Architecture

We use (K7, Ko, K3) = (32,64, 128) for our default setting. These default sizes are chosen so that
the finest level often has a larger codebook (e.g., 128) to capture subtle differences, whereas the first
level has a small codebook to capture broad categories (e.g., 32). For encoder (fy(-)) and decoder
(94 (+)), we adopt the following architecture: the encoder is a 4-layer feedforward neural network
that compresses the input embedding through layers of size 512 — 256 — 128 — d, using ReLU
activations and batch normalization at each layer and the decoder mirrors this structure symmetrically
with layers of size d, — 128 — 256 — 512, reconstructing the original embedding from the latent
representation.

C Evaluation Metrics

We report performance on reconstructions and content retrieval tasks to compare 3MToken with its
variants and the baselines described in Section[3l

Reconstruction measures how well the compressed tokens preserve the original feature information.
We compute Mean Squared Error (MSE) and cosine similarity between an original modality vector x
and a RQ-VAE reconstructed vector X = g4(24) on the test set. Lower MSE and higher cosine simi-
larity indicate better preservation of the information. For K-means baseline, we use a corresponding
cluster centroid as a reconstructed vector.

For retrieval tasks, we simulate a content-based retrieval scenario in which, given a query track, the
goal is to retrieve top-k most similar tracks based on their item representations (i.e., music tokens)
and evaluate whether the retrieved tracks are relevant to the query. To do this, we construct two proxy
tasks using the curated playlist (including 15,000 playlists) and the co-occurrence dataset (including
30,000 track co-occurrence pairs derived from listening sessions). For the curated playlist, we select
a track from a playlist as the query and retrieve the top-k tracks, assuming that tracks within the
same playlist tend to share semantic similarity. Similarly, for the co-occurrence, we treat tracks that
co-occur within the same listening session as semantically related and evaluate whether a model
retrieves top-k tracks from the same session. Note that we only use tracks from the test set in both
curated playlist and co-occurrence data.

To compare token sequences between tracks, we assign equal weights (i.e., 1) to each modality. For
RQ-VAE, we apply hierarchical matching, where level-2 matching is conditioned on level-1 matches,
and level-3 matching is further conditioned on successful matches at levels 1 and 2. We then find
top-k tracks based on a token matching score (greater token overlap yields a higher score). For the
retrieval tasks, we report standard recommendation metrics including Precision @k, Recall @k, and
Hit@k.

D Model Training and Qualitative Analysis

When computing the loss, 5=0.25 is used. Also, to prevent the situation where most of the input gets
mapped to only a few codebook vectors (i.e., codebook collapse problem), as proposed in [21], we
run K-means on the first training batch and initialize codebooks with the learned centroids instead of
a random initialization for the codebook vectors. To train our model, we used two NVIDIA Tesla
V100 GPUs.
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Figure 2: Average total loss for RQ-VAE training (left) and qualitative study of music tokens generated
by RQ-VAE (right).
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Figure 3: Token distribution across quantization levels for three selected modalities. The histograms
show token usage frequency for train and test sets.

Figure 2] (left) shows the training loss of RQ-VAE across all nine modalities over 150 epochs.
The losses converge after nearly 100 epochs, and distinct patterns are observed which may reflect
the inherent complexity and characteristics of different musical modalities. Several modalities
including AC, BM, SF, ST, and AB present relatively low loss values (between 10~*and 10~° range),
suggesting these modalities contain well-structured, learnable patterns that are effectively captured
by the quantization approach. TC and RI modalities maintain higher loss values throughout training,
suggesting quantization is more challenging to preserve information.

A primary property of the residual quantization is its ability to represent tracks hierarchically. The
first-level code c;n04,1 captures coarse semantic aspects of a modality such as a main musical genre
(e.g., Rock) in Semantic Tag (ST) modality while the second (¢y,04,2) and third levels (¢;,04,3) refine
the representation to capture sub-genres (e.g., Hard Rock, Punk Rock, and Alternative Rock). As
a result, tracks sharing the same first-level code are likely to be similar in a broad sense for that
modality, even if their full token sequences differ. For visualization purposes, we set the codebook
sizes to (K1, Ko, K3) = (8,16, 32) and show the distribution of ground-truth music categories over
the first-level codebook in ST modality in Fig. 2] (right). It clearly demonstrates that the first-level
codes capture high-level categorical information.

Figure 3| presents token distributions across the three quantization levels for three selected modalities—
ST (text-driven), SC (audio-driven), and TC (co-listening-driven)—for both training and test sets. As
shown in the figure, some token indices are unused during training (e.g., in ST-Level3). Importantly,
none of the test set tracks are mapped to these unused tokens, indicating that the encoder consistently
generates embeddings within the codebook regions activated during training. This suggests that



Table 2: Reconstruction error (J) and cosine similarity (1)

Modality | K-means | VQ-VAE | 3MToken (ours)
AC 2.700 x 107570.9420 3.400 x 107570.9272 2.500 x 107°/0.9478
BM 4.900 x 107°/0.8940 5.200 x 107°/0.8865 4.500 x 107°/0.9028
ST 1.500 x 107°70.9697 3.100 x 107°/0.9351 1.300 x 10~°/0.9730
Ne 3.229 x 1072 /0.760 3.293 x 1072 /0.7530 1.984 x 102 /0.8614
MC 2.328 x 1073/0.8335 2.588 x 1073/0.8153 3.900 x 107°/0.9979
RI 1.639 x 1072/0.9701 3.406 x 1072/0.9375 4.109 x 1072 /0.9982
SF 3.100 x 107°/0.9319 3.000 x 107°/0.9383 2.800 x 1075/0.9349
AB 4.000 x 10~6/0.9927 1.000 x 102 /0.9793 4.000 x 107%70.9913
TC 1.259 x 1071 /0.6810 1.319 x 1071 /0.6610 1.001 x 101 /0.7578
Avg. 1.644 x 10~ 2/0.8861 1.911 x 10~ 2/0.8699 1.182 x 10~ 2/0.9298
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Figure 4: Performance measured in Precision @k, Recall@k, and Hit@k at different latent dimensions
(d>).

although the token space has high capacity, the encoder effectively learns to utilize a stable and
meaningful subset of tokens, enhancing both the reliability and interpretability of the representations
for downstream retrieval tasks.

E Further Analysis

E.1 Reconstruction Accuracy

In Table[2] we present a comparison of our proposed model against two baseline approaches across
nine different modalities. Overall, our proposed model demonstrates superior performance with
the lowest average reconstruction error (0.01182) and highest average cosine similarity (0.9298).
Notably, 3MToken achieves exceptional results on MC and RI modalities with near-perfect cosine
similarity scores of 0.9979 and 0.9982 respectively, representing significant improvements over
both baseline methods. These results demonstrate that our hierarchical token extraction approach
effectively captures the underlying structure across all modalities.

E.2 Impact of Latent Dimension in RQ-VAE

In RQ-VAE, the choice of latent dimension (d.) plays a role in balancing reconstruction quality,
computational efficiency, and latent space expressiveness [4]]. To investigate the impact of d, on the
content-based retrieval tasks, we report Precision @k, Recall@k, and Hit@k at d,, = 8, 16, 32, 64, 128,
and 256 in Fig. [4] Based on the evaluation, RQ-VAE with d, = 32 is shown as the best performing
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across most of the metrics on both Curated Playlist and Co-occurrence followed by d, = 16. Also, as
shown in the figure, the performance tends to decline as d, increases. One possible explanation is
that larger latent vectors allow the model to capture excessive fine-grained, reconstruction-specific
details (e.g., noise) that are not semantically relevant, while quantization noise accumulates over
more dimensions. This reduces the discriminative power of the learned tokens, meaning that even if
reconstruction error improves with larger d., semantic retrieval performance can deteriorate.

E.3 Unimodal vs. Multimodal Approaches

In Table[3] we present Hit@k performance of unimodal and multimodal tokens on the content retrieval
tasks discussed in Section [3.1] selecting the 7 best-performing modalities for brevity. As shown
in the table, the multimodal token approach (i.e., 3MToken) consistently outperforms unimodal
methods across all k values, demonstrating the effectiveness of the multimodal approach. Among
unimodal baselines, TC achieves the best performance. The performance gap between multimodal
and unimodal approaches is more significant at lower k values, indicating that multimodal approach is
particularly effective at identifying highly relevant music tracks early in the ranking process. Overall,
the results validate that integrating information across modalities yields significant performance gains
over unimodal approaches.

Table 3: Comparison of multimodal and unimodal approaches on content-based retrieval tasks. The
last row presents % improvement with 3MToken relative to the best unimodal baseline (underlines
denote the second-best metric).

Curated Playlist | Co-occurrence
Hit@5 Hit@10 Hit@20 Hit@50 | Hit@5 Hit@10 Hit@20 Hit@50

Method

Multimodal Approach
0.2842 0.3523  0.4176  0.5133 | 0.3004  0.3746  0.4330  0.5096

3MToken (ours)

|
|
|
|
| Unimodal Approaches
TC 0.0994 0.1511 0.2161 0.3070 0.1648 0.2394 0.3218 0.4262

ST 0.0725 0.1120  0.1576  0.2325 0.0908  0.1324  0.1832  0.2690
SC 0.0548 0.1004  0.1538  0.2301 0.0780  0.1228  0.1788  0.2598
AC 0.0844 0.1076  0.1304  0.1715 0.1092  0.1376  0.1644  0.2030
SF 0.0848 0.1096  0.1321 0.1593 0.1394  0.1802  0.2056  0.2294
AB 0.0279 0.0459  0.0681 0.1099 0.0262  0.0456  0.0708  0.1142
BM 0.0170 0.0320  0.0555  0.1021 0.0236  0.0374  0.0640  0.1096

Improvement (%) | +186.0% +133.2% +93.2% +67.2% | +82.3% +56.5% +34.6% +19.7%

E.4 Ablation Study

For the ablation study, we remove one modality at a time and report Hit@k performance on the
content-based retrieval tasks in Table 4] using the modalities selected in Section Overall, the
full multimodal model achieves the strongest results, however, certain ablations outperform it (e.g.,
removing AB at Hit@50). As expected, TC is shown as the most critical modality — its removal
causes the largest and most consistent performance drops across all k values in Curated Playlist and
in four out of five k values in Co-occurrence, consistent with the findings in Section@ AC, ST, and
SC are also important, as excluding them consistently degrades performance. In Curated Playlist,
most modalities contribute positively at lower k values (5 and 10), whereas some (e.g., AB and SF)
may introduce noise at higher k values. In Co-occurrence, the full multimodal model consistently
outperforms nearly all ablation variants, with only minor exceptions.
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Table 4: Ablation study results by removing one modality at a time. Percentage changes are reported
relative to the full multimodal model.

| Curated Playlist | Co-occurrence
Configuration ‘ Hit@5 Hit@10 Hit@20 Hit@50 ‘ Hit@5 Hit@10 Hit@20 Hit@50
3MToken (ours) ‘ 0.2842 0.3523 0.4176 0.5133 ‘ 0.3004 0.3746 0.4330 0.5096

remove AC 02777 03455  0.4125 05085 | 0.2862 03600  0.4268  0.4978
(-23%)  (-19%) (-12%) (-09%) | (-47%) (-3.9%) (-1.4%) (-2.3%)
remove ST 02720  0.3404 04054  0.4959 | 0.2872 0.3640 04184  0.4884
(-43%) (34%) (2.9%) (34%) | (-44%) (2.8%) (-34%) (-4.2%)
remove BM 0.2845 03523 04176 05092 | 02950 0.3748  0.4318  0.5050
(+0.1%)  (0.0%)  (0.0%) (-0.8%) | (-1.8%) (+0.1%) (-03%) (-0.9%)
remove SF 02798 03499  0.4170 05157 | 02720 03476  0.4148  0.4982
15%) (0.7%) (0.1%) +0.5%) | (:9.5%) (-12%) (-42%) (-2.2%)
remove AB 02740 03431 04224 05276 | 02728 03510 0.4174  0.5032
(-3.6%) (-2.6%) (+1.1%) (+2.8%) | (-:92%) (-6.3%) (-3.6%) (-1.3%)
remove SC 0.2747 03438  0.4091 04980 | 02906 0.3594  0.4182  0.4902
(-33%)  (24%) (2.0%) (3.0%) | (:33%) (4.1%) (-3.4%) (-3.8%)
remove TC 0.2658 03308 03955 04850 | 0.2752 0.3424 03942  0.4598
(-65%) (-6.1%) (-53%) (-55%) | (-8.4%) (-8.6%) (-9.0%) (-9.8%)
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