Proceedings of the 89th Annual International Meeting of the Psychometric
Society, Prague, Czech Republic (2024).

Reuvisiting the Estimation of Multilevel Modeling and
Power Analysis for Multisite Randomized Trials

0000-0001-9482-1368 *'l'

Zhenqiu Lu

T Quantitative Methodologies, University of Georgia, Athens, 30602, GA, USA
* Corresponding author. Email: zlu@uga.edu

Abstract

Challenges arise in multisite randomized trials in power analysis and optimal design due to the
complexities of random coefficients and hierarchical structures. To address these challenges, this article
revisits the estimation of multilevel models (MLM). It presents various approaches to deriving
parameter estimates, incorporating different algebraic derivations—basic or matrix algebra, along with
different designs—balanced and unbalanced designs, different coding schemes for treatment and
control groups, and some specific special cases. By showing the similarities, differences, and
relationships among these estimates, the study provides a clearer framework, enhances transparency,
and improves interpretability. Furthermore, by comparing the derived results with existing literature, it
establishes connections that deepen researchers' understanding of MLM estimation in study design and
power analysis.
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1. Introduction

Power analysis (e.g., Cohen, 1988) is essential in randomized trials studies, particularly in determining
the sample size to detect treatment effects. An optimal sample allocation (Raudenbush & Liu, 2000) is to
maximize power while minimizing sampling costs. In power analysis and optimal design, the test statistic
for the main effect of treatment follows a non-central t-distribution under the alternative hypothesis.
Since power is positively related to the non-centrality parameter, maximizing power requires maximizing
this parameter, which means minimizing the variance of the treatment effect estimate.

Despite its importance, several challenges exist. First, in multisite randomized trials, the
incorporated random coefficients add complexity to estimation. Hierarchical linear models (HLM; e.g.,
Raudenbush & Bryk, 2002), also known as multilevel models (MLM; e.g., Snijders, & Bosker, 2012) or
mixed-effect models (e.g., Fitzmaurice, Laird & Ware, 2012), have various estimation methods, such as
full maximum likelihood estimation (FML; Goldstein, 1986; Longford, 1987), restricted/residual
maximum likelihood estimation (RML; Mason et al., 1983; Raudenbush & Bryk, 1986), least square
estimation (LS), exploratory estimation methods and others. Additionally, estimations can be derived
using either basic algebra or matrix algebra, leading to discrepancies in formats. Second, most existing
derivation in multisite randomized trials assume balanced designs (e.g., Raudenbush & Bryk, 2002;
Dong, Kelcey & Spybrook, 2021), where control and experimental groups have equal sample sizes.
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However, real-world studies often involve unbalanced designs, where sample sizes differ in control and
experimental groups. Assuming balanced designs limits their applicability to practical scenarios. Third,
different coding schemes for treatment and control groups create inconsistencies in estimation results.
Some assign 0 to the control group and 1 to the experimental group, while others use -0.5 and +0.5,
respectively. Many existing power analysis and optimal design results (e.g., Raudenbush & Liu, 2000;
Dong, Kelcey & Spybrook, 2021) are derived under the latter coding scheme in balanced designs, limiting
their generalizability to other coding schemes and unbalanced designs.

To address these challenges, this article aims to (1) provide a clear and systematic approach to
deriving MLM parameter estimates and related results for mixed-effect models in multisite randomized
trials to enhance clarity and interpretability, (2) extend estimation results to more general cases,
particularly unbalanced designs, making it more applicable to real-world research, while also deriving
balanced design results as a special case, (3) provide estimation approaches for different coding
schemes to ensure transparency in their differences and implications, (4) compare the derived results
with existing literature and establish connections among them, (5) help researchers to improve the
understanding of theoretical foundation of MLM estimation in multisite randomized trials.

This paper is organized as follows. Section 2 reviews estimation in the general multilevel model
using matrix algebra. Section 3 focuses on estimation in multisite randomized trials, using individual-
level formulations and basic algebra. It also compares estimates derived from different coding schemes,
study designs, and special cases. Section 4 applies the results to power analysis, and Section 5 concludes
the paper.

2. The general MLM model

Suppose there are J sites and n; is the sample size at the jt" site. The total sample size Nis N = Zn;. Let
Yij be the observed data point for object i at site j, and ¥; be an n; X 1 vector of variables y;;. In a two-
level hierarchical analysis, the general MLM has two levels (Raudenbush & Bryk, 2002). At Level 1, the
model is

where X is an n; X (K + 1) design matrix of independent variables at level 1, K is the number of
independent variables, B is a (K + 1) X 1 vector of level 1 random parameters, [ is an n; X n; identity
matrix, and €; is an n; X 1 vector of normally distributed random errors with mean 0 and covariance
matrix g;2I, which is usually assumed g, = ¢ for simplicity. At Level 2, the model is

where Wjis a (K + 1) x m matrix of level 2 predictors, y is an m X 1 vector of fixed effects, ujisa
(K + 1) x 1 vector of level-2 random residuals assumed to follow a multivariate normal distribution
with mean 0 and covariance matrix T of dimension (K + 1) X (K + 1). By combining (1) and (2), the
composite form is

2.1 The estimate of the random coefficient B; at level 1
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To estimate B}, we apply the ordinary least-squares (OLS) on regression and obtain:
D ! -1 1
B = (XjX;) X;v; ®)

2.1.1 Conditional expectation and conditional variance
The conditional expectation of ﬁ]- is

) ! -1 !
E(BjIB;) = (X; X;) Xj(X;B;) = B, (4)
Assuming a known variance o2, the conditional variance of Bi is
- , -1
Var(B;j|B;) = o*(Xj X;) ~ =V, ®)
For simplicity, we use V; to denote O'Z(X]’- Xj)_l.

2.1.2 Unconditional expectation and unconditional variance
From equations (1), (2) and (3), we obtain

Bi=8;+ (X X)) Xje; = (W, v +u) +e
where e; = (X]' Xj)_lX]'-ej with ej~N(0, V]-). Thus, the unconditional expectation of ﬁj is
E(B;) = E(B;) =Wjy (6)
and the unconditional variance of ﬁj, assuming known variance o2 and T, is given by
Var(B;) = Var(u; + ¢;) = T+ 0?(X; X]-)_1 =T+V; )
2.2 The estimate of the fixed effect y at level 2

Since Bi =W;y +u; +ejwhere e]-~N(0, Vj) and u]-~N(0, T), we apply the generalized least-squares
(GLS) to estimate y and obtain:

PN 1 ’ -1 - J U 145
The expectation of ¥ is
E@ =v

and the variance of ¥ is

A~ ] 1 -1 B
Var(®) = (Z (W]- (T+V)) Wi)) (9)
j=1
2.3 The estimate of random components at both levels

When the residual variance o2 at level 1 and the residual covariance matrix T at level 2 are unknown,
there are no closed-form mathematical formulas available to estimate them. Instead, iterative numerical
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procedures are used to obtain estimates. Several iterative estimation methods exist, including iterative
GLS and iterative MLE.

For the iterative GLS, we first apply the OLS method to the composite model to obtain initial
parameter estimates and an estimate of the residual covariance matrix. Then re-fit the composite model
using GLS, treating the estimated residual covariance matrix as if it were the true residual covariance
matrix. This yields updated estimates of the fixed effects parameters and residual covariance matrix. We
repeat the previous step iteratively until the results converges.

For the iterative MLE, we first assign initial values to the unknown parameters. Then compute
the likelihood function based on these parameter values, and update the parameter estimates based on
the current likelihood function. We repeat the previous step multiple times until the difference between
successive maximum likelihood values is less than a given criterion (e.g., 0.000001), indicating
convergence. The final parameter estimates corresponding to the maximum likelihood function are the
iterative ML estimates. There are two types of MLEs: FML and RML. While FML provides biased
estimates of variance components, RML produces unbiased variance component estimates.

3. The mixed-effect model in multisite randomized trials

In multisite randomized trials, it is typically assumed that each site includes both control and
experimental groups. Considering the simplest case with only a grouping variable X and no additional
covariates, the Level 1 model is given by

yij=ﬁ0j+ﬁleij+eij with EijNi.i.d.N(O,O'z) (10)

assuming that both the control and experimental groups share the same residual variance 2. If Xij=0
for the control group (C) and X;; = 1 for the experimental/treatment group (E), then f,; represents the
average outcome of the control group at site j, while 8, ; represents the average difference between the
treatment and control groups at site j. The Level 2 model is specified as:

L (Yoj 0y (Too  To1
Boj =Yoo +Ug; and Bij =y +uy; with (ulf) ~ MN; <(O) ' (Tlo Tll)) .

where Y0 is the mean of the control group across all J sites, and ¥4 is the mean difference between the
treatment and control group across J sites, Ty = var(uoj) = var(fy;) is the variance of control group
means, T;; = var(ulj) = var(f;;) is the variance of mean difference between the treatment and
control groups, and their covariance 75y = 719 = cov(uoj,ulj) = var(,BOj,,Blj). By combining (10) and
(11), we obtain the composite model:

Yij = (Yoo + ¥10Xij) + (o + ug;Xij) + €
By comparing this model and the general MLM model, (1) - (2) reduce to (10) - (11), respectively, by
setting K =1, m = 2, and Wj =1I,.

Note that in multisite randomized trials, study designs can be balanced or unbalanced,
depending on sample size allocation. Let n; be the sample size at site j, with n;. and n;; the sample
sizes of the control and experimental groups, respectively, such that n; = n;z + n;c. In a balanced

design, both groups have equal sample sizes, i.e., n; = 2n;z = 2n;.. In contrast, an unbalanced design
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allows the control and experiment groups to have different sample sizes. If further assume p as the
proportion of participants assigned to the experimental group, then n;z = n;p and n;. = n;(1 — p).

3.1 The estimate of the random coefficient B; and B; at level 1

If we use dummy coding for the grouping variable X by setting X;; = 0 for the control group and X;; = 1
for the experimental group, then f; and f;; can be estimated as

Boj = Vjc
Bij =Yg — Yjc
where y;. and y;; are the sample means of the control and experimental groups at site j, respectively.
Since ﬁoj and ,L?lj are random-effect estimates, they have both conditional and unconditional

expectations and variances. By comparing these estimates with (3), the coding of X matters. Different
values of X lead to variations in the form of ﬁj, especially for ,[?0]-, resulting in different interpretations.

3.1.1 Conditional expectation and conditional variance of the estimates
The conditional expectations of Boj and ,[?1]- are

E(Bojlﬁoj) = Boj
E(B1j|ﬁ1j) = ﬁlj

By applying the central limit theorem (CLT), the conditional variances of ,[?Oj and Blj are

Var(Bo;lBoj) = ::TZC 12
Var(B;1.)) = o? (miE + ni]c) "

3.1.2 Unconditional expectation and unconditional variance of the estimates
By the law of total expectation E(X) = E(E(XIY)), the unconditional expectations of ,[%j and [?1]- are

E(ﬁoj) =E (E(ﬁojmoj)) = E(ﬁoj) = Yoo
E(.élj) =E (E(.éljmlj)) = E(.Blj) = Y10

By the law of total variance Var(X) = Var(E(X|Y)) + E(Var(X|Y)), the unconditional variances of

Boj and By are
Var(fo;) = Var(E(Bo;1Bo)) + E(Var(Bo;|Boy))
= Var(Bo)) + E(Var(Bo;|Bo))) = Too + g (14)
Var(B;) = Var(E(By;|6:1)) + E(Var(By]B1)))

= VaT(,Blj) + E(VaT'(B1]|ﬁ1])) =711+ 0'2 (n]iE + i) (15)

lec
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In the special case where n; = n for all sites, the total sample size is N = Jn, with ng = np and
n. = n(1 — p). Under this condition, the variances in (14) and (15) simplify to

2

Var(ﬁoj) =Tgo + h

A 1 1
Var(ﬁlj) =711+ a2 (&‘I‘ m)

3.1.3 Different coding schemes of X in a balanced design

Different codings of the group variable X lead to variations in the form of ﬁj in equation (3), particularly

Boj; resulting in different interpretations. In addition to dummy coding, another commonly used
alternative is effect coding, where X;; = —0.5 for the control group and X;; = +0.5 for the

experimental group (sometimes rescaled to -1/+1). This coding scheme is most appropriate in balanced

designs, where the sample sizes in the control and experimental groups are equal (i.e., njp = nj. =
1 . . o .
Enf)' In this case, the intercept f,; represents the grand mean of Y at site j, and f3;; continues to

represent the treatment effect at that site. When the design is unbalanced, the intercept becomes a
weighted grand mean, making the interpretation of coefficients less intuitive. Therefore, under the
X;j = —0.5/40.5 coding in a balanced design, the coefficients can be estimated as:
Boj = ¥j
Bij =¥jg — Vjc
Under this condition, the variances in (12) - (15) become:

2

Var(Boj o) = Var(y) = —
]

. 2 2\ 4q?
Var(fy1p1;) = Var(y;z = yjc) = o (5 * ;>
] ]

2

~ o2 o
Var(ﬁoj) = Var(ﬁoj) +FE (n—]) =Ty + n—}
" 402 402
Var(ﬁlj) =Var(Bj) +E (ni) =711 + ni
] ]
In the special case where n; = n for all sites, these variances simplify to
A o2
Var(.BOjl.BOj) =
A 402
Va’"(ﬁ1j|ﬁ1j) = %

n 2
Var(ﬂoj) = Tgo + %

. 2
Var(ﬁlj) =T11 + 4%

(16)

(17)

(18)

(19)

(20)

(21)
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The results in (18) - (19) are identical to those in equation (6) on page 201 of Raudenbush & Liu (2000),
and (20) - (21) are identical to those in equation (7) on the same page. It is important to note that these
results apply specifically to the coding scheme of X;; = —0.5 /+0.5 in a balanced design. When using
X;j = 0/1 coding, whether in a balanced or unbalanced design, the variances are given by (12)-(15).

3.2 The estimate of the fixed-effect y,, and y,, at level 2

If X;; = 0O for the control group and X;; = 1 for the experimental group, then y,, and y;, can be
estimated as

R = 1N _

Yoo = Boj = 72 Yjc (22)
Jj=1

R = 1\ _ _

Y10 = P1j = 7 Z Gje — ¥jc) (23)
j=1

The expectation of the ¥y and ¥, are
E(foo) = E (Boj) =Yoo

E(f10) = E (311') = Y10
By applying (14) and (15), the variances of ¥y and 7, are

J ]
= 1 R 1 .
var(Pyo) = var (,80]-) = var 7;[30]- = ]—2 Z var(ﬂoj)

j=1

] , ) ]
1 o Too o 1
== Togo+— | |=—+—= — 24
7z E ( 00 njc> 7 T E e (24)
j=1 ]=1

J
J
R - 1 . 1 z : 1 1
Uar(ylo) = var (’81]) = ]—2 Z var(ﬂlj) =]—2 <T11 + g2 <n]—E + E))

j=1 =

2 ] 1 ] 1
=4 E —+ — (25)
] ] j=1 njg j=1 Njc

In the special case where n; = n for all sites with ng = np and n, = n(1 — p), equations (22) - (25)
simplify to

Yoo = ¥e
10 =Blj =YE —Yc

Too o?

vt = fni=p)
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Loyt ot 1
var(fio) = +1(np+ n(l—p))

In a balanced design and X;; = —0.5 for the control group and X;; = +0.5 for the experimental
group, Yoo is the expected value across all groups, while y4, is the expected mean difference between
the experimental and control groups. In this case, Yy and y1o can be estimated as follows:

]
Rt o
Yoo = ﬁoj = jz Vi

j=1

]
= 1 B _
Y10 = B1j = 72(%5 - }’jc)
j=1

By applying (16) and (17), the variances of the estimates 7, and 7;, are

J

]
~ _ 5 _ 1 0%\ 1o , 02 1
var(¥o) = var (ﬁoj) =5 (‘L’OO + n—}) = + 3 E - (26)
j=1

J ]
~ 5 1 402 T 402 1
var({,0) = var (ﬁlj) =% E (Tll + n—}) = % + T E o (27)
j=]_ ]=1

In the special case where n; = n for all sites, the estimates and their variances in equations (26)-(27)
simplify to

Yoo =¥

Y10 =/§1j =Y —Yc

2
var(fop) = (28)
2
var(10) = Tt /n (29)

J

The results (28) - (29) match those in equation (13) on page 202 of Raudenbush & Liu (2000). Again,
these results specifically apply to the X;; = —0.5 /+40.5 coding in a balanced design. For the Xij=0/1
coding, whether in a balanced or unbalanced design, the variances are given by (24)-(25).

3.3 The estimate of random components at both levels

When the level 1 random component ¢? and the level 2 random component T are unknown, iterative
algorithms are used for estimation. Suppose the Expectation-Maximization (EM) algorithm is applied.
The E-step and M-step are detailed as follows.

E-step: The composite model can be expressed in matrix form as
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where ¥; is an n; X 1 vector of y;;, X; is an n; X 2 design matrix, y is a 2 X 1 vector of fixed-effect
parameters, u; is a 2 X 1 vector of level 2 randomness, and €; is an n; X 1 vector of residues. Based on
the assumptions in (1) and (2), the joint distribution of ¥; and w; is given by

(Yj) N (Xj}’) X;tX; + 0l X;T
Y mr2\Vo '\ wxy T

Therefore, the distribution of u; conditional on ¥ is

(w]¥;) ~ MN, <(rxj’.(xjrx]’. +021) (Y, - ij)) (7 — oxj (XX + 021)_1Xjr)>
M-step: Once the random u; are generated, the parameters y, 02 and T can be estimated by
maximizing the likelihood or using least-square estimation methods.

J -1

J
V= ZXJ'XJ ZX],'(YJ'_XJ'uj)
=1

j=1

J
1N,
o ~7 j €

=1
J
~ 1 ZAA,
T=——)> 1
-1 ]
Ji =i

Specifically, given the random coefficient estimates ,éoj and ﬁlj, the estimates 7y and 7,4 are

J ~2
N 1 A ~ 2 G
PO _ - 30
00 ]_1Zj=1(ﬁoj Voo) e (30)
# :;z’ By~ 710 — 3 (= + ) (31)
1 =75 i1 1j 10 mE T nge
where
]
nj
R 1 1 R R 2
6% =— Z(Yij—ﬁoj—ﬁuxij)
] le -2 e~
=
j=1

The results (30)-(31) are derived from (14)-(15) and

A 1o, o, 8
Var(ﬁoj) =T § (Boj — Vo0)” =Too + —
] 1j=1 Nj¢
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]
" 1 ~ 1 1
)= = )2 =2 52 _
Var(ﬁlj) -1 E (B1j—TV10)*=T11 +6 <njE + njc>
=1

When the design is balanced, if we assume n; = n and the coding is X;; = —0.5 /40.5, then (30) - (31)
simply to

] ~2
1 A ~ 2 o
le (Boj = P00)” == (32)
Jj=1
] ~2
. 1 A R 4
T =3 j=1(ﬁlj — V10)% — % (33)

The results (32) - (33) align with Equation (12) on page 202 of Raudenbush & Liu (2000).
4, Power analysis

With the derived parameter estimates, now we can compute the statistical power for testing the
average treatment effect. In power analysis, the t statistic for the main effect of treatment y;, with
degrees of freedom J-1 is calculated as follows:
V10
1= ————=
vvar (Y1)

For a non-zero treatment effect H, under the alternative hypothesis, the t statistic follows a non-central
t distribution with the degrees of freedom J-1 and a non-centrality parameter A,,..

In an unbalanced design,

Ane =

T11 +
n]E n]C

If the type-1 error is a, then the critical value for a two-sided t testis t, = t(1 — a/2,] — 1), and the
power =1 — CD(tO,] -1, Anc) + ®(—t,,J] — 1, A,.), and in a one-sided t test, power = 1 —

dD(tO,] -1, Anc), where CID(q, df, Anc) is the cumulative distribution function (CDF) of a non-central t
distribution.

In a balanced design, the 4,,. simplify to

Ane =
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In a two-sided t test, power = 1 — ®(to,] — 1, Ayc) + ®(—t,,] — 1,4.), and in a one-sided t test,
power =1 — CD(tO,] -1, Anc). In the special case where n; = n for all sites, the non-centrality
parameter 1,,. becomes

yE_:)_’c

,‘L’ll + 40?2 /n
J

This A, corresponds to the square root of the A in Equation (15) on page 202 of Raudenbush & Liu
(2000), where they used a non-central F distribution instead of a non-central t distribution. Their A
parameter was derived under the assumption of n; = n in a balanced design, which is a special case of

Ane =

the more general scenarios developed in this article.
5. Discussion

This article revisits the estimation of multilevel models in power analysis and optimal design, with a
focus on mixed-effect models in multisite randomized trials. It presents various approaches to deriving
parameter estimates by incorporating matrix and individual forms, balanced and unbalanced designs,
different coding schemes, and some special cases. By showing the similarities, differences, and
relationships among these estimates, the study provides a clearer framework, enhances transparency,
and improves interpretability. This work can be extended to other designs in power analysis and optimal
design, as well as broader research contexts. Future studies can further explore their applications across
diverse study designs and practical settings.
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