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Abstract

In recent computational psycholinguistics,
Merkx and Frank (2021) showed that surprisal
values from Transformers demonstrate a closer
fit to measures of human reading effort than
those from Recurrent Neural Networks (RNNs),
suggesting that Transformers’ attention mech-
anisms may capture cue-based retrieval-like
operations in human sentence comprehension.
Meanwhile, explicit incorporation of syntac-
tic structures has been shown to improve lan-
guage models’ ability to model human sentence
processing—for example, Hale et al. (2018)
demonstrated that Recurrent Neural Network
Grammars (RNNGs), which integrate RNNs
with explicit syntactic structures, account for
human brain activity that vanilla RNNs cannot
capture. In this paper, we test the psychomet-
ric predictive power of Composition Attention
Grammars (CAGs), which integrate Transform-
ers with explicit syntactic structures, to investi-
gate whether they provide a better fit to human
gaze durations than both vanilla Transformers
and RNNGs. We hypothesized that CAGs’ syn-
tactic attention mechanisms capture cue-based
retrieval-like operations over syntactically con-
structed memory representations—operations
that may be involved in human sentence com-
prehension. The results of our strictly con-
trolled experiment demonstrate that CAGs out-
performed vanilla Transformers and RNNGs,
suggesting that syntactic attention in CAGs
may serve as a mechanistic implementation of
human retrieval from syntactic memory.

1 Introduction

In computational psycholinguistics, language mod-
els (LMs) developed in Natural Language Process-
ing (NLP) have been evaluated for their ability
to model human sentence processing. Recurrent
Neural Networks (RNNs; Elman, 1990), which
process word-level sequential representations re-
currently, have traditionally been considered a
practical implementation that demonstrates strong

correspondence with human sentence processing,
with their surprisal values successfully correlating
with human gaze duration (Goodkind and Bicknell,
2018) and brain activities (Frank et al., 2015). Re-
cently, Transformers (Vaswani et al., 2017), which
have achieved state-of-the-art results on various
NLP tasks, have also been tested for their pre-
dictive power for human reading effort. Merkx
and Frank (2021) demonstrated that Transform-
ers outperformed RNNs in predicting human self-
paced reading times and N400 amplitudes, suggest-
ing that Transformers’ attention mechanisms may
provide a computational parallel to cue-based re-
trieval (Van Dyke and Lewis, 2003), a human mem-
ory retrieval theory proposed in psycholinguistics.

While RNNs and Transformers primarily pro-
cess word-level representations, computational psy-
cholinguistics studies have empirically shown that
explicit incorporation of syntactic structures can
significantly improve LMs’ ability to model hu-
man sentence processing. For instance, Hale et al.
(2018) showed that Recurrent Neural Network
Grammars (RNNGs; Dyer et al., 2016), which inte-
grate RNNs with explicit syntactic structures, cap-
ture variance in human brain activities that cannot
be accounted for by vanilla RNNs.1

Given that (i) Transformers may capture cue-
based retrieval-like operations in human sentence
comprehension and (ii) LMs incorporating explicit
syntactic structures may capture variance in human
syntactic processing, we investigate whether the

1More recently, Wolfman et al. (2024) showed that sur-
prisal estimates from Transformer Grammars (TGs; Sartran
et al., 2022), Transformers integrated with explicit syntac-
tic structures, also explain human brain activities that vanilla
Transformers cannot. Their work and ours are similar in that
both investigate the advantage of explicit incorporation of
syntactic structures on Transformers, but differ in that we
also investigate the advantage of CAGs’ attention mechanisms
over recurrent processing through comparison against RNNGs,
whereas Wolfman et al. (2024) did not include this research
question in their scope, only comparing against vanilla Trans-
formers (see Section 2.3).



integration of these two approaches might provide
a better fit to measures of human reading effort
than LMs employing either approach in isolation.
Specifically, we tested the psychometric predic-
tive power of Composition Attention Grammars
(CAGs; Yoshida and Oseki, 2022), which integrate
Transformers with explicit syntactic structures, to
investigate whether they provide a better fit to hu-
man gaze durations than both vanilla Transformers
and RNNGs. We hypothesize that CAGs’ syntactic
attention mechanisms capture cue-based retrieval-
like operations over syntactically constructed mem-
ory representations—operations that may be in-
volved in human sentence comprehension. The re-
sults of our controlled experiment demonstrate that
CAGs outperformed vanilla Transformers and RN-
NGs, suggesting that syntactic attention in CAGs
may serve as a mechanistic implementation of hu-
man retrieval from syntactic memory.2

2 Background

2.1 Psychometric predictive power

In psycholinguistics, it is well established that hu-
mans predict the next word during sentence com-
prehension (i.e., expectation-based theories), and
the less predictable the next word is, the more effort
is required to process it. The computational psy-
cholinguistics literature (Hale, 2001; Levy, 2008)
quantifies this predictability as surprisal, the nega-
tive log probability of a word given the context:

surprisal = − log p(word|context). (1)

Previous work has employed this information-
theoretic complexity metric to link LMs’ proba-
bility estimates with human reading effort (Smith
and Levy, 2013; Goodkind and Bicknell, 2018).
Building upon this paradigm, the computational
psycholinguistics community has investigated LMs
with high psychometric predictive power—i.e.,
LMs that can compute surprisal values with trends
similar to measures of human reading effort—by
comparing surprisal from various models with
gaze duration or brain activity measures from hu-
mans (Frank and Bod, 2011; Fossum and Levy,
2012; Frank et al., 2015; Hale et al., 2018; Brennan
and Hale, 2019; Wilcox et al., 2020; Brennan et al.,
2020; Merkx and Frank, 2021; Kuribayashi et al.,
2022; Wolfman et al., 2024, inter alia).

2Code for reproducing our results is available at https:
//github.com/osekilab/CAG-EyeTrack.

2.2 Sequential recurrence vs. sequential
attention

RNNs (Elman, 1990) process sequential represen-
tations (i.e., word embeddings) in a recurrent man-
ner; they maintain a single vector representing a
“context” and, at each time step, update this con-
text vector with the embedding of the current input
word (implementing sequential recurrence; Fig-
ure 1a). In contrast, recently introduced Trans-
formers (Vaswani et al., 2017) employ an attention
mechanism; they maintain all previous word em-
beddings and, at each time step, generate a context
vector by selectively attending to them (implement-
ing sequential attention; Figure 1b). Taking advan-
tage of direct access to previous information, Trans-
formers have been shown to outperform RNNs in
various NLP tasks (cf. Wang et al., 2018, 2020).

Recently, the computational psycholinguistics
community has also investigated whether Trans-
formers have an advantage over RNNs in psycho-
metric predictive power. Merkx and Frank (2021)
compared Transformers and RNNs on their predic-
tive power for human reading times and brain activ-
ity. The results showed that Transformers generally
outperformed RNNs, suggesting that sequential at-
tention, implemented by Transformers, captures
aspects of human reading effort that sequential re-
currence, implemented by RNNs, cannot account
for.

Based on these findings, Merkx and Frank (2021)
argued that the explained effort may be attributed to
cue-based retrieval-like operations during human
sentence comprehension (Van Dyke and Lewis,
2003). The cue-based retrieval theory posits that
human sentence comprehension involves memory
retrieval, where elements are retrieved from work-
ing memory based on cues provided by the cur-
rent input word. Merkx and Frank’s (2021) argu-
ment was that Transformers’ attention mechanism—
selective attention to previous word embeddings
based on Query from a current input and Keys from
previous words—might serve as a mechanistic im-
plementation of this cue-based memory retrieval,
thereby surprisal values resulting from the attention
mechanism to show similar trends to human read-
ing effort as the causal bottleneck (Levy, 2008).

More recently, Michaelov et al. (2021) replicated
Merkx and Frank’s (2021) results and presented ad-
ditional analysis suggesting that Transformers can
better capture human semantic facilitation effects
than RNNs.

https://github.com/osekilab/CAG-EyeTrack
https://github.com/osekilab/CAG-EyeTrack
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Figure 1: Four types of architectures. Previous work has investigated three types of architectural comparisons: (i)
recurrence vs. attention in sequential architectures (a vs. b), (ii) sequential vs. syntactic in recurrent architectures
(a vs. c), and (iii) sequential vs. syntactic in attention architectures (b vs. d). In this paper, we complete this
comparison framework by directly comparing recurrence vs. attention in syntactic architectures (c vs. d).

2.3 Sequential vs. syntactic
Although RNNs and Transformers have shown non-
negligible results in psychometric predictive power,
these architectures are fundamentally “sequential”
models that process information word-by-word—
without explicitly modeling the hierarchical syntac-
tic structures of natural languages. The distinction
between vanilla LMs and syntactic LMs such as
RNNGs lies in this structural aspect—syntactic
LMs not only generate a word sequence but also
explicitly construct its underlying syntactic struc-
ture. Specifically, syntactic LMs jointly generate
sentences and their syntactic structures through
next-action prediction for the following three ac-
tions:

• (X: Generate a non-terminal symbol (X, where
X represents a phrasal tag (e.g., NP). The vec-
tor representing the phrasal tag is placed on
top of the stack, which maintains a list of vec-
tors corresponding to the current context in
syntactic LMs.

• w: Generate a terminal symbol w, where w
represents a word (e.g., bird). The vector
representing the word is placed on top of the
stack.

• ): Close the most recent open non-terminal
symbol. The vectors that constitute the closed
phrase (i.e., the closed phrasal tag and its con-
stituent vectors) are typically combined into

a single vector representation using a compo-
sition function and placed on top of the stack.
However, some syntactic LMs omit this com-
position step and simply place a vector repre-
senting the phrase closure on top of the stack
(henceforth, we denote this type of syntactic
LM with the subscript −comp).

Computational psycholinguistics studies have
shown that syntactic LMs outperform their vanilla
LM counterparts in psychometric predictive power,
suggesting that syntactic LMs can capture non-
trivial variance in human syntactic processing. For
instance, RNNGs, which recurrently summarize
the stack state using RNNs (Dyer et al., 2015) (im-
plementing syntactic recurrence; Figure 1c), can
predict patterns in human brain activity (Hale et al.,
2018) and human gaze duration (Yoshida et al.,
2021) that vanilla RNNs cannot. Hale et al. (2018)
also showed the advantage of the composition func-
tion, demonstrating that RNNGs−comp cannot ex-
plain the brain activity that RNNGs can.

More recently, Wolfman et al. (2024) showed
that Transformer Grammars (TGs; Sartran et al.,
2022), which summarize the stack state by selec-
tively attending previous vectors using Transform-
ers (implementing syntactic attention; Figure 1d),
also explain human brain activity that vanilla Trans-
formers cannot.



3 Syntactic recurrence vs. syntactic
attention

As reviewed in Section 2, previous work has in-
vestigated three types of architectural compar-
isons: (i) recurrence vs. attention in sequential
architectures (Merkx and Frank, 2021; Michaelov
et al., 2021) (Figure 1a vs. 1b), (ii) sequential vs.
syntactic in recurrent architectures (Hale et al.,
2018; Yoshida et al., 2021) (Figure 1a vs. 1c), and
(iii) sequential vs. syntactic in attention architec-
tures (Wolfman et al., 2024) (Figure 1b vs. 1d). In
this paper, we complete this comparison framework
by directly comparing recurrence vs. attention in
syntactic architectures (Figure 1c vs. 1d).

We hypothesize that syntactic attention—where
previous vectors “in the stack” are selectively at-
tended to based on Queries from current input and
Keys from previous vectors—might show supe-
rior psychometric predictive power over syntactic
recurrence by capturing cue-based retrieval-like
operations over “syntactically constructed” mem-
ory representations—operations that may be in-
volved in human sentence comprehension. This
hypothesis extends Merkx and Frank’s (2021) ar-
gument that sequential attention (implemented by
vanilla Transformers) outperforms sequential re-
currence (implemented by RNNs), capturing cue-
based retrieval-like operations over word-level
memory representations.

LMs that implement syntactic attention in-
clude Transformer Grammars (TGs; Sartran et al.,
2022) and Composition Attention Grammars
(CAGs; Yoshida and Oseki, 2022). Both TGs
and CAGs are syntactic LMs based on Trans-
formers and employ composition functions. For
our investigation, we employ CAGs for three rea-
sons. First, CAGs’ implementation includes word-
synchronous beam search (Stern et al., 2017), an
inference technique commonly used in computa-
tional psycholinguistics to model human local am-
biguity resolution through parallel parsing (Hale
et al., 2018; Sugimoto et al., 2024) (see Section 4.3
for details), whereas TGs lack this capability. Sec-
ond, CAGs’ probability estimation aligns more
closely with human offline grammaticality judg-
ments than TGs (Yoshida and Oseki, 2022). Third,
CAGs employ bidirectional LSTMs for the compo-
sition function, which is the same implementation
used in RNNGs, while TGs implement the com-
position function via attention masks. This design
choice enables a more controlled comparison be-

tween syntactic recurrence and syntactic attention,
as the architectures differ only in their stack sum-
marization process.

4 Method

We evaluate four LMs that employ either selec-
tive attention or recurrent processing on word se-
quences or syntactic structures, comparing their
psychometric predictive power for human gaze du-
ration using the Zurich Cognitive Language Pro-
cessing Corpus (ZuCo; Hollenstein et al., 2018).
Following Hale et al. (2018), we also include de-
graded versions of syntactic LMs that lack the com-
position function. The following subsections de-
scribe our experimental settings in detail.

4.1 Language models

In our experiment, we trained LMs with strictly
controlled hyperparameters following Yoshida and
Oseki (2022), as their model sizes were made max-
imally comparable.

LSTM (sequential recurrence) Long Short-
Term Memories (LSTMs; Hochreiter and Schmid-
huber, 1997) are LMs that perform recurrent pro-
cessing on word sequences. We used 2-layer
LSTMs with 301 hidden and input dimensions
(model size: 16.59M).3

RNNG (syntactic recurrence) Recurrent Neural
Network Grammars (RNNGs; Dyer et al., 2016)
are LMs that perform recurrent processing on syn-
tactic structures. RNNGs are equipped with a com-
position function based on bidirectional LSTMs.
We used stack-only RNNGs (Kuncoro et al., 2018;
Noji and Oseki, 2021) with 2-layer stack LSTMs
with 276 hidden and input dimensions (model size:
16.61M).4

RNNG−comp (degraded syntactic recurrence)
RNNGs−comp (Choe and Charniak, 2016; Hale
et al., 2018) are a degraded version of RN-
NGs without the composition function. We used
RNNGs−comp with 2-layer LSTMs with 301 hidden
and input dimensions (model size: 16.58M).

Transformer (sequential attention) Transform-
ers (Radford et al., 2018) are LMs that perform
selective attention on word sequences. We used

3We implemented LSTMs using the PyTorch package
(https://github.com/pytorch/pytorch).

4https://github.com/aistairc/rnng-pytorch

https://github.com/pytorch/pytorch
https://github.com/aistairc/rnng-pytorch


3-layer 4-head Transformers with 272 hidden and
input dimensions (model size: 16.62M).5

CAG (syntactic attention) Composition Atten-
tion Grammars (CAGs; Yoshida and Oseki, 2022)
are LMs that perform selective attention on syntac-
tic structures. CAGs are equipped with a composi-
tion function based on bidirectional LSTMs. We
used 3-layer 4-head CAGs with 256 hidden and
input dimensions (model size: 16.57M).6

CAG−comp (degraded syntactic attention)
CAGs−comp (Qian et al., 2021) are a degraded
version of CAGs without the composition func-
tion. We used 3-layer 4-head CAGs−comp with
272 hidden and input dimensions (model size:
16.63M).7

4.2 Training data
All LMs were trained using BLLIP-LG, which
comprises 1.8M sentences and 42M tokens sam-
pled from the Brown Laboratory for Linguistic In-
formation Processing 1987-89 Corpus Release 1
(BLLIP; Charniak et al., 2000). The train-dev-test
split followed Hu et al. (2020). Following Qian
et al. (2021), sentences were tokenized into sub-
words using a Byte Pair Encoding tokenizer (Sen-
nrich et al., 2016) from the Huggingface Trans-
formers package (Wolf et al., 2020).

All LMs were trained at the sentence level:
LSTMs and Transformers were trained on terminal
subwords, whereas RNNGs, RNNG−comp, CAGs,
and CAG−comp were trained on both terminal sub-
words and syntactic structures, which were parsed
by Hu et al. (2020) using a state-of-the-art con-
stituency parser (Kitaev and Klein, 2018). All
LMs shared the same training hyperparameters:
a learning rate of 10−3, a dropout rate of 0.1, the
Adam optimizer (Kingma and Ba, 2015), and a
minibatch size of 256. Training was conducted
for 15 epochs. We selected the checkpoint with
the lowest loss on the development set for evalua-
tion and conducted experiments three times with
different random seeds.

4.3 Eye tracking data
We used gaze duration from the Zurich Cognitive
Language Processing Corpus (ZuCo; Hollenstein

5We implemented Transformers using the Hugging-
face Transformers package (https://github.com/
huggingface/transformers).

6https://github.com/osekilab/CAG
7https://github.com/IBM/

transformers-struct-guidance

et al., 2018) to evaluate whether LMs can suc-
cessfully predict human reading effort. ZuCo is
a collection of single sentences from the Stanford
Sentiment Treebank and the Wikipedia relation ex-
traction corpus, accompanied by simultaneous eye-
tracking and electroencephalography (EEG) record-
ings from 12 native English speakers. Although
ZuCo comprises data from both normal reading
and task-specific reading tasks, we used only 700
sentences from the natural reading task, follow-
ing previous work (e.g., Hollenstein et al., 2021).
During the natural reading task, sentences were
displayed one by one, and participants read them
at their own pace. During preprocessing by Hol-
lenstein et al. (2018), fixations that were (i) shorter
than 100ms or (ii) recorded when EEG amplitude
exceeded ±90 µV were removed due to irrelevance
to reading activity or data quality concerns.

In this paper, first-pass gaze duration (the sum of
all fixation times on a word before the eye moves
away from it) was used as the prediction target.8

Following the convention of psycholinguistic stud-
ies, we excluded words with missing values (e.g.,
non-fixations) or at sentence-initial and sentence-
final positions from our statistical analysis. We
further removed words that were out of vocabu-
lary (OOV) in the large corpus (Wikitext-2; Merity
et al., 2017) or words following OOV words, as fre-
quency values are required for our baseline regres-
sion model. Consequently, 80,853 data points were
included in the statistical analysis out of 161,597
total data points. The high proportion of deleted
data points during preprocessing was mainly due
to the large number of missing values (52,240 data
points).

In previous computational psycholinguistic re-
search, there was often a mismatch between
LMs’ processing level and human data collec-
tion procedures—for instance, LMs trained at
the sentence level were evaluated against human
gaze data collected during document-level reading
(cf. Wilcox et al., 2020). In this paper, we address
this gap by conducting more strictly controlled ex-
periments using ZuCo, a corpus where eye-tracking
data was recorded during sentence-level reading.9

8We first conduct validation using gaze duration as the
most accessible and interpretable human data source, given
that the specific event-related potential (ERP) components of
EEG that would best reflect cue-based retrieval-like operations
over syntactically constructed memory representations remain
to be determined.

9An alternative approach would be to train LMs at the
document level and evaluate them on document-level eye-

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/osekilab/CAG
https://github.com/IBM/transformers-struct-guidance
https://github.com/IBM/transformers-struct-guidance


Since only word sequences were input dur-
ing surprisal calculation, we employed word-
synchronous beam search (Stern et al., 2017) to
infer syntactic structures for CAGs and RNNGs.
Word-synchronous beam search retains a collec-
tion of the most likely syntactic structures given a
partial word sequence and marginalizes their prob-
abilities to approximate next-word probabilities.
Hale et al. (2018) argued that the combination of
syntactic LMs and word-synchronous beam search
successfully captured human local ambiguity reso-
lution during online sentence comprehension.10

4.4 Statistical analysis

We analyzed how well surprisal from each LM
predicts human gaze duration, measuring improve-
ments in regression model fit when adding surprisal
values as predictors. For each LM, we included
both the surprisal of the current word and the previ-
ous word to account for spillover effects (Mitchell,
1984).11 As a measure of psychometric predictive
power, we evaluated the per-token increase in log-
likelihood (∆LogLik) on the entire dataset. This
evaluation was conducted for each random seed,
and we report the mean psychometric predictive
power with standard deviation.

Following previous studies such as Merkx and
Frank (2021), the baseline regression model con-
trolled for several predictors relevant to reading
activity:

• order (integer): sentence display order during
the reading task;

• position (integer): word position in the sen-
tence;

• length and prev_length (integer): number
of characters in the current and previous word;

• freq and prev_freq (continuous): log-
transformed frequencies of the current and
previous word.

tracking data. However, we adopt the sentence-level setting
because syntactic LMs are conventionally trained on sentences,
and RNNGs and CAGs lack implementations applicable to
document-level training.

10We set the action beam size to 100, word beam size to
10, and fast-track to 1. Word beam size corresponds to the
number of syntactic structures to be marginalized.

11Following the convention of previous studies (e.g., Wilcox
et al., 2020; Kuribayashi et al., 2021), the word-level surprisal
was calculated as the cumulative surprisal of its constituent
subwords.

Previous words’ values were included for modeling
the spillover effect. All numeric factors were z-
transformed.

The baseline regression model was a linear
mixed-effects model (Baayen et al., 2008) with
these fixed effects and a by-subject random inter-
cept:

log(GD) ∼ order+ position +

length+ prev_length +

freq+ prev_freq +

(1|subj). (2)

Before evaluating psychometric predictive
power, we conducted baseline regression model-
based data omission, removing data points beyond
three standard deviations. This removed 559 data
points, leaving 80,294 data points for the final sta-
tistical analysis.

4.5 Nested model comparison
We conducted nested model comparisons (Wurm
and Fisicaro, 2014) to evaluate whether the dif-
ferences in ∆LogLik are statistically significant.
Specifically, we extended Equation 2 by adding
surprisal values from two LMs versus adding sur-
prisal values from only one LM, and tested the
statistical significance of the deviance using the χ2

test (p ≤ 0.05). Following Aurnhammer and Frank
(2019), we used surprisal values averaged across
different random seeds for these nested model com-
parisons.

5 Results

5.1 Overall
The Psychometric Predictive Power (PPP, per-
token ∆LogLik) of each LM is summarized in Fig-
ure 2. The psychometric predictive power averaged
across different random seeds (the vertical axis) is
plotted against the LMs investigated in this paper
(the horizontal axis). Error bars denote standard
deviations across random seeds. We confirmed
that the psychometric predictive power was statis-
tically significant for all LMs under nested model
comparisons against the baseline regression model,
and the direction was appropriate for gaze dura-
tion—that is, higher surprisal values corresponded
to longer gaze durations. The results demonstrated
that CAGs achieved the highest psychometric pre-
dictive power: CAG > RNNG > Transformer >
LSTM > CAG−comp > RNNG−comp, showing that



Figure 2: Psychometric Predictive Power (PPP, per-token ∆LogLik) of each LM. The psychometric predictive
power averaged across different random seeds (vertical axis) is plotted against the LMs investigated in this paper
(horizontal axis). Error bars denote standard deviations across random seeds.

the architecture performing syntactic attention cap-
tures the most variance in human gaze duration.

Reproduction of sequential recurrence vs. se-
quential attention In our experiment, Transform-
ers outperformed LSTMs in psychometric predic-
tive power. To confirm that this difference is sta-
tistically significant, the result of the nested model
comparison is shown in the top block of Table 1.
The nested model comparison revealed that Trans-
formers significantly outperformed LSTMs, cor-
roborating Merkx and Frank’s (2021) finding that
Transformers, which implement sequential atten-
tion, capture variance in human reading effort that
RNNs, which implement sequential recurrence,
cannot.12

Reproduction of sequential vs. syntactic In
our experiment, RNNGs and CAGs outperformed
LSTMs and Transformers, respectively. To confirm
that these differences are statistically significant,
the results of nested model comparisons are shown
in the middle block of Table 1. The nested model
comparisons revealed that RNNGs and CAGs sig-
nificantly outperformed LSTMs and Transformers,
respectively, supporting the findings of Hale et al.
(2018) and Wolfman et al. (2024) that syntactic
LMs can account for human reading effort that
vanilla LMs cannot predict.

In addition, RNNGs and CAGs also significantly
outperformed RNNGs−comp and CAGs−comp, re-

12Incidentally, Merkx and Frank (2021) found the advan-
tage of Transformers on self-paced reading times and EEG but
obtained mixed results on gaze duration. Our more definitive
findings may be attributed to our strictly controlled experi-
mental settings, where Transformer advantages could become
more consistently observable.

spectively, corroborating Hale et al.’s (2018) argu-
ment that the composition function is crucial for
syntactic LMs to capture human syntactic process-
ing. As a side note, RNNGs−comp and CAGs−comp
underperformed LSTMs and Transformers, respec-
tively. This implies that stack representations with-
out the composition function not only harm the
ability to account for syntactic processing but also
cause a loss in simulating general human predictive
processing. Hale et al. (2018) also showed a null
result when comparing the psychometric predictive
power of RNNGs−comp to that of LSTMs.

Syntactic recurrence vs. syntactic attention In
our experiment, CAGs outperformed RNNGs in the
absolute value of psychometric predictive power.
To confirm that the difference between CAGs and
RNNGs is statistically significant, the result of the
nested model comparison is shown in the bottom
block of Table 1. The nested model comparison
revealed that CAGs significantly outperformed RN-
NGs, suggesting that CAGs, which implement syn-
tactic attention, can successfully capture variance
in human gaze duration that RNNGs, which imple-
ment syntactic recurrence, cannot account for.

5.2 Longer and shorter sentences
To investigate under what conditions syntactic at-
tention has an advantage over syntactic recurrence,
we split the data points in ZuCo into two subsets
based on sentences longer or shorter than the av-
erage sentence length, following Merkx and Frank
(2021). Merkx and Frank (2021) conducted this
analysis expecting that longer sentences could ac-
centuate Transformers’ advantage of direct access
to previous information. The longer and shorter



χ2 df p

Sequential recurrence vs. sequential attention
LSTM < TF 16.75 2 0.00023

Sequential vs. syntactic
LSTM < RNNG 315.7 2 <0.0001
TF < CAG 308.5 2 <0.0001

RNNG−c. < RNNG 369.8 2 <0.0001
CAG−c. < CAG 372.0 2 <0.0001

Syntactic recurrence vs. syntactic attention
RNNG < CAG 11.42 2 0.00331

Table 1: Results of nested model comparisons from
three perspectives: (i) reproduction of sequential re-
currence vs. sequential attention, (ii) reproduction of
sequential vs. syntactic, and (iii) syntactic recurrence
vs. syntactic attention. TF and −c. indicate Transformer
and −comp, respectively.

χ2 df p

Short sentences
RNNG < CAG 0.8359 2 0.6584

Long sentences
RNNG < CAG 14.793 2 0.0006133

Table 2: Results of nested model comparisons on longer
and shorter subsets of ZuCo

subsets include 37,578 and 43,275 data points, re-
spectively. We removed 601 and 703 data points
that were beyond three standard deviations, leaving
37,307 and 42,997 data points for the final statisti-
cal analysis, respectively.

The psychometric predictive power of CAGs and
RNNGs on longer and shorter sentences is shown in
Figure 3. The results show that CAGs and RNNGs
achieve comparable psychometric predictive power
on shorter sentences, but CAGs outperformed RN-
NGs on longer sentences. To confirm that these
differences are statistically significant, the results
of nested model comparisons are shown in Table 2.
The nested model comparisons revealed that CAGs
significantly outperformed RNNGs only on longer
sentences, consistent with their performance on the
complete dataset.

6 Discussion

In this paper, we reproduced the results of (i)
sequential recurrence vs. sequential attention
(cf. Merkx and Frank, 2021), (ii) sequential vs. syn-
tactic (cf. Hale et al., 2018; Wolfman et al., 2024),
and (iii) demonstrated that CAGs, which imple-
ment syntactic attention, achieve higher psychomet-

Figure 3: Psychometric predictive power (PPP, per-
token ∆LogLik) of CAGs and RNNGs on longer and
shorter sentences. The psychometric predictive power
averaged across different random seeds (vertical axis)
is plotted against the LMs (horizontal axis). Error bars
denote standard deviations across random seeds.

ric predictive power than both vanilla Transformers
and RNNGs. Given that Merkx and Frank (2021)
and Hale et al. (2018) suggest that attention mecha-
nisms and syntactic LMs can serve as mechanistic
implementations of human cue-based retrieval and
syntactic processing, respectively, our results sug-
gest that syntactic attention in CAGs may serve as
a mechanistic implementation of human retrieval
from syntactically constructed memory representa-
tions.

Furthermore, the analysis of longer versus
shorter sentences suggests that cue-based retrieval-
like operations over syntactic memory may become
more prominent when processing longer sentences.
Merkx and Frank (2021) demonstrated that Trans-
formers’ superior psychometric predictive power
over RNNs was particularly pronounced on longer
sentences, suggesting that retrieval operations may
be especially important when accessing informa-
tion from linearly distant words. While both CAGs
and RNNGs can maintain information from linearly
distant words through their composition functions,
the direct access afforded by attention mechanisms
nevertheless provides additional advantages as sen-
tence length increases.

Interestingly, Wilcox et al. (2018) and Oh et al.
(2021) found that RNNGs underperformed LSTMs
or Transformers in modeling human reading times,
contradicting Hale et al.’s (2018), Wolfman et al.’s
(2024), and our sequential vs. syntactic results.



The discrepancy with Hale et al. (2018) and Wolf-
man et al. (2024) may be attributed to differences
in human data types—Wilcox et al. (2018) and Oh
et al. (2021) used reading times while Hale et al.
(2018) and Wolfman et al. (2024) used brain data.
In contrast, our gaze duration results demonstrate
that strictly controlled model sizes and sentence-
level alignment can reveal syntactic advantages
even in behavioral data, highlighting the critical
role of experimental design in computational psy-
cholinguistics.

7 Conclusion

In this paper, we evaluated the psychometric pre-
dictive power of Composition Attention Grammars
(CAGs) through strictly controlled experiments on
ZuCo. Our results demonstrate that CAGs outper-
formed vanilla Transformers and RNNGs, suggest-
ing that syntactic attention may serve as a mecha-
nistic implementation of human retrieval from syn-
tactically constructed memory representations. Fur-
ther analysis revealed that this advantage is primar-
ily driven by improved performance on longer sen-
tences, indicating that cue-based retrieval-like op-
erations over syntactic structures become increas-
ingly important as sentence length increases. We
also hope the computational psycholinguistics com-
munity will follow similar principles of strict ex-
perimental control to ensure fair and meaningful
architectural comparisons in future research.

Limitations

There are several limitations to this study. First,
although we utilized CAGs as a model of syntac-
tic attention, TGs could also serve as an alterna-
tive. While our choice of CAGs was motivated by
(i) their word-synchronous beam search capability,
(ii) better alignment to human offline grammatical-
ity judgments, and (iii) their use of bidirectional
LSTMs for composition functions (see Section 3),
whether our positive results for syntactic attention
generalize to TGs remains an open question.

Second, our experiments were based solely on
gaze duration data from ZuCo, which we selected
because it uniquely provides sentence-level read-
ing data, allowing for technically controlled com-
parisons between minimally different architectures
(see Section 4.3). As noted earlier, we chose gaze
duration as the most accessible and interpretable
human data source, given that the specific event-
related potential (ERP) components of EEG that

would best reflect cue-based retrieval-like opera-
tions over syntactic structures remain to be deter-
mined. Future research should explore which ERP
components might be most sensitive to these op-
erations and extend the evaluation to additional
measures of human sentence processing.

Third, while our sentence-level analysis pro-
vided technical advantages for controlled compar-
isons, extending these syntactic LMs to document-
level processing would be valuable for future re-
search, as this would enable controlled experiments
on additional datasets (e.g., the Natural Stories cor-
pus; Futrell et al., 2018).
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