
Under review as submission to TMLR

Dual-Policy Architecture for Multi-Agent Exploration

Anonymous authors
Paper under double-blind review

Abstract

When training an agent using Reinforcement Learning, an efficient exploration strategy is
essential to achieve good results. Multi-Agent Reinforcement Learning introduces additional
challenges that require efficient exploration in order to find a set of policies that is able to
achieve the goal. This is caused by the fact that agents may depend on each other to
be successful. State-of-the-art works combine the exploitation and exploration behaviour
into a single policy. Instead, we propose the use of a dual-policy architecture, where we
separate the exploration policy from the exploitation policy. We present two different ways
to accomplish such a dual-policy architecture, Weighted-Q Dual-Policy (WQ-DP) and ϵ-
Sampled Dual-Policy (ϵS-DP). WQ-DP uses an approach more similar to previous works,
using a weighted sum of the Q-values produced by the exploitation and the exploration
policies to choose an action. ϵS-DP samples between the exploitation and exploration policy
based on the ϵ parameter that varies during training. Our results show that agents that use
a dual-policy architecture outperform agents that combine the exploitation and exploration
policies. ϵS-DP shows the best results when comparing the tested architectures. Further
experiments show that the policy sampling period in ϵS-DP greatly contributes to its superior
performance.

1 Introduction

Exploration is a crucial aspect of Reinforcement Learning (RL). It is essential that the agent efficiently
explores the environment to be able to find rewarding state-action pairs and converge to an effective policy.
In theory, in order to converge to the optimal policy, each state-action pair needs to be visited an infinite
number of times. However, in practice, it is often possible to learn an effective policy with more limited
experience. In environments with a small and discrete state- and action-space a random exploration strategy
will usually be sufficient to explore the environment and converge to a policy that achieves the goal. When
the environment has a large or continuous state- and/or action-space, it may no longer be possible to visit
all state-action pairs. This can make it harder to find rewarding state-action pairs, especially when rewards
are sparse or when parts of the state-space are hard to reach. In those cases, a more efficient and strategic
exploration approach can be necessary.

We provide a brief overview of environment properties that can make the exploration of an environment
challenging in single agent RL:

• Sparse Rewards in the environment are one of the main reasons to require strategic exploration.
If the reward is sparse, only a small subset of the state-space will result in a reward. If the agent
does not observe any reward, it will not be able to learn a useful policy (Ladosz et al., 2022).

• Noisy-TV is the phenomenon where an agent gets stuck exploring a part of the state-space that
mainly consists of noise. It is usually explained by the example of an agent exploring a house that
contains a TV. On the TV, new random images are displayed every timestep, but no reward will
be gained by watching the TV. In this scenario, the agent will keep seeing novel states by watching
the TV but will make no progress in exploring other parts of the environment that could result in
a reward (Burda et al., 2019).

1

Under review as submission to TMLR

• Bottlenecks in the State-Space are parts of the state-transition graph where there is only one
or a few paths to another part of the state-space. This decreases the chances of reaching those areas
making them harder to explore (Toquebiau et al., 2024).

• Zero-incentive Dynamics are bottlenecks in the state-space where the agent is not rewarded for
getting past them. This means that important behaviours are not rewarded, making it harder for
the agent to learn them (Molinghen et al., 2023).

In Multi-Agent Reinforcement Learning (MARL), these environment properties also make exploration more
difficult. As the number of agents increases the number of joint action pairs will grow exponentially, making
it increasingly complex to properly explore the environment. Additionally, because multiple agents influence
the state-transition and reward, there are additional challenges that can make an environment difficult to
explore. In literature, the following challenging environment properties have been presented:

• Relative Overgeneralisation describes the problem where a group of agents prefers a suboptimal
Nash equilibrium instead of the optimal Nash equilibrium because the suboptimal Nash equilibrium
is better when paired with arbitrary actions from the other agents, for example during exploration.
It is only when all agents follow the optimal policy that the optimal Nash equilibrium will be the
best option. (Wiegand & Jong, 2004; Wei & Luke, 2016).

• Interdependence is a property of the environment that indicates how much the agents depend
on each other to reach the goal in the environment. In environments with low interdependence the
agents can reach the goal by all individually completing their sub-goal. However, environments with
high interdependence contain bottlenecks in the state-space. These bottlenecks require a high level
of coordination between the agents to reach rewarding states (Molinghen et al., 2023).

• Perfect Coordination is required when the agents need to follow a specific sequence of actions to
be successful and if deviation from this sequence by one single agent leads to early termination or a
penalty (Molinghen et al., 2023).

These challenges have significant overlap. Interdependence can be used as an umbrella term which also de-
scribes both relative overgeneralisation and perfect coordination. A situation requiring perfect coordination
can also be described as a situation with high interdependence. An environment that suffers from relative
overgeneralisation also describes high interdependence and has a big overlap with perfect coordination.

The combination of these challenges with the challenges shared with single-agent RL create an even more
complex environment for exploration. For example, the combination of zero-incentive dynamics and bot-
tlenecks in the state-space that are caused by interdependence can create a situation where the agents are
not rewarded for very important cooperative behaviours. This makes learning these behaviours extremely
difficult.

In the state of the art (Pathak et al., 2017; Raileanu & Rocktäschel, 2020; Zhang et al., 2024; Toquebiau
et al., 2024; Wang et al., 2019), the exploration behaviour will often be learned through a weighted intrinsic
reward that is added to the environment reward and will encourage exploring the environment. This results
in a single policy that tries to simultaneously maximize the environment reward and explore the environment.
One of the main challenges in cooperative MARL is credit-assignment (Albrecht et al., 2024). Determining
which action from which agent caused the reward is difficult because all agents receive the same team reward.
Combining this team reward with an additional intrinsic reward further amplifies the credit-assignment
problem. The agents will now have to determine their contribution to the combined reward instead of only
the environment reward. Essentially, the goal here is to solve a multi-objective problem with two objectives,
exploitation and exploration. Most of the state of the art reduces this to a single objective problem using a
weighted sum of the two rewards. However, doing this presents some additional difficulties (Roijers et al.,
2013). In stationary environments, the focus on exploration will be mostly at the beginning of training and
decrease throughout training. This means that the weights of the weighted sum of rewards will also change
throughout training. Therefore, the agents will have to find a policy in a non-stationary environment, which

2

Under review as submission to TMLR

is inherently more difficult. In addition, there will always be a delay between changing the weights and
obtaining a policy that achieves the corresponding combined objective.

In this work, we investigate the use of dual-policy architectures, where we separate the exploitation and
exploration policies. We present two dual-policy architecture implementations, Weighted-Q Dual-Policy
(WQ-DP) and ϵ-Sampled Dual-Policy (ϵS-DP). The two policies on their own will be easier to learn for the
agents than if we combine them into a single policy since they can each focus on maximizing either the
environment or the intrinsic exploration reward. The first approach, WQ-DP is an evolution of the approach
that is the standard in the state of the art. However, instead of making a weighted sum of the exploitation
and exploration reward, we use a weighted sum of the Q-values from the exploitation and exploration policies
to determine the action. In the results, we see that separating the exploitation and exploration policy results
in a clear performance improvement. The second approach improves upon this further by sampling which
policy will be used to determine the action. This provides a lot more control over which policy is used and
results in a significant performance improvement.

Next, we investigate different aspects of the exploration behaviour to see which aspects contribute to the
success of the ϵS-DP approach. First, we investigate the policy sampling period that determines how often the
agents can switch between the exploitation and exploration policy. Next, we analyse whether synchronising
the choice between the exploitation and exploration policy across the different agents helps improve the
performance of the agents. This means that the decision between exploration and exploitation will be the
same for all agents. Finally, we look into an alternative intrinsic reward, based on Laplacian representations,
to see whether the architecture remains effective when using different intrinsic rewards. The Laplacian
representation contains information about the geometry of the state-transition graph, allowing us to calculate
a distance between two states.rev1 The goal of this intrinsic reward is to encourage the agents to move away
from the initial state of the episode to explore areas further away.

In our experiments, we use environments that are designed to test the ability of our approaches to deal with
the multi-agent exploration challenges that we explained as well as several of the single-agent challenges.
The Laser Learning Environment (LLE) challenges the agents with sparse rewards, bottlenecks in the state-
space, zero-incentive dynamics, high interdependence and requires perfect coordination while the relative
overgeneralisation environment focuses on relative overgeneralisation and high interdependence.rev1

2 Related Work

Within the field of RL, there have been a variety of proposed exploration techniques. In this section, we give
an overview of the state of the art of exploration. First, we look at techniques designed for single-agent RL,
and then we investigate methods used specifically for MARL.

2.1 Single-Agent Exploration

There are many approaches to handle exploration within RL (Ladosz et al., 2022). In a lot of cases, some form
of random exploration is employed such as ϵ-greedy, variations such as temporally extended ϵ-greedy (Dabney
et al., 2020) or adding noise to the actions in Deep Deterministic Policy Gradients (DDPG) (Lillicrap
et al., 2016). Similarly, entropy regularization is often used in policy gradients approaches to encourage
stochastic actions (Willaims & Peng, 1991; Ahmed et al., 2019). However, these methods do not suffice in
all environments. They waste a lot of environment interaction by repeating state-action sequences that are
already known to be ineffective. In these more challenging environments, a strategic form of exploration is
desired, for example by using an intrinsic reward.

Many approaches generate an intrinsic reward that aims to encourage exploratory behaviour. One way to
define this intrinsic reward is to reward visiting unseen states. There are many ways to compose an intrinsic
reward to promote novel states (Ladosz et al., 2022). Most methods are based on either prediction error
(Pathak et al., 2017; Raileanu & Rocktäschel, 2020; Burda et al., 2019; Zhang et al., 2024), state counts
(Tang et al., 2017; Martin et al., 2017; Ostrovski et al., 2017; Machado et al., 2020) or memory (Badia et al.,
2020b; Fu et al., 2017).

3

Under review as submission to TMLR

One of the best known methods is Random Network Distillation (RND) (Burda et al., 2019). Here, the
intrinsic reward is the Euclidean distance between the output of the predictor network and the target
network. The target network is randomly initialised, and the predictor network is trained alongside the
agent policy to match the output of the target network.

Zhang et al. (2024) adapt RND to create a new intrinsic reward (NovelD). They combine the RND value
of the current and next timestep to obtain the novelty change resulting from a certain action. They also
add an episodic state visit-count which aims to encourage varied experience within an episode. However,
using state-counts limits this approach to environments with a discrete state space and can cause scalability
problems.

Henaff et al. (2024) have a similar goal. Their method, Exploration via Elliptical Episodic Bonuses (E3B)
encourages the agent to display diverse behaviour throughout an episode. However, their method does not
rely on state counts but on clustering of state embeddings allowing the use of continuous state spaces and
better scalability of the state space.

Many of these approaches focus on achieving novelty in the state. However, this can be dependent on how the
state is represented. Some unimportant state changes may have a big influence on the state representation,
as is seen in the Noisy-TV problem. In addition, they focus on how to compose an intrinsic reward, that
improves the exploration performance of the agents. Less attention is given to how to combine this intrinsic
reward with the environment reward.

The most common approach to incorporate exploration behaviour into an agent is to use a linear combination
of the extrinsic “exploitation” reward and the intrinsic “exploration” reward (Pathak et al., 2017; Raileanu
& Rocktäschel, 2020; Zhang et al., 2024). However, this results in a single policy that tries to both exploit
and explore at the same time. In many situations we do not want this. Once training has finished, we
often want a policy that focuses purely on exploitation or that does only a limited amount of exploration
which is hard to control using only the intrinsic reward weight. Annealing the weight of the intrinsic reward
throughout training also makes the environment non-stationary which makes the problem more complex.
Another downside to this approach is that the weights of the rewards in the linear combination need to be
tuned differently depending on the reward functions.

Burda et al. (2019) create two separate value heads and use episodic rewards for the exploitation head
and non-episodic rewards for the exploration head. However, much of the policy will still be shared and
therefore, the non-stationarity caused by the exploration reward will still impact the exploitation policy.
Bagot et al. (2020) decouple exploitation and exploration behaviour. The agent consists of two policies, one
for exploitation and one for exploration. The exploitation policy has an additional action to indicate that
it wants to explore. By separating both policies, there is more control over the exploration and the agent
retains the knowledge about exploration.

2.2 Multi-Agent Exploration

In the case of MARL, most methods use randomised exploration strategies such as ϵ-greedy or entropy reg-
ularization. Hsu et al. (2024) investigate the use of other randomised exploration approaches in cooperative
MARL. They present a framework to incorporate these randomised exploration techniques in MARL. They
test their method using perturbed history exploration (Kveton et al., 2019) and Langevin Monte-Carlo ex-
ploration (Xu et al., 2022). Another way to achieve this is by combining the diverse experience of multiple
approaches in a single shared replay buffer as is done by Majumdar et al. (2020). They show the benefits of
enabling interaction between an evolutionary approach and a MARL approach.rev1

In MARL, there has also been a lot of research into learned exploration strategies. A first group of approaches
does this without the use of an intrinsic reward. Multi-Agent Variational Exploration (MAVEN) (Mahajan
et al., 2019) introduces a hierarchical policy to better explore the joint action space thereby counteracting
the suboptimal exploration of QMIX.

Relational Representation for Multi-Agent Exploration (REMAX) (Ryu et al., 2022) is designed to generate
useful initial states for the agent. This is done through the use of a variational graph autoencoder that
encodes the state to a latent space. A surrogate model is then used to calculate an exploration score to

4

Under review as submission to TMLR

indicate how useful it is to explore this state. The method searches for latent representations that maximize
the exploration score, translates them back to the corresponding states and uses these as initial states for
the agent training. However, an important downside of this approach that we do not have control of the
starting state in every environment. Liu et al. (2024) present a similar approach that identifies interesting
states and uses an imagination model to compose a trajectory to reach those states, overcoming the downside
of REMAX. The agents are initialised in these states using the imagined trajectory and ϵ-greedy is used to
explore further.

Liu et al. (2022) propose an exploration approach based on successor features (Barreto et al., 2017). They
first train on a wide range of tasks. Each task produces new actor policies but uses the same critic that
uses a global successor feature network. They can change the task that is learned by changing the successor
feature weights within the critic. Therefore, they are able to explore a new task more effectively by selecting
the best pretrained policies using the shared critic and evaluating them using the successor weights of the
new task. However, this requires designing a curriculum of tasks that gradually increases in difficulty and
similarity to the target task.

Most other methods in the state of the art use intrinsic rewards to encourage exploration. Wang et al. (2019)
create an intrinsic reward that is based on the influence of actions on the reward function and transition
function of other agents. Their work is similar to the work of Jaques et al. (2019), who create an intrinsic
reward that is based on the influence on the policy of the other agents.

Toquebiau et al. (2024) use an intrinsic reward called Joint Intrinsic Motivation (JIM) composed of a com-
bination of NovelD (Zhang et al., 2024) and E3B (Henaff et al., 2024). In addition to this intrinsic reward
they encourage the agents to explore the joint observation space by using a global intrinsic reward calculated
using the joint observation.

Zheng et al. (2024) also choose to use a combination of curiosity and episodic intrinsic rewards. For the
curiosity part, they use an additional linear factorization module such as Value Decomposition Networks
(VDN) (Sunehag et al., 2017) or QMIX (Rashid et al., 2018) to calculate the intrinsic reward, separate from
the one used to determine the policy of the agents. The episodic intrinsic reward is designed to encourage
the agents to replay highly rewarding sequences.

Similar to the state of the art in single agent exploration, most works on multi-agent exploration combine the
exploration and exploitation policy into a single policy. They achieve this by training the policy using a total
reward formed as a weighted sum of the exploration and exploitation reward. In their work, Böhmer et al.
(2019) separate the exploration and exploitation policy. For their exploration policy they use a centralised
policy that has been optimised to make it more scalable. Liu et al. (2021) present an approach to using a
separated exploitation and exploration policy. At each timestep, they create a mixture of the exploration and
exploitation policies to select an action from. The exploration policies are trained to reach under-explored
states in a restricted state-space. During training, they gradually widen this restriction to explore more
states. The work of both Böhmer et al. (2019) and Liu et al. (2021) are similar to the work presented in this
paper. However, the focus of this paper is to present a thorough analysis of the performance of dual-policy
architectures and provide insight into why they perform better than the weighted sum approach. Böhmer
et al. (2019) will face scalability issues due to the centralised exploration policy. The work of Liu et al. (2021)
is mostly focused on their approach to restrict the state space and does not explicitly show the contribution
of the separated policies to the performance of the agents.

3 Background

In this section, we explain some background information about existing methods and concepts that we will
be using in our experiments.

3.1 Decentralised Partially Observable Markov Decision Process

In this work, we consider cooperative multi-agent environments. These can generally be described as a De-
centralised Partially Observable Markov Decision Process (dec-POMDP) or a Multi-Agent Markov Decision

5

Under review as submission to TMLR

Process (MMDP) if the environment is fully observable (Oliehoek & Amato, 2016). In a Decentralised Par-
tially Observable Markov Decision Process (dec-POMDP), a set of agents (A) acts in the environment. Each
of the agents a ∈ A can perform an action. We denote the individual action of an agent a as ua ∈ Ua(st)rev1

and the joint action of all agents as u ∈ U(st)rev1. These actions influence the environment causing a tran-
sition from one state s ∈ S to another based on the transition function P . However, in a dec-POMDP, the
agents do not observe the full state of the environment but only a limited observation o ∈ O. To alleviate the
partial observability, it can be useful in certain environments to use the observation history τ instead of only
the current observation. We use τ to denote the joint observation history and τa to denote the individual
observation history of agent a.rev1 The agents receive a team reward r. In this work, we make a distinction
between the extrinsic or environment reward re and the intrinsic or exploration reward ri.

3.2 Centralised Training Decentralised Execution

Centralised Training Decentralised Execution (CTDE) is a commonly used paradigm within MARL (Rashid
et al., 2018; Foerster et al., 2018; Sunehag et al., 2017). The idea is that the training of the agents can be
performed in a centralised way and only the execution needs to be decentralised. Using centralised training
allows the use of more information and centralised components as long as it is not required for execution.
For exploration, this paradigm can also be used. When using CTDE, we can use joint information for the
calculation of the intrinsic reward as proposed by Toquebiau et al. (2024). We can also synchronise elements
across agents such as when to explore and when to exploit, as we will explain in Section 4.1.2.

3.3 ϵ-Greedy Dual-Policy

One of the most used exploration techniques is ϵ-greedy. Here, we will choose a random action instead of
following the learned policy with a chance of ϵ. For consistency with the algorithm naming in the remainder
of this paper we will refer to ϵ-greedy as ϵ-Greedy Dual-Policy (ϵG-DP). Using this approach, we essentially
use a dual-policy architecture where the exploration policy is a random policy.

Algorithm 1 shows the overall process of using a dual-policy architecture. Here, interaction with the environ-
ment is described using the Reset() function which starts a new episode and provides an initial observation
and set of possible actions and with the Done() function that indicates whether the episode has terminated.
The Step() function takes a joint action and performs a transition in the environment providing a new
observation history, reward and set of possible actions. We use a replay buffer where experience is stored
using the Store() function and sampled with the Sample() function. We use U(Ua(st)) to denote a uniform
distribution over the set of possible actions Ua(st) for agent a in the current state. U(st) describes the set of
possible joint actions. TrainAgentPolicies() is a function to train the given policies on the given experience.
The exact behaviour of this function depends on which MARL approach will be used.rev1

3.4 Weighted-Rewards Single-Policy

An approach that is frequently used in literature to combine the extrinsic and intrinsic rewards into a single
reward is using a weighted sum (Zhang et al., 2024; Toquebiau et al., 2024; Zheng et al., 2024).

rtotal = re + βri (1)

This method can be seen as a multi-objective reward function that aims to optimise both the exploitation
objective and the exploration objective. Using a linear combination of the rewards of multiple objectives is a
widely used method in this context (Rădulescu et al., 2019). The resulting agent will aim to simultaneously
maximise the extrinsic and the intrinsic reward. Usually, the weight of the intrinsic reward will be annealed
throughout training, to achieve a final agent that focuses on the extrinsic reward with no or limited attention
to exploration. In the remainder of this paper we will refer to this approach as Weighted-Rewards Single-
Policy (WR-SP).

Algorithm 2 shows the process of WR-SP. Here, interaction with the environment is described using the
Reset() function which starts a new episode and provides an initial observation and set of possible actions

6

Under review as submission to TMLR

Algorithm 1 ϵ-Greedy Dual-Policyrev1

ϵ ∈ [0, 1]
Q← joint Q-function

for # training iterations do
for # episodes do

τt,U(st)← Reset()
while not Done() do
−→
Q ← Q(τt)
ut ← EpsilonGreedy(−→Q , U(st))
τt+1, rt,U(st+1)← Step(ut)
Store(τt, ut, τt+1, rt)
τt ← τt+1
U(st)← U(st+1)

end while
end for
τt, ut, τt+1, rt ← Sample()
Q← TrainAgentPolicies(Q, τt, ut, rt, τt+1)

end for

function EpsilonGreedy(−→Q , U(st))
for all a ∈ A do

ua
t ←

argmax
u′a

(−→Q) with probability of (1− ϵ)

∼ U(Ua(t)) with probability of ϵ

end for
ut ← [u1

t , . . . , uN
t]

return ut

end function

7

Under review as submission to TMLR

and with the Done() function that indicates whether the episode has terminated. The Step() function takes
a joint action and performs a transition in the environment providing a new observation history, reward
and set of possible actions. We use a replay buffer where experience is stored using the Store() function
and sampled with the Sample() function. We use U(Ua(st)) to denote a uniform distribution over the set
of possible actions Ua(st) for agent a in the current state. U(st) describes the set of possible joint actions.
ExplorationRewardCalculator() is a function to calculate the intrinsic reward from the given experience and
TrainAgentPolicies() is a function to train the given policies on the given experience. The exact behaviour
of these functions depends on which intrinsic reward and which MARL approach will be used.rev1

Algorithm 2 Weighted-Rewards Single-Policyrev1

ϵ ∈ [0, 1]
β ∈ R+

0
Q← joint Q-function

for # training iterations do
for # episodes do

τt,U(st)← Reset()
while not Done() do
−→
Q ← Q(τt)
ut ← EpsilonGreedy(−→Q , U(st))
τt+1, re,t,U(st+1)← Step(ut)
Store(τt, ut, τt+1, re,t)
τt ← τt+1
U(st)← U(st+1)

end while
end for
τt, ut, τt+1, re,t ← Sample()
rtotal,t ← WeightedRewards(re,t, τt, ut, τt+1)
Q← TrainAgentPolicies(Q, τt, ut, rtotal,t, τt+1)

end for

function WeightedRewards(re,t, τt, ut, τt+1)
ri,t ← ExplorationRewardCalculator(τt, ut, τt+1)
rtotal,t ← re,t + βri,t

return rtotal,t

end function

3.5 Joint Random Network Distillation

In this work, we use a modified version of episodic RND as intrinsic reward. RND (Burda et al., 2019)
is a well established method for single agent exploration (Ladosz et al., 2022; Badia et al., 2020a;b). To
calculate the intrinsic reward, it uses two models. One model has random fixed parameters while the other
gets gradually updated to match the output of the first model. The intrinsic reward is calculated as the
mean square error between the output of both models. If we were to calculate the reward in a multi-agent
case, we would obtain the following individual reward for each agent:

ri
a
,t = ||ϕ(oa

t+1)− ϕ′(oa
t+1)||2 (2)

The input for these models is the observation of a single agent. However, to achieve joint exploration, we
would like to calculate a joint reward for all the agents. Therefore, as proposed by Toquebiau et al. (2024), we
will be using the joint observation as input. This allows us to explore the joint observation space instead of
the individual observation space. It also provides us with a joint exploration reward (Joint Random Network

8

Under review as submission to TMLR

Value Factorisation

Buffer

Exploration Reward
Calculator

... ...

Value Factorisation

Figure 1: Dual-Policy Architecture at training time. The exploitation policies and exploration policies are
trained using separate rewards on the same experience sampled from a replay buffer. The reward for the
exploration policies is calculated using an Exploration Reward Calculator.rev1

Distillation (JRND)) instead of an individual exploration reward. We compose the joint observation of the
agents by concatenating their individual observations.rev1

ri,t = ||ϕ(ot+1)− ϕ′(ot+1)||2 (3)

4 Methods

In this section, we present our methods. We will first look into the dual-policy approaches that we will
investigate. Afterwards, we describe an alternative option for the intrinsic reward.

4.1 Dual-Policy Architecture

In order to isolate the exploration and exploitation behaviour, we split the policy of each agent into a
separate exploitation and exploration policy. The exploitation policies (πe) are trained using the extrinsic
reward while the exploration policies (πi) are trained using the intrinsic reward. This separation ensures
that the exploitation policy is not contaminated with the exploration behaviour. Secondly this also allows
us to differ learning hyperparameters.

Figure 1 shows the architecture of the agents during training. We group all exploitation policies together and
train them using the extrinsic reward. For training, we can choose which multi-agent learning method to use.
In this work, we focus on Q-learning approaches combined with a value factorisation approach such as VDN
(Sunehag et al., 2017) or QMIX (Rashid et al., 2018). Q-learning methods are off-policy and therefore do
not require any additional modifications when we train the policies on experience gathered using a different
policy. Our proposed split architecture can also work with policy gradient or actor critic approaches. In this
case, an off-policy variant of the policy gradient update rule needs to be used (Degris et al., 2012). This has
previously been presented by Vanneste et al. (2023) using a uniform exploration policy and Liu et al. (2021)
using a learned exploration policy.

We train the exploration policies using the intrinsic reward and using the same approach as described for the
exploitation policies. The exploitation and exploration policies are trained on the same experience sampled

9

Under review as submission to TMLR

Policy Mixing

Environment

...

Policy Mixing

Agent 1 Agent n

Figure 2: Dual-Policy Architecture when gathering experience. Each agent has two policies that produce a
vector of Q-values given an observation history. Using a policy mixing approach a final action is determined
based on these Q-values.rev1

from a shared replay buffer. The only difference is that an exploration reward calculator will calculate a
different team reward (ri) to train the exploration policies.

In Figure 2, the architecture that is used during experience gathering can be seen. Here, we group the
policies trained using the architecture in Figure 1 by the agent it corresponds with. Each agent has two
separate policies, one for exploitation and one for exploration. We calculate Q-values for both policies to
determine the final action. Selecting the final action can be done in a variety of ways. In this work, we look
at two variations.

In addition to the exploration policy, we still require that some actions are randomised for effective exploration
since both policies are fully deterministic when using a Q-learning approach. Therefore, we still use ϵ-greedy
as well to make sure the agents always encounter some experience outside the focus of either policy.

Algorithm 3 shows the overall process of using a dual-policy architecture. Here, interaction with the environ-
ment is described using the Reset() function which starts a new episode and provides an initial observation
and set of possible actions and with the Done() function that indicates whether the episode has terminated.
The Step() function takes a joint action and performs a transition in the environment providing a new
observation history, reward and set of possible actions. We use a replay buffer where experience is stored
using the Store() function and sampled with the Sample() function. We use U(Ua(st)) to denote a uniform
distribution over the set of possible actions Ua(st) for agent a in the current state. U(st) describes the set of
possible joint actions. ExplorationRewardCalculator() is a function to calculate the intrinsic reward from the
given experience and TrainAgentPolicies() is a function to train the given policies on the given experience.
The exact behaviour of these functions depends on which intrinsic reward and which MARL approach will
be used. In addition, the PolicyMixing() function calcultates the final action that will be performed based on
the Q-values provided by both policies. In the following sections we provide two options for this function.rev1

4.1.1 Weighted-Q Dual-Policy

The first approach to combine both policies, Weighted-Q Dual-Policy (WQ-DP),rev1 is the most similar
to WR-SP. Here, before we perform an argmax operation to determine the action, we calculate a linear
combination of the Q-values of both policies.

Qa
total(τa

t , ua
t) = Qe

a(τa
t , ua

t) + βQi
a(τa

t , ua
t) (4)

πa(τa
t) = argmaxua

t
(Qa

total(τa
t , ua

t)) (5)

10

Under review as submission to TMLR

Algorithm 3 Dual-Policy MARLrev1

Qe ← joint exploitation Q-function
Qi ← joint exploration Q-function

for # training iterations do
for # episodes do

τt,U(st)← Reset()
while not Done() do

ut ← DualPolicyExperienceGathering(Qe, Qi, τt,U(st))
re,t, τt+1,U(st+1)← Step(ut)
Store(τt, ut, τt+1, re,t)
τt ← τt+1
U(st)← U(st+1)

end while
end for
τt, ut, τt+1, re,t ← Sample()
Qe, Qi ← DualPolicyTraining(Qe, Qi, τt, ut, τt+1, re,t)

end for

function DualPolicyTraining(Qe, Qi, τt, ut, re,t, τt+1)
ri,t ← ExplorationRewardCalculator(τt, ut, τt+1)
Qe ← TrainAgentPolicies(Qe, τt, ut, re,t, τt+1)
Qi ← TrainAgentPolicies(Qi, τt, ut, ri,t, τt+1)
return Qe, Qi

end function

function DualPolicyExperienceGathering(τt, U(st))−→
Qe ← Qe

a(τt)−→
Q i ← Qi(τa

t)
ut ← PolicyMixing(−→Qe,

−→
Q i,U(st))

return ut

end function

11

Under review as submission to TMLR

This approach is very similar to WR-SP but has the advantage that the exploitation and exploration policies
are decoupled and do not influence each other. However, it does not solve all challenges. The weight β that
we use to combine the Q-values is a hyperparameter that is not straightforward to tune and is specific to
each reward function combination. This makes it hard to use. Using a linear combination causes the agents
to perform actions that maximise the combined Q-value, but the agents will never act fully according to
either policy. This is not ideal as we may not explore the areas that are prioritised by the exploration and
may not perform the optimal actions determined using the exploitation policy either.

Algorithm 4 gives an overview of the process of choosing the final action using WQ-DP. Here, U(Ua(st))
denotes a uniform distribution over the set of possible actions Ua(st) for agent a in the current state.rev1

Algorithm 4 Policy Mixing: Weighted-Q Dual-Policyrev1

ϵ ∈ [0, 1]
function PolicyMixing(−→Qe, −→Q i, U(st))

for a ∈ A do

ua
t ←

argmax
u′a

(−→Qa
e + β

−→
Qa

i) with probability of (1− ϵ)

∼ U(Ua(st)) with probability of ϵ

end for
ut ← [u1

t , . . . , uN
t]

return ut

end function

4.1.2 ϵ-Sampled Dual-Policy

The second variation, ϵ-Sampled Dual-Policy (ϵS-DP) tackles these concerns. Here, we make a discrete
decision between the actions chosen by each of the policies. We decide between these two policies similarly
to ϵ-greedy. We use an ϵ-value between 0 and 1 to indicate the probability of using the exploration policy.
During training, we can change the ϵ-value to allow the agents to explore more or less. This approach has
a lot of similarities with the work presented by Böhmer et al. (2019), where they also sample between an
exploitation or exploration policy. They, however, use a centralised exploration policy.

Combining both policies using this approach has several advantages. First, we can control the exploration
using a more intuitive and generalisable hyperparameter. The ϵ-value directly controls how much the agents
will explore the environment. The weights we use for WQ-DP or WR-SP are much harder to tune and will
not generalise to other reward functions.

Another advantage is that we can control how often we switch between the two policies. In many environ-
ments, it makes sense to allow the exploration and exploitation policies to act for longer than one timestep.
This can allow the agents to explore or exploit further and reach better states than when switching between
policies every timestep.

Algorithm 5 describes the process of choosing an action using ϵS-DP. Here, U(Ua(st)) denotes a uniform
distribution over the set of possible actions Ua(st) for agent a in the current state. We use ϵmacro to describe
the probability of choosing exploration instead of exploitation and ϵmicro to describe the probability of
choosing a random action instead of using the exploration policy when in exploration mode. In this algorithm,
we show ϵS-DP in the mixed configuration (See section 6.3)). The process for the other configuration options
are included in Appendix A.1.rev1

4.2 Laplacian Representation Reward

The combination of zero-incentive dynamics and interdependence between agents can create bottlenecks in
the state-space that are very difficult for the agents to learn to get past. We want the exploration policy to be
incentivised to find a way past these bottlenecks. Intuitively, it makes sense to reward the agent for reaching
areas far away from the initial state. By providing a dense reward that increases the further away from
the initial state the agent gets, the agent will be encouraged to get past the bottlenecks in the state-space.

12

Under review as submission to TMLR

Algorithm 5 Policy Mixing: ϵ-Sampled Dual-Policy (mixed configuration (See section 6.3))rev1

ϵmacro ∈ [0, 1]
ϵmicro ∈ [0, 1]
l← policy sampling period (see Section 6.2)
i← l
choicea ← ”” for a ∈ A
function PolicyMixing(−→Qe, −→Q i, U(st))

i← i + 1

choice_micro←

{
”policy” with probability of (1− ϵmicro)
”random” with probability of ϵmicro

for a ∈ A do
if i > l then

choicea ←

{
”exploitation” with probability of (1− ϵmacro)
”exploration” with probability of ϵmacro

end if

ua
t ←

argmax

u′a

(−→Qa
e) if choicea == ”exploitation”

argmax
u′a

(−→Qa
i) if choicea == ”exploration” and if choice_micro == ”policy”

∼ U(Ua(st)) if choicea == ”exploration” and if choice_micro == ”random”
end for
if i > l then

i← 0
end if
ut ← [u1

t , . . . , uN
t]

return ut

end function

13

Under review as submission to TMLR

(a) (b)

Figure 3: Comparison between (a) L2 distance and (b) distance based on the number of steps it takes to
reach a location. This shows that a metric taking into account the dynamics of the environment is more
useful as intrinsic reward, encouraging the agents to move further away from the initial state.rev1

However, it is important to note that the use of such a reward will not be effective in all environments.
It targets environments where the state-space contains bottlenecks. It will, however, not be as effective in
environments such as the Multi-Particle Environment (MPE) where the agents can move infinitely away
from their starting position without gaining useful experience.rev2

Determining the distance between two states in a Markov Decision Process (MDP) is not straightforward in
most environments. For example, using the L2 distance in a 2D environment will never take walls or obstacles
into account and will therefore not be sufficient for an intrinsic reward especially if we want to overcome
bottlenecks in the state space. Determining a metric that is able to take these aspects into account requires
an understanding of the transition function of the MDP. Figure 3 shows the difference between L2 distance
and a distance metric based on the number of steps it takes to reach a location. This clearly shows that a
distance metric that takes into account the transition function of the MDP is much more meaningful.rev1

To calculate a distance between two states we use the Generalised Graph Drawing Objective (GGDO) as
presented by Wang et al. (2021). They present an improvement over the approach which was first investigated
by Wu et al. (2018). These methods aim to learn an approximation of the Laplacian representation of
an MDP. We have to use an approximation of the Laplacian representation because the exact Laplacian
representation is very challenging to compute and this would limit us to environments with small state-
spaces (Wang et al., 2021). When we consider the states and transitions of the MDP as nodes and edges
in a graph, the Laplacian representation (ϕ) consists of the d smallest eigenvectors (v⃗1, . . . , v⃗d) of the graph
Laplacian.

ϕ(s) = [v⃗1[s], . . . , v⃗d[s]] (6)

Laplacian representations contain geometry information of the state-transition graph that allows us to calcu-
late the distance between two states taking into account the transition function of the MDP. The Laplacian
representation of two connected states in this graph will be similar while the Laplacian representation of two
states far away from each other in this graph will be dissimilar.rev1

Equation 7 describes the loss function used to learn the representation model as proposed by Wang et al.
(2021). It consists of two main parts. The first term describes an attractive objective. It aims to bring the
representation of consecutive states closer to each other. Here, c is a weight vector with c1 = d, c2 = d− 1,
. . . , cd = 1. In this equation “⊙” is used to describe a Hadamard or element-wise product. The remaining
terms define a repulsive objective, aiming to push the representation of the current state away from a state (s̃)
randomly sampled from the buffer. The second term is used to orthogonalise the representation and the
third and fourth term regularize the representations away from zero.

14

Under review as submission to TMLR

L = Est,st+1,s̃[

Attractive︷ ︸︸ ︷
||c⊙ (ϕ(st)− ϕ(st+1))||2 +

Repulsive︷ ︸︸ ︷
(ϕ(st)T ϕ(s̃))2 − ||ϕ(st)||2 − ||ϕ(s̃)||2] (7)

Given that this loss function explicitly moves the representation of certain experienced states closer to each
other and further away from other experienced states, the distribution of the data that is used for this
training is important. We want the probability of the occurrence of states to be influenced only by their
probability within the MDP. Therefore, we use a separate replay buffer that consists only of state transitions
that are the result of random actions. This way, the policy of the agents minimally influences the Laplacian
representation.

Using the learned state representation, we can then calculate a measure of the distance on our MDP graph
between two states (Mahadevan, 2005). Wang et al. (2021) suggest using the learned Laplacian representation
to learn a goal reaching policy using the following reward function , with sgoal describing the state of the
goalrev1:

r = −||ϕ(st+1)− ϕ(sgoal)||2 (8)

This provides a reward that encourages going toward the goal state. We would like a reward that encourages
going away from the initial state. Therefore, we propose the following reward function using the Laplacian
representation of the initial state (s0) and the next state (st+1):

ri = ||ϕ(st+1)− ϕ(s0)||2 (9)

In environments where the full state is not available, we use the joint observation to determine the Laplacian
representation and the intrinsic reward. Using the joint observation will encourage the agents to explore
the joint state-space, as shown by Toquebiau et al. (2024). However, in environments with a large number
of agents there may be scalability issues when using the joint observation. In this case, an alternative
approach may be required.rev1 By calculating an individual intrinsic reward through an individual Laplacian
representation, the scalability can be improved. However, this would reduce the ability of the agents to
coordinate their exploration as shown by Toquebiau et al. (2024). Therefore, there will always be a trade-
off between the scalability of the reward calculation and the ability of the agents to jointly explore the
state-action space.rev2

ri = ||ϕ(ot+1)− ϕ(o0)||2 (10)

This novel reward formulation will encourage the agents to move further away from the initial state, therefore
providing motivation to the agents to overcome bottlenecks in the state-space.

5 Experiments

We will now dive deeper into the details of the experiments we perform in this work. First, we explain each
of the environments we use. Next, we elaborate on some of the choices we made for our experimental setup.

5.1 rel_overgen Environment

The rel_overgen environment was presented by Toquebiau et al. (2024). In the environment, there are two
agents. They can navigate across the reward function displayed in Figure 4, each controlling the position
on one axis. The observations of the agents consists of a one-hot representation of the position on their
respective axis. They do not observe the position on the axis controlled by the other agent. Episodes have a
constant length of 40 timesteps, which is enough for the agents to be able to reach any position on the reward
curve regardless of the starting position.rev1 Each timestep, the agents choose to move one position in either
direction on this axis or stay in the same position. The combined position of both agents gives an (x, y)

15

Under review as submission to TMLR

0 10 20 30
Position Agent 0

0

10

20

30Po
sit

io
n

Ag
en

t 1

10

5

0

5

10

(a) δ = 30

0 10 20 30
Position Agent 0

0

10

20

30Po
sit

io
n

Ag
en

t 1

10

5

0

5

10

(b) δ = 50

0 10 20 30
Position Agent 0

0

10

20

30Po
sit

io
n

Ag
en

t 1

10

5

0

5

10

(c) δ = 200

Figure 4: Reward function for rel_overgen environment. The δ parameter controls the width of the optimal
reward peak. A higher value of δ makes it more difficult for the agents to learn a policy where they effectively
reach the optimal reward peak.rev1

Table 1: Meaning and values for the reward function parameters in the rel_overgen environment.

Parameter Value Comment
R+ 12 Value of the optimal reward peak
R− 0 Value of the sub-optimal reward peak
r+

x 8 x-coordinate of the optimal reward peak
r+

y 8 y-coordinate of the optimal reward peak
r−

x 40 x-coordinate of the sub-optimal reward peak
r−

y 40 y-coordinate of the sub-optimal reward peak
D 40 Number of positions on each axis
δ 200 Width of the optimal reward peak

position on the reward curve whichrev1 is used to calculate the reward. We use the same reward function as
presented by Toquebiau et al. (2024) in Equation 11 and visualised in Figure 4. Table 1 shows the value for
each of the parameters in Equation 11. In their work, Toquebiau et al. (2024) test three configurations for
δ, δ = 30, δ = 40 and δ = 50. We make the environment more challenging by increasing the δ-value to 200.

ri(x, y; δ) = max
(

R+ − δ

D

[
(x− r+

x)2 + (y − r+
y)2]

,

R− − 1
8D

[
(x− r−

x)2 + (y − r−
y)2])

.

(11)

The rel_overgen environment is designed to investigate how well methods can deal with relative overgen-
eralisation. In addition to this, the agents also have high interdependence and need perfect coordination to
reach the maximal possible return in the environment.

5.2 Laser Learning Environment

The Laser Learning Environment (LLE) was introduced by Molinghen et al. (2023) as an environment
ideally suited to investigate challenges in multi-agent systems not yet present in other MARL benchmarks ,
specifically interdependence, perfect coordination and zero-incentive dynamics. rev1

In the LLE, there is a set of agents that need to collect gems and reach one of the end tiles. The difficulty
in this environment is the lasers that are placed in the environment as can be seen in Figure 5. Only an
agent with the colour matching the laser can pass through the laser and block it. Therefore, agents have to

16

Under review as submission to TMLR

(a) Level 5. (b) Level 6.

Figure 5: Laser Learning Environment (LLE). The agents need to reach the exit tiles, while avoiding the
lasers belonging to other agents. In order to succeed together, the agents have to block their laser for other
agents to be able to pass them. The agents receive an additional reward for picking up the gems.rev1

coordinate their behaviour to block the lasers when other agents need to pass in order for all agents to be
able to reach an end tile.

Agents are rewarded with +1 for collecting gems and for each agent reaching an end tile. If all agents
reach an end tile, the agents are rewarded by an additional +1. The agents have five possible actions (up,
down, left, right, stay). The environment is fully observable, providing the agents with a layered observation
indicating the location of each of the environment elements (agents, lasers, gems, walls and end tiles). Figure
18 in Appendix A.2 shows the different observation layers.rev1

The LLE is designed to test how well methods can handle multi-agent exploration challenges. In their
work, Molinghen et al. (2023) focus on interdependence, perfect coordination and zero-incentive dynamics
as explained in Section 1. The way the lasers work creates a very challenging scenario for the agents. They
must learn to block the correct laser at the correct time, so the necessary agents can pass through. There is
no reward for agents passing the laser which makes it hard to discover the need for this behaviour.

5.3 Experimental setup

For most hyperparameters, we follow the values proposed by Molinghen et al. (2023) and Toquebiau et al.
(2024). We made a few modifications where we observed better results using other values. Unless otherwise
specified, each of the the experiments uses JRND as intrinsic reward, l = 10 for the LLE and l = 20 for
the rel_overgen environment as policy sampling period (see Section 6.2) and the mixed configuration for
synchronised exploration (see Section 6.3). A complete description of the model architectures and hyper-
parameters used in our experiments can be found in Appendix A.3 and A.4. For our experiments, we use
RLlib (Liang et al., 2018) and Tune (Liaw et al., 2018) inside the Ray framework (Moritz et al., 2017).

The implementation of our agents is based on the VDN/QMIX implementation in RLlib (Liang et al., 2018)
which is based on the implementation in PyMARL (Samvelyan et al., 2019).

For each experiment, we perform five runs. All the agents use parameter sharing and use only the current
observation, no observation history. We show the average results throughout training along with the 95%
confidence interval. In a second graph, we show the distribution of the performance of the different runs in
a violin graph calculated on the results of the last 100 training iterations. The violin plot also shows the
minimum, maximum and median performance of each of the configurations.

17

Under review as submission to TMLR

Table 2: Overview of the different tested architectures.

Abbreviation Single / Dual-Policy Exploration Approach
ϵG-DP Dual ϵ-greedy
WR-SP Single Weighted Rewards
WQ-DP (ours) Dual Weighted Q-values
ϵS-DP (ours) Dual ϵ-sampled

Table 3: Comparison of the average return during the last 10% of training using different agent architectures.

rel_overgen LLE Level 5 LLE Level 6
ϵG-DP −33.14± 2.20 3.55± 0.66 2.74± 1.74

ϵG-DP (FO) 215.17± 10.43 N/A N/A
WR-SP 17.62± 103.13 4.20± 0.60 3.40± 1.67
WQ-DP 129.85± 78.95 5.95± 1.51 3.38± 0.26
ϵS-DP 181.56± 89.24 7.35± 0.88 5.38± 0.16

6 Results

In this section, we look at the results of our experiments and analyse the different aspects of designing our
exploration agent.

6.1 Agent Architecture

In our first experiment, we compare the architectures that were presented in Section 4.1. We also compare
them with two state-of-the-art baselines. ϵG-DP is a basic approach but is still widely used in MARL.
WR-SP is the approach that the majority of learned exploration methods employ. We did not compare with
the approaches presented by Liu et al. (2021) and Böhmer et al. (2019) because this would introduce too
many confounding variables. The focus of this experiment is to compare the use of dual-policy architectures
with the currently most used agent architectures while keeping all other elements of the agents the same.

We use JRND, which closely resembles JIM (Toquebiau et al., 2024), a state-of-the-art method in multi-agent
exploration, specifically focused on dealing with relative overgeneralisation. We chose to use JRND instead
of the more advanced JIM approach because we want to focus on the performance influence of the different
architectures without adding too much complexity with the design of the intrinsic reward. However, the
proposed agent architectures do not rely on a specific intrinsic reward (see Section 6.4) and can therefore be
used along with JIM or other intrinsic reward approaches.

In Table 2, we provide an overview of the different architectures and their properties. Figure 6, 7 and 8 and
Table 3 show the results. In all the experiments, we see that the architecture makes a clear difference in
the achieved return of the agents. In each of the environments, we see that ϵS-DP clearly outperforms both
ϵG-DP and WR-SP. WQ-DP performs better than ϵG-DP and WR-SP, but we see that it does not perform
as well as ϵS-DP. In level 5 of the LLE, we see that WQ-DP no longer consistently outperforms WR-SP. It
achieves approximately the same average return but has a smaller spread.

In our experiments on the rel_overgen environment, we also included an experiment where we use the
ϵG-DP architecture, but we modify the environment to be fully observable (ϵG-DP (FO)). This means that
we added the position along the axis of the other agent, as well as the current timestep. With this additional
experiment, we show that the partial observability is the factor that makes it hard for the agents to explore
this environment and find an effective policy. This is a different challenge as the LLE which is fully observable
but challenging due to the state-bottlenecks introduced by the lasers. However, in both these environments,
using a dual-policy architecture, especially ϵS-DP, makes a significant performance difference.

18

Under review as submission to TMLR

0 1 2 3 4 5
Timesteps 1e6

200

100

0

100

200

300

Re
tu
rn

G-DP
G-DP (FO)

WR-SP WQ-DP S-DP

G-DP
G-DP

(FO) WR-SP WQ-DP S-DP
200

100

0

100

200

300

Re
tu

rn

Figure 6: Comparison of the return achieved in the rel_overgen environment using different agent archi-
tectures. ϵS-DP (FO) describes an additional experiment where we make the environment fully observable
by adding the location along the axis controlled by the other agent and the timestep to the observation.rev1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e6

0

2

4

6

8

10

Re
tu

rn

Max Return
G-DP

WR-SP WQ-DP S-DP

G-DP WR-SP WQ-DP S-DP

0

2

4

6

8

10

Re
tu

rn

Max Return

Figure 7: Comparison of the return achieved in level 5 of the LLE using different agent architectures.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e6

0

2

4

6

8

10

Re
tu

rn

Max Return
G-DP

WR-SP WQ-DP S-DP

G-DP WR-SP WQ-DP S-DP

0

2

4

6

8

10

Re
tu

rn

Max Return

Figure 8: Comparison of the return achieved in level 6 of the LLE using different agent architectures.

6.2 Policy Sampling Period

When using ϵS-DP, we have more control over the exploration. A first example of this is that we can control
how often we re-sample which policy to use to select an action. We hypothesise that exploring / exploiting
over longer periods instead of re-sampling each timestep can be beneficial in training. Something similar has
also been done for single agent RL in the works of Dabney et al. (2020) and Bagot et al. (2020). Dabney et al.

19

Under review as submission to TMLR

(2020) propose temporally-extended ϵ-greedy where the randomly sampled action is repeated for a random
duration instead of only one timestep. This approach was shown to be very effective in their experiments.
Bagot et al. (2020) show that allowing the exploration policy to remain in control for a longer period each
time the exploration option is chosen can significantly improve the performance of the agent.rev1

Figure 9, 10 and 11 and Table 4 show the results of a comparison between a variety of values for the policy
sampling period l ranging from re-sampling each timestep (l = 1) to sampling only once each episode. In the
results, we see that, in each of the environments, the agents clearly benefit from using the policies over longer
periods. For the LLE, the optimal configuration is l = 10 for both levels. In the rel_overgen environment,
the optimal configuration is l = 20. Further increasing the policy sampling period no longer provides a
performance benefit.

We can thus conclude that the ability to control the policy sampling period of the ϵS-DP architecture is a
great advantage compared to the other architectures. We clearly see that using the policies over a longer
period is a big contributing factor to the superior performance of ϵS-DP compared to the other architectures
evaluated in Section 6.1.

0 1 2 3 4 5
Timesteps 1e6

200

100

0

100

200

300

Re
tu
rn

G-DP
l=1

l=10 l=20 l=40

G-DP l=1 l=10 l=20 l=40
200

100

0

100

200

300

Re
tu

rn

Figure 9: Comparison of the return achieved in the rel_overgen environment using different sampling
frequencies.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e6

0

2

4

6

8

10

Re
tu

rn

Max Return
G-DP

l=1
l=10

l=40 l=78

G-DP l=1 l=10 l=40 l=78

0

2

4

6

8

10

Re
tu

rn

Max Return

Figure 10: Comparison of the return achieved in level 5 of the LLE using different sampling frequencies.

20

Under review as submission to TMLR

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e6

0

2

4

6

8

10

Re
tu

rn
Max Return
G-DP

l=1
l=10

l=40 l=78

G-DP l=1 l=10 l=40 l=78

0

2

4

6

8

10

Re
tu

rn

Max Return

Figure 11: Comparison of the return achieved in level 6 of the LLE using different sampling frequencies.

Table 4: Comparison of the average return during the last 10% of training using different sampling frequen-
cies.

rel_overgen
ϵG-DP −33.14± 2.20
l = 1 −33.11± 2.18
l = 10 −5.45± 83.04
l = 20 181.56± 89.24
l = 40 169.54± 84.89

LLE Level 5 LLE Level 6
ϵG-DP 3.55± 0.66 2.74± 1.74
l = 1 5.86± 1.22 3.65± 0.93
l = 10 7.35± 0.88 5.38± 0.16
l = 40 4.60± 0.41 4.59± 0.38
l = 78 4.54± 0.36 4.45± 0.42

6.3 Synchronised Exploration

Another aspect of exploration that can be controlled when using ϵS-DP is whether the agents explore si-
multaneously or not. Within the ϵS-DP architecture, there are two level through which we can control
synchronised exploration. First, on the macro-level, we can synchronise the sampling for either the explo-
ration or exploitation policy. Second, on the micro-level, we can synchronise whether, if using the exploration
policy, we sample a random action or an action from the exploration policy. We test three different syn-
chronisation configurations as can be seen in Table 5. The other experiments in this paper use the mixed
configuration.rev1

Table 5: Different configurations of simultaneous exploration.

Configuration Macro Synchronisation Micro Synchronisation
Independent ✗ ✗

Mixed ✗ ✓
Synchronised ✓ ✓

Figure 12, 13 and 14 and Table 6 show the results of comparing different levels of synchronised exploration.
We see the biggest difference between the configurations in the results for level 5 of the LLE. Here, we see that
the mixed configuration achieves the most consistent and highest return. The synchronised configuration
consistently has a lower return and the independent configuration achieves a very wide range of returns. In
the other experiments, the difference between the configurations is very minor. Therefore, we can conclude
that synchronising the exploration across the different agents only has a small influence on the achieved
return.

21

Under review as submission to TMLR

0 1 2 3 4 5
Timesteps 1e6

200

100

0

100

200

300

Re
tu
rn

G-DP
Independent

Mixed Synchronised

G-DP
Indep

enden
t Mixed

Synch
ronis

ed
200

100

0

100

200

300

Re
tu

rn

Figure 12: Comparison of different levels of simultaneous exploration in the rel_overgen environment.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e6

0

2

4

6

8

10

Re
tu

rn

Max Return
G-DP

Independent
Mixed

Synchronised

G-DP
Indep

enden
t Mixed

Synch
ronis

ed

0

2

4

6

8

10

Re
tu

rn

Max Return

Figure 13: Comparison of different levels of simultaneous exploration in level 5 of the LLE.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e6

0

2

4

6

8

10

Re
tu

rn

Max Return
G-DP

Independent
Mixed

Synchronised

G-DP
Indep

enden
t Mixed

Synch
ronis

ed

0

2

4

6

8

10

Re
tu

rn

Max Return

Figure 14: Comparison of different levels of simultaneous exploration in level 6 of the LLE.

Table 6: Comparison of the average return during the last 10% of training using different levels of simulta-
neous exploration.

rel_overgen LLE Level 5 LLE Level 6
ϵG-DP −33.14± 2.20 3.55± 0.66 2.74± 1.74

Independent 113.49± 107.78 7.33± 3.38 5.37± 0.17
Mixed 181.56± 89.24 7.35± 0.88 5.38± 0.16

Synchronised 104.24± 119.33 6.03± 0.68 5.51± 0.16

22

Under review as submission to TMLR

6.4 Intrinsic Reward

Another aspect that influences the exploration of the agents is the intrinsic reward that is used. In Section
4.2, we presented the Laplacian Representation Reward (LRR). We compare this with JRND, which is
based on an approach that has been well proven in single-agent exploration. Table 7 and Figure 15, 16
and 17 show the results. For this experiment, we used the ϵS-DP architecture (except for the baseline
ϵG-DP configuration). We see that the difference in return resulting from the different reward functions is
much smaller than the effect of the agent architecture. However, overall we can see that LRR results in a
larger spread in the achieved return across the different experiments. LRR clearly outperforms the baseline
ϵG-DP, showing the potential of using Laplacian representations to calculate an intrinsic reward. In the
LLE, we see that the agents using LRR learn slightly faster, which could be beneficial in settings where the
number of allowed interactions with the environment is limited. We do not see this in the rel_overgen
environment. We hypothesize that this is because in the LLE the biggest challenge to overcome with the
exploration strategy is the state-bottlenecks caused by the lasers. The agents using LRR are encouraged to
move further away from the initial position and are therefore rewarded for overcoming the state-bottlenecks.
In the rel_overgen environment, the challenging part is coordinating between the two agents even though
the environment is partially observable. Consequently, we see that in this environment LRR is not as effective
as JRND. We can conclude that LRR shows potential to aid in overcoming bottlenecks in the state-space.
In addition, these experiments show that ϵS-DP does not rely on the use of a specific intrinsic reward to be
effective.

An important note here is that for each of the runs we used the exact same hyperparameters between the
runs using JRND and the runs using LRR (except for the reward calculation configurations). However, in
the rel_overgen environment, we use a different value for the policy sampling period. For JRND, we saw
in Section 6.2 that l = 20 results in the best return. For LRR, we discovered during our hyperparameter
search that l = 10 is best. Therefore, we used l = 10 for the experiments using LRR.

0 1 2 3 4 5
Timesteps 1e6

200

100

0

100

200

300

Re
tu
rn

G-DP JRND LRR

G-DP JRND LRR
200

100

0

100

200

300

Re
tu

rn

Figure 15: Comparison of the return achieved in the rel_overgen environment using different intrinsic
rewards.

Table 7: Comparison of the average return during the last 10% of training using different intrinsic rewards.

rel_overgen LLE Level 5 LLE Level 6
ϵG-DP −33.14± 2.20 3.55± 0.66 2.74± 1.74
JRND 181.56± 89.24 7.35± 0.88 5.38± 0.16
LRR 63.75± 89.72 7.43± 1.78 5.38± 0.46

23

Under review as submission to TMLR

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e6

0

2

4

6

8

10

Re
tu

rn

Max Return G-DP JRND LRR

G-DP JRND LRR

0

2

4

6

8

10

Re
tu

rn

Max Return

Figure 16: Comparison of the return achieved in level 5 of the LLE using different intrinsic rewards.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e6

0

2

4

6

8

10

Re
tu

rn

Max Return G-DP JRND LRR

G-DP JRND LRR

0

2

4

6

8

10

Re
tu

rn

Max Return

Figure 17: Comparison of the return achieved in level 6 of the LLE using different intrinsic rewards.

24

Under review as submission to TMLR

7 Conclusion & Future Work

In this work, we investigate the use of dual-policy architectures for exploration in MARL. We present two
possible implementations of the dual-policy architecture, Weighted-Q Dual-Policy (WQ-DP) and ϵ-Sampled
Dual-Policy (ϵS-DP). We compare these with with the most commonly used state-of-the-art baselines, ϵ-
Greedy Dual-Policy (ϵG-DP) and Weighted-Rewards Single-Policy (WR-SP). Our results clearly show that
both dual-policy approaches outperform these baselines. ϵS-DP performs best out of the two implementa-
tions.

We evaluate on two challenging environments that exhibit many exploration challenges. Our results show
that through the use of our architectures, the exploration policies are able to perform better and deal with
these challenges more effectively. By separating exploration and exploitation, both policies are able to focus
on a single task and this allows them to learn more successful behaviours.rev1

In further experiments, we analyse which aspects make ϵS-DP perform better than the other approaches we
tested. The first two aspects we investigate are configurations unique to our most successful architecture,
ϵS-DP. First, we look at whether the policy sampling frequency has a big influence on the return. We
see that being able to control this parameter enables the agents to achieve a much higher return. Next,
synchronizing the choice for exploration or exploitation between the different agents does not show to have
as much influence on the performance of the agents. Finally, we look at an alternative to the used intrinsic
reward (JRND) based on Laplacian representations (LRR). Overall, we see that they achieve very similar
results, although JRND provides more consistent results than LRR. However, the results show the potential
of using Laplacian representations to calculate an intrinsic reward in environments that contain bottlenecks
in the state-space such as the LLErev1. In addition, these results show that ϵS-DP remains effective when
using a different intrinsic reward approach.

In this research area, there are many paths for future research. In this work, we analysed the influence
of two of the introduced hyperparameters, the policy sampling period and the exploration synchronisation.
However, an additional parameter that can be investigated is the value of ϵmacro and its schedule.rev2 The
presented LRR showed potential in our results, but it could still be improved. Gomez et al. (2023) present
a novel approach to learning a Laplacian representation that looks very promising. Using this method in
our reward calculations could improve the learned Laplacian representation and therefore also give a more
accurate reward signal to the agents. We can also further look into leveraging the information contained
within the individual features of the Laplacian representation. For example, by using a weighted sum of the
features where the weights change throughout training instead of a norm. This would make the exploration
behaviour more diverse. In addition, since LRR learns a representation of the state where states close together
in the MDP graph will have similar representation, we hypothesize that when using LRR the agents will
suffer less from the Noisy-TV problem. In future, work this should be further investigated. In the related
work we saw many methods that use both a novelty reward and an episodic reward. Including an episodic
term to our intrinsic reward calculation could further improve our results. Finally, in this work we presented
two possible architectures to combine the exploitation and exploration policies. However, in future work it
would be interesting to investigate an intelligent way to determine when to use which policy. Bagot et al.
(2020) have already presented a successful method for this in single-agent RL.

References
Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the impact

of entropy on policy optimization. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 151–160, 2019. URL https://proceedings.mlr.press/v97/ahmed19a.html.

Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. Multi-Agent Reinforcement Learning: Foun-
dations and Modern Approaches. MIT Press, 2024. URL https://www.marl-book.com.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi, Zhao-
han Daniel Guo, and Charles Blundell. Agent57: Outperforming the Atari human benchmark. In

25

https://proceedings.mlr.press/v97/ahmed19a.html
https://www.marl-book.com

Under review as submission to TMLR

Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 507–517, 13–18 Jul 2020a. URL
https://proceedings.mlr.press/v119/badia20a.html.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Zhaohan Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andrew Bolt, and Charles Blundell.
Never give up: Learning directed exploration strategies. CoRR, abs/2002.06038, 2020b. URL https:
//arxiv.org/abs/2002.06038.

Louis Bagot, Kevin Mets, and Steven Latré. Learning intrinsically motivated options to stimulate policy
exploration. In 4th Lifelong Machine Learning Workshop at ICML 2020, 2020. URL https://openreview.
net/forum?id=Vcf1fDmBYJk.

André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, and David
Silver. Successor features for transfer in reinforcement learning. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, pp. 4058–4068, Red Hook, NY, USA,
2017. Curran Associates Inc. ISBN 9781510860964.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation.
In International Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=H1lJJnR5Ym.

Wendelin Böhmer, Tabish Rashid, and Shimon Whiteson. Exploration with unreliable intrinsic reward in
multi-agent reinforcement learning, 2019. URL https://arxiv.org/abs/1906.02138.

Will Dabney, Georg Ostrovski, and André Barreto. Temporally-extended ε-greedy exploration. arXiv e-
prints, art. arXiv:2006.01782, June 2020. doi: 10.48550/arXiv.2006.01782.

Thomas Degris, Martha White, and Richard Sutton. Off-policy actor-critic. In John Langford and Joelle
Pineau (eds.), Proceedings of the 29th International Conference on Machine Learning (ICML-12), ICML
’12, pp. 457–464, New York, NY, USA, 2012. Omnipress. ISBN 978-1-4503-1285-1.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. Coun-
terfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Justin Fu, John D. Co-Reyes, and Sergey Levine. Ex2: exploration with exemplar models for deep rein-
forcement learning. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pp. 2574–2584, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Diego Gomez, Michael Bowling, and Marlos C. Machado. Proper Laplacian Representation Learning. arXiv
e-prints, art. arXiv:2310.10833, October 2023. doi: 10.48550/arXiv.2310.10833.

Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration via elliptical episodic
bonuses. In Proceedings of the 36th International Conference on Neural Information Processing Systems,
NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9781713871088.

Hao-Lun Hsu, Weixin Wang, Miroslav Pajic, and Pan Xu. Randomized exploration in cooperative multi-
agent reinforcement learning, 2024.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse, Joel Z
Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep reinforcement
learning. In International conference on machine learning, pp. 3040–3049. PMLR, 2019.

Branislav Kveton, Csaba Szepesvári, Mohammad Ghavamzadeh, and Craig Boutilier. Perturbed-history
exploration in stochastic multi-armed bandits. CoRR, abs/1902.10089, 2019. URL http://arxiv.org/
abs/1902.10089.

26

https://proceedings.mlr.press/v119/badia20a.html
https://arxiv.org/abs/2002.06038
https://arxiv.org/abs/2002.06038
https://openreview.net/forum?id=Vcf1fDmBYJk
https://openreview.net/forum?id=Vcf1fDmBYJk
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://arxiv.org/abs/1906.02138
http://arxiv.org/abs/1902.10089
http://arxiv.org/abs/1902.10089

Under review as submission to TMLR

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement learning:
A survey. Information Fusion, 85:1–22, 2022. ISSN 1566-2535. doi: https://doi.org/10.1016/j.inffus.2022.
03.003. URL https://www.sciencedirect.com/science/article/pii/S1566253522000288.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gonzalez,
Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement learning. In International
Conference on Machine Learning, pp. 3053–3062. PMLR, 2018.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez, and Ion Stoica. Tune:
A research platform for distributed model selection and training. CoRR, abs/1807.05118, 2018. URL
http://arxiv.org/abs/1807.05118.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua Bengio and
Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1509.
02971.

Iou-Jen Liu, Unnat Jain, Raymond A Yeh, and Alexander Schwing. Cooperative exploration for multi-agent
deep reinforcement learning. In International Conference on Machine Learning, pp. 6826–6836. PMLR,
2021.

Wenzhang Liu, Lu Dong, Dan Niu, and Changyin Sun. Efficient exploration for multi-agent reinforcement
learning via transferable successor features. IEEE/CAA Journal of Automatica Sinica, 9(9):1673–1686,
2022. doi: 10.1109/JAS.2022.105809.

Zeyang Liu, Lipeng Wan, Xinrui Yang, Zhuoran Chen, Xingyu Chen, and Xuguang Lan. Imagine, initialize,
and explore: An effective exploration method in multi-agent reinforcement learning, 2024.

Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. Count-based exploration with the successor
representation. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):5125–5133, Apr.
2020. doi: 10.1609/aaai.v34i04.5955. URL https://ojs.aaai.org/index.php/AAAI/article/view/
5955.

Sridhar Mahadevan. Proto-value functions: developmental reinforcement learning. In Proceedings of the
22nd International Conference on Machine Learning, ICML ’05, pp. 553–560, New York, NY, USA, 2005.
Association for Computing Machinery. ISBN 1595931805. doi: 10.1145/1102351.1102421. URL https:
//doi.org/10.1145/1102351.1102421.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. MAVEN: multi-agent variational
exploration. Curran Associates Inc., Red Hook, NY, USA, 2019.

Somdeb Majumdar, Shauharda Khadka, Santiago Miret, Stephen Mcaleer, and Kagan Tumer. Evolutionary
reinforcement learning for sample-efficient multiagent coordination. In Hal Daumé III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 6651–6660. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/majumdar20a.html.

Jarryd Martin, Suraj Narayanan Sasikumar, Tom Everitt, and Marcus Hutter. Count-based exploration in
feature space for reinforcement learning. CoRR, abs/1706.08090, 2017. URL http://arxiv.org/abs/
1706.08090.

Yannick Molinghen, Raphaël Avalos, Mark Van Achter, Ann Nowé, and Tom Lenaerts. Laser learning
environment: A new environment for coordination-critical multi-agent tasks. In BNAIC 2023, BeNeLux
Artificial Intelligence Conference, 2023.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, William
Paul, Michael I. Jordan, and Ion Stoica. Ray: A distributed framework for emerging AI applications.
CoRR, abs/1712.05889, 2017. URL http://arxiv.org/abs/1712.05889.

27

https://www.sciencedirect.com/science/article/pii/S1566253522000288
http://arxiv.org/abs/1807.05118
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://ojs.aaai.org/index.php/AAAI/article/view/5955
https://ojs.aaai.org/index.php/AAAI/article/view/5955
https://doi.org/10.1145/1102351.1102421
https://doi.org/10.1145/1102351.1102421
https://proceedings.mlr.press/v119/majumdar20a.html
https://proceedings.mlr.press/v119/majumdar20a.html
http://arxiv.org/abs/1706.08090
http://arxiv.org/abs/1706.08090
http://arxiv.org/abs/1712.05889

Under review as submission to TMLR

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs. Springer,
Switzerland, 2016.

Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, and Rémi Munos. Count-based exploration with
neural density models. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 2721–2730,
06–11 Aug 2017. URL https://proceedings.mlr.press/v70/ostrovski17a.html.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 2778–2787,
06–11 Aug 2017. URL https://proceedings.mlr.press/v70/pathak17a.html.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for procedurally-
generated environments. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rkg-TJBFPB.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shimon
Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning. In
International conference on machine learning, pp. 4295–4304. PMLR, 2018.

Diederik Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-objective
sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113, 2013. URL http:
//www.cs.ox.ac.uk/people/shimon.whiteson/pubs/roijersjair13.pdf.

Heechang Ryu, Hayong Shin, and Jinkyoo Park. Remax: Relational representation for multi-agent explo-
ration. In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’22, pp. 1137–1145, Richland, SC, 2022. International Foundation for Autonomous Agents and
Multiagent Systems. ISBN 9781450392136.

Roxana Rădulescu, Patrick Mannion, Diederik M. Roijers, and Ann Nowé. Multi-objective multi-agent
decision making: a utility-based analysis and survey. Autonomous Agents and Multi-Agent Systems, 34, 12
2019. ISSN 1573-7454. doi: 10.1007/s10458-019-09433-x. URL https://link.springer.com/article/
10.1007/s10458-019-09433-x.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The star-
craft multi-agent challenge. In Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems, pp. 2186–2188, 2019.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max Jader-
berg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition networks for
cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman, Filip
De Turck, and Pieter Abbeel. #exploration: a study of count-based exploration for deep reinforcement
learning. In Proceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, pp. 2750–2759, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Maxime Toquebiau, Nicolas Bredeche, Faïz Benamar, and Jae-Yun Jun. Joint intrinsic motivation for
coordinated exploration in multi-agent deep reinforcement learning, 2024.

Astrid Vanneste, Simon Vanneste, Kevin Mets, Tom De Schepper, Siegfried Mercelis, and Peter Hellinckx.
An in-depth analysis of discretization methods for communication learning using backpropagation with
multi-agent reinforcement learning, 2023. URL https://arxiv.org/abs/2308.04938.

Kaixin Wang, Kuangqi Zhou, Qixin Zhang, Jie Shao, Bryan Hooi, and Jiashi Feng. Towards better laplacian
representation in reinforcement learning with generalized graph drawing. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of

28

https://proceedings.mlr.press/v70/ostrovski17a.html
https://proceedings.mlr.press/v70/pathak17a.html
https://openreview.net/forum?id=rkg-TJBFPB
https://openreview.net/forum?id=rkg-TJBFPB
http://www.cs.ox.ac.uk/people/shimon.whiteson/pubs/roijersjair13.pdf
http://www.cs.ox.ac.uk/people/shimon.whiteson/pubs/roijersjair13.pdf
https://link.springer.com/article/10.1007/s10458-019-09433-x
https://link.springer.com/article/10.1007/s10458-019-09433-x
https://arxiv.org/abs/2308.04938

Under review as submission to TMLR

Machine Learning Research, pp. 11003–11012, 18–24 Jul 2021. URL https://proceedings.mlr.press/
v139/wang21ae.html.

Tonghan Wang, Jianhao Wang, Yi Wu, and Chongjie Zhang. Influence-based multi-agent exploration, 2019.
URL https://arxiv.org/abs/1910.05512.

Ermo Wei and Sean Luke. Lenient learning in independent-learner stochastic cooperative games. Journal of
Machine Learning Research, 17(84):1–42, 2016. URL http://jmlr.org/papers/v17/15-417.html.

Rudolf Paul Wiegand and Kenneth A. Jong. An analysis of cooperative coevolutionary algorithms. George
Mason University, USA, 2004.

Ronald J. Willaims and Jing Peng. Function optimization using connectionist reinforcement learning al-
gorithms. Connection Science, 3(3):241–268, 1991. doi: 10.1080/09540099108946587. URL https:
//doi.org/10.1080/09540099108946587.

Yifan Wu, George Tucker, and Ofir Nachum. The Laplacian in RL: Learning Representations with Efficient
Approximations. arXiv e-prints, art. arXiv:1810.04586, October 2018. doi: 10.48550/arXiv.1810.04586.

Pan Xu, Hongkai Zheng, Eric V Mazumdar, Kamyar Azizzadenesheli, and Animashree Anandkumar.
Langevin Monte Carlo for contextual bandits. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 24830–24850, 17–23 Jul
2022. URL https://proceedings.mlr.press/v162/xu22p.html.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E. Gonzalez, and Yuandong Tian.
Noveld: a simple yet effective exploration criterion. In Proceedings of the 35th International Conference
on Neural Information Processing Systems, NIPS ’21, Red Hook, NY, USA, 2024. Curran Associates Inc.
ISBN 9781713845393.

Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen, Changjie Fan, Yang Gao,
and Chongjie Zhang. Episodic multi-agent reinforcement learning with curiosity-driven exploration. In
Proceedings of the 35th International Conference on Neural Information Processing Systems, Red Hook,
NY, USA, 2024. Curran Associates Inc. ISBN 9781713845393.

29

https://proceedings.mlr.press/v139/wang21ae.html
https://proceedings.mlr.press/v139/wang21ae.html
https://arxiv.org/abs/1910.05512
http://jmlr.org/papers/v17/15-417.html
https://doi.org/10.1080/09540099108946587
https://doi.org/10.1080/09540099108946587
https://proceedings.mlr.press/v162/xu22p.html

Under review as submission to TMLR

A Appendix

A.1 Synchronised Exploration Detailsrev1

Algorithm 6 Policy Mixing: ϵ-Sampled Dual-Policy (independent configuration (See section 6.3)rev1)
ϵmacro ∈ [0, 1]
ϵmicro ∈ [0, 1]
l← policy sampling period (see Section 6.2)
i← l
choicea ← ”” for a ∈ A
function PolicyMixing(−→Qe, −→Q i, U(st))

i← i + 1
for a ∈ A do

if i > l then

choicea ←

{
”exploitation” with probability of (1− ϵmacro)
”exploration” with probability of ϵmacro

end if

ua
t ←

argmax

u′a

(−→Qa
e) if choicea == ”exploitation”

argmax
u′a

(−→Qa
i) if choicea == ”exploration” and with probability of (1− ϵmicro)

∼ U(Ua(st)) if choicea == ”exploration” and with probability of ϵmicro

end for
if i > l then

i← 0
end if
ut ← [u1

t , . . . , uN
t]

return ut

end function

30

Under review as submission to TMLR

Algorithm 7 Policy Mixing: ϵ-Sampled Dual-Policy (synchronised configuration (See section 6.3))rev1

ϵmacro ∈ [0, 1]
ϵmicro ∈ [0, 1]
l← policy sampling period (see Section 6.2)
i← l
choice← ””
function PolicyMixing(−→Qe, −→Q i, U(st))

i← i + 1

choice_micro←

{
”policy” with probability of (1− ϵmicro)
”random” with probability of ϵmicro

if i > l then
i← 0

choice←

{
”exploitation” with probability of (1− ϵmacro)
”exploration” with probability of ϵmacro

end if
for a ∈ A do

ua
t ←

argmax

u′a

(−→Qa
e) if choice == ”exploitation”

argmax
u′a

(−→Qa
i) if choice == ”exploration” and if choice_micro == ”policy”

∼ U(Ua(st)) if choice == ”exploration” and if choice_micro == ”random”
end for
ut ← [u1

t , . . . , uN
t]

return ut

end function

31

Under review as submission to TMLR

A.2 Further Details of the Laser Learning Environmentrev1

(a) Environment State

0 2 4 6 8 10 12

0

2

4

6

8

10

(b) Agent 0
0 2 4 6 8 10 12

0

2

4

6

8

10

(c) Agent 1
0 2 4 6 8 10 12

0

2

4

6

8

10

(d) Agent 2
0 2 4 6 8 10 12

0

2

4

6

8

10

(e) Agent 3

0 2 4 6 8 10 12

0

2

4

6

8

10

(f) Laser 0
0 2 4 6 8 10 12

0

2

4

6

8

10

(g) Laser 1
0 2 4 6 8 10 12

0

2

4

6

8

10

(h) Laser 2
0 2 4 6 8 10 12

0

2

4

6

8

10

(i) Laser 3

0 2 4 6 8 10 12

0

2

4

6

8

10

(j) Walls
0 2 4 6 8 10 12

0

2

4

6

8

10

(k) Voids
0 2 4 6 8 10 12

0

2

4

6

8

10

(l) Gems
0 2 4 6 8 10 12

0

2

4

6

8

10

(m) Exits

Figure 18: Layered observation of the Laser Learning Environment (LLE).rev1

32

Under review as submission to TMLR

A.3 Model Architecture

In this section, we summarize the model architectures we use in our experiments in each of the environments.
We use the same architecture for both the exploitation and exploration policies.

A.3.1 LLE

Layer Type Activation Output Size Stride Kernel
Input

(13× 12× 13)rev1

Conv2D ReLU (32× 10× 11) 1 (3× 3)
Conv2D ReLU (64× 8× 9) 1 (3× 3)
Conv2D ReLU (32× 6× 7) 1 (3× 3)
Flatten 1344
Concat 1348
Linear ReLU 64
Linear ReLU 64
Linear 5

A.3.2 rel_overgen

Layer Type Activation Output Size
Input 40
Linear ReLU 64
GRU ReLU 64
Linear 3

A.4 Hyperparameters

In this section, we give an overview of the used hyperparameters. We have reached these hyperparameters
starting from the hyperparameters used by Molinghen et al. (2023) for the LLE and by Toquebiau et al.
(2024) for the rel_overgen environment. We further improved and expanded them for our experiments and
architectures using grid searches.

A.4.1 Exploitation Policy

Parameter Value (LLE) Value (rel_overgen)
Value Factorisation VDN QMIX
Learning Rate 0.0005 0.0007
Discount Factor 0.95 0.99
Soft Update Rate 0.01 0.005
Batch Size 512 1280
Replay Buffer Size 50e3 5e3
Training Interval 40 40

A.4.2 Exploration Policy

Parameter Value (LLE) Value (rel_overgen)
Value Factorisation VDN QMIX
Learning Rate 0.005 0.005
Discount Factor 0.9 0.9
Soft Update Rate 0.01 0.01
Batch Size 512 1280
Replay Buffer Size 50e3 5e3
Training Interval 40 40

33

Under review as submission to TMLR

A.4.3 ϵ-Greedy Dual-Policy

Parameter Value (LLE) Value (rel_overgen)
ϵ 1 → 0.05 linearly over 1M timesteps 0.3 → 0.05 linearly over 4M timesteps

A.4.4 Weighted-Rewards Single-Policy

Parameter Value (LLE) Value (rel_overgen)
Intrinsic Reward Factor 2 → 0 linearly over 1M timesteps 2 → 0 linearly over 4M timesteps
ϵ 1 → 0.05 linearly over 1M timesteps 0.3→ 0.05 linearly over 4M timesteps

A.4.5 Weighted-Q Dual-Policy

Parameter Value (LLE) Value (rel_overgen)
Exploration Q-value Factor 2 → 0.1 linearly over 1M timesteps 2 → 0.1 linearly over 4M timesteps
ϵ 1→ 0.05 linearly over 1M timesteps 0.3 → 0.05 linearly over 4M

timesteps

A.4.6 ϵ-Sampled Dual-Policy

Parameter Value (LLE) Value (rel_overgen)
ϵ (Micro) 1 → 0.3 linearly over 200k

timesteps
1 → 0.3 linearly over 500k
timesteps

ϵ (Macro) 1 → 0.05 linearly over 1M
timesteps

0.3 → 0.05 linearly over 4M
timesteps

l 10 20
Exploration Synchronisation Mixed Mixed

A.4.7 Random Network Distillation

Parameter Value (LLE) Value (rel_overgen)
Learning Rate 0.005 0.0005
Batch Size 512 1280
Latent Size 10 10
Reward Clip 5 N/A
Hidden layers [64, 64] [16, 16]
Activation ReLU ReLU

A.4.8 Laplacian Representation Reward

Parameter Value (LLE) Value (rel_overgen)
Learning Rate 0.005 0.005
Batch Size 512 1280
Latent Size 10 10
Hidden layers [64, 64] [16, 16]
Activation ReLU ReLU
Replay Buffer Size 10e3 1e3

34

	Introduction
	Related Work
	Single-Agent Exploration
	Multi-Agent Exploration

	Background
	*abbr:decpomdp
	*abbr:ctde
	*abbr:egdp
	*abbr:wrsp
	*abbr:jrnd

	Methods
	Dual-Policy Architecture
	*abbr:wqdp
	*abbr:esdp

	*abbr:lrr

	Experiments
	rel_overgen Environment
	*abbr:lle
	Experimental setup

	Results
	Agent Architecture
	Policy Sampling Period
	Synchronised Exploration
	Intrinsic Reward

	Conclusion & Future Work
	Appendix
	[id=rev1]Synchronised Exploration Details
	[id=rev1]Further Details of the abbr:lle
	Model Architecture
	abbr:lle
	rel_overgen

	Hyperparameters
	Exploitation Policy
	Exploration Policy
	abbr:egdp
	abbr:wrsp
	abbr:wqdp
	abbr:esdp
	abbr:rnd
	abbr:lrr

