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ABSTRACT

The k-means of a given set S ⊆ Rd of n segments is a set X ⊆ Rd of
|X| = k centers which minimizes their sum of squared distances D(S, X) :=∑

S∈S minx∈X D(S, x). Here, the distance D(S, x) between a segment S and a
point x is the integral of its distances

∫
s∈S

∥p− x∥ over each point on the segment.
More generally, the farthestm input points (outliers) may be ignored, other distance
functions may be used, such as M-estimator or non-squared, and each distance
may be multiplied by a function that depends on the size of its cluster, say, to
obtain balanced clustering. For a given ϵ > 0, an ϵ-coreset C ⊆ S for all these
problems is a weighted subset C ⊂ S, that approximates D(S,X) up to 1 ± ϵ
multiplicative factor for every set X ⊆ Rd of (possibly weighted) k centers. Such a
coreset enables handling streaming, big, distributed input in parallel using existing
techniques. We suggest the first coreset construction that, with high probability,
returns an ϵ-coreset C for any input set S of segments. For constant k, ϵ, the size
of the coreset is |C| ∈ O

(
log2(n)

)
and is computed in time O(nd). Experimental

results and real-time video tracking application demonstrate the applicability of our
algorithm, the latter demonstrates that our method supports vectorized segments.

1 INTRODUCTION

This work aims to provide novel compression and approximation to segment clustering. This task is
of significant use for various applications as demonstrated in our experimental results at Section 3.

1.1 SEGMENT CLUSTERING

To define the problem considered we utilize the following definitions and notations.
Definition 1.1. Let u, v be vectors in Rd. A segment is a function ℓ : [0, 1] → Rd that is defined
by ℓ(x) = u+ vx, for every x ∈ [0, 1]. For every pair (p, p′) ∈ Rd × Rd of points, let D(p, p′) :=
∥p− p′∥2 denote the Euclidean distance between p and p′.

The segment clustering problem is the following optimization problem.
Problem 1 (Segment clustering). Let S be a set of n segments in Rd. Let k ≥ 1 be an integer. Let Q
be the union over every pair (C,w), where C is a set of |C| = k points in Rd and w : C → [0,∞) is
called a weight function. The k-segment mean of S, which we aim to find, is the set (C,w) above
that minimizes

ℓ(C,w) :=
∑
s∈S

∫ 1

0

min
c∈C

w(c)D
(
c, s(x)

)
dx. (1)

The existence of the integral follows from the continuity of the Euclidean distance. The loss, which
was denoted by ℓ, in the function above, is illustrated in Fig. 1.

1.2 CORESETS

Informally, for an input set L that consists of segments, a coreset C is a data structure that approxi-
mates the loss ℓ

(
L, (Q,w)

)
for every weighted set (Q,w) of size k, up to a multiplicative factor of

1 ± ε, in time that depends only on |C|. Hence, ideally, C is also much smaller than the original
input L. A coreset C is thus efficient if C is much smaller than the original input P . For a detailed
explanation on the motivation for coreset construction see "Why coresets?" in (Feldman, 2020).

1
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Figure 1: Visual illustration for Problem 1. The right figure illustrates the loss function of a single
center c ∈ R2 to a segment s1 : [0, 1] → R2, where the green side of the shape, which is the integral
over the distances of the points on the segment to the center, is the loss of the center to the segment.
The left figure illustrates the case where there are 2 centers C := {c1, c2}, as in the top figure, the
size of the green shape is the loss of the centers C to the segment s1, but unlike to previous case,
the value is the sum on two integrals where the split is at a ∈ (0, 1). This is because the points at
{s1(x) | x ∈ (a, 1]} are closer to c2 than c1, while the rest of the points (on the right) are closer to c2.

Coreset for segments. Fortunately, the segment clustering problem stated in Section 2.1 has a small
coreset which is a weighted subset from the input points. Often the goal is to have a coreset that is
a weighted subset of the input, with few exceptions, e.g., (Jubran et al., 2021) and (Rosman et al.,
2014), for which no coreset is a weighted subset of the input, which is similar to our coreset that is a
weighted set of points and not segments (that are the input).

However, since there is a significant amount of work on fitting weighted centers to weighted points,
for example, see (Feldman & Schulman, 2012; Arthur & Vassilvitskii, 2007), and on the other
hand we are not aware of similar works that consider the problem of fitting points to segments or
even involving the non-discrete integrals, in our case a coreset that is a weighted set of points is a
significantly more usable result that enables us to utilize the significant amount of work on fitting
weighted centers to weighted points.

Coreset for convex shapes and hyper-plane fitting. Convex shapes can be considered as a union
(of infinite size) of segments. This enables us to compute a small coreset also for the case where
the input is n convex shapes, as done in Algorithm 3. Moreover, since we consider the problem of
fitting weighted centers the generalization for hyper-plane fitting immediately follows, as previously
mentioned at (Feldman & Schulman, 2012).

1.3 NOVELTY

Our main contribution is in the provable reduction (or intermediate coreset) of the problem of segment
clustering to the problem of point clustering, from which provable coreset construction is immediate
via utilizing previous work such as (Feldman & Schulman, 2012) or (Bachem et al., 2018).

Our result can be seen as a generalization of various previous works, whose subset is given as follows.

Discrete integrals. Given f : R → R and integer n ≥ 1 we refer to the value of
∑n

i=1 f(i/n) as a
discrete integral of f over [0, 1] for n. At (Har-Peled, 2006) it was proven that a constant weighed
subset of [0, 1], whose size is in O

(
log(n)/ϵ2

)
, approximates the discrete integral up to factor of

(1± ϵ) of every f in some subset of functions over [0, 1] for n.

Our result can be seen as a generalization of (Har-Peled, 2006) to the case of the classic integral, i.e.,
we generalize the result from

∑n
i=1 f(i/n) to

∫ 1

0
f(x)dx; note that we support a different family of

functions. To the best of our knowledge, this is the first such provable result.

Riemann sums. Our result is related to Riemann sums, but note that the claim in the original
work (Riemann, 1868) is an approximation for several samples approaching infinity and not a hard
bound as we provide at Theorem 2.9.

(Feldman & Schulman, 2012). Our result at Theorem 2.9 can also be considered as an improvement
to (Feldman & Schulman, 2012), where the input is an infinite set of points that lays on segments;
note that we utilize (Feldman & Schulman, 2012) to further reduce our coreset’s size.

Coreset of line clustering. A coreset of fitting k centers to infinite lines was proposed at (Marom &
Feldman, 2019). This result does not generalize (at least not trivially) to segments.
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2 THEORETICAL RESULTS

In the following subsection, we state our main theoretical results, which essentially present an efficient
data reduction scheme for Problem 1 that was formulated in the previous section.

2.1 NOTATION AND DEFINITIONS

Notations. Throughout this paper we assume k, d ≥ 1 are integers and denote by Rd the union of
d-dimensional real column vectors. A weighted set is a pair (P,w) where P is a finite set of points in
Rd and w : P → [0,∞) is a weights function. For simplicity, we denote log(x) := log2(x).

Definition 2.1. Let r ≥ 0, and let h : R → [0,∞) be a non-decreasing function. We say that h is
r-log-Lipschitz if and only if, for every (c, x) ∈ [1,∞)× [0,∞) we have h(cx) ≤ crh(x).

Definition 2.2. A symmetric-r function is a function f : R → R, such that there is a ∈ R and an
r-log-Lipschitz function f̃ : [0,∞) → [0,∞), that for every x ∈ R satisfies f(x) = f̃(|x− a|).

In the following definitions we define lip, a global r-log-Lipschitz function, with r, t, d∗ ∈ [0,∞),
and D, a distance function; those definitions are inspired by (Feldman & Schulman, 2012).

Definition 2.3 (global parameters). Let lip : R → R be a symmetric-r function for some r ≥ 0,
and suppose that for every x ∈ [0,∞) we can compute lip(x) in O(t) time, for some integer t ≥ 1;
see Definition 2.1. For every weighted set (C,w) of size |C| = k and p ∈ Rd let

D(p, (C,w)) := min
c∈C

lip
(
w(c)D(c, p)

)
.

Definition 2.4 (VC-dimension). For every P ⊂ Rd, r ≥ 0 and any weighted set (C,w) of size k let

ball(P, (C,w), r) :=
{
p ∈ P | D

(
p, (C,w)

)
≤ r

}
.

Let B := {ball(P, (C,w), r) | (P, r, C,w) ∈ Q}, where Q is the union over every P ⊂ Rd, r ≥ 0
and any weighted set (C,w) of size k. Let d∗ denote the VC-dimension emitted by lip, which is the
smallest positive integer such that for every finite S ⊂ Rd we have∣∣∣(S ∩ β) | β ∈ B

∣∣∣ ≤ |S|d
∗
.

We emphasize that the choice of the distance function D dictates the appropriate values of r, t, d∗.

Utilizing this definition, we define an algorithm, which is stated in the following theorem, that follows
from Theorem 5.1 of (Feldman & Schulman, 2012).

Theorem 2.5. Let k′ denote (k + 1)O(k). There is an algorithm CORE-SET that gets

(i). A set P of points in Rd. (ii). An integer k ≥ 1. (iii). Input parameters ϵ, δ ∈ (0, 1/10),

Such that its output (S,w) := CORE-SET(P, k, ϵ, δ) is a weighted set satisfying Claims (i)–(iii) as
follows:

(i) With probability at least 1− δ, for every (C,w′), a weighted set of size k, we have∣∣∣∣∣∣
∑
p∈P

D
(
(C,w′), p

)
−

∑
s∈S

(
w(s)D

(
(C,w′), p

))∣∣∣∣∣∣ ≤ ϵ ·
∑
p∈P

D
(
(C,w′), p

)
.

(ii) The size of the set S is in
k′ · log(n)2

ϵ2
·O

(
d∗ + log

(
1

δ

))
.

(iii) The computation time of the call to CORE-SET(P, k, ϵ, δ) is in

ntk′ + tk′ log(n) · log
(
log(n)/δ

)2
+
k′ log(n)3

ϵ2
·
(
d∗ + log

(
1

δ

))
.

3
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Definition 2.6 (Loss function). Let ℓ : [0, 1] → Rd be a segment; see Definition 1.1. We define the
fitting loss of a weighed set (C,w) of size k, as

loss
(
ℓ, (C,w)

)
=

∫ 1

0

D
(
ℓ(x), (C,w)

)
dx.

Given a finite set L of segments and a weighed set (C,w) of size |C| = k, we define the loss of fitting
(C,w) to L as

loss
(
L, (C,w)

)
=

∑
ℓ∈L

loss
(
ℓ, (C,w)

)
. (2)

Given such a setL, the goal is to recover a weighed set (C,w) of size k that minimizes loss
(
ℓ, (C,w)

)
.

Definition 2.7 ((ϵ, k)-coreset). Let ℓ be a segment, and let ϵ > 0 be an error parameter; see
Definition 1.1. A weighed set (S,w) is an (ϵ, k)-coreset for ℓ if for every weighted set Q := (C,w)
of size |C| = k we have∣∣∣∣∣∣loss(ℓ,Q)−

∑
p∈S

w(p) ·D(p,Q)

∣∣∣∣∣∣ ≤ ϵ · loss(ℓ,Q).

More generally a weighed set (S,w) is an (ϵ, k)-coreset for a set L of segments if for every weighted
set Q := (C,w) of size |C| = k we have∣∣∣∣∣∣loss(L,Q)−

∑
p∈S

w(p) ·D(p,Q)

∣∣∣∣∣∣ ≤ ϵ · loss(L,Q).

2.2 ALGORITHMS

In the following algorithm, we show a simple, yet robust, deterministic coreset scheme for the
problem in Definition 2.6 (specifically Eq. equation 2) for the case of one segment (n = 1).

Algorithm 1: SEG-CORESET(ℓ, k, ϵ); see Lemma 2.8.

Input :A segment ℓ : [0, 1] → Rd, an integer k ≥ 1, and error ϵ ∈ (0, 1/10]; see Def. 1.1.
Output :A weighed set (S,w), which, with probability at least 1− δ, is an (ϵ, k)-coreset of ℓ;

see Definition 2.7.

1 ϵ′ :=

⌈
4k · (20k)r+1

ϵ

⌉
// r is as defined in Definition 2.3.

2 S := {ℓ(i/ϵ′) | i ∈ {0, · · · , ϵ′}}.
3 Let w : S → {1/ϵ′}, i.e., the function that maps every p ∈ S to w(p) := 1/ϵ′.
4 return (S,w).

The main novelty of Algorithm 1 lies in bounding the contribution to the sum of each point comprising
the segment, which is constant for all the points on the segment. Hence, surprisingly enough, a
uniform sample could have been used as an efficient sampling at the price of introducing failure
probability and larger coreset size, but instead, we use a deterministic coreset construction by
generalizing previous work from (Rosman et al., 2014).

Note that r in Algorithm 1 depends on the distance function D as stated in Definition 2.3, e.g., the
value of r for absolute error is 1, but for MSE it is 2.

The following lemma states the desired properties of Algorithm 1; see Lemma D.4 for its proof.
Lemma 2.8. Let ℓ : [0, 1] → Rd be a segment, and let ϵ ∈ (0, 1/10]; see Definition 1.1. Let (S,w)
be the output of a call to SEG-CORESET(ℓ, k, ϵ); see Algorithm 1. Then (S,w) is an (ϵ, k)-coreset
for ℓ; see Definition 2.7.

In the following algorithm, we utilize Algorithm 1 to turn every segment into a set of points, and then
assign the union of all the points to the compression scheme in (Feldman & Schulman, 2012).

4
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Overview of Algorithm 2. The input to the algorithm is a set L of n segments (see Definition 1.1),
an integer k ≥ 1, and input parameters (ϵ, δ) ∈ (0, 1/10]. The output is a weighted set (P ′, w′) that
with probability at least 1 − δ, is a (ϵ, k)-coreset for L; see Definition 2.7. This is by essentially
applying Algorithm 1 to sample points from every segment, which yields a weighed set that can be
used as an ϵ-coreset for L. Then, since we obtain the problem of fitting k weighed points to points
with equal weight, we plug the union of the outputs of Algorithm 1 as an input to CORE-SET (see
Theorem 2.5), which allows us to further reduce the size of the coreset.

The following theorem states the desired properties of Algorithm 2; see Theorem E.1 for its proof.
Theorem 2.9. Let L be a set of n segments, and let ϵ, δ ∈ (0, 1/10]. Let (P,w) be the output of a
call to CORESET(L, k, ϵ, δ); see Algorithm 2. Then Claims (i)–(iii) hold as follows:

(i) With probability at least 1− δ, we have that (P,w) is an (ϵ, k)-coreset of L; see Definition 2.7.

(ii) |P | ∈ k′ · log2m
ϵ2

·O
(
d∗ + log

(
1

δ

))
, where m =

8kn · (20k)r+1

ϵ
and k′ ∈ (k + 1)O(k).

(iii) The (ϵ, k)-coreset (P,w) can be computed in order of

mtk′ + tk′ log(m) · log2
(
log(m)/δ

)
+
k′ log3m

ϵ2
·
(
d∗ + log

(
1

δ

))
time, where m = 8kn · (20k)r+1/ϵ and k′ ∈ (k + 1)O(k).

Algorithm 2: CORESET(L, k, ϵ, δ); see Theorem 2.9.
Input :A finite set L of segments, an integer k ≥ 1, and input parameters ϵ, δ ∈ (0, 1/10].
Output :A weighted set (P,w), which, with probability at least 1− δ, is an (ϵ, k)-coreset of L;

see Definition 2.7.
1 For every ℓ ∈ L let (P ′

ℓ , wℓ) := SEG-CORESET(ℓ, k, ϵ/2) // see Algorithm 1, the
division by 2 is to account for the output being further
reduced.

2 P ′ :=
⋃
ℓ∈L

P ′
ℓ

3 (P,w′) := CORE-SET(P ′, k, ϵ/4, δ)// see Definition 2.3.

4 ϵ′ :=

⌈
8k · (20k)r+1

ϵ

⌉
// r is as defined in Definition 2.3.

5 Set w(p) := w′(p)/ϵ′ for every p ∈ P ′.
6 return (P,w).

The structure of Algorithm 2 can be illustrated in as Figure 2; note that we have substituted CORE-SET
in Definition 2.3 by (Bachem et al., 2018). For an explanation on motion vectors see Section G.2.

Generalization to multi-dimensional shapes. Since we have considered fitting centers to segments,
there is a natural generalization to different shapes. The simplicity of segments allows us to generalize
the data reduction for convex shapes, as follows. This generalization requires the following definitions.
Definition 2.10 (loss-function). Let A ⊂ Rd be a convex set. We define the loss of fitting every
weighed set Q := (C,w) of size |C| = k, as

loss
(
A, Q

)
:=

∫
p∈C

D(p,Q)dV,

where dV is the volume element. Given a finite set K of convex sets, and a weighed set Q := (C,w)
of size |C| = k, we define the loss of fitting Q to K as

loss(K, Q) :=
∑
A∈K

loss(A, Q). (3)

Given such a set K, the goal is to recover a weighed set Q := (C,w) of size |C| = k, that minimizes
loss

(
K, Q

)
.

5
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Figure 2: Illustration of Algorithm 2. Top right. A snapshot image (frame) from the video Roosendaal
(2008) including a sub-sample of n = 100 motion vectors computed to the next frame (blue color
corresponds to movement to the left and red corresponds to movement to the right). Top left. The
sample of n = 100 extracted motion vectors that are the input to Algorithm 2. Bottom right. The
union of the outputs of the calls to SEG-CORESET computed at Line 1 in the call to Algorithm 2 is
the red dots (that all have the same weight) and the black lines are the input segments. Bottom left.
The final coreset returned by Algorithm 2, which is obtained by further sampling from the outputs of
SEG-CORESET via (Bachem et al., 2018). Here, the size of each dot is proportional to its weight.

Definition 2.11 ((ϵ, k)-coreset). Let K be a set of n convex sets in Rd, and let ϵ > 0 be an error
parameter; see Definition 1.1. A weighed set (S,w) is a (ϵ, k)-coreset for C if for every weighted set
Q := (C,w) of size |C| = k, we have∣∣∣∣∣∣loss(K, Q)−

∑
p∈S

w(p) ·D(Q, p)

∣∣∣∣∣∣ ≤ ϵ · loss(K, Q).

Definition 2.12 (well-bounded set). A convex set A ⊂ Rd is well-bounded if there is an “oracle
membership" function ψ : Rd → {0, 1} that maps every p ∈ A to 1 and p ∈ Rd \ A to 0, where
the output can be computed in O(d) time. Moreover, the smallest (by volume) non-axis parallel
bounding box of C is given and has non-zero volume.

This definition aims to define “not-over complex" shapes and contains hyper-rectangles, spheres, and
ellipsoids.

As in Algorithm 2, the intermediate sampling at Algorithm 3 is a point set of size larger than the
original input size, which is then reduced to a point set of a size that is poly-logarithmic in the size of
the input set.

We emphasize that due to the random sample that is picked at Lines 5–7 of Algorithm 3 it is not
guaranteed to terminate, but only has expected running time, i.e., we only prove the expected time
complexity and not the worst case complexity.

The following theorem states the desired properties of Algorithm 3; see Theorem F.5 for its proof.

Theorem 2.13. Let C be a set of n well-bounded convex shapes; see Definition 2.12. Put ϵ, δ ∈
(0, 1/10]. Let (P,w) be the output of a call to CONVEX-CORESET(C, k, ϵ, δ); see Algorithm 3. Let
λ as computed at Line 1 at the call to Algorithm 3. Let n′ = λ · n. Then there is (k′ ∈ k + 1)O(k)

such that Claims (i)–(iii) hold as follows:

(i) With probability at least 1− δ we have that (P,w) is an (ϵ, k)-coreset of C; see Definition 2.11.

6
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(ii) The size of the set S is in

k′ · log2 n′

ϵ2
·O

(
d∗ + log

(
1

δ

))
.

(iii) The expected computation time of pair (P,w) is in

n′tk′d2 + tk′ log(n′) · log2
(
log(n′)/δ

)
+
k′ log3 n′

ϵ2
·
(
d∗ + log

(
1

δ

))
.

Algorithm 3: CONVEX-CORESET(K, k, ϵ, δ);
see Theorem 2.13.
Input :A set K of n well-bounded convex shapes, an integer k ≥ 1, and ϵ, δ ∈ (0, 1/10].
Output :A weighted set (P,w), which, with probability at least 1− δ is an (ϵ, k)-coreset for K;

see Definition 2.11.
1 Set t := (20k)d(r+1).

2 Set λ :=
c∗d∗(t+ 1)

ϵ2
(
k log2(t+ 1) + log

(
2

δ

)
, where c∗ ≥ 1 is a constant that can be

determined from the proof of Theorem 2.13.
3 for every C ∈ C do
4 Let BC ⊂ Rd be the smallest (by volume) non-axis parallel bounding box of C.
5 SC := ∅
6 while |SC | < λ do
7 Let p ∈ BC be sampled uniformly at random from BC .
8 if p ∈ C then
9 SC := SC ∪ p

10 S :=
⋃
C∈C

SC .

11 (P,w′) := CORE-SET(S, k, ϵ/4, δ/2); see Definition 2.3.
12 Set w(p) := λ · w′(p) for every p ∈ P ′.
13 return (P,w).

3 EMPIRICAL EVALUATION

The goal of the following test is to measure the quality of our approximation compared to the other
methods to fit centers to segments on real and synthetic data, with details below.

For simplicity, in the following section, we focus on the common sum-of-squared distances between
objects, which corresponds to Gaussian noise, as explained in (Guo et al., 2011). Due to this choice,
we can utilize previous efficient approximations for the k-means problem detailed as follows.

The k-means problem entails, given a non-empty set P ⊂ Rd, to find (or at least approximate) the set
C of |C| = k points in Rd that minimize

∑
p∈P

min
c∈C

D(p, c). An efficient provable approximation for

this is given at (Arthur & Vassilvitskii, 2007). Since there is an efficient approximation for k-means
in our experiments we skip the further reduction of the point set in Algorithm 2 and instead use only
Algorithm 1 to reduce the problem to the classic k-means.

We have implemented our coreset construction from Algorithm 1 in Python 3.8 utilizing (Harris et al.,
2020) and in this section, we evaluate its empirical results, both on synthetic and real-world datasets.
Open-source code can be found in (Code, 2023).

Method considered. In this section, we consider the following methods for fitting k = 2 centers
(chosen arbitrarily) to a set L of segments, of size n ≥ 1.
(i) Our suggested method, denoted by OUR, where for every ℓ ∈ L set (Pℓ, wℓ) :=
SEG-CORESET(ℓ, 2, 0.1), calibrated such that |Pℓ| = 10. Then, compute for P :=

⋃
ℓ∈L Pℓ the

2-means via (Arthur & Vassilvitskii, 2007).

7
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(ii) An approximation to the optimal solution, denoted by OPT, where for every ℓ ∈ L set
(Pℓ, wℓ) := SEG-CORESET(ℓ, 2, 0.1), calibrated such that |Pℓ| = 1, 000. Then, compute for
P :=

⋃
ℓ∈L Pℓ the 2-means via (Arthur & Vassilvitskii, 2007).

(iii) The line-clustering method, denoted by LINE-CLUSTERING, where we set L̃ :=
{
ℓ̃ | ℓ ∈ L

}
,

where for each ℓ ∈ L we set ℓ̃ as its expansion to an infinite line. Then, we compute 2-centers via
a call to the suggested method of (Marom & Feldman, 2019), based on the official implementa-
tion provided at (Marom). It should be emphasized that this method aims to solve the problem of
line-clustering and not our segment-clustering.

Loss. Note that while the integral at the optimization exists, it is not necessarily elementary, hence,
for a set of segments L and centers C ⊂ Rd we approximate the loss as follows. For each segment
ℓ ∈ L set (Pℓ, wℓ) := SEG-CORESET(ℓ, k, 0.1), calibrated such that |Pℓ| = 10, 000. Then, for

P :=
⋃

ℓ∈L Pℓ, our loss is
1

|P |
∑
p∈P

min
c∈C

D(p, c)2, that is the MSE loss.

Data. We have used the following various datasets for comparison.
(i) A synthetic sample of segments, where the starting and ending point of each segment is sampled
uniformly and i.i.d. from [−1, 1]10. The size of the sample is varied across the experiment. The goal
of the data set is to evaluate the results of all the tests on unstructured data.
(ii) An i.i.d. sample of motion vectors (see (Wiegand et al., 2003)) from a few second clip
of (Roosendaal, 2008). The probability of sampling each segment corresponds to its Euclidean
length. Computing centers for such data can allow efficient tracking and detection of moving objects
in videos, see demonstration and details of this application at Section G.4.
(iii) An i.i.d. sample of the segment of roads (ways) from real data of roads map from the “Open
Street Map" Dataset (OpenStreetMap contributors, 2017), downloaded via “Geofabrik Downloads".
We use the longitude and latitude (in degrees) for the coordinate system, and the probability of
sampling each segment corresponds to its Euclidean length in this system. Specifically, inspired by
the conference venue, we have taken the sample from the million longest road segments in Malaysia,
Singapore, and Brunei. Fitting centers for such data can anvil central points in the road structure that
can be of use to prioritize their integrity or as an optimal facility location considering the roads.

Hardware. We used a PC with an Intel Core i5-12400F, NVIDIA GTX 1660 SUPER (GPU), and
32GB of RAM.

Segment count. Across the tests we have varied the number of segments over {100i}10i=2.

Repetitions. Each experiment was repeated 40 times.

Results. Our results are presented in figure 3. In all the figures the values presented are the medians
across the tests, along with error bars that present the 25% and 75% percentiles.

We have obtained essentially identical results for OUR and OPT, but significantly lower time for OUR.
Meanwhile, LINE-CLUSTERING has yielded noticeably worse results in noticeably higher running
time. We wanted to emphasize the low running time of our methods, which was mostly dominated by
the call to the k-means computation.

Demonstrations. To give context to the datasets used we present an example of the datasets used
along with the corresponding results and additional illustrations.

In the following demonstration, we include the following additional dataset:

Dataset (iv): An i.i.d. sample of the segment of roads (ways) similar to the previous data, but with the
change that the roads are for southern Italy. We have chosen to add this dataset, due to the relatively
known “boot" shape of the region. This allows an immediate check of whether the roads seem logical
or not without extensive geographical knowledge or utilizing maps.

The demonstration at Figure 4, confirms the suggested motivations for the datasets chosen, as can be
seen, the LINE-CLUSTERING centers computed are rather far from the segments as can be expected
since the method extended each segment to an infinite line.

Video tracking and detection. In section G.4 which, due to space limitations, is in the appendix we
demonstrate how our suggested method can allow for efficient video detection and tracking in videos.

8
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Figure 3: The results of the experiment from Section 3. The top row is the legend for all the plots, the
middle row corresponds to the loss, and the bottom row to the times. The columns correspond (right
to left) to the synthetic segments (dataset (i)), the motion vectors (dataset (ii)), and the Malaysia,
Singapore, and Brunei roads (dataset (iii)).

Figure 4: The plot corresponds (clockwise, starting from the top left) to the datasets: synthetic
segments (dataset (i)), where the dimension of the segments generated was reduced to 2, the motion
vectors (dataset (ii)), the Malaysia, Singapore, and Brunei roads (dataset (iii)), and the additional
added southern Italy roads (iv). In all the plots we set the number of segments to 1000, and present
OUR (red) and LINE-CLUSTERING (blue) centers computed.

4 FUTURE WORK AND CONCLUSION

This paper provides a coreset construction that gets a set of segments in Rd and returns a small
weighted set of points (coreset) that approximates its sum of (fitting) distances to any weighted
k-centers, up to a factor of 1± ϵ. This was done by a reduction to the problem of problem of fitting
k-centers to segments to the problem of fitting k-centers to points. In the experimental section, this
reduction allowed us to utilize the extensive literature on k-means to obtain an efficient approximation.
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While we have not analyzed the variants of the problem where there is an additional constraint
that each segment should be assigned to a single center, we believe that this would follow from
incorporating our result with Section 15.2 of (Feldman & Langberg, 2011). We have not considered
this direction since our method is based on reducing the segments to a set of points and applying the
classic k-means clustering, which can be computed efficiently via (Arthur & Vassilvitskii, 2007), and
even after compression this variation on Problem 1 yields a complex set clustering problem.

Our results support loss functions where the integral in equation 1 at Problem 1 is not necessarily
elementary, and as such direct minimization seems to us unfeasible.
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A BOUNDING THE SENSITIVITY OF ONE r-LIFSHITZ FUNCTION:

In this section, we bound the sensitivity of a single r-Lifshitz function, which, in the following
section, we would expand to be a sensitivity bound for the minimum over r-symmetric functions. To
simplify the following lemma we prove the following propositions.

Proposition A.1. For every r ≥ 0, and an integer n ≥ 2 we have
n∑

i=1

ir ≥ (n/2)r+1.

Proof. Let r ≥ 0, and let n ≥ 2 be an integer. By sum properties we have
n∑

i=1

ir ≥
n∑

i=⌈n/2⌉

ir ≥ ⌈n/2⌉ ·
(
n− ⌊n/2⌋

)r
= ⌈n/2⌉r+1 ≥ (n/2)r+1,

where the second inequality is by observing that the summation is over {⌈n/2⌉, · · · , n}.

Proposition A.2. Let r ≥ 0, and f be an r-log-Lipschitz function; see Definition 2.1. For every
x, x′ > 0 we have

f(x) ·min

{
1,

(
x′

x

)r}
≤ f(x′). (4)

Proof. If (x/x′) ≥ 1 we have

f(x) ·
(
x′

x

)r

≤ f(x′),

which follows from plugging c = (x/x′), x = x′ in the definition of r-log Lipschitz functions, and
dividing both sides by (x/x′)r. If (x/x′) ≤ 1, we have x ≤ x′. By the definition of r-log Lipschitz
functions we have that f is non-decreasing. Hence, f(x) ≤ f(x′). Therefore equation 4 holds.

Lemma A.3. Let n ≥ 2 be an integer. Let r ≥ 0, and let F be the set of all the r-log-Lipschitz
functions; see Definition 2.1. For every x ∈ {1, · · · , n} we have that

max
f∈F

f(x)
n∑

x′=1

f(x′)

≤ 2r+2

n
.

Proof. Let f ∈ F . By Proposition A.2, for every x, x′ ∈ {1, · · · , n} we have

f(x) ·min

{
1,

(
x′

x

)r}
≤ f(x′). (5)

Hence, for every x ∈ {1, · · · , n} and any f ∈ F we have
f(x)

n∑
x′=1

f(x′)

≤ f(x)
n∑

x′=1

(
f(x) ·min

(
1,

(
x′

x

)r)) (6)

=
1

n∑
x′=1

min

(
1,

(
x′

x

)r) (7)

=
1

n∑
x′=x+1

(1) +

x∑
x′=1

(
x′

x

)r (8)

≤ max


1

n∑
x′=x+1

(1)

,
xr

x∑
x′=1

(x′r)

 . (9)
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where equation 6 is by plugging equation 5, equation 7 is by dividing both sides by f(x), equation 8
and equation 9 are by reorganizing the expression. If x ≤ n/2 by equation 6 to equation 9 we have

f(x)
n∑

x′=1

f(x′)

≤ 2

n
. (10)

If x ≥ n/2, by equation 6 to equation 9 we have
f(x)

n∑
x′=1

f(x′)

≤ xr

x∑
x′=1

(x′r)

(11)

≤ 2r+1xr

xr+1
(12)

=
2r+1

x
(13)

≤ 2r+2

n
, (14)

where equation 11 is by the result above, equation 12 is since x ≥ n/2 by the definition of the case
and plugging n = n/2 in Proposition A.1, equation 13 is by reorganizing the expression, equation 14
is since x ≥ n/2 (the definition of the case). Combining equation 10 and equation 11 to equation 14
proves the lemma.

The main idea in the previous lemma can be demonstrated using the following figures.

Figure 5: Left. illustration of a point (red) p = (50, 2500) on the plot of the 2-log-Lipschitz function
(black, see Definition 2.1) f : [0,∞) → R, which maps every x ∈ [0,∞) to f(x) = x2. Center.
demonstration of the bound for the points with x-value at most 50, which follows by charging against
f(x) utilizing that r-log-Lipschitz functions are non decreasing . Right. demonstration of the bound
for the points with x-value larger than 50, which due to the function f being 2-log-Lipschitz can be
bounded using Proposition A.1.

B SENSITIVITY BOUND FOR THE MINIMUM OVER SYMMETRIC-r FUNCTIONS

In this section we utilize methods from the previous section to bound the sensitivity of the minimum
over symmetric-r functions; see Definition 2.2.

Note that as can be expected by previous works, for example (Feldman & Schulman, 2012), the
coreset size depends on the number of functions that the minimum is over. However, since the data
is evenly spaced (which is not the case in (Feldman & Schulman, 2012)), we managed to obtain a
significantly smaller (and simpler) coreset than in (Feldman & Schulman, 2012).

To simplify the following lemma we will prove the following proposition.
Proposition B.1. Let r, a ≥ 0, and let f : [0,∞) → [0,∞) be an r-log-Lipschitz function; see
Definition 2.1. Let f̃ : [0,∞) → [0,∞) s.t. for every x ≥ 0 we have f̃(x) = f(x + a), for a > 0.
We have that f̃ is an r-log-Lipschitz function.

Proof. For every x ≥ 0 and any c ≥ 1 we have that

f̃(x · c) = f(x · c+ a) ≤ f
(
(x+ a) · c

)
≤ cr · f(x+ a) = cr · f̃(x),
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where the first equality is by the definition of f̃ , the first inequality is since f is non-decreasing, and
by the definition of (a, c) we have a ≤ a · c, the second inequality is by the definition of f as an r-log-
Lipschitz function, and the second equality is by the definition of f̃ . Since f is non-decreasing we
have that f̃ is non-decreasing, which combined with the previous result proves the proposition.

For simpler use of the results for the problem in Definition 2.6, we prove the following lemma before
the general sensitivity bound.

Lemma B.2. Let n, k ≥ 1 be integers, where n ≥ 10k, and let r ≥ 0. Let f̃ be a symmetric-r
function; see Definition 2.2. For every set X ⊂ {1, · · · , n} of size at least n/k and any value
x̃ ∈ {1, · · · , n} we have

f̃(x̃)∑
x′∈X

f̃(x′)
≤ (10k)r+1

n
. (15)

Proof. Since f̃ is a symmetric-r function, there is a ∈ R and f that is an r-log-Lipschitz function,
such that for every x ∈ {1, · · · , n} we have f̃(x) = f

(
|x−a|

)
. Let x̃ ∈ {1, · · · , n} and x = |x̃−a|.

We have that

f(x̃) ≤ f̃i(x̃) (16)

= fi
(
|x̃− a|

)
(17)

= fi(x), (18)

where equation 16 is since f(x̃) = min
f ′∈F

f ′(x̃) and f̃i ∈ F , equation 17 is since for every

x′ ∈ {1, · · · , n} we have that f̃i(x) = fi
(
|x′ − a|

)
(from the definition of fi and a), and equa-

tion 18 is by the definition of x as = |x̃ − a|. Let X1 =
{⌊

|x− a|
⌋
| x ∈ X,x ≤ a

}
, X2 ={⌊

|x− a|
⌋
| x ∈ X,x ≥ a

}
, and Xi be the largest set among X1 \ {0} and X2 \ {0}. We have∑

x′∈X

f̃(x′) =
∑
x′∈X

fi
(
|x′ − a|

)
(19)

≥
∑

x′∈Xi

fi(x
′), (20)

where equation 19 is since for every x′ ∈ {1, · · · , n} we have that f̃i(x) = fi
(
|x′ − a|

)
(from the

definition of fi and a), equation 20 is since fi is non non-decreasing andXi ⊂
{⌊

|x− a|
⌋
| x ∈ X̃i

}
.

Combining equation 16 to equation 18 with equation 19 and equation 20 yields

f̃(x̃)∑
x′∈X

f̃(x′)
≤ fi(x)∑

x′∈Xi

fi(x
′)
. (21)

In the following, we will show that we can consider only the case where a ∈ [1, n].

If a > n, for every x′ ∈ [1, n], we have |x′− a| = |(x′−n)+ (n− a)| = |x′−n|+ |n− a|, follows
since x′ − n, n− a ≤ 0. If a < 1, for every x′ ∈ [1, n], we have |x′ − a| = |(x′ − 1) + (1− a)| =
|x′ − 1| + |1 − a|, follows since x′ − 1, 1 − a ≥ 0. Hence, if a ̸∈ (1, n) there is a′ ∈ {1, · · · , n}
such that for every x′ ∈ {1, · · · , n} we have |x′ − a| = |x′ − a′|+ |a′ − a|. Therefore, by assigning
f = fi in Proposition B.1, there is f ′i that is an r-log-Lipschitz function and a′ ∈ [1, n], such that for
every x′ ∈ {1, · · · , n} satisfies fi

(
|x− a|

)
= f ′i

(
|x′ − a′|

)
. Hence, from now on, we assume that

a ∈ [1, n].

Since |X| ≥ ⌈n/k⌉, X ⊂ {1, · · · , n} , a ∈ {1, · · · , n}, by the choice of Xi we have that Xi ⊂
{1, · · · , n} and |Xi| ≥ ⌈n/(2k)− 1⌉ ≥ ⌈n/(2.5k)⌉ (using the assumption that n ≥ 10k). For every
x′ ∈ Xi, substituting f = fi in Proposition A.2 yields

fi(x) ·min
{
1, (x′/x)r

}
≤ fi(x

′). (22)
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Let X ′ = {x′ ∈ Xi | x′ ≥ x}. We have (if Xi = X ′ jump equation 24 expression to equation 27)

fi(x)∑
x′∈Xi

fi(x
′)

≤ fi(x)∑
x′∈Xi

(
fi(x) ·min

{
1, (x′/x)r

}) (23)

=
1∑

x′∈Xi

min
{
1, (x′/x)r

} (24)

=
1

|X ′|+ 1

xr
·

∑
x′∈Xi\X′

(x′)
r

(25)

≤ min


1

|X ′|
,

xr∑
x′∈Xi\X′

(x′)
r

 , (26)

where equation 23 is by equation 22, equation 24 is by dividing both sides by fi(x), equation 25 and
equation 26 are by rearranging the expression.

Case 1, if |X ′| ≥ |Xi|/2. By equation 23,equation 24, and that |Xi| ≥ n/(2.5k) we have

fi(x)∑
x′∈Xi

fi(x
′)

≤ 1

|X ′|
≤ 2

|Xi|
≤ 5k

n
. (27)

Case 2, if |X ′| < |Xi|/2. We have |Xi \ X ′| ≥ |Xi|/2 ≥ n/(5k); since |X ′| ≤ |Xi|/2 and
|Xi| ≥ n/(2.5k). Since (a, x̃) ∈ [1, n]2, we have x = |x̃− a| ≤ n; by the definitions of a, x̃, and x.
Then, we have

fi(x)∑
x′∈Xi

fi(x
′)

≤ xr∑
x′∈Xi\X′

(x′)
r

(28)

≤ xr

⌈n/(5k)⌉∑
x′=1

(x′)
r

(29)

≤ xr(
n/(10k)

)r+1 (30)

≤ (10k)r+1

n
, (31)

where equation 28 is by equation 23 to equation 26, equation 29 is since |Xi \X ′| ≥ n/(5k), (Xi \
X ′) ⊂ [n] and f ′(x′) = (x′)

r is an increasing function for x ≥ 0, equation 30 is from plugging
n = n/(5k) in Proposition A.1, and equation 31 is by assigning that x ≤ n and rearranging.

Combining equation 21, equation 27, and equation 28 to equation 31 proves the lemma.

In the following theorem, we provide the desired sensitivity bound.
Theorem B.3. Let n, k ≥ 1 be integers, such that n ≥ 10k, and let r ≥ 0. Let F ⊂
{f : {1, · · · , n} → (0,∞)}, be a set of |F | = k symmetric-r functions; see Definition 2.2. For
every x ∈ {1, · · · , n}, let f(x) = min

f ′∈F
f ′(x). Then, for every x ∈ {1, · · · , n} we have

f(x)
n∑

x′=1

f(x′)

≤ (10k)r+1

n
.
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Proof. By the pigeonhole principle, there is fi ∈ F and a set Xi ⊂ {1, · · · , n} of size at least
n/k such that for every x ∈ Xi we have f(x) = fi(x); i.e., fi satisfies the set Xi. For every
x ∈ {1, · · · , n} we have

f(x)
n∑

x′=1

f(x′)

≤ fi(x)
n∑

x′=1

f(x′)

(32)

≤ fi(x)∑
x′∈Xi

f(x′)
(33)

=
fi(x)∑

x′∈Xi

fi(x
′)

(34)

≤ (10k)r+1

n
, (35)

where equation 32 is since f(x) = min
f ′∈F

f ′(x) and fi ∈ F , equation 33 is since Xi ⊂ {1, · · · , n},

equation 34 is from the definition of Xi as a set such that for every x ∈ Xi we have f(x) = fi(x),
and equation 35 is by plugging the result of Lemma B.2.

C DETERMINISTIC CORESET CONSTRUCTION

The following lemma is a modification of Lemma 11 from (Rosman et al., 2014), which is significantly
influenced by it; we use constant sensitivity and move from sums to integrals.

Lemma C.1. Let k ≥ 1 and let f : [0, 1] → [0,∞) be a k-piece-wise monotonic function, where

t =

∫ 1

0

f(x)dx > 0. Let s such that for every x ∈ [0, 1] we have f(x) ≤ ts. Put ϵ ∈ (0, 1) and let

ϵ′ =
1⌈

(2ks)/ϵ
⌉ . Let S := {i · ϵ′ | i ∈ {0, · · · , 1/ϵ′}}. We have that

∣∣∣∣∣ 1

|S|
·
∑
x∈S

f(x)− t

∣∣∣∣∣ ≤ ϵt.

Proof. For every i ∈ [0, 1] let h(i) = f(i)/(st). We will prove that

∣∣∣∣∣
∫ 1

0

h(x)dx− 1

|S|
·
∑
x∈S

h(x)

∣∣∣∣∣ ≤ 2ϵ′k. (36)

Multiplying this by ts yields

∣∣∣∣∣
∫ 1

0

f(x)dx− 1

|S|
·
∑
x∈S

f(x)

∣∣∣∣∣ ≤ 2ϵ′kst = ϵt,

which proves the lemma.

Since f is k-piecewise monotonic, h is k-monotonic. Hence, there is a partition Π of [0, 1] into k
consecutive intervals such that h is monotonic over each of these intervals.
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For every j ∈ S let b(j) = ⌈j/(ϵϵ′s)⌉ and Ij := {i ∈ [0, 1] | b(i) = b(j)}. For every I ∈ Π we
define G(I) = {j ∈ S | Ij ⊂ I}. Their union is denoted by G =

⋃
I∈Π

G(I). Hence,

∣∣∣∣∣
∫ 1

0

h(x)dx− 1

|S|
·
∑
x∈S

h(x)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
j∈S

∫
x∈Ij

(
h(x)− h(j)

)
dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

j∈S\G

∫
x∈Ij

(
h(x)− h(j)

)
dx

∣∣∣∣∣∣ (37)

+
∑
I∈Π

∣∣∣∣∣∣
∑

j∈G(I)

∫
x∈Ij

(
h(x)− h(j)

)
dx

∣∣∣∣∣∣ . (38)

We now bound equation 37 and equation 38. Put j ∈ B. By the construction of S in the lemma we
have |Ij ∪ S| = 1 and max {i ∈ Ij} −min {i ∈ Ij} ≤ ϵ′. Hence,∣∣∣∣∣

∫
x∈Ij

(
h(x)− h(j)

)
dx

∣∣∣∣∣ ≤ ϵ′ ·
(
max
x∈Ij

h(i)−min
x∈Ij

h(i)

)
≤ ϵ′, (39)

where the second inequality holds since h(i) ≤ 1 for every i ∈ [0, 1] (follows from the definition of
h and s). Since each set I ∈ Π contains consecutive numbers, we have |S \G| ≤ |Π| ≤ k. Using
this and equation 39, bounds equation 37 by∣∣∣∣∣∣

∑
j∈S\G

∫
x∈Ij

(
h(x)− h(j)

)
dx

∣∣∣∣∣∣ ≤ |S \G| · ϵ′ ≤ 2kϵ′. (40)

Put I ∈ Π and denote the numbers in G(I) by {g1, · · · , gθ}. Recall that h is monotonic over I .
Without loss of generality, assume that h is non-decreasing on I . Therefore, summing equation 39
over G(I) yields∣∣∣∣∣∣

∑
j∈G(I)

∫
x∈Ij

(
h(x)− h(j)

)
dx

∣∣∣∣∣∣ ≤
gθ∑

j=g1

∣∣∣∣∣
∫
x∈Ij

(
h(x)− h(j)

)
dx

∣∣∣∣∣ (41)

≤
gθ∑

j=g1

ϵ′ ·
(
max
x∈Ij

h(i)−min
x∈Ij

h(i)

)
(42)

≤ ϵ′ ·
gθ−1∑
j=g1

(
min

x∈Ij−1

h(i)−min
x∈Ij

h(i)

)
(43)

= ϵ′ ·
(
min
x∈Igθ

h(i)− min
x∈Ig1

h(i)

)
(44)

≤ ϵ′, (45)

where equation 45 is since h(i) ≤ 1 for every i ∈ [0, 1]. Summing over every I ∈ Π bounds
equation 38 as, ∑

I∈Π

∣∣∣∣∣∣
∑

j∈G(I)

∫
x∈Ij

(
h(x)− h(j)

)
dx

∣∣∣∣∣∣ ≤ |Π| · ϵ ≤ k · ϵ′.

Plugging equation 41 to equation 45 in equation 38 and equation 39 in equation 37 yields equation 36.

D ANALYSIS OF ALGORITHM 1

Using a similar method to the one in the proof of Lemma B.3 yields the following sensitivity bound.
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Lemma D.1. Let ℓ̃ : [0, 1] → Rd be a segment; see Definition 1.1. Let n ≥ 10k. For every x ∈ [0, 1]
and any weighted set Q := (P,w) of size k we have

D
(
Q, ℓ̃(x)

)
n∑

i=1

D
(
Q, ℓ̃(i/n)

) ≤ (20k)r+1

n
.

Proof. By the pigeonhole principle, there is p′ ∈ P and a set X ⊂ {i/n | i ∈ {1, · · · , n}} of size at
least n/k such that for every x ∈ X we have p′ ∈ argmin

p∈P
lip(w(p) ·D(p, ℓ̃(x))). Let u, v ∈ Rd that

defines ℓ̃ as in Definition 1.1. Let ℓ : R → Rd such that for every x′ ∈ R we have ℓ(x′) = u+ v · x′;
i.e., an extension of ℓ̃ to a line. Let x̃ ∈ argmin

x∈R
w(p) · D(p′, ℓ(x)). Let lipp′ : [0,∞) → [0,∞)

where for every ψ ∈ [0,∞) we have lipp′(ψ) = lip(w(p′) · ψ). Since lip is an r-log-Lifsitz function
(see Section 2.1 and Definition 2.1), it holds that lipp′ is also an r-log-Lifsitz function. For every
i ∈ {1, · · · , n} and x = i/n we have

min
p∈P

lip(w(p) ·D(p, ℓ(x))) ≤ lipp′(D(p′, ℓ(x))) (46)

≤ lipp′(D(p′, x̃) +D(ℓ(x), ℓ(x̃)) (47)

≤ 2r · lipp′(D(p′, ℓ(x̃)) + 2r · lipp′(D(ℓ(x), ℓ(x̃))), (48)

where equation 46 is since the minimum is over P and we have p′ ∈ P , equation 47 is by euclidean
distance properties, the equation 48 is by property (2.3) of Lemma 2.1 in (Feldman & Schulman,
2012), where substituting M := Rd, r := r, dist(p, q) := D(p, q) for every p, q ∈ Rd, and
D(x) := lipp′(x) for every x ∈ [0,∞).

For every x′ ∈ X ,by looking on the right angle triangle defined by ℓ(x′), ℓ(x̃), p, we have

D(p′, ℓ(x′)) ≥ D(p′, ℓ(x̃)), D(ℓ(x′), ℓ(x̃)). (49)

Hence,

min
p∈P

lip(w(p)D(p, ℓ(x)))

n∑
x′=1

min
p∈P

lip(w(p)D(p, ℓ(x̃/n)))

≤ 2r ·
lipp′(D(p′, ℓ(x))) + lipp′(D(ℓ(x), ℓ(x̃)))∑

x′∈X

lipp′(D(p′, ℓ(x′)))
(50)

≤ 2r

n
+ 2r ·

lipp′(D(ℓ(x), ℓ(x̃)))∑
x′∈X

lipp′(D(ℓ(x̃), ℓ(x′)))
, (51)

where equation 50 is by equation 46 to equation 48, and equation 51 is by equation 49.

Observe that for every a, b ∈ R we have

D(ℓ(a), ℓ(b)) = D(v · a+ u, v · b+ u) (52)
= ∥v · (a− b)∥2 (53)
= ∥v∥2 · |a− b|, (54)

where equation 52 is by recalling the definition of ℓ as a function that for every x ∈ R returns u+x ·v,
equation 53 is since D is the euclidean distance function, and equation 54 is by norm-2 properties.

Let f̃ : R → [0,∞) such that for every x′ ∈ R we have f̃(x′) = lipp′(∥v∥2 · |x′ − x̃|). Since lipp′ is
an r-log-Lifshitz function we have that f̃ is a symmetric r-log-Lifshitz function; see Definition 2.2.
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Hence,

lipp′(D(ℓ(x), ℓ(x̃)))∑
x′∈X

lipp′(D(ℓ(x̃), ℓ(x′)))
=

lipp′(∥v∥2 · |x− x̃|)∑
x′∈X

lipp′(∥v∥2 · |x′ − x̃|)
(55)

=
f̃(x)∑

x′∈X

f̃(x′)
(56)

≤ (10k)r+1

n
, (57)

where equation 55 is by assigning equation 52 to equation 54, equation 56 is by assigning the
definition of the function f̃ , and equation 57 is by substituting X by X and f̃ by f̃ in Lemma B.2;
recall that f̃ is an r-log-Lifshitz function, and that |X| ⊆ {1, · · · , n} is a set of size at least n/k.

Combining equation 50, equation 51, equation 55, equation 56, and equation 57 proves the lemma.

Taking n to infinity and using Riemann integration yields the following lemma.

Lemma D.2. Let ℓ : [0, 1] → Rd be a segment; see Definition 1.1. For every weighted set Q of size k
and any x′ ∈ [0, 1] we have

D
(
Q, ℓ(x′)

)
≤ (20k)r+1 ·

∫ 1

0

D
(
Q, ℓ(x)

)
dx.

Proof. From the definition of Riemann integral, for every x′ ∈ [0, 1] we have

D
(
Q, ℓ(x′)

)
≤ (20k)r+1 · lim

n∈Z,n→∞

1

n
·

n∑
i=1

D
(
Q, ℓ(x/n)

)
= (20k)r+1 ·

∫ 1

0

D
(
Q, ℓ(x)dx,

where the inequality is by assigning ℓ̃ := ℓ and n→ ∞ in Lemma D.1.

The assignment of this sensitivity bound in Lemma C.1 requires a bound on the number of monotonic
functions, which is presented in the following observation.

Lemma D.3. Let ℓ : [0, 1] → [0,∞) be a segment; see Definition 1.1. Let (C,w) be weighted set
of size k and f : [0, 1] → [0,∞) such that for every x ∈ [0, 1] we have f(x) = D

(
(C,w), ℓ(x)

)
. It

holds that f is 2k-piece-wise monotonic.

Proof. Observer that the weighted Voronoi diagram for the weighted set (C,w) (using D(p, p′),
the Euclidean distance, as the distance between any two points p, p ∈ Rd) has k convex cells, and
let C ′ be the set of those cells. By the definition of the Voronoi diagram, for each cell in C ′, that
corresponds to the point p ∈ C, and for every x ∈ [0, 1], such that ℓ(x) is in the cell, we have

min
p′∈P

w(p) ·D(p′, ℓ(x)) = w(p) ·D(p, ℓ(x)).

Let g : [0, 1] → [0,∞) such that for every x ∈ [0, 1] we have

g(x) = min
p′∈P

w(p′) ·D(p′, ℓ(x)), (58)

i.e., f(x) without applying the r-Lifshitz function lip over the euclidean distance. We have that g has
an extremum at most ones inside a cell in C ′ (the single local minimum) and besides this only when
“switching" between cells in C ′, which due to the cells being convex shapes happens at most k − 1
times. Therefore, g has at most 2k − 1 extrema, and as such is 2k-piece-wise monotonic.

Let x ∈ [0, 1], and let
p ∈ argmin

p′∈P
w(p′) ·D(p′, ℓ(x)).
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Hence, for every p′ ∈ P it holds that

w(p) ·D(p, ℓ(x)) ≤ w(p′) ·D(p′, ℓ(x)).

Therefore, since lip : R → R is an r-Lifshitz and as such non-decreasing, for every p′ ∈ P we have

lip
(
w(p) ·D(p, ℓ(x))

)
≤ lip

(
w(p′) ·D(p′, ℓ(x))

)
. (59)

Combining this with the definition of the functions f and g yields

f(x) = min
p′∈P

lip
(
w(p′) ·D(p′, ℓ(x))

)
(60)

= lip
(
w(p) ·D(p, ℓ(x))

)
(61)

= lip
(
min
p′∈P

w(p) ·D(p′, ℓ(x))
)

(62)

= lip(g(x)), (63)

where Equation 60 is by the definition of f , Equation 61 is by equation 59, equation 62 is by assigning
that lip : R → R is an r-Lifshitz and as such non-decreasing, and Equation 63 is by plugging the
definition of g : [0, 1] → [0,∞) from Equation 58.

Hence, for every x ∈ [0, 1] we have
f(x) = lip(g(x)).

Since g is a 2k-piece-wise monotonic, and due to lip being a non-decreasing function, we have that
f is a 2k-piece-wise monotonic function; applying lip over any increasing segment of g would keep
the segment increasing, and the same would hold for decreasing segments.

Lemma D.4. Let ℓ : [0,∞) → (0,∞) be a segment; see Definition 1.1. Put ϵ ∈ (0, 1/10]. Let
S ⊂ Rd be the output of a call to SEG-CORESET(ℓ, ϵ); see Algorithm 1. Let w : S → [0,∞) be a
weight function of S such that for every s ∈ S we have w(s) = 1/⌈4k · (20k)r+1

⌉
. We have that

(S,w) is an (ϵ, k)-coreset for {ℓ}; see Definition 2.7.

Proof. Let Q be a weighted set of size k and f : [0, 1] → [0,∞) such that for every x ∈ [0, 1] we
have f(i) = D

(
Q, ℓ(x)

)
. By Lemma D.1 for every x′ ∈ [0, 1] we have

f(x′) ≤ (20k)r+1 ·
∫ 1

0

f(x)dx.

If
∫ 1

0

f
(
g(x)

)
dx = 0 the lemma holds from the construction of Algorithm 1, hence, we assume

this is not the case. Assigning s = (20k)r+1, ϵ, k = 2k and f , which by Observation D.3 is a
2k-piece-wise monotonic, in Lemma C.1 combined with the construction of Algorithm 1 proves the
lemma.

E ANALYSIS OF ALGORITHM 2.

Combining Lemma D.4 with Theorem 2.5 yields the following; for the definitions of r, t, and d∗ see
Definition 2.3.

Theorem E.1. Let L be a set of n segments; see Definition 1.1. Put ϵ, δ ∈ (0, 1/10]. Let (S,w)

be the output of a call to CORESET(L, k, ϵ, δ); see Algorithm 2. Let n′ =
8kn · (20k)r+1)

ϵ
and k′

denote (k + 1)O(k).
Then Claims (i)–(iii) hold as follows:

(i) With probability at least 1− δ, we have that (S,w) is an (ϵ, k)-coreset for L; see Definition 2.7.

(ii) The size of the set S is in

k′ · log(n′)2

ϵ2
·O

(
d∗ + log

(
1

δ

))
.
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(iii) The computation time of the call to CORESET(L, k, ϵ, δ) is in

n′tk′ + tk′ log(n′) · log
(
log(n′)/δ

)2
+
k′ log(n′)3

ϵ2
·
(
d∗ + log

(
1

δ

))
.

Proof. Properties (ii) and (iii) follow from the construction of Algorithm 2, and the corresponding
Claims (ii) and (iii) in Theorem 2.5. Hence, we will prove, the only remaining claim, Claim (i) of the
theorem.

Let P ′ ⊂ Rd and ϵ′ > 0 as computed in the call to CORESET(L, ϵ, δ). Let ψ : P ′ → [0,∞) such
that for every p ∈ P we have ψ(p) = 1/ϵ′. By Lemma 2.8 and the construction of Algorithm 2 We
have that (P ′, ψ) is an (ϵ/2)-coreset for L; see Definition 2.7. By Theorem 2.5, more specifically
its Claim (i), and the construction of Algorithm 2, with probability at least 1 − δ, for every Q, a
weighted set of size k, we have∣∣∣∣∣∣

∑
p∈S

w(p) ·D(Q, p)− 1

ϵ′
·
∑
p∈P ′

D(Q, p)

∣∣∣∣∣∣ ≤ ϵ

4
·
∑
p∈S

w(p) ·D(Q, p). (64)

Suppose this indeed occurs. For every Q, a weighted set of size k, we have∣∣∣∣∣∣loss(L,Q)−
∑
p∈S

w(p) ·D(Q, p)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣loss(L,Q)−

∑
p∈P ′

ψ(p) ·D(Q, p)

∣∣∣∣∣∣ (65)

+

∣∣∣∣∣∣
∑
p∈S

w(p) ·D(Q, p)−
∑
p∈P ′

ψ(p) ·D(Q, p)

∣∣∣∣∣∣ (66)

≤ ϵ

2
· loss(L,Q) +

ϵ

4
·
∑
p∈P ′

ψ(p) ·D(Q, p) (67)

≤ ϵ

2
· loss(L,Q) +

ϵ

4(1− ϵ)
· loss(L,Q) (68)

< ϵ · loss(L,Q), (69)

where equation 65–equation 66 is by the triangle inequality, equation 67 is since (P ′, ψ) is an (ϵ/2)-
coreset for L and equation 64, equation 68 is since (P ′, ψ) is an (ϵ/2)-coreset for L, and equation 69
is by assigning that ϵ ∈ (0, 1/10], hence, (1− ϵ) > 1/2. Thus, with probability at least 1− δ, (S,w)
is an ϵ-coreset for L.

F ANALYSIS OF ALGORITHM 3: CORESET FOR CONVEX SHAPES.

For the self-containment of the work, we state previous work on the sensitivity of functions.

F.1 SENSITIVITY OF FUNCTIONS

In this section, we state a general sensitivity-based coreset that would require the following definitions.

Let Q be the union of all the k weighted points (C,w).

Definition F.1 (query space (Feldman et al., 2019)). Let P ⊂ Rd be a finite non-empty set. Let
f : P ×Q → [0,∞) and loss : R|P | → [0,∞) be a function. The tuple (P,Q, f, loss) is called a
query space. For every q ∈ Q we define the overall fitting error of P to q by

floss(P, q) := loss (f(p, q)p∈P ) = loss
(
f(p1, q), . . . , f(p|P |, q)

)
.

Definition F.2 (general-ϵ-coreset (Feldman et al., 2019)). Let (P,Q, f, loss) be a query space as in
Definition F.1. For an approximation error ϵ > 0, the pair S′ = (S, u) is called an general-ϵ-coreset
for the query space (P,Q, f, loss), if S ⊆ P, u : S → [0,∞), and for every q ∈ Q we have

(1− ϵ)floss(P, q) ≤ floss(S
′, q) ≤ (1 + ϵ)floss(P, q).
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Definition F.3 (sensitivity of functions). Let P ⊂ Rd be a finite and non-empty set, and let F ⊂
{P → [0,∞]} be a possibly infinite set of functions. The sensitivity of every point p ∈ P is

S∗
(P,F )(p) = sup

f∈F

f(p)∑
p∈P

f(p)
, (70)

where sup is over every f ∈ F such that the denominator is positive. The total sensitivity given
a sensitivity is defined to be the sum over these sensitivities, S∗

F (P ) =
∑

p∈P S
∗
(P,F )(p). The

function S(P,F ) : P → [0,∞) is a sensitivity bound for S∗
(P,F ), if for every p ∈ P we have

S(P,F )(p) ≥ S∗
(P,F )(p). The total sensitivity bound is then defined to be S(P,F )(P ) =

∑
p∈P

S(P,F )(p).

The following theorem proves that a coreset can be computed by sampling according to the sensitivity
of functions. The size of the coreset depends on the total sensitivity and the complexity (VC-
dimension) of the query space, as well as the desired error ϵ and probability δ of failure.
Theorem F.4 (coreset construction (Feldman et al., 2019)). Let

• P = {p1, · · · , pn} ⊂ Rd be a finite and non empty set, and f : P ×Q → [0,∞).

• F = {f1, . . . , fn}, where fi(q) = f(pi, q) for every i ∈ [n] and q ∈ Q.

• d′ be the dimension of the range space that is induced by Q and F .

• s∗ : P → [0,∞) such that s∗(p) is the sensitivity of every p ∈ P , after substituting
P = P and F = {f ′ : P → [0,∞] | ∀p ∈ P, q ∈ Q : f ′(p) := f(p, q)} in Definition F.3,
and s : P → [0,∞) be the sensitivity bound of s∗.

• t =
∑

p∈P s(p).

• ϵ, δ ∈ (0, 1).

• c > 0 is a universal constant that can be determined from the proof.

• λ ≥ c(t+ 1)
(
d′ log(t+ 1) + log(1/δ)

/
ϵ2.

• w : P → {1}, i.e. a function such that for every p ∈ P we have w(p) = 1.

• (S, u) be the output of a call to CORESET-FRAMEWORK(P,w, s, λ) (Algorithm 1 in (Feld-
man et al., 2019)).

Then, with probability at least 1 − δ, (S,w) is an general-ϵ-coreset of size |S| ≤ λ for the query
space (F,Q, f, ∥ · ∥1); see Definition F.2.

F.2 RETURNING TO THE ANALYSIS OF ALGORITHM 3

The following theorem proves the desired properties of Algorithm 3 as stated at Theorem 2.13.
Theorem F.5. Let C be a set of n well-bounded convex shapes; see Definition 2.12. Put ϵ, δ ∈
(0, 1/10]. Let (P,w) be the output of a call to CONVEX-CORESET(C, k, ϵ, δ); see Algorithm 3. Let
λ as computed at Line 1 at the call to Algorithm 3. Let n′ = λ · n. Then there is (k′ ∈ k + 1)O(k)

such that Claims (i)–(iii) hold as follows:

(i) With probability at least 1− δ we have that (P,w) is an (ϵ, k)-coreset of C; see Definition 2.11.

(ii) The size of the set S is in

k′ · log2 n′

ϵ2
·O

(
d∗ + log

(
1

δ

))
.

(iii) The expected computation time of pair (P,w) is in

n′tk′d2 + tk′ log(n′) · log2
(
log(n′)/δ

)
+
k′ log3 n′

ϵ2
·
(
d∗ + log

(
1

δ

))
.
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Proof. Property (ii) follows from the construction of Algorithm 3, and the corresponding Claim (ii)
in Theorem 2.5. Hence, we will prove, the only remaining claims, Claim (i) and (iii) of the theorem.

Proof of Claim (i): correctness. Let S ⊂ Rd and λ > 0 as computed in the call to
CONVEX-CORESET(C, ϵ, δ). Let ψ : S → [0,∞) such that for every p ∈ S we have ψ(p) = λ. Let
p ∈ C, which is in a segment ℓ : [0, 1] → Rd that is in C, by Lemma D.1, for every weighted set Q
of size k, any n ≥ 10k, and all x ∈ [0, 1] we have

D
(
Q, ℓ(x)

)
n∑

i=1

D
(
Q, ℓ(i/n)

) ≤ (20k)r+1

n
.

Hence, by taking n to infinity by Riemann integrals we have D
(
Q, ℓ̃(x)

)
≤

(20k)r+1
∫ 1

0
D
(
Q, ℓ(x)

)
dx. Therefore, since a convex set can be considered as an infinite

union of segments, repeating the claim above d times yields that for every weighted set Q of size k
for every p ∈ C we have

D
(
Q, p

)
≤ (20k)d(r+1)

∫
p∈C

D
(
Q, p

)
dV. (71)

Let C ∈ C, with the corresponding bounding box BC . Substituting ϵ := ϵ, δ := δ, λ := λ, the
query space (P,Q, F, ∥ · ∥1), where Q is the union over all the weighted sets of size k, d∗ the

VC-dimension induced by Q and F from Definition 2.3, the sensitivity bound s̃ :=
(20k)d(r+1)

n′

for every sufficiently large n (follows from Equation 71), and the total sensitivity t = (20k)d(r+1)

that follows from Equation 71 in Theorem F.4, yields that with probability at least 1− δ/(n+ 1),
a uniform sample (with appropriate weights) of size λ, as defined at Line 1 of Algorithm 3, is a
convex-(ϵ/2)-coreset for C. Thus, by the construction of SC at BC it follows that (SC , ψ) is with
probability at least 1− δ/(n+ 1) a convex-(ϵ/2)-coreset for C.

Suppose that this is indeed the case that for every C ∈ C we have that (SC , ψ) is a convex-(ϵ/2)-

coreset for {C}, which occurs with probability at least 1 − nδ

n+ 1
. Hence, by its construction at

Algorithm 3, (S, ψ) is a convex-(ϵ/2)-coreset for C.

By Theorem 2.5, more specifically its Claim (i), and the construction of Algorithm 3, with probability
at least 1− δ/(n+ 1), for every Q a weighted set of size k, we have∣∣∣∣∣∣

∑
p∈S

w(p) ·D(Q, p)− λ ·
∑
p∈P ′

D(Q, p)

∣∣∣∣∣∣ ≤ ϵ

4
·
∑
p∈S

w(p) ·D(Q, p). (72)

Suppose this indeed occurs. For every Q, a weighted set of size k, we have∣∣∣∣∣∣loss(C, Q)−
∑
p∈S

w(p) ·D(Q, p)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣loss(C, Q)−

∑
p∈P ′

ψ(p) ·D(Q, p)

∣∣∣∣∣∣+ (73)

∣∣∣∣∣∣
∑
p∈S

w(p) ·D(Q, p)−
∑
p∈P ′

ψ(p) ·D(Q, p)

∣∣∣∣∣∣ (74)

≤ ϵ

2
· loss(C, Q) +

ϵ

4
·
∑
p∈P ′

ψ(p) ·D(Q, p) (75)

≤ ϵ

2
· loss(C, Q) +

ϵ

4(1− ϵ)
· loss(C, Q) (76)

< ϵ · loss(C, Q), (77)

where equation 73–equation 74 is by the triangle inequality, equation 75 is since (S, ψ) is a convex-
(ϵ/2)-coreset for C and equation 72, equation 76 is since (S, ψ) is a convex-(ϵ/2)-coreset for C, and
equation 77 is by assigning that ϵ ∈ (0, 1/10], hence, (1− ϵ) > 1/2. Thus, with probability at least
1− δ, (S,w) is an convex-ϵ-coreset for C.
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Proof of Claim (iii): expected running time. Since every C ∈ C is a convex set, with a given
bounding box, the running time of Lines [1–8] of the call to CONVEX-CORESET(C, k, ϵ, δ) is the
order of the number of iterations in the innermost “while" loop at Line 5 of Algorithm 3.

Since every C ∈ C is a convex set, by the properties of John ellipsoid it follows that each iteration of
the innermost "while" loop, at Line 5 of Algorithm 3, adds with probability at least 1/d2 a point to
SC ; follows from observing that the john ellipsoid EC bounding C has volume at most

√
d of C and

the bounding box BC bounds EC and has a john ellipsoid with volume d times the volume of EC .

Thus, the expected number of iterations in the innermost "while" loop at Line 5 of Algorithm 3 is in
O(nd2λ).

Hence, the expected running time of Lines [1–8] of the call to CONVEX-CORESET(C, k, ϵ, δ) is in
O(nd2λ). As such, combining this with Claim (iii) of Theorem 2.5 yields the desired expected
running time stated in Claim (iii) of the theorem.

G EMPIRICAL EVALUATION: VIDEO TRACKING AND DETECTION

Goal. In those tests, we aim to demonstrate that by utilizing the coreset from Algorithm 1 we can
obtain real-time tracking and detection of moving objects in a video. In the following paragraph, we
provide a small summary of video tracking and detection.

G.1 PRELIMINARIES ON VIDEO TRACKING AND DETECTION

The problem of tracking objects in RGB videos is a well-studied problem for which numerous
heuristics using various approaches were proposed. A meta-survey on such approaches (Zou et al.,
2019) states that in recent years there were thousands of papers published on this subject. One of the
very prominent approaches is utilizing neural networks. While neural networks yield unprecedented
results, such improvements come at the price of training, which along with the labeling of data is
rather costly. Another challenge is the cost of utilizing the results after the training, which frequently
requires at least mid-level GPUs ability to achieve 30-fps (frames per second) in real-time. Moreover,
recently (Su et al., 2019) demonstrated the problem where even small changes in the data may “fool”
the network. We note that while there were works on addressing similar problems in recent years
using more sophisticated training, see for example (Chen et al., 2022), it is uncertain whether more
sophisticated “attacks” could cause such or similar problems to what is shown in (Su et al., 2019).
We note that given object detection, which is not required for our method, there are existing real-time
methods, such as (Comaniciu et al., 2000).

Our proposed method for video tracking and detection utilizes motion vectors as detailed.

G.2 MOTION VECTORS

Motion vectors are computed in real-time as part of existing encoders for videos, such as H.264
((Wiegand et al., 2003)), H.265 ((Pereira et al., 2002)), etc. In general, those are mapping from one
frame to another, intending to usually minimize some loss function, such as Mean Squared Error
(MSE) between the RGB values, to allow keeping only this mapping (as a vector) and the difference
between the blocks.

We consider the rather simple case where the mapping is from a frame to its previous frame. For a
more detailed explanation on motion vectors and their computation, see (Wiegand et al., 2003).

We illustrate the motion vectors concept in Figure 6.

Note that since the computation utilizes only the motion vectors, and not the RGB part of the image,
this method also allows privacy preservation to some degree while providing real-time object tracking.
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Figure 6: Illustration of motion vectors. The left figure is a snapshot from (Roosendaal, 2008)
including a sub-sample of the motion vectors computed to the next frame (blue color corresponds to
movement to the left and red corresponds to movement to the right), which is included to the right.
Observe that while the most of vectors follow the movement, there is noise in the directions (either in
magnitude or the direction of the moment) as evidenced by the small vector on a rock and a grass leaf
in the left half of the image.

G.3 THE PROPOSED METHOD

For simplicity, in the following experiments, we focus on the common sum-of-squared distances
between objects, which corresponds to Gaussian noise, as explained in (Guo et al., 2011).

Tracking method. In general, we suggest using k equal to the number of objects tracked. However,
since in the following test we have tracked only one object, for which there is previous work (Riech-
mann et al., 2022) (besides that it significantly simplifies the k-means computation), we use k equal 2
and track the largest cluster (in the sense the of number of points assigned to it).

We implemented a video tracking method as follows, for each 10 consecutive frames of the video:

(i). Append for each motion vector its degree to the vectors (0, 1) and (1, 0), scaled such that 180
degrees corresponds to the largest end point of all the vectors; thus we have 4-dimensional vectors.
(ii). If there are above 1000 vectors sample uniformly (with no repetitions) 1000 vectors.
(iii). For each 4 dimensional vector left consider it as a segment and apply the coreset at Algorithm 1,
calibrated such that the coreset size for each vector is 10.
(iv). Compute the k-means, for a predefined k, for the points obtained; done via (Arthur & Vassilvit-
skii, 2007).
(v). Track the mean starting position and end position of the motion vectors corresponding to the
largest cluster obtained (in terms of the number of points assigned to it).

Software. We implemented our algorithms in python 3.8 (Van Rossum & Drake, 2009) utilizing
(Bradski, 2000), (Bommes et al., 2020), (Thakur et al., 2022), and (Harris et al., 2020). The source
code is provided in (Code, 2023).

G.4 BIG BUCK BUNNY TEST

In this test, we have used a clip of the Big Buck Bunny video (Roosendaal, 2008) that contains
400 frames in the resolution of 720x1280p and was streamed in real-time from a file. We have
chosen this video due to its prevalence in the video tracking community, and being licensed under
the Creative Commons Attribution 3.0 license, which entails “you can freely reuse and distribute
this content, also commercially, for as long you provide a proper attribution"; cited from the site of
the project at https://peach.blender.org/about. We have chosen this part of the video
since it contains a bunny walking across the stationary background, thus the tracking can be validated
in a visual sense.

Hardware. In this section, we utilized a standard Laptop with an Intel Core i3-1115G4 and 16GB of
RAM.

In what follows we provide a few examples from the clip, the entire clip of the tracking result is
provided in (Code, 2023).
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Figure 7: A subset of the results for the experiment at Section G.4. The left column is the cluster of
the motion vector and the right column is the center of this cluster and mean direction. The top row
demonstrates a section of the video where the bunny rises from the cave. The middle and bottom
rows demonstrate a section of the video where the bunny walks to the left and are taken with a small
time difference in the video.

As can be seen in the top images the movement direction is to the opposite direction from the
movement of the bunny. This occurred due to the bunny entering the field of view, and thus the
closest (in color) parts from the previous frame are the parts already seen, and thus the motion vectors
pointed in the opposite direction from the actual movement. Unfortunately by only looking at the
motion vectors we cannot remove this problem when objects enter or disappear from the field of view.
Nonetheless, observe the point in the frames, which aims to represent the center of the moving object,
is the center of the bunny, and thus there is no visually evident problem in the center of the cluster.

On the other hand, as can be seen in the bottom images, when the bunny has entirely entered the
field of view and started walking, we obtain visually logical tracking with the predicted movement
following the movement of the bunny and the cluster being the center of the object.

Running time. Our tracking algorithm had a running time of only 0.28 seconds, and since there are
400 frames in the clip, the tracking algorithm processed above 1, 400 fps.

To put our running time into perspective, the running time of YOLOv8 (Terven & Cordova-Esparza,
2023), which is an improvement over YOLOv5 (Jocher et al., 2021), over the same clip is 33.4
seconds, which entails a processing rate of 12 fps, output attached at (Code, 2023).
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G.5 RE-RUNNING FOR SINGLE-BOARD COMPUTER:

We have rerun the previous test (Section G.4) for Libre computes AML-S905X-CC (also known
as Le Potato) https://libre.computer/products/aml-s905x-cc/, which is a small
single-board computer similar to Raspberry Pi (Upton & Halfacree, 2016); with the official Raspberry
Pi OS distributed for Le Potato. Due to missing support for Arm architecture, we extracted the motion
vectors beforehand and transferred them as a Numpy array.

In this, we aim to demonstrate that our methods can support extremely low-end systems in reasonable
real-time. We have obtained essentially the same results, as can be expected since the only sources
for noise are ties broken arbitrarily in the clustering and noise from the samples we take.

Our tracking algorithm had a running time of only 4.23 seconds, and since there are 400 frames in
the clip, the tracking algorithm processed above 94 fps.
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