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Abstract

High-order numerical methods enhance Trans-
former performance in tasks like NLP and
CV, but introduce a performance-efficiency
trade-off due to increased computational over-
head. Our analysis reveals that conventional
efficiency techniques, such as distillation, can
be detrimental to the performance of these mod-
els, exemplified by PCformer. To explore more
optimizable ODE-based Transformer architec-
tures, we propose the Iterative Implicit Euler
Transformer (IIET), which simplifies high-
order methods using an iterative implicit Euler
approach. This simplification not only leads
to superior performance but also facilitates
model compression compared to PCformer.
To enhance inference efficiency, we introduce
Iteration Influence-Aware Distillation (IIAD).
Through a flexible threshold, IIAD allows
users to effectively balance the performance-
efficiency trade-off. On Im-evaluation-harness,
IIET boosts average accuracy by 2.65% over
vanilla Transformers and 0.8% over PCformer.
Its efficient variant, E-IIET, significantly cuts
inference overhead by 55% while retaining 99.
4% of the original task accuracy. Moreover, the
most efficient IIET variant achieves an average
performance gain exceeding 1.6% over vanilla
Transformer with comparable speed.

1 Introduction

The integration of advanced numerical Ordinary
Differential Equation (ODE) solvers into Trans-
former architectures (Vaswani, 2017) has spurred
significant progress in natural language process-
ing (NLP) (Li et al., 2022, 2024; Tong et al.,
2025) and image synthesis (Ho et al., 2020; Lu
et al., 2022a,b; Zheng et al., 2024). Leverag-
ing high-order methods, particularly Predictor-
Corrector (PC) schemes, within Transformer resid-
ual connections has demonstrated the capacity to
enhance model learning without increasing parame-
ter counts, offering a pathway to both performance
and parameter efficiency (Li et al., 2022, 2024).

However, the promise of high-order PCformer
(Li et al., 2024) is often constrained by deploy-
ment inefficiencies. The inherent linear depen-
dency in nested computations across layers dur-
ing inference poses critical inference latency. A
straightforward approach to mitigating this deploy-
ment bottleneck is Knowledge Distillation (Hinton,
2015; Kim and Rush, 2016). However, our pre-
liminary experiments demonstrate that the inher-
ent architectural discrepancy between the predictor
and corrector within PCformer impedes effective
knowledge transfer via distillation. Our empirical
investigations reveal an obvious 54% loss in perfor-
mance advantage for distilled student models, even
for those initialized with PCformer parameters.

Confronted with these deployment bottle-
necks, we pivot towards architectural innovations
grounded in numerical method principles. A naive
yet seemingly logical initial approach might be to
pursue uniformity in numerical methods between
predictor and corrector, such as pairing explicit
and backward Euler schemes. Similar attempts
have been validated in previous studies (Li et al.,
2024; Zhao et al., 2024), where a high-order pre-
dictor combined with a single-step backward Euler
method demonstrated promising results, particu-
larly on smaller datasets. However, ensuring solu-
tion precision inherently requires iterative solvers
to obtain the final solution, a process that shares
the same merits as high-order methods. Building
on this insight, we take a step further to explore
whether an iterative corrector mechanism is equally
critical for achieving both superior solution fidelity
and unlocking genuine efficiency gains.

To this end, we introduce the Iterative Implicit
Euler Transformer (IIET). Concretely, in IIET, each
iteration represents a computational step within
an implicit Euler iterative solver, where multiple
corrections to the initial prediction are made to
ensure output precision. To further strengthen nu-
merical stability, we also employ linear multi-step



methods during each correction step !. This ar-
chitecture, detailed in Figure 1d, is designed not
only to achieve superior performance that scales
with increasing iterations, exhibiting competitive
results against PCformer, but also to be inherently
compressible due to its iterative nature. Notably,
our top-performing IIET models (340M and 740M
parameters) achieve remarkable performance im-
provements of 2.4% and 2.9% respectively over
equivalent vanilla Transformers.

In this way, we can effectively accelerate the in-
ference of IIET via distillation techniques. Here,
we further propose Iteration Influence-Aware Dis-
tillation (ITAD), a method inspired by structured
pruning techniques (Men et al., 2024; Xia et al.,
2023; Chen et al., 2024), to reduce dispensable
iterations. Specifically, IIAD first assesses “iter-
ation influence” by calculating input-output sim-
ilarity for each iteration. The optimal number of
iterations per layer is then determined according
to a predefined influence threshold. Subsequently,
a continued pre-training phase is employed to re-
store the model’s capabilities. This process enables
users to tailor the iterative correction steps of the
IIET model according to their computational bud-
get, yielding efficient IIET variants. Experiments
demonstrate that our efficient variant, E-IIET, re-
duces IIET’s inference computational overhead by
over 60% while impressively maintaining 99.4%
of its performance. The lower bound of 340M
and 740M efficient IIET variants not only outper-
form the vanilla Transformer by 1.9% and 1.3%
respectively, but also achieve comparable inference
efficiency, showcasing a significant advancement
in both performance and deployment efficiency.

2 Background

We begin by establishing the connection between
residual connections and the Euler method, and
then discuss Transformer optimization strategies
informed by advanced explicit and implicit numer-
ical solutions of ODEs. Our work builds upon
the standard Transformer architecture (Vaswani,
2017), which comprises a stack of identical lay-
ers. For language modeling, each layer typically
comprises a causal attention (CA) block and a feed-
forward network (FFN) block. With residual con-
nections, the output of each block can be formu-
lated as yp+1 = Yn + F (Yn, On), where F (yn, 6,,)

TIET can be viewed as an instance of the PC paradigm,
employing an Euler predictor and an iterative Euler corrector.

represents the transformation performed by either
the CA or FFN block with parameters 6,,.

2.1 Euler Method in Residual Networks

The Euler method provides a linear approximation
for first-order ODEs, defined as 3/ (t) = f(y(t),t)
with an initial value y(¢9) = yo. Given a step size
h where t, 1 = t, + h, the method computes the
subsequent value y,1 as:

Yn+l = Yn + hf(yna tn) (D

where f(yn, tn) represents the rate of change of v,
determined by its current value and time ¢. Notably,
this formulation shares a structural similarity with
residual networks, where a trainable function, F(+),
approximates these changes. Consequently, from
an ODE perspective, residual connections can be in-
terpreted as a first-order discretization of the Euler
method. Although the success of residual connec-
tions highlights the benefits of the Euler method, its
first-order nature introduces significant truncation
errors (Li et al., 2022, 2024), limiting the precision
of yn41. Fortunately, more advanced numerical
methods exist and have been successfully applied
to neural networks.

2.2 Advanced Numerical Transformers

To improve the precision of 4,41, the Runge-Kutta
(RK) method offers a more accurate alternative. In-
spired by the o-order RK method, the ODE Trans-
former (Li et al., 2022) replaces residual connec-
tions with a RK process:

Yn+1 = Yn + 2;1 YiFi (@)

i—1
Fo=Flun+._ BuFita) @

where F; represents the i" order results computed
by a shared transformer block F(x,6,). The co-
efficients ~;, 3;; are learnable parameters. This
architecture effectively mitigates truncation error,
leading to significant performance gains in genera-
tion tasks such as machine translation.

Compared to explicit numerical methods, im-
plicit numerical methods typically offer higher pre-
cision and stability. The Predictor-Corrector (PC)
method, using an explicit predictor for initial esti-
mates and an implicit corrector for refinement, is a
classic example. Recent work has demonstrated the
benefits of integrating PC components into neural



(a) Vanilla Transformer (b) Linear Multi-step

Transformer

(¢) Predictor-Corrector Transformer

(d) Iterative Implicit Euler
Transformer

Figure 1: Architectural comparison: (a) Vanilla Transformer; (b) Linear multistep-enhanced Transformer; (c)
PCformer with 2nd-order Runge-Kutta predictor and 1st-order Euler corrector; (d) Our proposed Iterative Implicit
Euler Transformer (IIET). The iteration steps 7 in IIET is configurable, with experimental validation determining
r = 3 as the optimal setting in this work. All blocks follow an identical computational procedure as the block,,.

network architecture. PCformer (Li et al., 2024)
employs an o-order RK predictor and a linear multi-
step (Wang et al., 2019) corrector, defined as:

=ty A1-0NTF O

Uni1 = Un + F (yp, 0n) + > BFi (6)

i=n—2

where F; shares the same meaning as in Eq. 2
and F; denotes the outputs of previous blocks.
«, B, and -y are learnable coefficients. Specifically,
PCformer’s predictor incorporates an Exponential
Moving Average (EMA) to weight the contribu-
tions of different orders, while the corrector inte-
grates previous block outputs for increased pre-
cision. PCformer achieves superior performance
over the ODE Transformer and, to some extent,
unifies structural paradigms for Transformers im-
proved with implicit numerical methods. Our IIET
can be interpreted as a specific instance within the
PC paradigm, with a particular emphasis on the
iterative corrector component.

3 Iterative Implicit Euler Transformer

In this section, we detail the theoretical founda-
tion and core architectural design of the Iterative
Implicit Euler Transformer (IIET). Our approach
leverages the inherent stability of the implicit Euler
method, a cornerstone of numerical analysis, to
address key challenges in deep sequence modeling.

3.1 [Iterative Implicit Euler Method

The implicit Euler method, also known as the Back-
ward Euler method, is a foundational first-order im-
plicit numerical technique celebrated for its robust
stability properties, particularly advantageous in
handling stiff systems (LeVeque, 2007). Unlike its
explicit counterparts, the implicit Euler method em-
ploys a backward difference quotient, formulated
as:

Yn+1 = Yn + hf(yn+17 tn+1)- (7)

The implicit nature of Eq. 7, where the computation
of y,+1 depends on its value at the same time step
tn+1, inherently requires iterative solvers from nu-
merical analysis to obtain a solution. Specifically,
in traditional numerical methods for solving such
implicit equations, Newton’s iteration is frequently
employed due to its quadratic convergence rate and
robustness (Zhang et al., 2017; Shen et al., 2020;
Kim et al., 2024). However, within the context of
neural sequence modeling, where computational
efficiency and architectural simplicity are often pri-
oritized, we propose to investigate the efficacy of a
simpler alternative: fixed-point iteration (Rhoades,
1976). While prior works like Li et al. (2024) have
utilized explicit methods for initial approximations
followed by a single Backward Euler correction,
the potential of iterative refinement within the im-
plicit corrector remains largely unexplored.

Thus, challenging the implicit assumption that
a strong predictor is sufficient for high precision
(Li et al., 2024), we propose the central hypothesis



that iterative refinement inside the implicit correc-
tor constitutes a pivotal mechanism for enhancing
solution fidelity. We argue that a single-step cor-
rection inherently limits the achievable accuracy,
particularly when modeling intricate sequence dy-
namics and seeking high-fidelity representations of
Yn+1. Consequently, this work rigorously investi-
gates whether leveraging iterative solutions within
the implicit corrector can translate to demonstrable
gains in downstream model performance.

Intriguingly, our empirical findings reveal
that computationally efficient fixed-point iteration
yields surprisingly high precision, often on par
with the more computationally intensive Newton’s
method, particularly within our neural sequence
modeling framework. Our proposed Iterative Im-
plicit Euler (IIE) method commences with an initial
approximation, y° 1, derived from an explicit Eu-
ler step. This initial estimate is then iteratively
refined through r fixed-point iterations as defined
below:

y2+1 =Yn + hf(ym tn) (8)
Y1 = Yn + Y terr), G € L] (9)

The final approximation y,, 1 is thus given by y, . ¢,
representing the output of the " iteration.

The IIE method, while formally retaining its
first-order numerical accuracy, achieves a signif-
icant enhancement in the approximation of y,41
through iterative refinement. This iterative process
engenders a structured form of nested computations
that superficially resemble higher-order methods,
albeit through a fundamentally distinct mechanism
rooted in repeated fixed-point iterations. Acknowl-
edging the increased computational cost, the inher-
ent structural regularity of IIE, predicated solely on
the preceding iteration’s output, emerges as a cru-
cial enabler for inference efficiency optimizations,
as detailed in Section 4. This carefully engineered
balance between iteratively enhanced precision and
structural simplicity underpins the design philoso-
phy of the IIET architecture.

3.2 Model Architecture

Building on the IIE method, we propose the Iter-
ative Implicit Euler Transformer (IIET) as a foun-
dational architecture for sequence modeling, par-
ticularly for large language models. Adopting the
LLaMA architecture (Touvron et al., 2023b) (Trans-
former++), IIET consists of NV stacked transformer
decoder layers. Each layer comprises a causal at-

tention module followed by a feedforward mod-
ule, and employs rotary positional encoding (Su
et al., 2024), SiL.U activation (Shazeer, 2020), and
RMS normalization (Zhang and Sennrich, 2019).
Given an input sequence r = xy, ..., r1, of length
L, the initial input embeddings are represented as
X0 = [21,...,21] € REXmotel | where dipogel is the
hidden dimension. The output of each subsequent
layer is then computed as X™ = Decoder(X" 1),
forn € [1, N].

The key distinction between IIET and Trans-
former++ lies in IIET’s integration of the IIE
method within each decoder layer (Figure 1). Un-
like Transformer++, which directly computes the
layer’s output using a single Euler step (standard
residual), IIET employs an iterative refinement pro-
cess. Specifically, IIET first estimates an initial
value, 10 11, via a single Euler step (Eq. 8):

y2+1 =Yn + J_"(ym Hn) (10)

where F(x,0,) represents the n'" transformer
layer with parameters 6,,. This initial estimate in
IIET corresponds to the direct output of each layer
in Transformer++.

In the subsequent iterations, our preliminary
experiments suggest that incorporating outputs
from previous layers, similar to Transformer-
DLCL (Wang et al., 2019), can enhance the perfor-
mance. We thus modify Eq. 9 as follows:

n—1

Yhi1 = Un + 0 F(Yi . 00) + > o Fy, (11)
=0

where i € [1..r] denotes the iteration step, F; rep-
resents the output of the previous layers j, and
represents learnable layer merge coefficients. Ap-
pendix A details the computation flow within a
single IIET layer.

3.3 Experimental Setups

Limited by resources, our experiments primarily ex-
plore small-scale language modeling, specifically
at parameter scales of 340 million and 740 million.

Baselines. We evaluate IIET’s performance
against two strong baselines: Transformer++ (Tou-
vron et al., 2023a) and PCformer (Li et al., 2024).
Transformer++ adopts the LLaMA architecture.
PCformer employs a 2nd-order Runge-Kutta pre-
dictor and a linear multi-step corrector 2. All mod-

2We also explored a 4th-order Runge-Kutta predictor and

more complex correctors, but these increased training costs
without substantially improving performance.



Wiki. LMB. | LMB. PiQA Hella. SCIQ ARC-¢c  Wino. | Avg.
Scale Model ppld ppld | acctT acc_norm® acc_norm{ acctT acc_norm?f acctT | T
Pre-training Phase
340M Params Transformer++ | 28.2 783 | 289 64.3 342 76.0 23.6 51.9 |46.5
16B Tokens ~ PCformer 25.7 47.0 | 33.1 64.9 36.3 77.5 24.7 53.3 | 483
IIET 25.0 305 | 371 65.2 36.9 794 239 51.0 | 489
740M Params Transformer++ | 23.3 34.8 | 36.1 66.4 38.4 78.6 24.5 50.2 | 49.0
30B Tokens  PCformer 212 22.0 | 41.0 66.3 41.3 82.0 23.3 51.2 509
IET 20.7 211 | 412 68.9 42.5 82.1 23.8 53.1 | 519
Iteration Influence-Aware Distillation Phase
340M Params Distil PCformer | 27.2 504 | 32.2 64.6 34.9 78.0 24.7 51.3 | 47.6
5B Tokens Lower Bound 27.0 34.6 | 36.1 64.0 35.0 80.7 23.0 51.5 | 484
E-IIET 257 309 | 374 64.4 35.8 80.4 23.5 52.1 | 48.9
740M Params Distil PCformer | 22.5 295 | 374 66.8 39.2 80.0 232 50.9 |49.6
10B Tokens ~ Lower Bound 23.0 299 | 376 67.4 38.7 79.7 25.2 53.0 | 50.3
E-TIET 212 242 | 40.1 68.5 41.0 81.0 24.6 524 | 513

Table 1: Comparison of results between our models and baselines in the Pre-training Phase and Iteration Influence-
Aware Distillation Phase. The individual task performance is via zero-shot. We report the main results on the
same set of tasks reported by Gu and Dao (2023). The last column shows the average over all benchmarks that use
(normalized) accuracy as the metric. Bold values represent the best results in each set.

els are trained on the same dataset for an identical
token count. Detailed training hyperparameter set-
tings can be found in Appendix B.1.

Datasets and Evaluation Metrics. Our models
are pre-trained on SlimPajama (Soboleva et al.,
2023) and tokenized using the LLaMA2 tok-
enizer (Touvron et al., 2023a). From the origi-
nal 627B-token dataset, we sample 16B and 30B
tokens for training the 340M and 740M parame-
ter models, respectively. For comprehensive eval-
uation, we assess perplexity (PPL) on Wikitext
(Wiki.) (Merity et al., 2016) and consider sev-
eral downstream tasks covering common-sense
reasoning and question answering: LAMBADA
(LMB.) (Paperno et al., 2016), PiQA (Bisk et al.,
2020), HellaSwag (Hella.) (Zellers et al., 2019),
WinoGrande (Wino.) (Sakaguchi et al., 2021),
ARC-Challenge (ARC-c) (Clark et al., 2018), and
SCIQ (Welbl et al., 2017). We report PPL on Wiki-
text and LAMBADA,; length-normalized accuracy
on HellaSwag, ARC-Challenge, and PiQA; and
standard accuracy on the remaining tasks. All
evaluations are conducted using the Im-evaluation-
harness (Gao et al., 2021).

3.4 Experimental Results

Iteration Steps. To identify the optimal iteration
steps r, we first apply varying r values to the 340M
IIET model and a smaller 55M parameter variant
(detailed in Appendix B.1). All models were evalu-
ated on Wikitext test set. As illustrated in Figure 2,
which showcases the benefit of iterative correction,

IIET 55M IIET 340M

Perplexity

iteration steps

Figure 2: PPL on the Wikitext test set for 55M and
340M IIET across varying iteration steps 7. Dashed
lines indicate Transformer++ and PCformer perfor-
mance at corresponding parameter scales. Note that
IIET’s FLOPs is nearly r + 1 times of Transformer++.

IIET’s performance exceeds PCformer at r = 2
and achieves its peak at » = 3. Therefore, we
adopt r = 3 in this work.

Results. The advantages of IIET are highlighted
by its performance on LLM evaluation benchmarks.
As demonstrated in Table 1 Pre-training Phase,
IIET consistently surpasses Transformer++ and PC-
former with comparable capacity. At a parameter
scale of 340 million, IIET achieves a mean accu-
racy of 2.4% higher than that of Transformer++
and 0.6% higher than that of PCformer across all
six challenging subtasks. Notably, the performance
disparity amplifies progressively with increasing
parameter scale, attaining 2.9% and 1% at 740 mil-
lion parameters. This observation, consistent with
Li et al. (2024)’s, confirms the robust scalability
of IIET and similar numerical Transformers, show-
casing their performance potential with increasing
model parameters and training data.
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Figure 3: Ablation study on iteration steps : (a) Impact
on model performance. (b) Corresponding effects on

inference speed and VRAM utilization.

Model LMB. PiQA Hella. SCIQ ARC-c Wino. Avg.
IIET 371 652 369 794 239 51.0 489
Trans WS 30.7 63.1 344 757 23.2 504 46.3
Trans 1.3B 37.3 65.7 376 78.6 23.7 51.5 49.0

Table 2: Performance comparison of models with
FLOPs comparable to the 340M IIET.

3.5 Analysis

Ablation Study on Iteration Steps. A key ques-
tion concerning IIET is whether its performance
improves monotonically with an increasing num-
ber of iterative correction steps. To investigate
this, we conducted an ablation study on the 340M
IIET model, varying the number of iteration r. 3
As illustrated in Figure 3a, performance initially
improves with increasing ». However, beyond a
certain threshold, further increases in r lead to a
plateau in performance gains. This suggests that
the iterative refinement process guides the final rep-
resentation towards a more precise ODE solution,
but with diminishing returns after optimal conver-
gence. Detailed downstream results can be found
in Appendix C. FurtherMore, to assess the impact
of r on inference efficiency, we measured the au-
toregressive generation throughput of IIET variants
on a single A100 GPU. Figure 3b shows that while
IIET’s inference speed substantially declines with
increasing 7, its VRAM footprint remains largely
unaffected as it incurs no extra parameters.

Comparison with Equal FLOPs. Given that
IIET’s iterative correction adds FLOPs (to approx-
imately four times that of Transformer++ when
r = 3), we aimed for a performance compari-
son under equivalent computational budgets. Thus,
we trained a 1.3B Transformer++ model on iden-
tical training data. The results in Table 2 show
that IIET performs comparably to the much larger
Transformer++ but with substantially fewer param-
eters, thereby reducing memory and training over-

*In the case where r = 0, IIET is structurally the same as
the DLCL Transformer.

head. Moreover, models with exactly matched
parameter scale and FLOPs were benchmarked.
Since IIET’s architecture closely resembles weight-
sharing methods, we established a naive weight-
sharing baseline: the Transformer++ model’s depth
was quadrupled, with weights shared every four
layers, namely Trans WS. As shown in Table 2,
this simple weight-sharing approach alone does
not yield performance gains, highlighting the cru-
cial contribution of IIET’s implicit iterative solver-
based design to its enhanced performance.

Parameter Redundancy of IIET. We hypothe-
size that the iterative correction process of IIET
enhances learning efficiency and reduces parame-
ter redundancy. To investigate this, we used Block
Influence (BI) (Men et al., 2024) to measure layer
redundancy in IIET and Transformer++. BI as-
sesses the influence of each model block on the
hidden state by measuring the similarity between
its input and output; lower similarity indicates a
higher influence. Specifically, the BI of a Trans-
former block is calculated as:

HZtHi-&-l,t
| H ¢ |2 [Hig1,e]|2

where H; ; represents the t'* row of the i layer’s
input hidden states. We randomly sampled 5,000
text segments from Wikitext to calculate the BI
of each model. As shown in Figure 4, the influ-
ence of IIET’s blocks increases significantly with
iteration steps, demonstrating higher layer utiliza-
tion. This also indicates that the learning potential
of existing large-scale language models remains
under-exploited.

B, =1 —En (12)

4 TIteration Influence-Aware Distillation

While IIET achieves strong downstream task per-
formance, its iterative structure introduces com-
putational overhead that curtails inference speed.
This added latency is particularly non-negligible for
autoregressive generation in large language mod-
els. To enhance IIET’s inference efficiency with-
out performance loss, we explore whether contin-
uous pre-training combined with distillation can
enable fewer forward passes, ideally a single one,
to yield outputs equivalent to those from the com-
plete, multi-step iterative correction process. To
this end, we analyze the impact of each iterative cor-
rection step on the hidden state within each block.
Surprisingly, Figure 5 shows that not all layers re-
quire the same number of iteration steps to achieve
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Figure 5: Iteration Influence within each layer of the 340M IIET model. Deeper colors indicate larger hidden state
changes after this iteration. The 740M IIET results are presented in Appendix D due to space constraints.

accurate output, with deeper layers benefiting more
from additional iterative corrections, which is po-
tentially due to the varying roles layers play in the
Transformer’s representation-building process.

4.1 Methodology

In this section, we propose Iteration Influence-
Aware Distillation (ITAD). ITAD first analyzes the
iterative process of a pre-trained IIET, identifying
and eliminating non-essential iterative computa-
tions to yield an efficient variant, E-IIET. Subse-
quently, a layer-wise self-distillation phase restores
the performance of E-IIET.

Iteration Influence. Iteration influence employs
a computational methodology similar to block influ-
ence; however, its calculation is performed specif-
ically within individual IIET blocks. For a given
nt" block, we consider its input y, and the out-
put v, 1 of each internal iteration 4. The pairwise
differences between these representations are calcu-
lated using Eq. 12 to obtain the iteration influence
values. Based on these values and a specified com-
putational budget, users can determine the number
of iteration steps to retain per block.

In this work, we primarily investigate two de-
signs for efficient IIET variants: @ Lower Bound:
Each layer performs only a single forward pass,
establishing a performance lower bound for effi-
cient IIET. @ E-IIET: This variant establishes a
threshold using the minimum of the initial iteration
influence values computed in each layer. Conse-

quently, iteration steps with influence scores below
this threshold are omitted, preserving each layer’s
initial computation and essential iteration steps.
Specifically, E-IIET reduces the number of iter-
ation steps from a baseline of 72 to 15 in the 340M
variant and 23 in the 740M variant.

Iteration Influence-Aware Distillation. In the
continuous pre-training stage, we employ a warm-
start initialization strategy, directly inheriting pa-
rameters from the pre-trained IIET model to retain
knowledge acquired during its initial pre-training
phase. To enable efficient IIET variants (e.g., E-
IIET) to approximate the precise output represen-
tations of the full IIET, we utilize a fine-grained,
block-specific knowledge distillation framework
incorporating two complementary losses: 1) Mean
Squared Error (MSE) Loss: For each block, an
MSE loss encourages E-IIET to mimic the refined
hidden states produced by the full IIET. This loss
is computed as:

1 — ]
Lysg = - Zl [ N AN &)
1=

where h; are the hidden state outputs of the i
block. 2) Kullback-Leibler (KL) Loss: To fur-
ther align prediction behavior, we compute the KL
divergence between the final output probability dis-
tributions of the full IIET and E-IIET:

LxL = Dxe (p(2""/7) || p(z""T /7)) (14)



Model | 340M 740M

| Spd. FLOPs VARM Spd. FLOPs VARM
Transformer++[49.97 0.38  1.37 [48.91 0.80  2.80
PCformer (1414 1.06 141 |1438 230  2.86
IET 1107 140 142 |10.95 3.05 2.89

Lower Bound |42.66 0.38 137 [42.03 0.80 2.80
E-IIET 2595 0.60 138 |22.12 152 283

Table 3: A comparison of inference speed (tokens per
second), FLOPs (T) and VARM (GB) for baseline mod-
els, PCformer, and efficient IIET variants.

where z represent the output logits and 7 is the
distillation temperature. By combining these two
distillation losses with Cross-Entropy loss, we train
E-IIET to effectively capture the knowledge em-
bedded within the full ITET’s iterative refinement
process. The final training objective for this contin-
uous pre-training stage is thus:

Lener = Lcg + aLlmse + BLk. (15)

4.2 Experiments and Results

Setups. To train efficient IIET variants, we sam-
ple one-third of the original pre-training tokens (see
Appendix B.2 for detailed training settings). For
performance comparison against E-IIET, we also
prepare two key baselines: a Lower Bound variant,
which omits all iterative corrections, and a distilled
version of PCformer. All models are trained fol-
lowing the method outlined in Section 4.1.

Main Results. Table 1 presents the main results
for IIAD. As a baseline, directly distilling PC-
former into a standard Euler architecture (namely
Distil PCformer) leads to substantial performance
degradation, highlighting the importance of the so-
phisticated numerical solvers employed by higher-
order methods to achieve their accuracy. In con-
trast, E-IIET, compared to the full IIET model, re-
tains the vast majority of its performance while
reducing the average iterative correction overhead
by about 55%. Importantly, even the Lower Bound
efficient IIET variant achieves performance on par
with PCformer, demonstrating IIET’s strength in
balancing efficiency with strong performance.

Inference Efficiency. We analyze the inference
speed, FLOPs and VRAM usage of our main mod-
els. As Table 3 indicates, E-IIET achieves over a 2x
speedup compared to full IIET, while largely main-
taining IIET’s performance advantage (E-IIET vs.
full IIET scores: 48.9/48.9 for 340M and 51.3/51.9
for 740M model). However, due to the FLOPs in-
curred by its remaining iteration steps, E-IIET still

exhibits nearly twice the inference latency of Trans-
former++. A key characteristic of these efficient
IIET variants is the inverse relationship between
performance and efficiency: fewer iterations lead
to lower performance but higher efficiency. No-
tably, Table 3 shows that the maximum efficiency
attained by these variants (i.e, Lower Bound) is
close to that of the Transformer++, with their aver-
age performance surpassing it by 1.6 points. This
adaptability makes E-IIET a flexible solution for
practical deployment, as users can select the itera-
tion steps based on their resource constraints (e.g.,
reducing iterations to maximize inference speed).

5 Related Work

The link between residual connections and ODEs,
first established by Weinan (2017), has spurred
extensive research into ODE-based neural net-
work architectures. This insight has paved the
way for applying ODE techniques to benefit dif-
fusion models (Liu et al., 2022) and Transform-
ers (Li et al., 2022). For instance, DPM-Solver (Lu
et al., 2022a,b) accelerates diffusion model sam-
pling by employing exact ODE solution formula-
tions and higher-order numerical techniques; Kim
et al. (2024) and Li et al. (2020) focus on implicit
Euler methods for improved adversarial robust-
ness. In this work, we distinctively focus on us-
ing implicit Euler methods to enhance language
model performance. Other works have designed
novel ODE-based architectures (Chen et al., 2018).
DEQ (Bai et al., 2019), for example, replaces se-
quences of explicit layers with a single implicit
layer solved via equilibrium finding. In contrast,
our approach enhances explicitly defined layers by
employing sophisticated implicit numerical solvers
for their forward pass computation. More recently,
PCformer (Li et al., 2024) has demonstrated sig-
nificant gains in language modeling and machine
translation. However, our proposed IIET exceeds
PCformer in performance, features a simpler archi-
tecture, and achieves superior inference efficiency.

6 Conclusions

We introduce the Iterative Implicit Euler Trans-
former (IIET), which leverages an iterative implicit
Euler method to achieve superior and scalable per-
formance over both vanilla Transformers and PC-
former. Furthermore, we develop an inference ac-
celeration technique for IIET that allows users to
adjust inference efficiency based on their budget.



7 Limitations

Computational resource constraints currently pre-
clude a comprehensive evaluation of IIET on larger-
scale language models. Furthermore, while our
ITAD method is designed to produce efficient IIET
variants for inference, the IIAD process itself in-
troduces notable computational overhead during
its application. Future research will focus on inte-
grating the determination of layer-specific iteration
requirements directly into the pre-training stage.
This could facilitate the direct training of inher-
ently efficient IIET models, potentially bypassing
a separate, resource-intensive distillation phase.

Beyond optimizing IIET’s per-token efficiency,
we also identify a promising avenue for broader
application. Current large reasoning models of-
ten achieve high performance by generating sub-
stantially more tokens than are present in the fi-
nal answer, leading to significant inference latency.
IIET, on the contrary, enhances per token repre-
sentational power through depth-wise iterative re-
finement, albeit at an increased per-token compu-
tational cost. We hypothesize that this trade-off
could be ultimately advantageous in multi-step rea-
soning tasks: IIET’s more precise computation per
token might enable it to generate complete and cor-
rect answers in fewer overall autoregressive steps,
thereby reducing the total token count and poten-
tially overall latency. Validating this hypothesis,
however, necessitates training and evaluating IIET
at larger model and data scales, which remains a
key direction for future investigation.
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A IIET Algorithm

Algorithm 1 details the computation flow within a
single IIET layer, where L stores the hidden states
from previously computed layers, providing nec-
essary context. During the computation within a
single block, an initial estimate of its output, 37, ;,
is iteratively refined. Each iteration i updates this
estimate to y’, 1 through the function F and the
context L. This fixed-point iteration process pro-
gressively converges towards a more precise final

output Yp+1.

Algorithm 1 Iterative Implicit Euler Paradigm

1: procedure IIET BLOCK(yn, L)

2: 12 F(yn,0n) > Compute initial value
3: L.append(f°) > Store f2
4 fori < Otor —1do

5 Compute y,i,,Jrl using L via Eq. 11

6: Hl  F(yli1,6n) > Compute correct value
7: L.update(f} — fith) > Update f7,
8 end for

9 Compute yy,; using L via Eq. 11
10 return yy 1 > Return the layer output
11: end procedure

B Training Settings

B.1 Pre-training Phase

For our main experiments, all models are trained
from scratch at two parameter scales (340M and
740M) to evaluate IIET’s performance across dif-
ferent sizes. We utilize the AdamW (Loshchilov
et al., 2017) optimizer with a maximum learning
rate of 3e-4 for all models. Batch sizes are set
to 0.5M tokens for 340M models and 1M tokens
for 740M models. A cosine learning rate schedule
is applied to both model scales, featuring a 0.01
warmup ratio, 0.01 weight decay, and gradient clip-
ping at 1.0. Furthermore, to identify the optimal
iteration count r, we train a dedicated, smaller IIET
model variant with just 55M parameters. All hyper-
parameter specifications for the pre-training phase
are available in Table 4.

B.2 Iteration Influence-Aware Distillation
Phase

To train efficient IIET variants, we sample one-
third of the total pre-training tokens for each con-
figuration (e.g., 5 billion token for 340M models
and 10 billion token for 740M models). Users
can customize the corrective iteration process for
these variants based on their computational bud-
get. In this study, we focus on two main types
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of efficient IIETs: a ‘lower bound’ configuration
that removes all iterative steps, and E-IIET, which
utilizes a threshold for iteration selection.

For training, all efficient IIET variants use the
full IIET as a teacher model and are trained with
the fine-grained supervision method detailed in
Section 4.1. We apply a cosine decay learning
rate schedule with an initial value of 2e-4, while
other pre-training hyperparameters are kept consis-
tent. Furthermore, for comparison purposes, we
train Distil PCformer, a self-distilled version of PC-
former using the same methodology. To ensure a
fair comparison, we use the same evaluation dataset
and metrics described in Section 3.3.

C IIET with Varying Iteration Steps

We evaluated the downstream task performance
of our 340M model across iteration steps r = 0
to r = 8§, as detailed in Section 3.5. Table 5
shows that as the number of iterations increases,
IIET’s performance on downstream tasks initially
improves progressively before these gains begin
to plateau. Although performance slightly de-
grades at r = 8, IIET still surpasses both Trans-
former++ and PCformer. Notably, with r = 2
iterations, IIET achieves performance comparable
to PCformer with its per-block forward pass count
is also similar to PCformer’s. This demonstrates
that our proposed iterative implicit Euler (IIET)
architecture, despite its simpler design, offers rep-
resentation refinement capabilities that are close
to those of higher-order methods. Finally, using
identical training data, IIET exhibited superior data-
fitting ability over the other models, as indicated
by its perplexity (PPL) scores.

D Iteration Influence of 740M IIET

Figure 6 displays the Iteration Influence of the
740M IIET model. By selecting the minimum ini-
tial computation of each layer as the threshold, we
can reduce the number of corrective iterations from
72 to 23.



Hyperparameters S5M 340M 740M

model_type llama llama llama
hidden_act silu silu silu
initializer_range 0.02 0.02 0.02
hidden_size 512 1024 1536
intermediate_size 1408 2816 4224
max_position_embeddings 2048 2048 2048
num_attention_heads 4 8 8
num_hidden_layers 12 24 24
num_key_value_heads 4 8 8
pretraining_tp 1 1 1
rms_norm_eps 1.00 x 1079 1.00 x 1075 1.00 x 107
tie_word_embeddings True True True
torch_dtype float16 float16 float16
vocab_size 32000 32000 32000
training_len 2048 2048 2048
total_batch_size 128 256 512
learning_rate 0.0004 0.0003 0.0003
max_steps 5000 30000 30000
warm_up 0.05 0.05 0.01

Table 4: Model Hyperparameters and Training Hyperparameters.

Wiki. LMB. | LMB. PiQA Hella. SCIQ ARC-¢c  Wino. | Avg.
Model ppld ppll | acctT acc_norm?T acc_norm{ acc?t acc_normT acct 1
Transformer++ | 28.23 78.31 | 28.93 64.31 34.23 76.00 23.63 51.93 | 46.51
PCformer 25.71 47.02 | 33.10 64.92 36.31 77.53 24.70 53.26 | 48.30
HETr =0 27.07 48.52 | 32.43 65.07 34.80 78.30 23.46 50.36 | 47.40
HETr =1 2596 36.34 | 34.43 64.69 36.07 76.30 23.29 50.12 | 47.48
IET r =2 25.49 35.76 | 34.64 64.96 36.80 77.20 24.23 51.85 | 48.28
HETr =3 25.02 30.51 | 37.05 65.23 36.93 79.40 23.89 50.99 |48.92
[NETr =4 25.09 29.94 | 36.79 64.31 37.25 78.10 22.78 53.75 | 48.83
HETr =5 25.05 30.58 | 36.32 64.51 37.34 78.55 23.42 53.23 | 48.90
INETr =6 25.10 31.21 | 35.84 64.71 37.43 79.00 24.06 52.91 | 48.99
HETr =7 25.09 31.62 | 35.50 65.16 36.98 79.20 23.34 52.98 | 48.86
[ETr =8 25.40 32.02 | 35.16 65.61 36.52 79.40 22.61 51.14 | 48.41

Table 5: Performance comparison of IIET with varying iteration steps at 340 million parameters.
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Tteration Influence Analysis of 740M IIET
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Figure 6: Impact of different iteration stages on the hidden state within each layer of the 740M IIET model, which
we term iteration influence. Deeper colors indicate larger hidden state changes after this iteration.
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