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Abstract001

High-order numerical methods enhance Trans-002
former performance in tasks like NLP and003
CV, but introduce a performance-efficiency004
trade-off due to increased computational over-005
head. Our analysis reveals that conventional006
efficiency techniques, such as distillation, can007
be detrimental to the performance of these mod-008
els, exemplified by PCformer. To explore more009
optimizable ODE-based Transformer architec-010
tures, we propose the Iterative Implicit Euler011
Transformer (IIET), which simplifies high-012
order methods using an iterative implicit Euler013
approach. This simplification not only leads014
to superior performance but also facilitates015
model compression compared to PCformer.016
To enhance inference efficiency, we introduce017
Iteration Influence-Aware Distillation (IIAD).018
Through a flexible threshold, IIAD allows019
users to effectively balance the performance-020
efficiency trade-off. On lm-evaluation-harness,021
IIET boosts average accuracy by 2.65% over022
vanilla Transformers and 0.8% over PCformer.023
Its efficient variant, E-IIET, significantly cuts024
inference overhead by 55% while retaining 99.025
4% of the original task accuracy. Moreover, the026
most efficient IIET variant achieves an average027
performance gain exceeding 1.6% over vanilla028
Transformer with comparable speed.029

1 Introduction030

The integration of advanced numerical Ordinary031

Differential Equation (ODE) solvers into Trans-032

former architectures (Vaswani, 2017) has spurred033

significant progress in natural language process-034

ing (NLP) (Li et al., 2022, 2024; Tong et al.,035

2025) and image synthesis (Ho et al., 2020; Lu036

et al., 2022a,b; Zheng et al., 2024). Leverag-037

ing high-order methods, particularly Predictor-038

Corrector (PC) schemes, within Transformer resid-039

ual connections has demonstrated the capacity to040

enhance model learning without increasing parame-041

ter counts, offering a pathway to both performance042

and parameter efficiency (Li et al., 2022, 2024).043

However, the promise of high-order PCformer 044

(Li et al., 2024) is often constrained by deploy- 045

ment inefficiencies. The inherent linear depen- 046

dency in nested computations across layers dur- 047

ing inference poses critical inference latency. A 048

straightforward approach to mitigating this deploy- 049

ment bottleneck is Knowledge Distillation (Hinton, 050

2015; Kim and Rush, 2016). However, our pre- 051

liminary experiments demonstrate that the inher- 052

ent architectural discrepancy between the predictor 053

and corrector within PCformer impedes effective 054

knowledge transfer via distillation. Our empirical 055

investigations reveal an obvious 54% loss in perfor- 056

mance advantage for distilled student models, even 057

for those initialized with PCformer parameters. 058

Confronted with these deployment bottle- 059

necks, we pivot towards architectural innovations 060

grounded in numerical method principles. A naive 061

yet seemingly logical initial approach might be to 062

pursue uniformity in numerical methods between 063

predictor and corrector, such as pairing explicit 064

and backward Euler schemes. Similar attempts 065

have been validated in previous studies (Li et al., 066

2024; Zhao et al., 2024), where a high-order pre- 067

dictor combined with a single-step backward Euler 068

method demonstrated promising results, particu- 069

larly on smaller datasets. However, ensuring solu- 070

tion precision inherently requires iterative solvers 071

to obtain the final solution, a process that shares 072

the same merits as high-order methods. Building 073

on this insight, we take a step further to explore 074

whether an iterative corrector mechanism is equally 075

critical for achieving both superior solution fidelity 076

and unlocking genuine efficiency gains. 077

To this end, we introduce the Iterative Implicit 078

Euler Transformer (IIET). Concretely, in IIET, each 079

iteration represents a computational step within 080

an implicit Euler iterative solver, where multiple 081

corrections to the initial prediction are made to 082

ensure output precision. To further strengthen nu- 083

merical stability, we also employ linear multi-step 084
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methods during each correction step 1. This ar-085

chitecture, detailed in Figure 1d, is designed not086

only to achieve superior performance that scales087

with increasing iterations, exhibiting competitive088

results against PCformer, but also to be inherently089

compressible due to its iterative nature. Notably,090

our top-performing IIET models (340M and 740M091

parameters) achieve remarkable performance im-092

provements of 2.4% and 2.9% respectively over093

equivalent vanilla Transformers.094

In this way, we can effectively accelerate the in-095

ference of IIET via distillation techniques. Here,096

we further propose Iteration Influence-Aware Dis-097

tillation (IIAD), a method inspired by structured098

pruning techniques (Men et al., 2024; Xia et al.,099

2023; Chen et al., 2024), to reduce dispensable100

iterations. Specifically, IIAD first assesses “iter-101

ation influence” by calculating input-output sim-102

ilarity for each iteration. The optimal number of103

iterations per layer is then determined according104

to a predefined influence threshold. Subsequently,105

a continued pre-training phase is employed to re-106

store the model’s capabilities. This process enables107

users to tailor the iterative correction steps of the108

IIET model according to their computational bud-109

get, yielding efficient IIET variants. Experiments110

demonstrate that our efficient variant, E-IIET, re-111

duces IIET’s inference computational overhead by112

over 60% while impressively maintaining 99.4%113

of its performance. The lower bound of 340M114

and 740M efficient IIET variants not only outper-115

form the vanilla Transformer by 1.9% and 1.3%116

respectively, but also achieve comparable inference117

efficiency, showcasing a significant advancement118

in both performance and deployment efficiency.119

2 Background120

We begin by establishing the connection between121

residual connections and the Euler method, and122

then discuss Transformer optimization strategies123

informed by advanced explicit and implicit numer-124

ical solutions of ODEs. Our work builds upon125

the standard Transformer architecture (Vaswani,126

2017), which comprises a stack of identical lay-127

ers. For language modeling, each layer typically128

comprises a causal attention (CA) block and a feed-129

forward network (FFN) block. With residual con-130

nections, the output of each block can be formu-131

lated as yn+1 = yn + F(yn, θn), where F(yn, θn)132

1IIET can be viewed as an instance of the PC paradigm,
employing an Euler predictor and an iterative Euler corrector.

represents the transformation performed by either 133

the CA or FFN block with parameters θn. 134

2.1 Euler Method in Residual Networks 135

The Euler method provides a linear approximation 136

for first-order ODEs, defined as y′(t) = f(y(t), t) 137

with an initial value y(t0) = y0. Given a step size 138

h where tn+1 = tn + h, the method computes the 139

subsequent value yn+1 as: 140

yn+1 = yn + hf(yn, tn) (1) 141

where f(yn, tn) represents the rate of change of y, 142

determined by its current value and time t. Notably, 143

this formulation shares a structural similarity with 144

residual networks, where a trainable function, F(·), 145

approximates these changes. Consequently, from 146

an ODE perspective, residual connections can be in- 147

terpreted as a first-order discretization of the Euler 148

method. Although the success of residual connec- 149

tions highlights the benefits of the Euler method, its 150

first-order nature introduces significant truncation 151

errors (Li et al., 2022, 2024), limiting the precision 152

of yn+1. Fortunately, more advanced numerical 153

methods exist and have been successfully applied 154

to neural networks. 155

2.2 Advanced Numerical Transformers 156

To improve the precision of yn+1, the Runge-Kutta 157

(RK) method offers a more accurate alternative. In- 158

spired by the o-order RK method, the ODE Trans- 159

former (Li et al., 2022) replaces residual connec- 160

tions with a RK process: 161

yn+1 = yn +
∑o

i=1
γiFi (2) 162

F1 = F(yn, θn) (3) 163

Fi = F(yn +
∑i−1

j=1
βijFj , θn) (4) 164

where Fi represents the ith order results computed 165

by a shared transformer block F(∗, θn). The co- 166

efficients γi, βij are learnable parameters. This 167

architecture effectively mitigates truncation error, 168

leading to significant performance gains in genera- 169

tion tasks such as machine translation. 170

Compared to explicit numerical methods, im- 171

plicit numerical methods typically offer higher pre- 172

cision and stability. The Predictor-Corrector (PC) 173

method, using an explicit predictor for initial esti- 174

mates and an implicit corrector for refinement, is a 175

classic example. Recent work has demonstrated the 176

benefits of integrating PC components into neural 177
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Figure 1: Architectural comparison: (a) Vanilla Transformer; (b) Linear multistep-enhanced Transformer; (c)
PCformer with 2nd-order Runge-Kutta predictor and 1st-order Euler corrector; (d) Our proposed Iterative Implicit
Euler Transformer (IIET). The iteration steps r in IIET is configurable, with experimental validation determining
r = 3 as the optimal setting in this work. All blocks follow an identical computational procedure as the blockn.

network architecture. PCformer (Li et al., 2024)178

employs an o-order RK predictor and a linear multi-179

step (Wang et al., 2019) corrector, defined as:180

yp = yn +
∑o

i=1
γ(1− γ)o−iFi (5)181

182
yn+1 = yn + αF(yp, θn) +

n∑
i=n−2

βF̃i (6)183

where Fi shares the same meaning as in Eq. 2184

and F̃i denotes the outputs of previous blocks.185

α, β, and γ are learnable coefficients. Specifically,186

PCformer’s predictor incorporates an Exponential187

Moving Average (EMA) to weight the contribu-188

tions of different orders, while the corrector inte-189

grates previous block outputs for increased pre-190

cision. PCformer achieves superior performance191

over the ODE Transformer and, to some extent,192

unifies structural paradigms for Transformers im-193

proved with implicit numerical methods. Our IIET194

can be interpreted as a specific instance within the195

PC paradigm, with a particular emphasis on the196

iterative corrector component.197

3 Iterative Implicit Euler Transformer198

In this section, we detail the theoretical founda-199

tion and core architectural design of the Iterative200

Implicit Euler Transformer (IIET). Our approach201

leverages the inherent stability of the implicit Euler202

method, a cornerstone of numerical analysis, to203

address key challenges in deep sequence modeling.204

3.1 Iterative Implicit Euler Method 205

The implicit Euler method, also known as the Back- 206

ward Euler method, is a foundational first-order im- 207

plicit numerical technique celebrated for its robust 208

stability properties, particularly advantageous in 209

handling stiff systems (LeVeque, 2007). Unlike its 210

explicit counterparts, the implicit Euler method em- 211

ploys a backward difference quotient, formulated 212

as: 213

yn+1 = yn + hf(yn+1, tn+1). (7) 214

The implicit nature of Eq. 7, where the computation 215

of yn+1 depends on its value at the same time step 216

tn+1, inherently requires iterative solvers from nu- 217

merical analysis to obtain a solution. Specifically, 218

in traditional numerical methods for solving such 219

implicit equations, Newton’s iteration is frequently 220

employed due to its quadratic convergence rate and 221

robustness (Zhang et al., 2017; Shen et al., 2020; 222

Kim et al., 2024). However, within the context of 223

neural sequence modeling, where computational 224

efficiency and architectural simplicity are often pri- 225

oritized, we propose to investigate the efficacy of a 226

simpler alternative: fixed-point iteration (Rhoades, 227

1976). While prior works like Li et al. (2024) have 228

utilized explicit methods for initial approximations 229

followed by a single Backward Euler correction, 230

the potential of iterative refinement within the im- 231

plicit corrector remains largely unexplored. 232

Thus, challenging the implicit assumption that 233

a strong predictor is sufficient for high precision 234

(Li et al., 2024), we propose the central hypothesis 235
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that iterative refinement inside the implicit correc-236

tor constitutes a pivotal mechanism for enhancing237

solution fidelity. We argue that a single-step cor-238

rection inherently limits the achievable accuracy,239

particularly when modeling intricate sequence dy-240

namics and seeking high-fidelity representations of241

yn+1. Consequently, this work rigorously investi-242

gates whether leveraging iterative solutions within243

the implicit corrector can translate to demonstrable244

gains in downstream model performance.245

Intriguingly, our empirical findings reveal246

that computationally efficient fixed-point iteration247

yields surprisingly high precision, often on par248

with the more computationally intensive Newton’s249

method, particularly within our neural sequence250

modeling framework. Our proposed Iterative Im-251

plicit Euler (IIE) method commences with an initial252

approximation, y0n+1, derived from an explicit Eu-253

ler step. This initial estimate is then iteratively254

refined through r fixed-point iterations as defined255

below:256

y0n+1 = yn + hf(yn, tn) (8)257

yin+1 = yn + hf(yi−1
n+1, tn+1), i ∈ [1..r]. (9)258

The final approximation yn+1 is thus given by yrn+1,259

representing the output of the rth iteration.260

The IIE method, while formally retaining its261

first-order numerical accuracy, achieves a signif-262

icant enhancement in the approximation of yn+1263

through iterative refinement. This iterative process264

engenders a structured form of nested computations265

that superficially resemble higher-order methods,266

albeit through a fundamentally distinct mechanism267

rooted in repeated fixed-point iterations. Acknowl-268

edging the increased computational cost, the inher-269

ent structural regularity of IIE, predicated solely on270

the preceding iteration’s output, emerges as a cru-271

cial enabler for inference efficiency optimizations,272

as detailed in Section 4. This carefully engineered273

balance between iteratively enhanced precision and274

structural simplicity underpins the design philoso-275

phy of the IIET architecture.276

3.2 Model Architecture277

Building on the IIE method, we propose the Iter-278

ative Implicit Euler Transformer (IIET) as a foun-279

dational architecture for sequence modeling, par-280

ticularly for large language models. Adopting the281

LLaMA architecture (Touvron et al., 2023b) (Trans-282

former++), IIET consists of N stacked transformer283

decoder layers. Each layer comprises a causal at-284

tention module followed by a feedforward mod- 285

ule, and employs rotary positional encoding (Su 286

et al., 2024), SiLU activation (Shazeer, 2020), and 287

RMS normalization (Zhang and Sennrich, 2019). 288

Given an input sequence x = x1, ..., xL of length 289

L, the initial input embeddings are represented as 290

X0 = [x1, ..., xL] ∈ RL×dmodel , where dmodel is the 291

hidden dimension. The output of each subsequent 292

layer is then computed as Xn = Decoder(Xn−1), 293

for n ∈ [1, N ]. 294

The key distinction between IIET and Trans- 295

former++ lies in IIET’s integration of the IIE 296

method within each decoder layer (Figure 1). Un- 297

like Transformer++, which directly computes the 298

layer’s output using a single Euler step (standard 299

residual), IIET employs an iterative refinement pro- 300

cess. Specifically, IIET first estimates an initial 301

value, y0n+1, via a single Euler step (Eq. 8): 302

y0n+1 = yn + F(yn, θn). (10) 303

where F(∗, θn) represents the nth transformer 304

layer with parameters θn. This initial estimate in 305

IIET corresponds to the direct output of each layer 306

in Transformer++. 307

In the subsequent iterations, our preliminary 308

experiments suggest that incorporating outputs 309

from previous layers, similar to Transformer- 310

DLCL (Wang et al., 2019), can enhance the perfor- 311

mance. We thus modify Eq. 9 as follows: 312

yin+1 = yn + αnF(yi−1
n+1, θn) +

n−1∑
j=0

αjF̃j , (11) 313

where i ∈ [1..r] denotes the iteration step, F̃j rep- 314

resents the output of the previous layers j, and α 315

represents learnable layer merge coefficients. Ap- 316

pendix A details the computation flow within a 317

single IIET layer. 318

3.3 Experimental Setups 319

Limited by resources, our experiments primarily ex- 320

plore small-scale language modeling, specifically 321

at parameter scales of 340 million and 740 million. 322

Baselines. We evaluate IIET’s performance 323

against two strong baselines: Transformer++ (Tou- 324

vron et al., 2023a) and PCformer (Li et al., 2024). 325

Transformer++ adopts the LLaMA architecture. 326

PCformer employs a 2nd-order Runge-Kutta pre- 327

dictor and a linear multi-step corrector 2. All mod- 328

2We also explored a 4th-order Runge-Kutta predictor and
more complex correctors, but these increased training costs
without substantially improving performance.
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Wiki. LMB. LMB. PiQA Hella. SCIQ ARC-c Wino. Avg.
Scale Model ppl ↓ ppl ↓ acc ↑ acc_norm ↑ acc_norm ↑ acc ↑ acc_norm ↑ acc ↑ ↑
Pre-training Phase

340M Params Transformer++ 28.2 78.3 28.9 64.3 34.2 76.0 23.6 51.9 46.5
16B Tokens PCformer 25.7 47.0 33.1 64.9 36.3 77.5 24.7 53.3 48.3

IIET 25.0 30.5 37.1 65.2 36.9 79.4 23.9 51.0 48.9

740M Params Transformer++ 23.3 34.8 36.1 66.4 38.4 78.6 24.5 50.2 49.0
30B Tokens PCformer 21.2 22.0 41.0 66.3 41.3 82.0 23.3 51.2 50.9

IIET 20.7 21.1 41.2 68.9 42.5 82.1 23.8 53.1 51.9

Iteration Influence-Aware Distillation Phase

340M Params Distil PCformer 27.2 50.4 32.2 64.6 34.9 78.0 24.7 51.3 47.6
5B Tokens Lower Bound 27.0 34.6 36.1 64.0 35.0 80.7 23.0 51.5 48.4

E-IIET 25.7 30.9 37.4 64.4 35.8 80.4 23.5 52.1 48.9

740M Params Distil PCformer 22.5 29.5 37.4 66.8 39.2 80.0 23.2 50.9 49.6
10B Tokens Lower Bound 23.0 29.9 37.6 67.4 38.7 79.7 25.2 53.0 50.3

E-IIET 21.2 24.2 40.1 68.5 41.0 81.0 24.6 52.4 51.3

Table 1: Comparison of results between our models and baselines in the Pre-training Phase and Iteration Influence-
Aware Distillation Phase. The individual task performance is via zero-shot. We report the main results on the
same set of tasks reported by Gu and Dao (2023). The last column shows the average over all benchmarks that use
(normalized) accuracy as the metric. Bold values represent the best results in each set.

els are trained on the same dataset for an identical329

token count. Detailed training hyperparameter set-330

tings can be found in Appendix B.1.331

Datasets and Evaluation Metrics. Our models332

are pre-trained on SlimPajama (Soboleva et al.,333

2023) and tokenized using the LLaMA2 tok-334

enizer (Touvron et al., 2023a). From the origi-335

nal 627B-token dataset, we sample 16B and 30B336

tokens for training the 340M and 740M parame-337

ter models, respectively. For comprehensive eval-338

uation, we assess perplexity (PPL) on Wikitext339

(Wiki.) (Merity et al., 2016) and consider sev-340

eral downstream tasks covering common-sense341

reasoning and question answering: LAMBADA342

(LMB.) (Paperno et al., 2016), PiQA (Bisk et al.,343

2020), HellaSwag (Hella.) (Zellers et al., 2019),344

WinoGrande (Wino.) (Sakaguchi et al., 2021),345

ARC-Challenge (ARC-c) (Clark et al., 2018), and346

SCIQ (Welbl et al., 2017). We report PPL on Wiki-347

text and LAMBADA; length-normalized accuracy348

on HellaSwag, ARC-Challenge, and PiQA; and349

standard accuracy on the remaining tasks. All350

evaluations are conducted using the lm-evaluation-351

harness (Gao et al., 2021).352

3.4 Experimental Results353

Iteration Steps. To identify the optimal iteration354

steps r, we first apply varying r values to the 340M355

IIET model and a smaller 55M parameter variant356

(detailed in Appendix B.1). All models were evalu-357

ated on Wikitext test set. As illustrated in Figure 2,358

which showcases the benefit of iterative correction,359

1 2 3 4

77.6

68.2
68.4

67.4

66.6

67.4

Pe
rp

le
xi

ty

IIET 55M

1 2 3 4

28.2

25.7
26.0

25.5

25.0
25.2

IIET 340M

iteration steps r

Figure 2: PPL on the Wikitext test set for 55M and
340M IIET across varying iteration steps r. Dashed
lines indicate Transformer++ and PCformer perfor-
mance at corresponding parameter scales. Note that
IIET’s FLOPs is nearly r + 1 times of Transformer++.

IIET’s performance exceeds PCformer at r = 2 360

and achieves its peak at r = 3. Therefore, we 361

adopt r = 3 in this work. 362

Results. The advantages of IIET are highlighted 363

by its performance on LLM evaluation benchmarks. 364

As demonstrated in Table 1 Pre-training Phase, 365

IIET consistently surpasses Transformer++ and PC- 366

former with comparable capacity. At a parameter 367

scale of 340 million, IIET achieves a mean accu- 368

racy of 2.4% higher than that of Transformer++ 369

and 0.6% higher than that of PCformer across all 370

six challenging subtasks. Notably, the performance 371

disparity amplifies progressively with increasing 372

parameter scale, attaining 2.9% and 1% at 740 mil- 373

lion parameters. This observation, consistent with 374

Li et al. (2024)’s, confirms the robust scalability 375

of IIET and similar numerical Transformers, show- 376

casing their performance potential with increasing 377

model parameters and training data. 378
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Figure 3: Ablation study on iteration steps r: (a) Impact
on model performance. (b) Corresponding effects on
inference speed and VRAM utilization.

Model LMB. PiQA Hella. SCIQ ARC-c Wino. Avg.

IIET 37.1 65.2 36.9 79.4 23.9 51.0 48.9
Trans WS 30.7 63.1 34.4 75.7 23.2 50.4 46.3
Trans 1.3B 37.3 65.7 37.6 78.6 23.7 51.5 49.0

Table 2: Performance comparison of models with
FLOPs comparable to the 340M IIET.

3.5 Analysis379

Ablation Study on Iteration Steps. A key ques-380

tion concerning IIET is whether its performance381

improves monotonically with an increasing num-382

ber of iterative correction steps. To investigate383

this, we conducted an ablation study on the 340M384

IIET model, varying the number of iteration r. 3385

As illustrated in Figure 3a, performance initially386

improves with increasing r. However, beyond a387

certain threshold, further increases in r lead to a388

plateau in performance gains. This suggests that389

the iterative refinement process guides the final rep-390

resentation towards a more precise ODE solution,391

but with diminishing returns after optimal conver-392

gence. Detailed downstream results can be found393

in Appendix C. FurtherMore, to assess the impact394

of r on inference efficiency, we measured the au-395

toregressive generation throughput of IIET variants396

on a single A100 GPU. Figure 3b shows that while397

IIET’s inference speed substantially declines with398

increasing r, its VRAM footprint remains largely399

unaffected as it incurs no extra parameters.400

Comparison with Equal FLOPs. Given that401

IIET’s iterative correction adds FLOPs (to approx-402

imately four times that of Transformer++ when403

r = 3), we aimed for a performance compari-404

son under equivalent computational budgets. Thus,405

we trained a 1.3B Transformer++ model on iden-406

tical training data. The results in Table 2 show407

that IIET performs comparably to the much larger408

Transformer++ but with substantially fewer param-409

eters, thereby reducing memory and training over-410

3In the case where r = 0, IIET is structurally the same as
the DLCL Transformer.

head. Moreover, models with exactly matched 411

parameter scale and FLOPs were benchmarked. 412

Since IIET’s architecture closely resembles weight- 413

sharing methods, we established a naive weight- 414

sharing baseline: the Transformer++ model’s depth 415

was quadrupled, with weights shared every four 416

layers, namely Trans WS. As shown in Table 2, 417

this simple weight-sharing approach alone does 418

not yield performance gains, highlighting the cru- 419

cial contribution of IIET’s implicit iterative solver- 420

based design to its enhanced performance. 421

Parameter Redundancy of IIET. We hypothe- 422

size that the iterative correction process of IIET 423

enhances learning efficiency and reduces parame- 424

ter redundancy. To investigate this, we used Block 425

Influence (BI) (Men et al., 2024) to measure layer 426

redundancy in IIET and Transformer++. BI as- 427

sesses the influence of each model block on the 428

hidden state by measuring the similarity between 429

its input and output; lower similarity indicates a 430

higher influence. Specifically, the BI of a Trans- 431

former block is calculated as: 432

BIi = 1− EH,t

HT
i,tHi+1,t

||Hi,t||2||Hi+1,t||2
(12) 433

where Hi,t represents the tth row of the ith layer’s 434

input hidden states. We randomly sampled 5,000 435

text segments from Wikitext to calculate the BI 436

of each model. As shown in Figure 4, the influ- 437

ence of IIET’s blocks increases significantly with 438

iteration steps, demonstrating higher layer utiliza- 439

tion. This also indicates that the learning potential 440

of existing large-scale language models remains 441

under-exploited. 442

4 Iteration Influence-Aware Distillation 443

While IIET achieves strong downstream task per- 444

formance, its iterative structure introduces com- 445

putational overhead that curtails inference speed. 446

This added latency is particularly non-negligible for 447

autoregressive generation in large language mod- 448

els. To enhance IIET’s inference efficiency with- 449

out performance loss, we explore whether contin- 450

uous pre-training combined with distillation can 451

enable fewer forward passes, ideally a single one, 452

to yield outputs equivalent to those from the com- 453

plete, multi-step iterative correction process. To 454

this end, we analyze the impact of each iterative cor- 455

rection step on the hidden state within each block. 456

Surprisingly, Figure 5 shows that not all layers re- 457

quire the same number of iteration steps to achieve 458
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L01 L02 L03 L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24

Layer Index

Transformer++

IIET r=1

IIET r=2

IIETM
od

el
 A

rc
hi

te
ct

ur
e 0.87 0.26 0.24 0.18 0.17 0.23 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.10 0.11

0.81 0.38 0.29 0.16 0.42 0.40 0.40 0.53 0.28 0.25 0.19 0.20 0.24 0.16 0.24 0.10 0.06 0.09 0.07 0.07 0.15 0.22 0.23 0.22

0.69 0.33 0.28 0.15 0.26 0.40 0.25 0.24 0.28 0.32 0.19 0.15 0.23 0.17 0.23 0.16 0.23 0.22 0.10 0.10 0.46 0.04 0.29 0.36

0.80 0.36 0.14 0.20 0.32 0.16 0.27 0.19 0.22 0.22 0.15 0.27 0.56 0.50 0.26 0.19 0.43 0.77 0.65 0.47 0.42 0.56 0.38 0.34

Block Influence Analysis of 340M Parameter Model

0.2

0.4

0.6

0.8 B
lock Influence

Figure 4: Distribution of Block Influence (BI) for Transformer++ and IIET models with varying iteration steps r.
Higher BI values indicate lower model redundancy.
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Figure 5: Iteration Influence within each layer of the 340M IIET model. Deeper colors indicate larger hidden state
changes after this iteration. The 740M IIET results are presented in Appendix D due to space constraints.

accurate output, with deeper layers benefiting more459

from additional iterative corrections, which is po-460

tentially due to the varying roles layers play in the461

Transformer’s representation-building process.462

4.1 Methodology463

In this section, we propose Iteration Influence-464

Aware Distillation (IIAD). IIAD first analyzes the465

iterative process of a pre-trained IIET, identifying466

and eliminating non-essential iterative computa-467

tions to yield an efficient variant, E-IIET. Subse-468

quently, a layer-wise self-distillation phase restores469

the performance of E-IIET.470

Iteration Influence. Iteration influence employs471

a computational methodology similar to block influ-472

ence; however, its calculation is performed specif-473

ically within individual IIET blocks. For a given474

nth block, we consider its input yn and the out-475

put yin+1 of each internal iteration i. The pairwise476

differences between these representations are calcu-477

lated using Eq. 12 to obtain the iteration influence478

values. Based on these values and a specified com-479

putational budget, users can determine the number480

of iteration steps to retain per block.481

In this work, we primarily investigate two de-482

signs for efficient IIET variants: ❶ Lower Bound:483

Each layer performs only a single forward pass,484

establishing a performance lower bound for effi-485

cient IIET. ❷ E-IIET: This variant establishes a486

threshold using the minimum of the initial iteration487

influence values computed in each layer. Conse-488

quently, iteration steps with influence scores below 489

this threshold are omitted, preserving each layer’s 490

initial computation and essential iteration steps. 491

Specifically, E-IIET reduces the number of iter- 492

ation steps from a baseline of 72 to 15 in the 340M 493

variant and 23 in the 740M variant. 494

Iteration Influence-Aware Distillation. In the 495

continuous pre-training stage, we employ a warm- 496

start initialization strategy, directly inheriting pa- 497

rameters from the pre-trained IIET model to retain 498

knowledge acquired during its initial pre-training 499

phase. To enable efficient IIET variants (e.g., E- 500

IIET) to approximate the precise output represen- 501

tations of the full IIET, we utilize a fine-grained, 502

block-specific knowledge distillation framework 503

incorporating two complementary losses: 1) Mean 504

Squared Error (MSE) Loss: For each block, an 505

MSE loss encourages E-IIET to mimic the refined 506

hidden states produced by the full IIET. This loss 507

is computed as: 508

LMSE =
1

n

n∑
i=1

∥hIIET
i − hE-IIET

i ∥22 (13) 509

where hi are the hidden state outputs of the ith 510

block. 2) Kullback-Leibler (KL) Loss: To fur- 511

ther align prediction behavior, we compute the KL 512

divergence between the final output probability dis- 513

tributions of the full IIET and E-IIET: 514

LKL = DKL
(
p(zIIET/τ) ∥ p(zE-IIET/τ)

)
(14) 515
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Model 340M 740M

Spd. FLOPs VARM Spd. FLOPs VARM

Transformer++ 49.97 0.38 1.37 48.91 0.80 2.80
PCformer 14.14 1.06 1.41 14.38 2.30 2.86
IIET 11.07 1.40 1.42 10.95 3.05 2.89

Lower Bound 42.66 0.38 1.37 42.03 0.80 2.80
E-IIET 25.95 0.60 1.38 22.12 1.52 2.83

Table 3: A comparison of inference speed (tokens per
second), FLOPs (T) and VARM (GB) for baseline mod-
els, PCformer, and efficient IIET variants.

where z represent the output logits and τ is the516

distillation temperature. By combining these two517

distillation losses with Cross-Entropy loss, we train518

E-IIET to effectively capture the knowledge em-519

bedded within the full IIET’s iterative refinement520

process. The final training objective for this contin-521

uous pre-training stage is thus:522

LE-IIET = LCE + αLMSE + βLKL (15)523

4.2 Experiments and Results524

Setups. To train efficient IIET variants, we sam-525

ple one-third of the original pre-training tokens (see526

Appendix B.2 for detailed training settings). For527

performance comparison against E-IIET, we also528

prepare two key baselines: a Lower Bound variant,529

which omits all iterative corrections, and a distilled530

version of PCformer. All models are trained fol-531

lowing the method outlined in Section 4.1.532

Main Results. Table 1 presents the main results533

for IIAD. As a baseline, directly distilling PC-534

former into a standard Euler architecture (namely535

Distil PCformer) leads to substantial performance536

degradation, highlighting the importance of the so-537

phisticated numerical solvers employed by higher-538

order methods to achieve their accuracy. In con-539

trast, E-IIET, compared to the full IIET model, re-540

tains the vast majority of its performance while541

reducing the average iterative correction overhead542

by about 55%. Importantly, even the Lower Bound543

efficient IIET variant achieves performance on par544

with PCformer, demonstrating IIET’s strength in545

balancing efficiency with strong performance.546

Inference Efficiency. We analyze the inference547

speed, FLOPs and VRAM usage of our main mod-548

els. As Table 3 indicates, E-IIET achieves over a 2x549

speedup compared to full IIET, while largely main-550

taining IIET’s performance advantage (E-IIET vs.551

full IIET scores: 48.9/48.9 for 340M and 51.3/51.9552

for 740M model). However, due to the FLOPs in-553

curred by its remaining iteration steps, E-IIET still554

exhibits nearly twice the inference latency of Trans- 555

former++. A key characteristic of these efficient 556

IIET variants is the inverse relationship between 557

performance and efficiency: fewer iterations lead 558

to lower performance but higher efficiency. No- 559

tably, Table 3 shows that the maximum efficiency 560

attained by these variants (i.e, Lower Bound) is 561

close to that of the Transformer++, with their aver- 562

age performance surpassing it by 1.6 points. This 563

adaptability makes E-IIET a flexible solution for 564

practical deployment, as users can select the itera- 565

tion steps based on their resource constraints (e.g., 566

reducing iterations to maximize inference speed). 567

5 Related Work 568

The link between residual connections and ODEs, 569

first established by Weinan (2017), has spurred 570

extensive research into ODE-based neural net- 571

work architectures. This insight has paved the 572

way for applying ODE techniques to benefit dif- 573

fusion models (Liu et al., 2022) and Transform- 574

ers (Li et al., 2022). For instance, DPM-Solver (Lu 575

et al., 2022a,b) accelerates diffusion model sam- 576

pling by employing exact ODE solution formula- 577

tions and higher-order numerical techniques; Kim 578

et al. (2024) and Li et al. (2020) focus on implicit 579

Euler methods for improved adversarial robust- 580

ness. In this work, we distinctively focus on us- 581

ing implicit Euler methods to enhance language 582

model performance. Other works have designed 583

novel ODE-based architectures (Chen et al., 2018). 584

DEQ (Bai et al., 2019), for example, replaces se- 585

quences of explicit layers with a single implicit 586

layer solved via equilibrium finding. In contrast, 587

our approach enhances explicitly defined layers by 588

employing sophisticated implicit numerical solvers 589

for their forward pass computation. More recently, 590

PCformer (Li et al., 2024) has demonstrated sig- 591

nificant gains in language modeling and machine 592

translation. However, our proposed IIET exceeds 593

PCformer in performance, features a simpler archi- 594

tecture, and achieves superior inference efficiency. 595

6 Conclusions 596

We introduce the Iterative Implicit Euler Trans- 597

former (IIET), which leverages an iterative implicit 598

Euler method to achieve superior and scalable per- 599

formance over both vanilla Transformers and PC- 600

former. Furthermore, we develop an inference ac- 601

celeration technique for IIET that allows users to 602

adjust inference efficiency based on their budget. 603

8



7 Limitations604

Computational resource constraints currently pre-605

clude a comprehensive evaluation of IIET on larger-606

scale language models. Furthermore, while our607

IIAD method is designed to produce efficient IIET608

variants for inference, the IIAD process itself in-609

troduces notable computational overhead during610

its application. Future research will focus on inte-611

grating the determination of layer-specific iteration612

requirements directly into the pre-training stage.613

This could facilitate the direct training of inher-614

ently efficient IIET models, potentially bypassing615

a separate, resource-intensive distillation phase.616

Beyond optimizing IIET’s per-token efficiency,617

we also identify a promising avenue for broader618

application. Current large reasoning models of-619

ten achieve high performance by generating sub-620

stantially more tokens than are present in the fi-621

nal answer, leading to significant inference latency.622

IIET, on the contrary, enhances per token repre-623

sentational power through depth-wise iterative re-624

finement, albeit at an increased per-token compu-625

tational cost. We hypothesize that this trade-off626

could be ultimately advantageous in multi-step rea-627

soning tasks: IIET’s more precise computation per628

token might enable it to generate complete and cor-629

rect answers in fewer overall autoregressive steps,630

thereby reducing the total token count and poten-631

tially overall latency. Validating this hypothesis,632

however, necessitates training and evaluating IIET633

at larger model and data scales, which remains a634

key direction for future investigation.635
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A IIET Algorithm805

Algorithm 1 details the computation flow within a806

single IIET layer, where L stores the hidden states807

from previously computed layers, providing nec-808

essary context. During the computation within a809

single block, an initial estimate of its output, y0n+1,810

is iteratively refined. Each iteration i updates this811

estimate to yin+1 through the function F and the812

context L. This fixed-point iteration process pro-813

gressively converges towards a more precise final814

output yn+1.815

Algorithm 1 Iterative Implicit Euler Paradigm
1: procedure IIET BLOCK(yn, L)
2: f0

n ← F(yn, θn) ▷ Compute initial value
3: L.append(f0

n) ▷ Store f0
n

4: for i← 0 to r − 1 do
5: Compute yi

n+1 using L via Eq. 11
6: f i+1

n ← F(yi
n+1, θn) ▷ Compute correct value

7: L.update(f i
n → f i+1

n ) ▷ Update f i
n

8: end for
9: Compute yr

n+1 using L via Eq. 11
10: return yr

n+1 ▷ Return the layer output
11: end procedure

B Training Settings816

B.1 Pre-training Phase817

For our main experiments, all models are trained818

from scratch at two parameter scales (340M and819

740M) to evaluate IIET’s performance across dif-820

ferent sizes. We utilize the AdamW (Loshchilov821

et al., 2017) optimizer with a maximum learning822

rate of 3e-4 for all models. Batch sizes are set823

to 0.5M tokens for 340M models and 1M tokens824

for 740M models. A cosine learning rate schedule825

is applied to both model scales, featuring a 0.01826

warmup ratio, 0.01 weight decay, and gradient clip-827

ping at 1.0. Furthermore, to identify the optimal828

iteration count r, we train a dedicated, smaller IIET829

model variant with just 55M parameters. All hyper-830

parameter specifications for the pre-training phase831

are available in Table 4.832

B.2 Iteration Influence-Aware Distillation833

Phase834

To train efficient IIET variants, we sample one-835

third of the total pre-training tokens for each con-836

figuration (e.g., 5 billion token for 340M models837

and 10 billion token for 740M models). Users838

can customize the corrective iteration process for839

these variants based on their computational bud-840

get. In this study, we focus on two main types841

of efficient IIETs: a ‘lower bound’ configuration 842

that removes all iterative steps, and E-IIET, which 843

utilizes a threshold for iteration selection. 844

For training, all efficient IIET variants use the 845

full IIET as a teacher model and are trained with 846

the fine-grained supervision method detailed in 847

Section 4.1. We apply a cosine decay learning 848

rate schedule with an initial value of 2e-4, while 849

other pre-training hyperparameters are kept consis- 850

tent. Furthermore, for comparison purposes, we 851

train Distil PCformer, a self-distilled version of PC- 852

former using the same methodology. To ensure a 853

fair comparison, we use the same evaluation dataset 854

and metrics described in Section 3.3. 855

C IIET with Varying Iteration Steps 856

We evaluated the downstream task performance 857

of our 340M model across iteration steps r = 0 858

to r = 8, as detailed in Section 3.5. Table 5 859

shows that as the number of iterations increases, 860

IIET’s performance on downstream tasks initially 861

improves progressively before these gains begin 862

to plateau. Although performance slightly de- 863

grades at r = 8, IIET still surpasses both Trans- 864

former++ and PCformer. Notably, with r = 2 865

iterations, IIET achieves performance comparable 866

to PCformer with its per-block forward pass count 867

is also similar to PCformer’s. This demonstrates 868

that our proposed iterative implicit Euler (IIET) 869

architecture, despite its simpler design, offers rep- 870

resentation refinement capabilities that are close 871

to those of higher-order methods. Finally, using 872

identical training data, IIET exhibited superior data- 873

fitting ability over the other models, as indicated 874

by its perplexity (PPL) scores. 875

D Iteration Influence of 740M IIET 876

Figure 6 displays the Iteration Influence of the 877

740M IIET model. By selecting the minimum ini- 878

tial computation of each layer as the threshold, we 879

can reduce the number of corrective iterations from 880

72 to 23. 881
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Hyperparameters 55M 340M 740M

model_type llama llama llama
hidden_act silu silu silu
initializer_range 0.02 0.02 0.02
hidden_size 512 1024 1536
intermediate_size 1408 2816 4224
max_position_embeddings 2048 2048 2048
num_attention_heads 4 8 8
num_hidden_layers 12 24 24
num_key_value_heads 4 8 8
pretraining_tp 1 1 1
rms_norm_eps 1.00× 10−6 1.00× 10−6 1.00× 10−6

tie_word_embeddings True True True
torch_dtype float16 float16 float16
vocab_size 32000 32000 32000

training_len 2048 2048 2048
total_batch_size 128 256 512
learning_rate 0.0004 0.0003 0.0003
max_steps 5000 30000 30000
warm_up 0.05 0.05 0.01

Table 4: Model Hyperparameters and Training Hyperparameters.

Wiki. LMB. LMB. PiQA Hella. SCIQ ARC-c Wino. Avg.
Model ppl ↓ ppl ↓ acc ↑ acc_norm ↑ acc_norm ↑ acc ↑ acc_norm ↑ acc ↑ ↑

Transformer++ 28.23 78.31 28.93 64.31 34.23 76.00 23.63 51.93 46.51
PCformer 25.71 47.02 33.10 64.92 36.31 77.53 24.70 53.26 48.30

IIET r = 0 27.07 48.52 32.43 65.07 34.80 78.30 23.46 50.36 47.40
IIET r = 1 25.96 36.34 34.43 64.69 36.07 76.30 23.29 50.12 47.48
IIET r = 2 25.49 35.76 34.64 64.96 36.80 77.20 24.23 51.85 48.28
IIET r = 3 25.02 30.51 37.05 65.23 36.93 79.40 23.89 50.99 48.92
IIET r = 4 25.09 29.94 36.79 64.31 37.25 78.10 22.78 53.75 48.83
IIET r = 5 25.05 30.58 36.32 64.51 37.34 78.55 23.42 53.23 48.90
IIET r = 6 25.10 31.21 35.84 64.71 37.43 79.00 24.06 52.91 48.99
IIET r = 7 25.09 31.62 35.50 65.16 36.98 79.20 23.34 52.98 48.86
IIET r = 8 25.40 32.02 35.16 65.61 36.52 79.40 22.61 51.14 48.41

Table 5: Performance comparison of IIET with varying iteration steps at 340 million parameters.
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L01 L02 L03 L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24

Layer Index

initial compute

iteration 1

iteration 2

iteration 3

C
al

cu
la

tio
n 

Ph
as

e

0.95 0.29 0.25 0.21 0.22 0.17 0.16 0.19 0.17 0.14 0.19 0.23 0.28 0.47 0.48 0.22 0.30 1.12 1.58 0.34 0.31 0.14 0.31 0.47

0.32 0.08 0.07 0.07 0.06 0.04 0.08 0.06 0.06 0.03 0.05 0.07 0.12 0.02 0.05 0.10 0.16 0.06 0.16 0.06 0.13 0.02 0.00 0.00

0.19 0.03 0.03 0.06 0.02 0.01 0.07 0.02 0.03 0.01 0.02 0.03 0.11 0.01 0.01 0.06 0.05 0.02 0.03 0.02 0.06 0.00 0.00 0.00

0.07 0.04 0.02 0.10 0.02 0.44 0.35 0.08 0.10 0.06 0.05 0.09 0.30 0.60 0.36 0.16 1.17 1.55 0.60 0.30 0.27 0.36 0.48 0.22

Iteration Influence Analysis of 740M IIET

0.5

1.0

1.5 Iteration Influence

Figure 6: Impact of different iteration stages on the hidden state within each layer of the 740M IIET model, which
we term iteration influence. Deeper colors indicate larger hidden state changes after this iteration.
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