EFFIBENCH-X: A Multi-Language Benchmark for
Measuring Efficiency of LLM-Generated Code
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Abstract

Existing code generation benchmarks primarily evaluate functional correctness,
with limited attention to code efficiency, and they are often restricted to a single lan-
guage such as Python. To address this gap, we introduce EFFIBENCH-X, the first
multi-language benchmark designed to measure the efficiency of LLM-generated
code. EFFIBENCH-X supports Python, C++, Java, JavaScript, Ruby, and Golang.
It comprises competitive programming tasks with human-expert solutions as effi-
ciency baselines. Evaluating state-of-the-art LLMs on EFFIBENCH-X reveals that
while models generate functionally correct code, they consistently underperform
human experts in efficiency. Even the most efficient LLM-generated solutions
(Qwen3-32B) achieve only around 62% of human efficiency on average, with
significant language-specific variations. LLMs show better efficiency in Python,
Ruby, and JavaScript than in Java, C++, and Golang. For instance, DeepSeek-R1’s
Python code is significantly more efficient than its Java code. These results high-
light the critical need for research into LLM optimization techniques to improve
code efficiency across diverse languages. The dataset and evaluation infrastructure
are publicly available athttps://github.com/EffiBench/EffiBench-X.git
and https://huggingface.co/datasets/EffiBench/effibench-x.

1 Introduction

Code efficiency is becoming a critical concern for LLM-generated code as these models are more
widely adopted. While many LLMs and agent frameworks successfully produce correct solutions [[L6}
36, 77,139, 130], their outputs often incur substantial resource overhead, compromising performance
and feasibility in settings demanding high efficiency, such as mobile phones, embedded systems, and
latency-sensitive cloud environments [48, (32} 166, 31} 133]]. This underscores the need for benchmarks
that measure not just correctness but also runtime efficiency [56} 606, 48]].

Responding to this critical need, several benchmarks have recently emerged to measure the efficiency
of LLM-generated code. EffiBench [32] and Mercury [23] use LeetCode problems and their solutions
to evaluate Python code based on runtime and memory. Moving beyond LeetCode, EvalPerf [48] and
ENAMEL [56] assess efficiency using subsets of existing benchmarks HumanEval [[16] and MBPP
[L1], while PIE [62] benchmarks efficiency by compiling performance-improving edits across various
CodeNet challenges. Despite these valuable contributions, a closer examination reveals limitations in
current benchmarks, which hinder their effectiveness in accurately evaluating efficiency.
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Specifically, current code efficiency benchmarks exhibit three key limitations. First, they suffer from
Language Diversity issues, primarily focusing on single-language measurement [32} 23 166,56} 48]],
often Python, despite its relatively small share (25%) of the overall programming landscape[ﬂ This
narrow focus overlooks crucial language-specific factors like compiler optimizations and memory
management prevalent in languages such as C++, Java, and Golang, necessitating a multi-language
benchmark. Second, Data Contamination is a significant problem, as many benchmarks, including
EffiBench and Mercury (using LeetCode) and ENAMEL and EvalPerf (using HumanEval and MBPP),
rely on dated and widely circulated problem sets. These have often been “seen” by models during
training 12,40} 73} 22], leading to performance metrics that reflect memorization rather than genuine
reasoning or optimization, thereby reducing their representativeness for evaluating performance
on novel challenges. Third, current benchmarks are hampered by Limited Complexity, featuring
tasks that are often straightforward and solvable without advanced algorithms. Benchmarks like
HumanEval and MBPP, used by EvalPerf and ENAMEL, include simple prompts where models have
already achieved high pass rates (e.g., >95% pass@1 on HumanEval)'| Such trivial tasks fail to
reveal critical performance differentials or require substantial computational resources, making them
unsuitable for measuring efficiency and highlighting the need for benchmarks that incorporate more
complex, computationally intensive problems to better assess an LLM’s ability to handle large inputs
or implement optimized solutions for real-world applications.

To address critical limitations in evaluating LLM code efficiency, we introduce EFFIBENCH-X, the
first large-scale multi-language benchmark specifically designed for robust efficiency evaluation.
EFFIBENCH-X evaluates efficiency across six diverse programming languages: Python, C++, Java,
JavaScript, Ruby, and Golang, directly tackling the language diversity problem. It comprises recently
released competitive programming tasks from various platforms, paired with canonical human expert
solutions, effectively mitigating data contamination. By focusing on complex problems requiring
advanced algorithms and data structures, EFFIBENCH-X overcomes the issue of limited complexity,
providing a more accurate assessment of LLMs’ efficiency in challenging scenarios. Furthermore,
our comprehensive evaluation framework with high-resolution profiling ensures robust and reliable
measurement of LLM-generated code efficiency within a controlled environment.

Leveraging EFFIBENCH-X and its comprehensive evaluation framework, we conducted a comprehen-
sive study evaluating the performance of a wide range of LLMs against expert-written baselines. Our
experiments reveal that while most LLMs are capable of generating functionally correct solutions,
they consistently exhibit shortcomings in efficiency. Specifically, even the most efficient code pro-
duced by an LLM achieves only approximately 62% of the runtime performance demonstrated by
expert-crafted code. These findings highlight a significant gap and underscore the critical need for
further research into optimization techniques. Such advancements are essential to empower LLMs to
generate code that is not only correct but also highly efficient across diverse programming languages.

2 Related Work

Early efforts on code generation with LLMs gravitated toward assessing correctness and functionality,
exemplified by HumanEval [16] and MBPP [11]], which challenge models to produce valid code
snippets from natural language docstrings. Building on this foundation, subsequent works have aimed
to mitigate issues of limited diversity in tasks. For instance, HumanEval-X [76]], MultiPLe [14],
CodeScope [71] and MBXP [10] expand these benchmarks to multiple programming languages, while
DS-1000 [42], ARCADE [74], and NumpyEval [75]] target data science-oriented tasks. Beyond these,
efforts like APIBench [55]], BigCodeBench [77], BiasBench [34], and RepoBench [49] delve into
broader software engineering subtasks, including library usage and repository-level code completion.
While these benchmarks have been instrumental in gauging a model’s correctness, they rarely address
performance, potentially overlooking inefficiencies that hinder real-world adoption. Recognizing
this significant limitation, a new wave of evaluations has emerged. As summarized in Table T} while
benchmarks such as EffiBench [32], EffiBench+ [72], Mercury [23], EvalPerf [48], ENAMEL [56],
and PIE [62]] specifically target performance metrics like runtime and memory usage, these valuable
efforts commonly face limitations. Most are confined to single-language settings, predominantly
Python. The multilingual benchmark CodeScope [71]], for instance, provides only 30 tasks for
its efficiency evaluation across four languages—Python 3, C, C#, and C++. Furthermore, many
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Table 1: Comparison of EFFIBENCH-X to other code efficiency benchmarks. EFFIBENCH-X covers
six programming languages, with one human-written solution for each language per task.

Dataset Tasks Test Cases Solutions Metrics Language Source From
EvalPerf 121 1/284.78 7.6 DPS/DPS,orm Python EvalPlus/HumanEval/MBPP
ENAMEL 142 20 1 Effak Python HumanEval
COFEFE (Function) 398 10.71 1 Efficiency@k Python HumanEval/MBPP/APPS/CodeContests
COFFE (File) 358 48.63 66.93 Efficiency@k Python  HumanEval/MBPP/APPS/CodeContests
PIE 41 104 23.8  %Opt/Speedup/%Correct C++ CodeNet
ECCO 48 20.0 16.5 Time/Memory Python CodeNet
Mercury 256 +00 18.4 Pass/Beyond Python LeetCode
EffiBench 1000 100 1 ET/MU/TMU Python LeetCode
EffiBench+ 160 100 10.7 GET/ECC Python LeetCode
CodeScope (Optimization) 30 - Opt@K/Time/Memory  Python3,C,C#,C++ Codeforces
EFFIBENCH-X 623 100 1(6) ET/MP/MI Multiple Competitions

of these benchmarks rely on popular tasks (e.g., HumanEval and MBPP), which increases the
risk of data contamination from LLM training data. Moreover, the often-simple nature of these
tasks does not adequately expose nuanced performance differences critical in complex scenarios.
To overcome these shortcomings, EFFIBENCH-X offers a large-scale, multi-language evaluation
across Python, C++, Java, JavaScript, Ruby, and Golang. By utilizing over 600 diverse and recent
competitive programming tasks, paired with expert-optimized solutions, EFFIBENCH-X allows for a
more thorough and reliable assessment of modern LLMs.

3 EFFIBENCH-X

3.1 Efficiency-Critical Problem Collection

The foundation of EFFIBENCH-X lies in a curated collection of programming problems sourced
from a wide array of competitive programming platforms, which are commonly used to evaluate
human developers’ abilities in writing efficient algorithms. Sourcing from multiple platforms ensures
diversity in problem style, constraints, and required algorithmic techniques. These platforms include
Aizu [4], AtCoder [9], CodeChef [17], Codeforces [18], and LeetCode [43]]. Problems are categorized
into two types based on their input/output handling requirements:

(1) Functional Problems require the implementation of a specific function or class, typically receiving
input via parameters and returning output directly. LeetCode problems often fall into this category.
The benchmark infrastructure handles I/O serialization and deserialization via test templates.

(2) Standard 1/O (stdio) Problems require the implementation of a complete program that reads
input from standard input (stdin) and writes output to standard output (stdout). This format is common
on platforms like Codeforces.

Our two problem types allow EFFIBENCH-X to evaluate LLM capabilities in both library-like
function generation and standalone program creation. A critical aspect of our collection process is
mitigating data contamination, where LLMs might have encountered benchmark problems during
their pre-training phase. To address this, we meticulously collect the original release date for each
problem. We prioritize and filter for problems released after October 2023 ﬂ significantly reducing
the likelihood that contemporary LLMs have been trained on them. This focus on recent problems
ensures that EFFIBENCH-X primarily evaluates the models’ generalization and reasoning capabilities
rather than memorization. Furthermore, the competitive programming origin of these tasks inherently
selects for problems demanding non-trivial algorithmic thinking and efficient data structure usage,
addressing the limitation of benchmarks based on overly simplistic tasks. All models are evaluated
under a unified instruction template and generation configurations (e.g., temperature = 0) to
ensure fairness and consistency.

3.2 Canonical Solution Construction

To establish a reliable baseline for efficiency comparison, each problem in EFFIBENCH-X is paired
with a few canonical solutions for each target language. These canonical solutions aim to represent
high-quality, efficient code typically authored by human experts. We gather potential canonical

fOctober 2023 represents a common knowledge cutoff date for many contemporary LLMs, including GPT-40
and ol models, reducing the likelihood that these problems appeared in their training data.
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Figure 1: Overview of the construction pipeline. The process begins with collecting efficiency-critical
problems from competitive programming platforms, followed by constructing canonical solutions
from expert programmers, and then generating test suites with test case generators and solution
evaluators.

solutions through multiple channels: (1) Publicly available solutions from platform discussion forums
(e.g., LeetCode Discussion). (2) Publicly available accepted submissions retrieved via platform APIs.
(3) Solutions curated from open-source repositories on GitHub and datasets on Hugging Face.

For functional problems, we strive to collect canonical solutions in all six target languages. This
comprehensive collection is crucial for the subsequent validation of language-specific test templates.
For stdio problems, collecting a canonical solution in at least one language is sufficient for validating
the test case generator and solution evaluator. When canonical solutions for specific languages are
missing, we employ a careful translation process using state-of-the-art LLMs (03-mini). The key
objective during translation is to preserve the original algorithm, logic, and time/space complexity of
the source human-written solution. We explicitly instruct the LLM to perform a direct translation
without introducing optimizations or degradations. This ensures that the translated solutions maintain
the efficiency characteristics of the original expert code, serving as a fair baseline. All collected
and translated solutions undergo a rigorous verification process. We submit them back to their
original platforms whenever possible. Only solutions that are accepted (i.e., pass all internal tests for
correctness and efficiency within the limits) are retained as canonical solutions in EFFIBENCH-X.
Invalid or inefficient submissions are discarded. This step guarantees that our baseline represents
demonstrably correct and performant code. We collect multiple accepted solutions per problem-
language pair when available. Consistent with prior work [32,|56], we establish one expert baseline
per metric: lowest runtime for ET, lowest peak memory for MP, and lowest memory integral for MIL.
Each baseline must pass platform acceptance checks and preserve the original algorithmic complexity.
Our goal is an optimized gold standard rather than average human performance.

3.3 Test Suite Generation and Validation

A robust test suite [23)132,|35/156] is essential for reliably evaluating both correctness and efficiency.
For each problem, we generate a comprehensive test suite comprising three components:

3.3.1 Core Components

Test Case Generator. Instead of directly generating many test cases with LLMs, which con-
sumes excessive tokens and is not scalable, we prompt LLMs to generate a test case generator.
generate_test_cases(num_cases: int, seed: int) is a Python function responsible for
producing a list of test cases (including input and output). The generator is designed to create
diverse test cases covering various scenarios, including boundary values, typical inputs, stress tests
(large inputs), edge cases, and potential performance traps, guided by the problem constraints, to
sufficiently evaluate a program’s efficiency. One canonical solution is provided for the generator
to produce the expected output for each test input. By default, EFFIBENCH-X generates 100 test



cases per problem using a fixed seed for reproducibility. The serialization format is kept simple (e.g.,
comma-separated values, space-separated values) to ensure easy parsing across all target languages.

Solution Evaluator. evaluate (expected_output: str, program_output: str) isa Python
function that determines the correctness of a solution’s output for a given test case. Crucially, the
evaluator first deserializes both the expected and program outputs using logic consistent with the
test case generator. It then performs a logical comparison based on the problem’s requirements,
rather than a simple string comparison. This allows for flexibility in output formatting (e.g., handling
different ordering in lists if permissible).

Test Templates (Functional Problems Only). For each target language, a code template is generated
for functional problems. This template provides the necessary boilerplate code (e.g., main function,
I/O handling) to create a runnable program. It includes a specific placeholder string, ==Code
Submission==, for injecting the functional solution (typically a function or method implementation).
The template is responsible for reading the serialized input string from stdin, deserializing it into the
appropriate data types expected by the solution function, calling the solution function, serializing the
returned value, and printing the serialized result to stdout.

3.3.2 Component Validation

The test suites undergo an initial generation followed by a rigorous, multi-stage validation process
to ensure their integrity. This comprehensive workflow guarantees their reliability, cross-language
consistency, and accuracy, providing a solid basis for evaluating correctness and efficiency.

Test Case Validation. We execute the generated generate_test_cases function to produce 100
test cases. If the count is incorrect, the generator is deemed invalid, and the entire test suite for that
problem is regenerated.

Test Template Validation. We check if the LLM-generated test templates for all six target languages.
If any templates are missing, we prompt the LLM specifically to generate the missing ones based on
the context of the existing components.

Test Suite Validation. For functional problems, we combine its canonical solution with its corre-
sponding test template for each target language. This complete program is then executed against all
100 generated test cases. The program’s stdout is captured and compared against the expected output
using the evaluate function. If the canonical solution fails any test case for a given language, the
test template for that language is considered potentially faulty. We attempt to automatically repair
the template by providing the LLM (03-mini) with the template code, the canonical solution, the
failing test case, and the error message (or incorrect output). We allow up to 3 repair attempts per
template. If repair fails, the problem is flagged for manual inspection. This process ensures that
the test templates correctly interface with known-good solutions. For stdio problems, we execute
the canonical solution (in at least one available language) against all generated test cases, using the
evaluate function to verify the output. If the canonical solution passes all test cases, the test case
generator and solution evaluator are considered valid for this problem.

3.4 Sandboxed Execution Environment

To ensure fair and accurate performance measurements, all solution code executions are performed
within a controlled sandbox to provide a reproducible execution environment. Our approach builds
upon the concepts of [65, 24], but incorporates substantial proprietary enhancements, including a
high-resolution profiler, standard I/O support, and numerous performance improvements to meet the
rigorous demands of our benchmark. This environment isolates executions from the host system
and from each other, minimizing interference and variability. We leverage Docker containers as our
sandboxing mechanism. Each execution runs within a dedicated container based on a pre-built image
specific to the programming language (e.g., official Python, GCC, OpenJDK images), as detailed in
Appendix [C.9] Crucially, to mitigate interference from other processes and ensure consistent access
to computational resources, we pin each worker’s container to specific physical CPU cores using
the cpuset-cpus Docker option. Our infrastructure detects the system’s CPU topology (mapping
logical cores to physical cores) and assigns containers to distinct physical cores, preventing multiple
benchmark executions from contending for the same core resources simultaneously. This sandboxed
setup provides a consistent and isolated environment, critical for obtaining reliable runtime and
memory usage measurements.



3.5 High-Resolution Performance Profiling

Accurate efficiency assessment necessitates precise measurement of resource consumption. To this
end, we developed a custom profiler that integrates with a sandboxed execution environment. This
profiler captures high-resolution data by periodically sampling the execution time and memory usage
of the solution. The sampling occurs at a high frequency (0.1 milliseconds, i.e., 10 kHz) to accurately
capture peak resource usage and rapid fluctuations. The profiler also enforces specified memory limits,
terminating processes that exceed them and logging Out-Of-Memory events. For each execution on a
test case, the profiler outputs time-series data consisting of timestamps and corresponding memory
usage readings, which forms the basis for the efficiency metrics (Section@).

4 Evaluation Metrics

To quantify the efficiency of LLM-generated solutions relative to human-expert-written solutions, we
follow existing works [32] 156} 48 23,162, |66]] and define three key metrics:

Execution Time (ET) measures the runtime performance of an LLM-generated solution compared
to the human-expert-written solution. For each problem i, let T}! be the execution time of the
human-expert-written solution required to pass all test cases for the task, and T~ be the execution
time of the LLM-generated solution required to pass all test cases for the task. If the LLM-generated
solution for problem i fails to pass all test cases or encounters a runtime error (e.g., timeout, crash)
[23,156]], its ET score s!' for that problem is defined as zero. Otherwise, the score is computed as the

ratio g—‘f, which is then clipped to the interval [0, 1]:

TH
si = clip (TlL’ 0, 1)

This clipping ensures that an LLM-generated solution performing faster than the human-expert-
written solution is considered equally efficient (score of 1) for this metric [23} 156} 48], preventing
disproportionate influence from exceptionally fast outliers. The overall ET is then calculated as the
average of these individual scores across all NV evaluated problems, expressed as a percentage:

N
ET (%) = (&ZJ) x 100%
=1

A higher ET percentage indicates that, on average, LLM-generated solutions achieve runtime perfor-
mance closer to, or as good as, the human-expert-written solutions (where 100% signifies performance
equivalent to or better than the human-expert-written solution).

Memory Peak (MP) indicates the minimum memory required for the system (e.g., mobile devices)
to execute the code for the test cases. MP evaluates the memory peak of LLM-generated code relative
to the human-expert-written solution. For each problem i, M denotes the memory peak of the
expert-written solution, and M} denotes that of the LLM-generated solution. Similar to ET, if the
solution fails, its individual memory score sfw for that problem is defined as zero. Otherwise, the

H
score is computed as the ratio %, which is then clipped to [0, 1]:

MH
sM = clip (J\/.L’O’ 1)

Similar to ET, the overall MP can be expressed as a percentage:

N
MP (%) = (;ZSZM) x 100%
=1

A higher MP percentage suggests that LLM-generated solutions, on average, exhibit peak memory
footprints comparable to or as good as human-expert-written solutions.

Memory Integral (MI) measures the overall memory consumption throughout a solution’s execution
by comparing the area under the memory-time curve for LLM-generated solutions against human-

expert-written ones. The memory integral A for a single execution is defined as A = fOT“"“l M(t) dt,



Table 2: Results averaged across six programming languages on EFFIBENCH-X.

Model Name | Execution Time Memory Peak  Memory Integral ~ Pass@1
DeepSeek-V3-0324 40.46% 51.52% 39.38%  53.29%
DeepSeek-R1 61.33% 69.41% 60.06%  72.79%
Llama-4-Scout-17B-16E-Instruct 23.16% 28.09% 22.61%  28.44%
Llama-4-Maverick-17B-128E-Instruct 16.28% 36.47% 15.52%  37.32%
Qwen3-8B 45.44% 51.64% 45.11%  53.50%
Qwen3-14B 59.75% 60.79% 58.58%  63.30%
Qwen3-32B 62.21% 67.26% 61.48%  70.41%
Qwen2.5-Coder-7B-Instruct 24.37% 25.40% 24.01%  25.74%
Qwen?2.5-Coder-14B-Instruct 32.06% 34.19% 31.23%  34.88%
Qwen2.5-Coder-32B-Instruct 36.66% 39.12% 36.05%  39.94%
QwQ-32B 31.60% 3551% 31.38%  36.78%
Gemma-3-4B-It 9.69% 16.74% 921% 17.15%
Gemma-3-12B-It 15.53% 27.64% 1426%  28.25%
Gemma-3-27B-1It 16.62% 32.52% 1521%  33.49%
Phi-4 28.42% 29.81% 27.34%  30.60%
Phi-4-Reasoning 48.37% 48.83% 46.98%  50.54%
Phi-4-Reasoning-Plus 36.62% 38.22% 35.86%  39.27%
GPT-40-mini 16.96% 35.12% 16.19%  36.06%
GPT-40 24.53% 42.61% 24.00%  43.61%
Claude-3.5-Haiku 36.33% 44.06% 35.07%  45.24%
Claude-3.7-Sonnet 47.79% 54.60% 46.98%  56.23%
Gemini-2.0-Flash 30.61% 47.15% 28.57%  48.56%
Gemini-2.0-Flash-Lite 27.86% 38.61% 26.28%  39.89%
Gemini-2.0-Flash-Thinking 38.82% 55.56% 36.83%  57.38%
Gemini-2.5-Flash 40.42% 65.13% 38.22%  68.08%
Gemini-2.5-Pro 47.82% 75.60% 45.08%  79.43%

where M (t) is the memory usage at time ¢ over the solution’s total execution time iy, This integral
is numerically approximated based on the high-resolution profiling data (Section . Let Al be the
memory integral of the expert-written solution for problem i, and A% be that of the LLM-generated
solution. Similar to ET, if the solution fails, its individual MI score 3{‘ for that problem is defined as
Al

AL

AH
sf = clip (Alp 0, 1>

This clipping ensures that solutions with a smaller memory integral (i.e., AY < A resulting in a
H
ﬁi > 1) than the human-expert solution are considered equivalently efficient (score of 1) for

this metric, preventing disproportionate influence from exceptionally memory-frugal solutions. The
overall MI can be expressed as a percentage:

N
MI (%) = szsf‘) x 100%
i=1

A higher MI percentage indicates that, on average, LLM-generated solutions exhibit overall memory
consumption (integrated over time) comparable to or as good as human-expert solutions.

zero. Otherwise, the score is computed as the ratio which is then clipped to [0, 1]:

ratio

5 Evaluation

Testbed: Efficiency evaluations are conducted on AWS i7ie.metal-48xI instances. These instances
feature 4th generation Intel Xeon Scalable (Sapphire Rapids) processors with 96 physical cores
(192 vCPUs) and 384 GiB of RAM. All code execution occurs within our sandboxed environment,
detailed in Section [3.4]and implemented using Docker containers, thereby ensuring reliable efficiency
evaluations by isolating processes from host machine variations and preventing inter-task interference.
Each code execution is constrained by a 10-second timeout and a 1024 MiB memory limit.

Models and Metrics: As detailed in Table[6] various LLMs are selected for evaluation. Open-source
LLMs include DeepSeek-R1 [26] and DeepSeek-V3-0324 [47]]; Llama-4-Scout-17B-16E-Instruct and



Table 3: Results on EFFIBENCH-X-C++ and EFFIBENCH-X-Python.

Model Name | ET MP MI Pass@1 | ET MP MI Pass@1
\ C++ \ Python
DeepSeek-V3-0324 39.02%  52.54% 32.23% 54.41% | 48.02% 53.22% 48.59%  55.38%
DeepSeek-R1 60.89% 71.57% 51.89% 75.12% | 67.30% 69.66% 66.27% 74.64%
Qwen3-14B 61.22% 63.84% 57.03% 66.77% | 65.28% 64.36% 63.64% 68.38%
Qwen3-32B 63.89% 7030% 56.48% 74.80% | 69.28% 70.94% 68.34%  75.44%
Qwen2.5-Coder-14B-Instruct | 32.02% 35.09% 28.17% 35.63% | 31.89% 34.26% 31.89% 34.99%
Qwen2.5-Coder-32B-Instruct | 35.57% 38.43% 32.12% 39.33% | 37.13% 39.29% 36.89% 40.45%
QwQ-32B 3433% 38.60% 30.29% 40.45% | 38.82% 40.10% 38.35%  42.05%
Gemma-3-4B-It 9.51% 20.77% 6.48% 20.87% | 14.54% 1895% 1542% 19.26%
Gemma-3-12B-It 13.76% 32.44% 7.46% 32.58% | 18.72% 23.34% 19.95% 23.60%
Gemma-3-27B-It 12.93%  38.32% 577%  38.68% | 25.39% 32.78% 27.13% 33.87%
Phi-4 28.60% 30.56% 24.08% 31.46% | 30.14% 31.71% 29.63% 32.74%
Phi-4-Reasoning 42.63% 42.77% 36.59% 45.10% | 50.86% 50.76% 49.92%  53.45%
GPT-40-mini 10.28%  35.32% 6.07% 36.12% | 27.12% 36.21% 28.26% 37.40%
GPT-40 12.62%  37.27% 7.58% 37.88% | 38.05% 48.13% 40.24%  48.96%
Claude-3.5-Haiku 3517% 45.84% 31.00% 47.03% | 34.46% 40.41% 34.86% 41.41%
Claude-3.7-Sonnet 4545% 55.26% 40.68% 56.98% | 51.90% 55.88% 52.03% 57.78%
Gemini-2.5-Flash 35.84% 68.26% 23.52% 71.91% | 56.08% 66.14% 58.30% 69.82%
Gemini-2.5-Pro 43.33% 75.51% 26.60% 81.06% | 66.12% 75.08% 67.72% 79.94%

Llama-4-Maverick-17B-128E-Instruct [51]]; Qwen3 (8B, 14B, 32B) [57], Qwen2.5-Coder-Instruct
(14B, 32B) [37], and QwQ-32B [58]]; Gemma-3-It (4B, 12B, 27B) [63]; and Phi-4, Phi-4-Reasoning,
and Phi-4-Reasoning-Plus [1]. Proprietary LLMs include GPT-40 and GPT-40-mini [38]; Claude-3.5-
Haiku and Claude-3.7-Sonnet [8, [7]]; Gemini-2.0 (Flash, Flash-Lite, Flash-Thinking) and Gemini-2.5
(Flash, Pro) [6]. For evaluation metrics, we use Execution Time (ET), Memory Peak (MP), Memory
Integral (MI), and Pass@1 [[15] to measure the correctness of the generated code.

5.1 Main Results

Open-source LLMs: As shown in Table 2] among the evaluated open-source models, DeepSeek-R1
demonstrates exceptional performance, achieving the highest scores among open-source models with
an ET of 61.33%, MP of 69.41%, MI of 60.06%, and a Pass@1 rate of 72.79%. The Qwen3 series
also shows strong performance, particularly Qwen3-32B, which slightly outperforms DeepSeek-R1
in execution time efficiency with an ET of 62.21% and MI of 61.48%, while achieving a solid Pass@ 1
of 70.41%. The Phi-4 family shows interesting variations, with Phi-4-Reasoning achieving notably
better performance (ET 48.37%, Pass@1 50.54%) compared to the base Phi-4 model (ET 28.42%,
Pass@1 30.60%). Other models like the Llama-4 series generally exhibit lower performance in both
correctness and efficiency metrics, with Llama-4-Maverick-17B-128E-Instruct scoring an ET of just
16.28% and Pass@1 of 37.32%. This highlights a significant variance in capabilities among currently
available open-source LLMs for generating efficient and correct code.

Proprietary LLMs: The proprietary LLMs generally show strong performance. Gemini-2.5-Pro
emerges as the top-performing model overall, with the highest MP of 75.60% and Pass@1 rate of
79.43%, though its ET (47.82%) and MI (45.08%) fall short of the best open-source models. Gemini-
2.5-Flash also delivers robust results (ET 40.42%, MP 65.13%, MI 38.22%, Pass@1 68.08%). Models
like Claude-3.7-Sonnet (ET 47.79%, Pass@1 56.23%) and GPT-40 (ET 24.53%, Pass@1 43.61%)
offer competitive, albeit lower, performance levels. This suggests that while leading proprietary
models often set the benchmark for correctness and memory peak efficiency, some open-source
models are now achieving superior execution time efficiency.

Impact of Model Size: Model size within a family generally correlates positively with performance.
Examining the Qwen3 series, Qwen3-8B achieves an ET of 45.44% and Pass@1 of 53.50%. This
scales up with Qwen3-14B (ET 59.75%, Pass@1 63.30%), and further with Qwen3-32B (ET 62.21%,
Pass@1 70.41%). A similar trend is observed in the Qwen2.5-Coder series, with the 32B variant (ET
36.66%, Pass@1 39.94%) outperforming the 14B counterpart (ET 32.06%, Pass@1 34.88%). The
Gemma-3 series follows this pattern as well, with performance increasing from Gemma-3-4B-It (ET
9.69%, Pass@1 17.15%) to Gemma-3-27B-It (ET 16.62%, Pass@1 33.49%). This indicates that
larger models tend to have better capabilities for generating both correct and more efficient code.
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Figure 2: Distribution of inefficiency causes across representative proprietary models.

Table 4: Inefficiency Analysis by Category (higher = more frequent cause).

Inefficiency Category Gemini-2.5-Pro GPT-4o0 Claude-3.7-Sonnet
Algorithmic Complexity 29.9% 37.1% 28.0%
Suboptimal Implementation 28.2% 16.3% 29.0%
Redundant Computation 22.9% 22.9% 29.5%

I/0 Overhead 11.4% 17.5% 5.3%
Inefficient Data Structure 7.6% 6.2% 8.2%

Impact of Model Specialization: Newer versions and specialized variants of models often demon-
strate considerable performance improvements. The Gemini family illustrates this clearly: Gemini-
2.0-Flash shows an ET of 30.61% and Pass@1 of 48.56%, while the specialized Gemini-2.0-Flash-
Thinking variant improves upon this with an ET of 38.82% and Pass@1 of 57.38%. Further advance-
ments are seen with Gemini-2.5-Flash (ET 40.42%, Pass@1 68.08%), and Gemini-2.5-Pro leads
in correctness (Pass@1 79.43%). Similar benefits can be observed in the Phi-4 series, where the
reasoning-enhanced variant (ET 48.37%, Pass@1 50.54%) significantly outperforms the base model
(ET 28.42%, Pass@1 30.60%). This trend highlights the rapid evolution in LLM capabilities and the
benefits of targeted model enhancements.

Overall, while several state-of-the-art LLMs can generate functionally correct code at high rates,
there remains a significant gap in achieving efficiency comparable to human expert solutions. Even
the best-performing models achieve around 60-62% relative execution time on average, indicating
substantial room for improvement in generating truly optimized code.

5.2 Sources of Inefficiency and Task-Type Analysis

What makes model code slow? Across models, the dominant failure mode is Algorithmic Complex-
ity rather than micro-optimizations: GPT-40 shows the highest share of complexity-driven inefficiency
(37.1%), while Claude 3.7 Sonnet is most affected by Suboptimal Implementation (29.0%) and Redun-
dant Computation (29.5%); Gemini 2.5 Pro is also primarily limited by algorithmic choices (29.9%)
(Figure[2]and Table[d). This indicates that improving algorithm selection and pruning strategies would
yield the largest efficiency gains, beyond language-specific I/O tweaks or data-structure substitutions.

5.3 Comparison on Different Language Subsets

We verify the consistency of model performance across programming languages by analyzing results
on the C++ and Python subsets (Table[3)). This analysis confirms that the relative ranking of models
observed in the end-to-end results remains largely consistent across individual language subsets,
despite variations in absolute performance values. In both C++ and Python, the top-performing models



Table 5: DeepSeek-R1 and Claude-3.7-Sonnet on EFFIBENCH-X across different languages.

Language | ET MP MI  Pass@l | ET MP MI  Pass@1
| DeepSeek-R1 | Claude-3.7-Sonnet
JavaScript 63.34% 69.19% 63.03% 71.43% 50.15% 57.33% 49.48% 58.59%
Ruby 64.01% 66.11% 63.65% 69.02% 49.44% 52.48% 49.59% 53.61%
Python 67.30% 69.66% 66.27 % 74.64% 51.90 % 55.88% 52.03% 57.78%
Java 52.23% 69.36% 54.98% 73.19% 46.33% 55.11% 46.41% 56.66%
C++ 60.89% 71.57 % 51.89% 75.12% 45.45% 55.26% 40.68% 56.98%
Go 60.24% 70.57% 60.57% 73.35% 43.48% 51.52% 43.67% 53.77%

maintain their leadership positions: Qwen3-32B and DeepSeek-R1 excel in execution time efficiency
across both languages (C++: 63.89% and 60.89%; Python: 69.28% and 67.30%, respectively), while
Gemini-2.5-Pro consistently leads in Pass@1 (C++: 81.06%; Python: 79.94%) and memory peak
metrics (C++: 75.51%; Python: 75.08%). Similarly, mid-tier models like Claude-3.7-Sonnet and
Phi-4-Reasoning maintain their relative positions, as do lower-performing models like the Gemma-3
series. While absolute performance tends to be higher on Python than C++ across most models,
these variations affect all models similarly, preserving their relative standings. This cross-language
consistency validates the robustness of EFFIBENCH-X, confirming that a model’s general code
efficiency capabilities transfer across diverse programming contexts.

5.4 Language-Specific Performance

We provide the evaluation results of DeepSeek-R1 and Claude-3.7-Sonnet on EFFIBENCH-X across
different programming languages in Table[5] Both models demonstrate strong functional correctness
across languages, with DeepSeek-R1 achieving Pass@1 rates from 69.02% (Ruby) to 75.12% (C++),
and Claude-3.7-Sonnet ranging from 53.61% (Ruby) to 58.59% (JavaScript). However, we observe
significant variations in efficiency metrics across language types. Dynamically-typed languages
(Python, Ruby, JavaScript) consistently show higher execution time efficiency, with Python leading at
67.30% ET for DeepSeek-R1 and 51.90% ET for Claude-3.7-Sonnet, while statically-typed languages
like Java show comparatively lower ET scores. This language-based efficiency gap persists across
both models despite strong functional correctness, suggesting that LLMs may have developed better
optimization strategies for widely used scripting languages. The contrast is particularly notable with
C++, where DeepSeek-R1 achieves its highest Pass@1 (75.12%) and strong memory performance
(MP: 71.57%), yet shows only 60.89% execution time efficiency compared to Python’s 67.30%.
These findings indicate that while current LLMs can generate syntactically correct and functionally
working code across languages, their ability to produce optimized code that matches human efficiency
varies substantially by language type, highlighting an area for future research.

6 Conclusion

We propose EFFIBENCH-X, the first large-scale multi-language benchmark specifically designed
for robust efficiency evaluation across six programming languages. Our comprehensive assessment
of 26 SOTA LLMs reveals significant efficiency gaps between LLM-generated and human expert
code, with even the best-performing model (Qwen3-32B) achieving only about 62% of human-level
efficiency on average. Performance varies considerably by language. These findings underscore the
critical need to enhance LLMs’ optimization capabilities across diverse languages, particularly where
correctness and efficiency are vital. EFFIBENCH-X serves as a resource for future research aimed at
improving multilingual code generation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose EFFIBENCH-X, the first large-scale multi-language benchmark
specifically designed for robust efficiency evaluation of LLM-generated code.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the potential limitations of our work in Appendix A.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper is a code efficiency benchmark; it does not include theorems or
related theoretical results.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the evaluation framework on our GitHub repository to enable
others to reproduce our results and measure the efficiency of their LLMs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release the source code on our GitHub repository and the datasets on
Hugging Face.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify metrics, hardware, Docker runtimes/limits, and provide scripts
to reproduce our experimental environments on GitHub; see Sections ] and [5] and Ap-

pendix[C.9]
Guidelines:
» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide an evaluation to demonstrate that our results are reliable.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide detailed information on our AWS servers in the evaluation section.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics for all experiments.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide a discussion of both potential positive societal impacts and negative
societal impacts in Appendix B.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We follow the instructions of the NeurIPS Code of Ethics for all evaluations in
our paper.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide the detailed documentation for our dataset.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23


https://neurips.cc/Conferences/2025/LLM

A Limitations

Despite the significant contributions of EFFIBENCH-X in establishing a multi-language benchmark
for code efficiency using novel and complex competitive programming tasks, our study and benchmark
have several limitations that warrant discussion. Firstly, while competitive programming problems
effectively address data contamination and complexity, this focus primarily evaluates algorithmic
and data structure efficiency. It may not fully encompass the spectrum of efficiency considerations
critical in other software development domains, such as low-level system programming, optimizing
for specific hardware architectures, or managing large-scale data processing pipelines, thus potentially
limiting the generalizability of findings to all efficiency-critical code generation contexts.

To address this limitation, future work will expand EFFIBENCH-X to incorporate system-level
efficiency dimensions. Specifically, our planned extensions include: (1) introducing new benchmarks
from HPC and I/O-intensive domains to test vectorization, cache locality, and asynchronous I/O; (2)
capturing granular system metrics such as cache misses and I/O throughput using profiling tools;
and (3) developing expert-written baselines to establish a stronger performance reference. These
directions aim to extend EFFIBENCH-X toward a more holistic representation of efficiency across
both algorithmic and systems levels.

Our current analysis primarily quantifies the efficiency gap between LLM-generated and expert
code; it does not delve deeply into the root causes of LLM inefficiency at a granular code level
(e.g., identifying specific code constructs or algorithmic choices that are suboptimal), which is useful
for providing targeted feedback for model improvement. Finally, conducting extensive efficiency
evaluations across multiple languages, numerous models, and complex problems with high-resolution
profiling is computationally demanding, which could present a practical barrier for researchers with
limited resources wishing to replicate or significantly extend this evaluation on a large scale.

B Broader Impacts

Positive Societal Impacts The development and adoption of benchmarks like EFFIBENCH-X are
crucial for driving progress in LLM-generated code efficiency. This progress promises significant
positive societal impacts, including reduced energy consumption and lower operational costs for
computing resources at scale, as inefficient code requires more energy and infrastructure. Furthermore,
enabling LLMs to generate more efficient code is critical for deploying these models and the
applications they help create in resource-constrained environments such as mobile devices and
embedded systems, as well as in latency-sensitive cloud applications where performance is paramount.
Benchmarks like ours also provide the research community with a clearer understanding of current
LLM capabilities and limitations regarding code efficiency across diverse languages, fostering targeted
research towards more effective and beneficial LLM-driven development workflows.

Negative Societal Impacts However, improvements in LLM capabilities, including enhanced
code efficiency facilitated by benchmarks like EFFIBENCH-X, also carry potential negative societal
impacts. As LLMs become more adept at generating highly optimized code, there is a risk that these
powerful capabilities could be exploited for malicious purposes, such as creating more efficient
and evasive malware or facilitating sophisticated cyberattacks. This potential advancement in
LLM-generated harmful code could inadvertently lower the technical barrier for malicious actors.
Additionally, while efficiency is a goal, relying heavily on LLM-generated code necessitates robust
validation processes; even efficient code could contain subtle bugs or security vulnerabilities that
might be overlooked, potentially introducing new risks at scale. Addressing these concerns requires
responsible development and deployment practices for LLMs, coupled with continued research into
security, interpretability, and comprehensive validation techniques.
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Table 6: Model list and URLs.

Model Name | URL

Open Source Models

DeepSeek-V3-0324 https://huggingface.co/deepseek-ai/DeepSeek-V3-0324
DeepSeek-R1 https://huggingface.co/deepseek-ai/DeepSeek-R1

Llama-4-Scout-17B-16E-Instruct
Llama-4-Maverick-17B-128E-Instruct

https://huggingface.co/meta-1lama/Llama-4-Scout-17B-16E-Instruct
https://huggingface.co/meta-1lama/Llama-4-Maverick-17B-128E-Instruct

Qwen3-8B https://huggingface.co/Qwen/Quen3-8B

Qwen3-14B https://huggingface.co/Qwen/Qwen3- 14B

Qwen3-32B https://huggingface.co/Qwen/Qwen3-32B

Qwen2.5-Coder-7B-Instruct https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct

Qwen2.5-Coder-14B-Instruct https://huggingface.co/Qwen/Quwen2.5-Coder-14B-Instruct

Qwen2.5-Coder-32B-Instruct https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct

QwQ-32B https://huggingface.co/Qwen/QwQ-32B

Gemma-3-4B-It https://huggingface.co/google/gemma-3-4b-it

Gemma-3-12B-It https://huggingface.co/google/gemma-3-12b-it

Gemma-3-27B-It https://huggingface.co/google/gemma-3-27b-it

Phi-4 https://huggingface.co/microsoft/phi-4

Phi-4-Reasoning https://huggingface.co/microsoft/phi-4-reasoning

Phi-4-Reasoning-Plus https://huggingface.co/microsoft/phi-4-reasoning-plus
Proprietary Models

GPT-40-mini https://platform.openai.com/docs/models/gpt-40-mini

GPT-40

Claude-3.5-Haiku
Claude-3.7-Sonnet

https://platform.openai.com/docs/models/gpt-4o

https://www.anthropic.com/claude/haiku
https://www.anthropic.com/claude/sonnet

Gemini-2.0-Flash https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
Gemini-2.0-Flash-Lite https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash-1lite
Gemini-2.0-Flash-Thinking https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
Gemini-2.5-Flash https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
Gemini-2.5-Pro https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro

C Technical Appendices and Supplementary Material

C.1 Model List
C.2 Reliability of Efficiency Measurement

To assess the reliability of our efficiency metrics and ensure robustness against potential execution
variability, we conducted multiple runs of our evaluation pipeline. Table [/| presents the results
of executing the code generated by DeepSeek-R1 and Claude-3.7-Sonnet three times, reporting
the mean, minimum, and maximum values for each efficiency metric. The results demonstrate
high consistency across repeated executions. For execution time (ET), which might be expected to
show the most variability due to system load fluctuations, we observe relatively small variations.
DeepSeek-R1 shows an overall mean ET of 62.45% with a range from 61.33% to 63.55% (a variation
of approximately +1.7%). Similarly, Claude-3.7-Sonnet achieves a mean ET of 48.63% with a range
from 47.79% to 49.31% (a variation of about +1.5 percentage points). This narrow range confirms
the reliability of our execution time measurements. Memory metrics show even greater stability
across runs. For memory peak (MP), both models demonstrate extremely consistent results, with
variations of less than 0.1 percentage points (DeepSeek-R1: 69.42% with range 69.41%-69.44%;
Claude-3.7-Sonnet: 54.63% with range 54.60%-54.65%). Memory integral (MI) shows slightly more
variation but remains highly stable (DeepSeek-R1: 61.15% with range 60.06%-62.19%; Claude-3.7-
Sonnet: 47.78% with range 46.98%-48.40%). Language-specific results follow similar patterns of
consistency. For instance, Python shows the highest stability with ET ranges of 67.30%-67.67% for
DeepSeek-R1 and 51.90%-52.06% for Claude-3.7-Sonnet. Java exhibits slightly wider variations
(DeepSeek-R1: 52.23%-57.56%; Claude-3.7-Sonnet: 46.33%-49.01%), potentially reflecting the
additional variability introduced by JVM optimization and garbage collection processes. However,
even these wider ranges remain relatively narrow, preserving the relative performance relationships
between models.

These results validate the robustness of our efficiency measurement approach. The sandboxed
execution environment, combined with our methodology of executing code multiple times, effectively
controls for transient system variations while capturing meaningful differences in code efficiency.
The consistent results across repeated runs confirm that the efficiency metrics reported throughout
this paper reliably represent the true performance characteristics of LLM-generated code, providing a
solid foundation for comparative analysis across models and languages.
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Table 7: Robustness evaluation of code efficiency metrics through triple execution of DeepSeek-R1
and Claude-3.7-Sonnet generated solutions. Results are reported in Mean (min, max) format to
demonstrate consistency across multiple runs.

Model Name

ET

MP

MI

Pass@1

All

DeepSeek-R1
Claude-3.7-Sonnet

62.45% (61.33%, 63.55%)
48.63% (47.79%, 49.31%)

69.42% (69.41%, 69.44%)
54.63% (54.60%, 54.65%)

61.15% (60.06%, 62.19%)
47.78% (46.98%, 48.40%)

72.79%
56.21%

C++

DeepSeek-R1
Claude-3.7-Sonnet

61.79% (60.89%, 62.77%)
46.36% (45.45%, 47.18%)

71.54% (71.44%, 71.61%)
55.12% (55.03%, 55.26%)

52.99% (51.89%, 54.10%)
41.58% (40.68%, 42.05%)

75.12%
56.82%

Java

DeepSeek-R1
Claude-3.7-Sonnet

55.01% (52.23%, 57.56%)
47.95% (46.33%, 49.01%)

69.34% (69.31%, 69.36%)
55.09% (55.06%, 55.11%)

57.54% (54.98%, 59.82%)
47.92% (46.41%, 49.04%)

73.19%
56.66%

JavaScript

DeepSeek-R1
Claude-3.7-Sonnet

64.09% (63.34%, 64.84%)
50.86% (50.15%, 51.44%)

69.20% (69.19%, 69.21%)
57.31% (57.30%, 57.33%)

63.71% (63.03%, 64.38%)
50.19% (49.48%, 50.76%)

71.43%
58.59%

Ruby

DeepSeek-R1
Claude-3.7-Sonnet

64.14% (64.01%, 64.27%)
49.61% (49.44%, 49.76%)

66.14% (66.11%, 66.16%)
52.48% (52.48%, 52.49%)

63.78% (63.65%, 63.91%)
49.73% (49.59%, 49.86%)

69.02%
53.61%

Golang

DeepSeek-R1
Claude-3.7-Sonnet

62.20% (60.24%, 64.16%)
45.01% (43.48%, 46.41%)

70.65% (70.57%, 70.71%)
51.89% (51.52%, 52.11%)

62.58% (60.57%, 64.59%)
45.23% (43.67%, 46.66%)

73.35%
53.77%

Python

DeepSeek-R1
Claude-3.7-Sonnet

67.49% (67.30%, 67.67%)
51.99% (51.90%, 52.06%)

69.66% (69.66%, 69.67%)
55.89% (55.88%, 55.90%)

66.32% (66.27%, 66.36%)
52.04% (52.00%, 52.09%)

74.64%
57.78%

Table 8: Success rate of test-case generator.

Attempts # of Generators Ratio (%) Cumulative Ratio (%)
1 510 81.86 81.86

2 71 11.40 93.26

3 20 3.21 96.47

4 4 0.64 97.11

5 3 0.48 97.59

>5 15 2.41 100.00

C.3 Test-Case Generator Metrics

To evaluate the reliability and comprehensiveness of our test-case generator, we measured both its
generation success rate and code coverage across all tasks in EFFIBENCH-X. As shown in Table[8]
the generator achieves a high success rate, successfully producing valid test cases on the first attempt
for 81.86% of tasks, and reaching a cumulative success rate of 96.47% within three automated retries.
Only a small fraction (2.41%) required more than five attempts, demonstrating the robustness of our
generation process.

Furthermore, the generated tests exhibit full coverage when executed against the canonical solutions.
Table O] reports that our generated tests achieve 100% line and branch coverage, confirming that they
comprehensively validate functional correctness and efficiency for each task.

C.4 Clipped Efficiency Metrics

To further validate the robustness of our efficiency evaluation, we re-analyzed performance using
unclipped execution time (ET) ratios. As shown in Table models such as Claude-3.7-Sonnet
produce faster-than-expert code in over 20% of cases, while maintaining the same relative model
ranking observed under the clipped ET metric. These results confirm that our main conclusions are
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Table 9: Coverage analysis of generated tests.
Metric Results (%)

Line Coverage 100.00
Branch Coverage 100.00

Table 10: Unclipped median ET ratio and proportion of tasks with faster-than-expert performance
(ET > 1.0).

Model Median Unclipped ET Ratio % of Tasks with ET > 1.0
GPT-40-mini 0.77 1.61

GPT-40 0.82 7.54
Claude-3.5-Haiku 091 9.15
Gemini-2.5-Flash 0.87 13.80
Gemini-2.5-Pro 091 19.26
Claude-3.7-Sonnet 0.97 20.71

not artifacts of the clipping threshold but reflect genuine model differences in efficiency-oriented
code generation.

To better understand the sources of these gains, we analyzed a subset of faster-than-expert solutions
and categorized their optimization strategies (Table [IT)). Gemini-2.5-Pro and Claude-3.7-Sonnet
primarily apply implementation-level optimizations—for example, achieving a 3.33 x speedup by
avoiding string conversions inside loops—whereas GPT-40 more often exhibits algorithmic or
structural improvements, such as reducing asymptotic complexity (e.g., O(N?) to O(N log N))
or reformulating the problem entirely. This diversity of optimization behaviors highlights distinct
reasoning pathways across model families and underscores the analytical depth of the evaluation
framework.

C.5 Dataset Structure and Composition

To enhance the transparency and reproducibility of EFFIBENCH-X, we provide detailed documen-
tation of its structure and composition in Tables [12{and Table [12] presents the dataset card of
EFFIBENCH-X, describing the key fields and their definitions, which collectively define how each
programming problem is represented and utilized during evaluation. Table|13|summarizes the distri-
bution of problems across the five major competitive programming websites from which the dataset
was constructed. This diversity ensures broad coverage across problem types, complexities, and
constraints, contributing to a robust and reliable benchmark for evaluating code efficiency generation.

C.6 Additional Language Subsets

Tables and[I7] present detailed evaluation results for the Java, JavaScript, Ruby, and Go
subsets of EFFIBENCH-X. These findings reinforce the performance patterns observed in our primary
analysis while revealing language-specific insights. For JavaScript, Qwen3-32B leads open-source
models with 70.29% ET and 69.87% MI, slightly outperforming DeepSeek-R1, while Gemini-2.5-
Pro achieves the highest Pass@1 (80.90%) and MP (78.22%). In Java, Qwen3-14B unexpectedly

Table 11: Categorization of optimization strategies observed in faster-than-expert code.

Optimization Category Gemini-2.5-Pro  Claude-3.7-Sonnet GPT-4o0
Implementation-Level Optimization 55.83 62.02 13.79
Algorithmic Complexity Optimization 26.67 20.93 37.93
Problem Reformulation 7.50 6.98 41.38
Advanced Data Structure Usage 5.00 3.88 0.00
Pruning and Heuristic Optimization 5.00 6.20 6.90
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Table 12: Dataset Card of EFFIBENCH-X

Field Name Definition

id Problem index in the corresponding source.

title Task name.

title_slug URL-friendly slug of the task name, used for referencing.
description Task description.

description_md Task description in markdown format.

source The source platform from which the problem was collected.
url URL to the original problem.

type Problem type: functional or I/O.

starter_code

solutions

Starter code provided in multiple programming languages (C++, Java, Python,
JavaScript, Go, Ruby).

Canonical solutions for each language. For each language, runtime represents
the solution optimized for minimal runtime (with reasonably low memory), and
memory represents the solution optimized for minimal memory (with reasonably
low runtime).

test_case_generator The test case generator used to produce evaluation test cases.

generated_tests
test_runner

Tests generated by the test_case_generator, which are used in our experiments.
Test templates for functional problems. For each target language, a runnable
code template is generated to handle input/output serialization and function

invocation.

Table 13: Task distribution by source websites in EFFIBENCH-X
Website Aizu CodeChef Codeforces AtCoder LeetCode Total

Tasks 33 93 10 149 338 623

achieves the highest efficiency (62.32% ET, 62.02% MI) among all models, outperforming larger
variants, while Gemini-2.5-Pro leads in correctness (80.42% Pass@1). For Ruby, Gemini-2.5-Pro
demonstrates the best overall performance (65.66% ET, 74.32% Pass@1), with DeepSeek-R1 leading
open-source models (64.01% ET, 69.02% Pass@1). In Go, Qwen3-32B shows the highest efficiency
among open-source models (62.13% ET, 62.60% MI), while Gemini-2.5-Pro achieves the highest
correctness (79.94% Pass@1) despite lower execution efficiency (31.50% ET). Several patterns
emerge consistently across languages: model rankings remain relatively stable despite variations in
absolute scores; dynamically-typed languages generally show higher efficiency scores than statically-
typed languages; memory efficiency and correctness appear more closely correlated than execution
time efficiency and correctness; and reasoning-enhanced models consistently outperform their base
counterparts. These additional evaluations validate EFFIBENCH-X’s robustness as a comprehensive
benchmark for assessing code efficiency generation across diverse programming contexts.

C.7 Problem Types

Tables [I8 and [T9] present detailed evaluation results across two problem categories in our benchmark:
functional problems and standard I/O problems. For functional problems, DeepSeek-R1 achieves the
highest execution efficiency among open-source models (74.53% ET, 73.26% MI), followed closely
by Qwen3-32B (73.14% ET, 72.85% MI) and Qwen3-14B (72.92% ET, 72.37% MI). Gemini-2.5-Pro
excels in correctness and memory peak efficiency (90.04% MP, 92.50% Pass@ 1) but shows lower
execution efficiency (57.41% ET) than the top open-source alternatives. Phi-4-Reasoning delivers
strong performance (56.73% ET, 58.28% Pass@1), significantly outperforming its base model Phi-4
(30.54% ET, 32.79% Pass@1).

For standard I/O problems, performance drops substantially across all models. Qwen3-32B leads in
execution efficiency (49.25% ET, 48.00% MI), followed by DeepSeek-R1 (45.68% ET, 44.42% MI)
and Qwen3-14B (44.12% ET, 42.22% MI). Gemini-2.5-Pro maintains its leadership in correctness
and memory metrics (58.47% MP, 63.92% Pass@1), though with much lower absolute scores than on
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Table 14: Evaluation of code generated by various LLMs on EFFIBENCH-X-Java.

Model Name ET | MP MI Pass@1

DeepSeek-V3-0324 3446%  52.11%  34.35% 53.93%
DeepSeek-R1 52.23%  69.36% 54.98%  73.19%
Llama-4-Scout-17B-16E-Instruct 20.92%  26.16%  20.46%  26.48%
Llama-4-Maverick-17B-128E-Instruct | 11.24%  38.80% 8.45%  39.81%
Qwen3-8B 32.63% 5383% 37.54%  56.18%
Qwen3-14B 62.32% 65.04% 62.02%  68.70%
Qwen3-32B 52.18%  68.92%  56.32% 72.71%
Qwen2.5-Coder-7B-Instruct 25.14%  2596%  24.99%  26.32%
Qwen2.5-Coder-14B-Instruct 33.76%  3424%  32.88% 3547%
Qwen2.5-Coder-32B-Instruct 38.83% 40.64%  39.19% 41.41%
QwQ-32B 2390% 36.84% 27.17%  38.20%
Gemma-3-4B-It 6.01% 12.84% 4.89% 13.32%
Gemma-3-12B-It 14.71% 2728%  11.62%  28.25%
Gemma-3-27B-It 13.24%  28.08% 9.61% 29.37%
Phi-4 30.31% 30.14%  29.29%  31.46%
Phi-4-Reasoning 54.94% 54.68% 54.39%  56.66%
Phi-4-Reasoning-Plus 40.69%  44.02% 41.38% 45.10%
GPT-40-mini 12.40%  35.23% 9.84%  35.96%
GPT-40 1821% 37.84%  14.99%  39.00%
Claude-3.5-Haiku 42.46%  45.10% 38.64% 46.71%
Claude-3.7-Sonnet 46.33% 55.11% 4641%  56.66%
Gemini-2.0-Flash 33.66% 4821% 27.35% 50.24%
Gemini-2.0-Flash-Lite 2447%  29.72%  20.66%  30.98%
Gemini-2.0-Flash-Thinking 42.30% 56.61% 3551% 58.59%
Gemini-2.5-Flash 3240%  65.65%  2820%  68.70%
Gemini-2.5-Pro 33.05% 76.51%  30.50% 80.42%

Table 15: Evaluation of code generated by various LLMs on EFFIBENCH-X-JavaScript.

Model Name ET | MP MI Pass@1

DeepSeek-V3-0324 40.18% 51.22%  39.75%  52.17%
DeepSeek-R1 63.34% 69.19%  63.03% 71.43%
Llama-4-Scout-17B-16E-Instruct 24.70%  31.20% 24.61% 31.46%
Llama-4-Maverick-17B-128E-Instruct | 14.10%  44.75% 14.45%  45.10%
Qwen3-8B 52.38% 54.11% 52.37% 55.22%
Qwen3-14B 60.65% 61.65% 60.05% 63.08%
Qwen3-32B 7029% 71.77% 69.87%  73.84%
Qwen2.5-Coder-7B-Instruct 2725% 28.78%  26.88%  29.05%
Qwen2.5-Coder-14B-Instruct 33.51% 36.62%  33.08%  37.08%
Qwen2.5-Coder-32B-Instruct 36.98% 40.55% 36.48%  41.09%
QwQ-32B 32.79%  34.61% 32.42%  35.47%
Gemma-3-4B-It 1023% 18.86% 10.27% 19.58%
Gemma-3-12B-It 1548% 2893% 1574% 29.37%
Gemma-3-27B-It 13.60% 31.67% 13.80% 32.26%
Phi-4 2937% 31.44% 2890% 31.78%
Phi-4-Reasoning 52.94% 5399% 5227% 55.38%
Phi-4-Reasoning-Plus 42.53% 44.08%  42.25%  44.94%
GPT-40-mini 12.81% 34.48% 13.04% 34.83%
GPT-40 2491% 49.66%  26.62%  50.08%
Claude-3.5-Haiku 38.36% 48.62%  38.10%  49.44%
Claude-3.7-Sonnet 50.15% 57.33% 49.48%  58.59%
Gemini-2.0-Flash 31.97% 52.82% 32.10% 53.61%
Gemini-2.0-Flash-Lite 28.06%  40.92%  27.66% 42.22%
Gemini-2.0-Flash-Thinking 40.30% 60.92% 40.29%  62.44%
Gemini-2.5-Flash 37.09%  66.03% 37.25% 68.22%
Gemini-2.5-Pro 4726% 78.22%  47.93% 80.90%
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Table 16: Evaluation of code generated by various LLMs on EFFIBENCH-X-Ruby.

Model Name ET \ MP MI Pass@1
Open-source LLMs

DeepSeek-V3-0324 4561% 4928%  45.65%  50.88%
DeepSeek-R1 64.01% 66.11%  63.65% 69.02%
Llama-4-Scout-17B-16E-Instruct 21.30%  23.19%  21.51%  23.60%
Llama-4-Maverick-17B-128E-Instruct | 28.05%  32.59%  28.93%  33.23%
Qwen3-8B 4444%  4599%  44.35% 47.35%
Qwen3-14B 52.76%  53.15%  52.45% 54.41%
Qwen3-32B 5547%  56.32%  55.25%  58.27%
Qwen2.5-Coder-7B-Instruct 21.77%  22.69%  21.76%  22.95%
Qwen2.5-Coder-14B-Instruct 30.32%  32.53% 30.43% 3291%
Qwen?2.5-Coder-32B-Instruct 3435% 36.67%  34.40% 37.24%
QwQ-32B 28.66%  29.65%  28.65%  30.18%
Gemma-3-4B-It 11.72%  13.76%  12.04% 13.80%
Gemma-3-12B-It 21.37% 2626% 21.68% 26.81%
Gemma-3-27B-It 2548%  31.84%  25.86%  32.42%
Phi-4 26.66%  28.34%  26.65%  28.89%
Phi-4-Reasoning 4753% 48.61% 47.22% 49.92%
Phi-4-Reasoning-Plus 38.32%  39.49%  38.24%  40.61%
GPT-40-mini 30.72%  36.52%  31.48%  37.24%
GPT-40 41.34% 47.64%  42.39%  48.48%
Claude-3.5-Haiku 3547%  41.13%  35.66%  42.05%
Claude-3.7-Sonnet 4944%  5248%  49.59% 53.61%
Gemini-2.0-Flash 3575% 44.32%  35.87% 45.43%
Gemini-2.0-Flash-Lite 30.32% 37.20%  30.27%  37.88%
Gemini-2.0-Flash-Thinking 4340%  52.69%  43.63%  53.77%
Gemini-2.5-Flash 57.06% 63.60% 57.88%  65.65%
Gemini-2.5-Pro 65.66% 72.16% 66.12% 74.32%

Table 17: Evaluation of code generated by various LLMs on EFFIBENCH-X-Go.

Model Name ET | MP MI Pass@1
Open-source LLMs

DeepSeek-V3-0324 3549%  50.75%  3571%  52.97%
DeepSeek-R1 60.24% 70.57%  60.57%  73.35%
Llama-4-Scout-17B-16E-Instruct 20.84% 24.89%  20.89%  25.52%
Llama-4-Maverick-17B-128E-Instruct 7.12%  30.20% 7.12%  32.10%
Qwen3-8B 42.88% 4634% 4333% 47.83%
Qwen3-14B 56.25%  56.69%  56.28%  58.43%
Qwen3-32B 62.13% 65.28% 62.60% 67.42%
Qwen2.5-Coder-7B-Instruct 20.59%  20.72%  20.60%  21.35%
Qwen?2.5-Coder-14B-Instruct 30.86% 32.40%  30.95%  33.23%
Qwen2.5-Coder-32B-Instruct 37.08%  39.13%  37.19% 40.13%
QwQ-32B 31.13% 33.25% 31.41% 34.35%
Gemma-3-4B-It 6.15%  15.24% 6.17%  16.05%
Gemma-3-12B-It 9.11% 27.56% 9.12%  28.89%
Gemma-3-27B-It 9.06%  32.41% 9.08%  34.35%
Phi-4 2545%  26.68%  2550%  27.29%
Phi-4-Reasoning 41.35% 42.15% 41.48% 42.70%
Phi-4-Reasoning-Plus 31.64% 32.35% 31.81% 33.07%
GPT-40-mini 8.40%  32.96% 8.44%  34.83%
GPT-40 12.05% 35.11% 12.20%  37.24%
Claude-3.5-Haiku 3207% 4323%  32.18% 44.78%
Claude-3.7-Sonnet 43.48%  51.52%  43.67%  53.77%
Gemini-2.0-Flash 18.18% 4394%  18.19% 46.07%
Gemini-2.0-Flash-Lite 2279%  41.05%  22.78%  42.710%
Gemini-2.0-Flash-Thinking 2621%  52.72%  26.23%  55.22%
Gemini-2.5-Flash 24.08% 61.09% 24.17% 64.21%
Gemini-2.5-Pro 31.50% 7611%  31.61% 79.94%
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Table 18: Evaluation of code generated by various LLMs on the EFFIBENCH-X-functional subset.

Model Name ET MP MI Pass@1
Open-source LLMs
DeepSeek-V3-0324 4595%  58.46%  45.01%  59.52%
DeepSeek-R1 74.53%  83.26% 73.26% 85.60%
Llama-4-Scout-17B-16E-Instruct 2947%  32.48%  28.80%  32.79%
Llama-4-Maverick-17B-128E-Instruct | 20.71%  42.62% 19.91%  43.29%
Qwen3-8B 55.88%  63.69%  55.83%  65.09%
Qwen3-14B 72.92%  74.78%  7237%  76.53%
Qwen3-32B 73.14%  80.68%  72.85%  82.74%
Qwen2.5-Coder-7B-Instruct 28.02%  28.58%  27.74%  28.85%
Qwen2.5-Coder-14B-Instruct 37.78%  40.15%  37.15%  40.53%
Qwen2.5-Coder-32B-Instruct 4549%  48.06%  44.93%  48.67%
QwQ-32B 3421%  37.55% 34.17%  38.12%
Gemma-3-4B-It 11.99% 20.18% 11.43%  20.56%
Gemma-3-12B-It 20.37%  35.25% 18.80%  36.19%
Gemma-3-27B-It 21.94% 41.74% 2021%  42.95%
Phi-4 30.54%  32.32% 29.80%  32.79%
Phi-4-Reasoning 56.73%  57.21%  5548%  58.28%
Phi-4-Reasoning-Plus 41.18%  42.52%  4040%  43.15%
Proprietary LLMs
GPT-40-mini 18.01% 37.46% 17.08%  38.12%
GPT-40 2433%  44.20%  23.25%  45.02%
Claude-3.5-Haiku 44.72%  54.04%  4338%  55.13%
Claude-3.7-Sonnet 5491%  63.57% 54.42%  64.89%
Gemini-2.0-Flash 36.46% 5527% 33.90%  56.56%
Gemini-2.0-Flash-Lite 35.60% 47.93% 33.74%  48.96%
Gemini-2.0-Flash-Thinking 47.60% 6695% 4523%  68.39%
Gemini-2.5-Flash 46.42%  74.12%  43.79%  76.48%
Gemini-2.5-Pro 5741% 90.04%  53.78%  92.50%

Table 19: Evaluation of code generated by various LLMs on the EFFIBENCH-X-standard I/O subset.

Model Name \ ET MP MI Pass@1
DeepSeek-V3-0324 33.95% 43.29% 32.70% 4591%
DeepSeek-R1 45.68% 52.99% 44.42%  57.60%
Llama-4-Scout-17B-16E-Instruct 15.66% 22.89% 1528%  23.27%
Llama-4-Maverick-17B-128E-Instruct | 11.03%  29.18%  10.31%  30.23%
Qwen3-8B 33.06% 37.35% 3240% 39.77%
Qwen3-14B 44.12%  44.19%  42.22%  47.60%
Qwen3-32B 49.25% 51.33% 48.00%  55.79%
Qwen?2.5-Coder-7B-Instruct 20.05% 21.63% 19.60%  22.05%
Qwen2.5-Coder-14B-Instruct 2528%  27.12% 2422%  28.19%
Qwen?2.5-Coder-32B-Instruct 26.17% 2851% 2551%  29.59%
QwQ-32B 2851% 33.09% 28.07%  35.20%
Gemma-3-4B-It 6.97%  12.66% 6.58% 13.10%
Gemma-3-12B-It 9.79%  18.61% 8.88%  18.83%
Gemma-3-27B-It 10.30% 21.58% 9.27%  22.28%
Phi-4 2591% 26.84% 24.42%  28.01%
Phi-4-Reasoning 38.46% 38.89% 36.89% 41.35%
Phi-4-Reasoning-Plus 31.22% 33.12% 3048%  34.68%
GPT-40-mini 1570% 32.34% 15.13%  33.63%
GPT-40 2477%  40.73%  2490%  41.93%
Claude-3.5-Haiku 26.38%  32.22% 2522%  33.51%
Claude-3.7-Sonnet 3935% 43.95% 38.15% 45.96%
Gemini-2.0-Flash 23.69% 37.52% 2225%  39.06%
Gemini-2.0-Flash-Lite 18.68%  27.55% 1743%  29.12%
Gemini-2.0-Flash-Thinking 2841% 42.05% 26.88%  44.33%
Gemini-2.5-Flash 3331% 54.46% 31.62%  58.13%
Gemini-2.5-Pro 36.45% 5847%  34.76%  63.92%
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Table 20: Algorithm Tag Analysis: per-tag efficiency by metric (%).

Algorithm Tag MP (%) ET (%) MI (%)
string-matching 90.91 86.85 86.48
simulation 89.29 80.37 77.99
counting 82.74 76.85 74.72
hash-table 76.75 71.61 70.16
two-pointers 76.14 79.85 77.02
enumeration 72.19 71.52 70.16
string 71.56 67.85 67.08
sliding-window 69.23 59.91 58.52
math 68.53 65.65 63.72
sorting 68.52 64.86 63.54
array 67.31 63.91 62.19
graph 60.44 58.96 58.20
number-theory 60.00 58.87 57.64
binary-search 58.21 52.26 51.43
prefix-sum 54.41 50.17 48.88
matrix 53.30 52.59 51.08
bit-manipulation 53.13 51.98 50.57
heap/priority-queue 46.67 44.89 43.49
combinatorics 44.64 39.43 36.17
greedy 43.08 40.12 40.00

dynamic-programming 23.09 21.69 20.75

functional problems. Claude-3.7-Sonnet performs well (39.35% ET, 45.96% Pass@1), outperforming
many other closed-source alternatives.

Across all models, performance on functional problems significantly exceeds that on standard I/O
problems, with most models showing 15-30 percentage point higher scores on the functional subset
for both efficiency and correctness metrics. This pattern holds regardless of model size or architecture.
For instance, DeepSeek-R1 achieves 74.53% ET and 85.60% Pass@ 1 on functional problems but only
45.68% ET and 57.60% Pass@1 on standard I/O problems. Similarly, Gemini-2.5-Pro shows 57.41%
ET and 92.50% Pass@1 versus 36.45% ET and 63.92% Pass@1 on these respective categories.

Despite these absolute differences, the relative performance hierarchy remains consistent across
both problem types. DeepSeek-R1, Qwen3-32B, and Gemini-2.5-Pro maintain their leadership
positions in their respective metrics across both categories, while smaller models like Gemma-3-4B-1It
(11.99% ET on functional, 6.97% on standard I/O) consistently rank lower. Both problem types
show similar scaling patterns with model size and generation, with larger and newer models generally
outperforming their smaller and older counterparts.

The performance gap between functional and standard I/O problems reveals that current LLMs
struggle more with optimizing I/O operations, buffer management, and input parsing compared
to core algorithmic logic. Standard I/O problems involve more complex implementation aspects,
creating additional opportunities for inefficiencies. This finding suggests that enhanced training on I/O
patterns and memory management could substantially improve overall code generation capabilities,
particularly for solving end-to-end programming problems that require both algorithmic reasoning
and efficient implementation details.

C.8 Algorithm Tag Analysis

We report per-tag efficiency across ET, MP, and MI to reveal capability differences across problem
categories. As shown in Table[20] procedural tags such as string-matching, simulation, and counting
achieve the highest efficiencies, whereas dynamic-programming and greedy remain challenging
across all three metrics.
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C.9 Language Runtime Specifications

Table 2] details the specific Docker images and compilation/execution flags used for each program-
ming language in our sandboxed execution environment. For C++, we utilize gcc:14.2.0-bookworm
with optimization level -O2 and address sanitization enabled (-fsanitize=address) to ensure memory
safety while maintaining good performance. Java code is executed using openjdk:21-jdk-bookworm
without additional flags, leveraging the JVM’s default optimization capabilities. For JavaScript, we
employ node:22.14.0-bookworm with the —harmony flag to enable the latest ECMAScript features.
Ruby evaluations use ruby:3.2.7-bookworm, while Go utilizes golang:1.23.7-bookworm, both with
their respective default runtime configurations. Python code runs on python:3.11.11-bookworm,
which provides a balanced combination of performance and compatibility with modern Python
libraries. All these environments are consistent across evaluations, ensuring fair comparisons be-
tween human reference solutions and LLM-generated code while capturing real-world performance
characteristics for each language.

Table 21: Language Runtime Specifications and Flags

Language Docker Image Compilation/Execution Flags
C++ gcc:14.2.0-bookworm -02, -fsanitize=address

Java openjdk:21-jdk-bookworm -

JavaScript node:22.14.0-bookworm —harmony

Ruby ruby:3.2.7-bookworm -

Go golang:1.23.7-bookworm -

Python3 python:3.11.11-bookworm -

C.10 Stochastic Sampling and Multi-Solution Efficiency (pass®@5)

To examine the impact of stochastic decoding on code efficiency, we extended our evaluation beyond
greedy decoding (pass@1) to a multi-sampling setup (pass@5). For each representative model, we
generated five candidate solutions per task at temperature = 0.8 and evaluated them under two
perspectives: (1) the most efficient correct solution, and (2) the average efficiency across all correct
solutions.

Most Efficient Solutions (pass@5). For each task with at least one correct solution among the five
samples, we selected the single most efficient correct solution for scoring. As shown in Table[23] this
provides an upper bound on the efficiency a model can achieve with multiple attempts. DeepSeek-V?2
achieves the highest integral score (43.04%), followed by Claude 3.5 Sonnet (32.97%). These results
indicate that allowing multiple attempts improves both pass rate and overall efficiency.

Average Efficiency of Correct Solutions (pass@5). To provide a more conservative estimate,
we also computed the average efficiency across all functionally correct solutions within the five
samples (Table 24). While the absolute scores are slightly lower, the relative ranking among models
remains consistent. Stochastic sampling thus improves both correctness and efficiency without
altering comparative trends across models.

C.11 Unexpected Regression in Reasoning-Enhanced Models:

An intriguing observation in our results is the performance regression seen in Phi-4-Reasoning-Plus
compared to Phi-4-Reasoning. While Phi-4-Reasoning achieves respectable performance metrics

Table 22: Rate of LLM-generated responses that do not extract code, presented per model.

Model Name | all C++ Java JavaScript Ruby Go Python
DeepSeek-V3-0324 32/3738 (0.86%) 5/623 (0.80%) 4/623 (0.64%) 5/623 (0.80%) 8/623 (1.28%) 4/623 (0.64%) 6/623 (0.96%)
DeepSeek-R1 6/3738 (0.16%) 2/623 (0.32%) 1/623 (0.16%) 1/623 (0.16%) 1/623 (0.16%) 1/623 (0.16%) 0/623 (0.00%)
Gemini-2.0-Flash 53/3738 (1.42%) 2/623 (0.32%) 2/623 (0.32%) 5/623 (0.80%) 10/623 (1.61%) 13/623 (2.09%) 21/623 (3.37%)
Gemini-2.0-Flash-Thinking 32/3738 (0.86%) 2/623 (0.32%) 3/623 (0.48%) 7/623 (1.12%) 7/623 (1.12%) 8/623 (1.28%) 5/623 (0.80%)
Gemini-2.5-Flash 78/3738 (2.09%) 12/623 (1.93%) 17/623 (2.73%) 13/623 (2.09%) 11/623 (1.77%) 15/623 (2.41%) 10/623 (1.61%)
Gemini-2.5-Pro 2/3738 (0.05%) 0/623 (0.00%) 0/623 (0.00%) 0/623 (0.00%) 0/623 (0.00%) 2/623 (0.32%) 0/623 (0.00%)
Phi-4-reasoning 1151/3738 (30.79%)  254/623 (40.77%) 161/623 (25.84%) 176/623 (28.25%) 183/623 (29.37%) 180/623 (28.89%) 197/623 (31.62%)
Phi-4-reasoning-plus 1957/3738 (52.35%)  371/623 (59.55%) 297/623 (47.67%) 299/623 (47.99%) 315/623 (50.56%) 327/623 (52.49%) 348/623 (55.86%)
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Table 23: Most efficient solution scores under stochastic decoding (pass@5).

Model Runtime Score (%) Memory Score (%) Integral Score (%) Pass Rate (%)
DeepSeek-V2 41.80 44.49 43.04 46.07
Qwen-32B 27.64 29.13 28.61 29.86
GPT-40 26.15 28.09 26.89 28.57
Claude 3.5 Sonnet 31.88 34.83 32.97 35.47

Table 24: Average efficiency scores of correct solutions under stochastic decoding (pass@5).

Model Average Runtime Score (%) Average Memory Score (%) Average Integral Score (%)
DeepSeek-V2 34.88 35.76 34.28
Qwen-32B 22.03 22.80 21.93
GPT-40 46.89 47.74 46.88
Claude 3.5 Sonnet 28.28 29.09 28.16

across languages (ET 48.37%, Pass@1 50.54%), its enhanced counterpart Phi-4-Reasoning-Plus
shows notably lower performance (ET 37.55%, Pass@1 38.65%). As shown in Table 22] this
regression can be largely attributed to the inability of Phi-4-Reasoning-Plus to properly generate
extractable code in many cases, with a concerning 52.35% of responses lacking proper code extraction
across all languages, compared to just 30.79% for Phi-4-Reasoning. This problem is particularly
pronounced in C++ (59.55% non-extractable responses) and Python (55.86%). In contrast, high-
performing models like DeepSeek-R1 and Gemini-2.5-Pro have minimal code extraction issues
(0.16% and 0.05%, respectively), demonstrating their superior ability to produce well-structured
outputs. These findings suggest that for intermediate model sizes like Phi-4 (16B), adding more
complex reasoning capabilities might actually interfere with the model’s ability to focus on the core
task of generating functional code. The model appears to over-index on explanation and verbosity at
the expense of concise, executable solutions. This stands in contrast to reasoning enhancements in
larger models, where reasoning capabilities complement rather than detract from code generation
performance. Our findings indicate that effective reasoning for code generation may have a model
size threshold below which the added complexity becomes detrimental rather than beneficial, aligning
with findings on Chain-of-Thought reasoning documented by Wei et al. [68]], which confirm that
model size significantly impacts the reasoning abilities of LLMs.

C.12 Profile with Tighter Time Limits

To assess the robustness of our execution time configuration, we re-evaluated all models under stricter
time limits by halving the default cutoff from 10 seconds to 5 seconds. As shown in Table 25] the
performance of Claude-3.7-Sonnet remains nearly identical across different cutoff thresholds (10s,
7s, and 5s), with only a negligible drop observed at a very aggressive 3s limit. Table [26] further
demonstrates that the overall model ranking remains entirely unchanged between the 10s and 5s
configurations. These results confirm that our original 10-second limit is a robust and fair choice,
ensuring that slower models are not unduly penalized while accurately reflecting realistic runtime
behavior.

Table 25: Performance of Claude 3.7 Sonnet at various execution time limits.
Time Limit ET (%)
10s (Original)  53.63

7s 53.63
S5s 53.63
3s 53.50
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Table 26: Ranking of models under different execution time cutoffs.

Model ET @ 10s Cutoff (%) ET @ 5s Cutoff (%) Change (%)
Gemini-2.5-Pro 64.92 64.92 0.00
Gemini-2.5-Flash 58.95 58.88 -0.07
Claude-3.7-Sonnet 53.63 53.63 0.00
GPT-40 40.12 40.12 0.00
Claude-3.5-Haiku 35.97 35.95 -0.02
GPT-40-mini 28.63 28.62 -0.01

Table 27: Evaluation of code generated by various LLMs on EFFIBENCH-X-Aizu.

Model Name \ Execution Time (ET) (%) Memory Peak (MP) (%) Memory Integral (MI) (%) Pass@1 (%)
DeepSeek-V3-0324 25.81% 31.38% 24.61% 34.34%
DeepSeek-R1 36.09% 42.02% 34.96% 45.96%
Llama-4-Scout-17B-16E-Instruct 6.83% 10.73% 7.01% 11.11%
Llama-4-Maverick-17B-128E-Instruct 5.05% 12.68% 4.66% 14.14%
Qwen3-8B 18.69% 21.02% 18.07% 22.22%
Qwen3-14B 24.87% 24.70% 23.30% 27.27%
Qwen3-32B 33.96% 34.82% 32.62% 38.89%
Qwen2.5-Coder-7B-Instruct 6.18% 6.95% 6.03% 7.07%
Qwen2.5-Coder-14B-Instruct 10.82% 11.20% 10.41% 12.12%
Qwen2.5-Coder-32B-Instruct 9.78% 10.37% 9.15% 11.62%
QwQ-32B 27.44% 30.92% 26.53% 33.33%
Gemma-3-4B-It 2.70% 4.37% 2.61% 4.55%
Gemma-3-12B-It 2.57% 4.50% 2.58% 4.55%
Gemma-3-27B-It 4.52% 8.32% 4.52% 8.59%
Phi-4 12.03% 12.28% 10.95% 13.64%
Phi-4-Reasoning 23.78% 24.26% 23.27% 25.76%
Phi-4-Reasoning-Plus 14.39% 14.86% 13.90% 15.66%
GPT-40-mini 8.96% 18.02% 8.90% 18.69%
GPT-40 14.35% 25.06% 14.75% 25.76%
Claude-3.5-Haiku 14.64% 17.71% 14.06% 18.69%
Claude-3.7-Sonnet 26.14% 28.83% 25.53% 30.81%
Gemini-2.0-Flash 13.87% 19.73% 12.75% 21.72%
Gemini-2.0-Flash-Lite 10.74% 15.65% 10.62% 16.67%
Gemini-2.0-Flash-Thinking 32.08% 46.42% 30.86% 50.00%
Gemini-2.5-Flash 20.74% 34.54% 19.83% 36.36%
Gemini-2.5-Pro 37.03% 58.70% 36.94% 65.15%

C.13 Website-Level Results

We provide the website-level code efficiency results in Tables[27]to[31]

C.14 Data Contamination Analysis

Following recent practice in benchmark construction, we assessed potential data contamination in
EFFIBENCH-X using two complementary families of methods: (i) strict n-gram overlap checks
with n € {20,30} between our 623 problems and public corpora; and (ii) an embedding-based
nearest-neighbor search that flags pairs with cosine similarity > 0.90. Table [32] summarizes the
findings. Across all checks, we observe minimal contamination: the most stringent embedding search
identifies only 3/623 tasks (0.48%), while n-gram overlap yields 11/623 (1.77%) at n=20 and 6/623
(0.96%) at n=230. These results confirm that EFFIBENCH-X provides a clean and reliable basis for
evaluating code-efficiency generation.

C.15 Hardware Variation

To validate the robustness and generalizability of our benchmark, we conducted experiments across
different hardware platforms. As shown in Table the relative efficiency ranking of models
(Gemini-2.5-Pro > DeepSeek-R1 > GPT-40) remained consistent on both AMD and Intel systems.
Furthermore, our normalization method effectively abstracts hardware-level differences, as the final
integral efficiency scores for each model varied by less than 3% between platforms. These findings
confirm that our methodology provides a stable, hardware-agnostic measure of model efficiency.
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Table 28: Evaluation of code generated by various LLMs on EFFIBENCH-X-AtCoder.

Model Name \ Execution Time (ET) (%) Memory Peak (MP) (%) Memory Integral (MI) (%) Pass@1 (%)
DeepSeek-V3-0324 29.97% 37.61% 28.06% 41.16%
DeepSeek-R1 37.36% 42.25% 35.33% 48.21%
Llama-4-Scout-17B-16E-Instruct 10.78% 19.41% 10.41% 19.80%
Llama-4-Maverick-17B-128E-Instruct 9.69% 26.13% 9.00% 27.29%
Qwen3-8B 25.09% 28.46% 23.77% 31.32%
Qwen3-14B 35.39% 35.32% 32.87% 39.60%
Qwen3-32B 42.85% 42.77% 40.72% 48.77%
Qwen?2.5-Coder-7B-Instruct 17.18% 19.00% 16.55% 19.57%
Qwen2.5-Coder-14B-Instruct 23.85% 25.90% 22.33% 27.40%
Qwen2.5-Coder-32B-Instruct 24.64% 27.08% 23.63% 28.52%
QwQ-32B 30.65% 35.81% 29.86% 39.15%
Gemma-3-4B-It 6.21% 11.23% 5.87% 11.52%
Gemma-3-12B-It 8.74% 16.67% 7.85% 16.89%
Gemma-3-27B-It 9.05% 19.35% 7.92% 20.13%
Phi-4 21.97% 22.93% 20.44% 24.50%
Phi-4-Reasoning 31.30% 31.15% 28.98% 34.45%
Phi-4-Reasoning-Plus 22.55% 23.81% 21.69% 25.73%
GPT-40-mini 14.11% 28.71% 13.41% 30.54%
GPT-40 24.02% 38.21% 23.75% 39.93%
Claude-3.5-Haiku 23.87% 29.35% 22.31% 31.21%
Claude-3.7-Sonnet 35.20% 39.39% 33.24% 42.17%
Gemini-2.0-Flash 21.73% 34.41% 20.17% 36.47%
Gemini-2.0-Flash-Lite 15.94% 23.47% 14.63% 25.28%
Gemini-2.0-Flash-Thinking 24.17% 35.83% 22.43% 38.81%
Gemini-2.5-Flash 27.56% 44.72% 25.57% 49.78%
Gemini-2.5-Pro 35.24% 55.78% 32.17% 63.42%

Table 29: Evaluation of code generated by various LLMs on EFFIBENCH-X-CodeChef.

Model Name \ Execution Time (ET) (%) Memory Peak (MP) (%) Memory Integral (MI) (%) Pass@1 (%)
DeepSeek-V3-0324 42.74% 55.97% 42.48% 57.17%
DeepSeek-R1 62.31% 73.85% 62.22% 76.88%
Llama-4-Scout-17B-16E-Instruct 26.57% 33.12% 25.91% 33.51%
Llama-4-Maverick-17B-128E-Instruct 15.46% 40.29% 14.56% 41.04%
Qwen3-8B 50.15% 56.55% 50.55% 58.78%
Qwen3-14B 64.57% 65.03% 63.54% 67.56%
Qwen3-32B 64.76 % 70.47% 64.92% 72.94%
Qwen?2.5-Coder-7B-Instruct 30.68% 32.29% 30.39% 32.62%
Qwen?2.5-Coder-14B-Instruct 33.08% 35.16% 32.63% 35.66%
Qwen?2.5-Coder-32B-Instruct 35.24% 38.19% 35.08% 38.71%
QwQ-32B 26.63% 30.93% 26.89% 31.18%
Gemma-3-4B-It 10.01% 18.39% 9.43% 19.18%
Gemma-3-12B-It 14.46% 27.28% 13.19% 27.60%
Gemma-3-27B-It 14.39% 30.07% 13.09% 30.82%
Phi-4 38.42% 39.60% 36.88% 40.14%
Phi-4-Reasoning 54.20% 55.46% 53.32% 56.99%
Phi-4-Reasoning-Plus 50.18% 53.55% 49.49% 54.84%
GPT-40-mini 21.15% 43.90% 20.54% 44.62%
GPT-40 30.17% 51.51% 30.67% 52.15%
Claude-3.5-Haiku 36.49% 44.34% 35.70% 44.98%
Claude-3.7-Sonnet 51.29% 57.10% 50.99% 58.06%
Gemini-2.0-Flash 30.72% 49.32% 29.30% 50.00%
Gemini-2.0-Flash-Lite 25.37% 37.61% 23.88% 39.07%
Gemini-2.0-Flash-Thinking 34.40% 51.09% 33.00% 51.97%
Gemini-2.5-Flash 46.88% 76.87% 45.26% 79.21%
Gemini-2.5-Pro 38.35% 62.43% 38.05% 64.52%
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Table 30: Evaluation of code generated by various LLMs on EFFIBENCH-X-Codeforces.

Model Name \ Execution Time (ET) (%) Memory Peak (MP) (%) Memory Integral (MI) (%) Pass@1 (%)
DeepSeek-V3-0324 38.47% 49.32% 37.71% 50.00%
DeepSeek-R1 46.62% 55.19% 45.52% 56.67%
Llama-4-Scout-17B-16E-Instruct 16.13% 19.72% 16.23% 20.00%
Llama-4-Maverick-17B-128E-Instruct 9.50% 25.88% 9.02% 26.67%
Qwen3-8B 40.19% 45.15% 39.54% 46.67%
Qwen3-14B 47.63% 46.83% 45.74% 48.33%
Qwen3-32B 50.69 % 55.40% 49.73% 56.67%
Qwen2.5-Coder-7B-Instruct 9.72% 10.00% 9.32% 10.00%
Qwen?2.5-Coder-14B-Instruct 21.80% 23.12% 19.72% 23.33%
Qwen2.5-Coder-32B-Instruct 18.88% 19.67% 18.56% 20.00%
QwQ-32B 17.70% 19.94% 17.53% 20.00%
Gemma-3-4B-It 4.13% 8.08% 3.92% 8.33%
Gemma-3-12B-It 5.93% 13.33% 4.90% 13.33%
Gemma-3-27B-It 10.03% 19.67% 9.63% 20.00%
Phi-4 14.12% 14.55% 12.28% 15.00%
Phi-4-Reasoning 47.28% 48.47% 46.81% 50.00%
Phi-4-Reasoning-Plus 39.58% 42.22% 39.44% 43.33%
GPT-40-mini 11.06% 26.26% 11.14% 26.67%
GPT-40 20.15% 29.67% 21.94% 30.00%
Claude-3.5-Haiku 8.52% 10.00% 8.04% 10.00%
Claude-3.7-Sonnet 33.83% 39.57% 33.63% 40.00%
Gemini-2.0-Flash 19.79% 33.00% 19.10% 33.33%
Gemini-2.0-Flash-Lite 23.41% 34.11% 21.65% 35.00%
Gemini-2.0-Flash-Thinking 23.84% 36.28% 23.01% 36.67%
Gemini-2.5-Flash 34.35% 57.09% 33.78% 58.33%
Gemini-2.5-Pro 34.91% 60.99 % 35.66% 61.67%

Table 31: Evaluation of code generated by various LLMs on EFFIBENCH-X-LeetCode.

Model Name \ Execution Time (ET) (%) Memory Peak (MP) (%) Memory Integral (MI) (%) Pass@1 (%)
Open-source LLMs
DeepSeek-V3-0324 45.95% 58.46% 45.01% 59.52%
DeepSeek-R1 74.53% 83.26% 73.26% 85.60%
Llama-4-Scout-17B-16E-Instruct 29.47% 32.48% 28.80% 32.79%
Llama-4-Maverick-17B-128E-Instruct 20.71% 42.62% 19.91% 43.29%
Qwen3-8B 55.88% 63.69% 55.83% 65.09%
Qwen3-14B 72.92% 74.78% 72.37% 76.53%
Qwen3-32B 73.14% 80.68% 72.85% 82.74%
Qwen?2.5-Coder-7B-Instruct 28.02% 28.58% 27.74% 28.85%
Qwen2.5-Coder-14B-Instruct 37.78% 40.15% 37.15% 40.53%
Qwen2.5-Coder-32B-Instruct 45.49% 48.06% 44.93% 48.67%
QwQ-32B 34.21% 37.55% 34.17% 38.12%
Gemma-3-4B-It 11.99% 20.18% 11.43% 20.56%
Gemma-3-12B-It 20.37% 35.25% 18.80% 36.19%
Gemma-3-27B-It 21.94% 41.74% 20.21% 42.95%
Phi-4 30.54% 32.32% 29.80% 32.79%
Phi-4-Reasoning 56.73% 57.21% 55.48% 58.28%
Phi-4-Reasoning-Plus 41.18% 42.52% 40.40% 43.15%
GPT-40-mini 18.01% 37.46% 17.08% 38.12%
GPT-40 24.33% 44.20% 23.25% 45.02%
Claude-3.5-Haiku 44.72% 54.04% 43.38% 55.13%
Claude-3.7-Sonnet 54.91% 63.57% 54.42% 64.89%
Gemini-2.0-Flash 36.46% 55.27% 33.90% 56.56%
Gemini-2.0-Flash-Lite 35.60% 47.93% 33.74% 48.96%
Gemini-2.0-Flash-Thinking 47.60% 66.95% 45.23% 68.39%
Gemini-2.5-Flash 46.42% 74.12% 43.79% 76.48%
Gemini-2.5-Pro 57.41% 90.04% 53.78% 92.50%

Table 32: Contamination analysis on EFFIBENCH-X (623 tasks).

Method Parameters Contaminated Tasks Rate (%)
N-gram Overlap n = 20 11/623 1.77
N-gram Overlap n =30 6/623 0.96
Embedding Search  Cosine similarity > 0.90 3/623 0.48
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Table 33: Efficiency comparison across different hardware platforms.
Hardware Model Runtime Memory Integral

AMD EPYC Gemini-2.5-Pro  56.83% 5745%  54.13%
DeepSeek-R1 48.92% 49.44%  47.03%
GPT-40 39.04% 39.00%  38.59%

Intel Xeon Gemini-2.5-Pro  57.00% 58.54%  54.86%
DeepSeek-R1 52.08% 53.06%  49.93%
GPT-40 39.46% 40.80%  38.93%

Table 34: Performance of single-shot generation under different prompt strategies.
Prompt Strategy Runtime Pass Rate (%) Memory Pass Rate (%) Integral Score (%)

Baseline Prompt 27.12 36.21 28.26
aggressive_opt 31.36 31.34 31.24
ecco 31.99 31.49 31.73
hardware_hint 30.64 30.52 30.63
eco_aware 32.40 32.20 32.42

C.16 Prompt Design and Iterative Refinement

To investigate how prompting strategies affect single-shot code generation and iterative improvement,
we conducted two complementary experiments extending our main study. The first experiment
evaluated the impact of different prompt designs on single-shot efficiency generation, while the
second assessed the benefits of iterative feedback-based refinement.

Single-Shot Generation with Advanced Prompts. We examined several advanced prompts
designed to enrich contextual grounding, including persona-style optimization (aggressive_opt),
hardware-aware instructions (hardware_hint), and explicit efficiency goals (ecco, eco_aware). As
shown in Table [34] all advanced prompts outperform the baseline configuration. In particular, the
eco_aware prompt—framing efficiency as minimizing computational and energy cost—achieves the
best overall performance, with runtime and memory pass rates of 32.40% and 32.20%, respectively.
These results demonstrate that providing efficiency-oriented context enhances the model’s ability to
generate optimized code.

Iterative Refinement with Performance Feedback. Our second experiment introduces iterative
refinement through feedback, where the model adjusts its output based on detailed performance
diagnostics from previous generations. We adopt EFFILEARNER as the framework, providing
line-level runtime and memory profiles to guide optimization. As summarized in Table [33] fine-
grained feedback proves critical: while unsupervised self-refinement yields minimal improvement,
comprehensive feedback from EFFILEARNER achieves the best results, with a runtime pass rate
of 39.19% and memory pass rate of 40.59%. This confirms that LLMs benefit most from explicit,
interpretable feedback that identifies not only the presence but also the source of inefficiency.

Table 35: Performance of iterative refinement under different feedback strategies.

Refinement Strategy Runtime Pass Rate (%) Memory Pass Rate (%) Integral Score (%)
Unsupervised Self-Refine 34.39 36.63 34.17
Result Aware 37.16 37.93 37.24
Line Profiler 35.83 36.64 35.02
Memory Profiler 35.89 40.59 38.33
EffiLearner (Full Feedback) 39.19 40.59 38.83
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C.17 Additional Related Work

The increasing popularity of LLMs for code generation has coincided with the growing availabil-
ity of open-source code repositories and the need to boost developer productivity. Initial efforts
focused on training models specifically for coding tasks, such as CodeT5 [67], AlphaCode [46]],
CodeGen [53]], InCoder [25]], StarCoder [45]], SantaCoder [S]], QwenCoder [37], and DeepSeek-
Coder [20]. Contrastingly, models such as Codex [16], CodeLlama [59], Magicoder [70], and
WizardCoder [50] represent a subsequent stride, being fine-tuned from foundation models [[13}164].
These code LLMs have been applied to various tasks, including code generation [16, 19} [11} [29],
program repair (27, 41]], automated testing [44} 21]], code translation [60, 2], type prediction [S2}|69],
and code summarization [28 3]]. While LLMs have achieved impressive results in code generation
tasks like HumanEval [16] and MBPP [11]], their efficiency has received less attention. Recent
studies [61} 132 |54]] have shown that LLM-generated code exhibits lower efficiency in terms of
execution time and memory usage compared to canonical solutions. These findings highlight the
need for further research and development to improve the efficiency of LLM-generated code. In this
work, we propose the first large-scale multi-language benchmark specifically designed for robust
efficiency evaluation of LLM-generated code across different programming languages.

D Case Studies

Efficient Example 1: As shown in Figure 3] we provide a Python case example where the solution
generated by DeepSeek-R1 closely matches the human-written canonical solution, both in struc-
ture and runtime efficiency (ratio = 0.985). The problem requires computing the sum of absolute
differences between adjacent characters’ ASCII values in a given string. The DeepSeek-R1 im-
plementation uses a forward loop from index 1, calculating abs (ord(s[i]) - ord(s[i-1])),
while the canonical solution performs the same calculation from index O using abs (ord(s[i]) -
ord(s[i+1])). These two approaches are functionally equivalent due to the symmetric nature of
the absolute difference, and both operate in linear time complexity O(n) with constant space usage.
This convergence highlights the LLM’s ability to infer optimal solutions not only from problem
descriptions but also from general coding patterns. Unlike in worst-case examples where LLMs
diverge in algorithm design or introduce unnecessary overhead, this case demonstrates a high-quality,
generalized solution that mirrors expert-level efficiency and readability.

Efficient Example 2: As shown in Figure ] we provide a C++ best-case example in which the
code generated by Claude-3.7-Sonnet almost perfectly replicates the canonical solution. The task
is to return the XOR of all numbers that appear exactly twice in an array. Both implementations
adopt the same high-level strategy: (1) Count the frequency of each element in the input array; (2)
Iterate through the frequency map and apply the XOR operation only to elements with a frequency of
two. The canonical solution employs a map, which maintains ordering but results in slightly higher
overhead due to its 0(log N) access and insertion times. In contrast, the LLM-generated code
optimizes performance by utilizing an unordered_map, which allows for average-case 0(1) access
and insertion, demonstrating not only correctness but also superior performance awareness. This case
exemplifies a high-efficiency general solution, where the LLM demonstrates an understanding of
optimal data structures and adheres to clean, human-like code organization. It highlights Claude’s
capability to generate competitive solutions that are not only correct but also efficient, often rivaling
or even surpassing human-written implementations in specific scenarios.

Worst Case Example 1: As shown in Figure[5]and Figure[6] the solution generated by Claude-3.7-
Sonnet for counting the number of good strings—which can be rearranged to contain ‘“leet’’ as
a substring—exemplifies a clear inefficiency in both memory and runtime performance. The task
requires counting strings of length n that contain at least one character 1, at least two e’s, and one t.

Claude-3.7-Sonnet approaches this problem using a 4-dimensional dynamic programming (DP) table.
Specifically, the state dp[i] [1] [e] [t] records the number of strings of length ¢ with [ occurrences
of 1, e of e, and ¢ of t, capped respectively at 1, 2, and 1. This results in a state space of size
O(n x 2 x 3 x 2), and the model updates each state at every iteration. While the solution is logically
correct, it suffers from redundant state expansions and excessive memory usage, especially for
large n. The model does not employ pruning strategies, prefix-counting optimizations, or algebraic
transformations, and instead falls back on a simulation-based enumeration of state transitions.
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Task Descripti

## Instructions
You are a competitive programming expert skilled in multiple programming languages.
Your task is to solve the following problem in python3:

## Problem Description

You are given a string s. The **score** of a string is defined as the sum of the absolute
— difference between the **ASCII** values of adjacent characters.

Return the **scorex* ofs.

*xExample 1:%%*

**Input:** s = "hello"

*x0Qutput:** 13

**Explanation:**

The **ASCIIx* values of the characters in s are: 'h' = 104, 'e' = 101, 'l' = 108, 'o' = 111.

< So, the score of s would be |104 - 101| + |101 - 108| + |108 - 108| + 108 - 111]| 3+
— 7+ 0+ 3 =13.

*xExample 2:**
*xInput:** s = "zaz"
*x0utput:** 50

*xExplanation:*x*
The **ASCII** values of the characters in s are: 'z' = 122, 'a' = 97. So, the score of s
< would be [122 - 97| + |97 - 122| = 25 + 25 = 50.

**Constraints:**

- 2 <= s.length <= 100
- s consists only of lowercase English letters.

## Starter Code
" “python
class Solution:
def scoreOfString(self, s: str) -> int:

## Output Format

- Provide the complete solution code in **one markdown code block** with appropriate

— language identifier. If your response has multiple code blocks, only the last one will
— be used.

- Implement the function with the exact signature (name, parameters, etc.) specified in the
— starter code.

- EXCLUDE ALL explanations, code comments, import/package/library statements, additional
<— classes or functions outside of the starter code scope, or starting code like if

< __name__ == "__main__": or func main() or package main or using namespace std;.

- Use but do not redefine any helper data structures provided in the starter code (even if
<> commented out).

DeepSeek-R1 Human Expert

class Solution: class Solution:
def scoreOfString(self, s: str) -> def scoreOfString(self, s: str) ->
— int: — int:
score = 0 ans = 0

for i in range(l, len(s)):
score += abs(ord(s[i]) -
— ord(s[i-11))

return score

n = len(s)

for i in range(n - 1):
ans += abs(ord(s[i]) -
— ord(s[i+11))

return ans

Figure 3: This figure shows a Python problem where DeepSeek-R1 generated code with efficiency
nearly matching the human expert solution (ratio = 0.985). Both calculate adjacent character ASCII
differences using equivalent linear-time algorithms with constant space complexity, demonstrating
that well-trained LLMs can identify optimal approaches matching expert solutions.
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Task Description

## Instructions
You are a competitive programming expert skilled in multiple programming languages.
Your task is to solve the following problem in cpp:

## Problem Description
You are given an array "nums , where each number in the array appears **either** once or
— twice.

Return the bitwise "XOR™ of all the numbers that appear twice in the array, or 0 if no
<— number appears twice.

*xExample 1:%x*

**xInput:** nums = [1,2,1,3]

*x0utput:** 1

*xExplanation:*x*

The only number that appears twice in "nums”~ is 1.

*xExample 2:%*

**xInput:** nums = [1,2,3]
*x0utput:** 0

*xExplanation:*x*

No number appears twice in "nums’.

*xConstraints:**

- "1 <= nums.length <= 50°
- "1 <= nums[i] <= 50~
- Each number in "nums”~ appears either once or twice.

## Starter Code
TTTepp
class Solution {
public:

int duplicateNumbersXOR(vector<int>& nums) {

}
I8

## Output Format

- Provide the complete solution code in **one markdown code block** with appropriate

<— language identifier. If your response has multiple code blocks, only the last one will
<~ be used.

- Implement the function with the exact signature (name, parameters, etc.) specified in the
— starter code.

- EXCLUDE ALL explanations, code comments, import/package/library statements, additional

< classes or functions outside of the starter code scope, or starting code like if

< __name__ == "__main__": or func main() or package main or using namespace std;.

- Use but do not redefine any helper data structures provided in the starter code (even if
< commented out).

Claude-3.7-Sonnet Human Expert

class Solution { class Solution {
public: public:
int duplicateNumbersXOR(vector<int>& int duplicateNumbersXOR(vector<int>&
< nums) { < nums) {
unordered_map<int, int> frequency; map<int,int> mp;
for (int num : nums) { for(int i : nums) {
frequency [num] ++; mp [i]++;
}
int result = 0;
for (const auto& pair : frequency) int ans = 0;
— { for(auto i : mp) {
if (pair.second == 2) { if(i.second == 2) {
result ~= pair.first; ans “= i.first;
} }
} }
return result; return ans;
} }
}; };

Figure 4: This figure shows a C++ problem where Claude-3.7-Sonnet’s solution achieves exceptional
efficiency by choosing an optimal data structure.

41



In contrast, the human expert adopts a concise and efficient analytical approach using the Inclusion-
Exclusion Principle. Rather than enumerating each valid string, it directly subtracts the number of
invalid strings (e.g., those missing required characters) from the total 26™. By leveraging combina-
torial identities and fast modular exponentiation, it computes the final result in O(log n) time with
constant space.

This example clearly illustrates a broader pattern observed in LLM-generated code: while often
logically valid, such solutions tend to lack mathematical abstraction and optimization, opting instead
for generic enumeration techniques. In this case, the Claude-3.7-Sonnet solution was approximately
33x slower and significantly more memory-intensive compared to the canonical one, underscoring
its limitations in recognizing mathematically structured problem-solving strategies.
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Task Description

## Instructions
You are a competitive programming expert skilled in multiple programming languages.
Your task is to solve the following problem in python3:

## Problem Description
You are given an integer "n’.

A string “s° is called **good** if it contains only lowercase English characters **and** it
< 1is possible to rearrange the characters of "s° such that the new string contains
— “"leet"  as a **substringkx.

For example:

- The string ""lteer"  is good because we can rearrange it to form ~"leetr""
- ""letl"" is not good because we cannot rearrange it to contain “'"leet"  as a substring.

Return *the *#*total** number of good strings of length* "n~.
Since the answer may be large, return it **modulo** ~1079 + 7°.
A x*substring** is a contiguous sequence of characters within a string.

**Constraints:**
- "1 <= n <= 10°5"
## Starter Code
*"“python
class Solution:
def stringCount(self, n: int) -> int:

## Output Format

- Provide the complete solution code in **one markdown code block** with appropriate

— language identifier. If your response has multiple code blocks, only the last one will
<— be used.

- Implement the function with the exact signature (name, parameters, etc.) specified in the
— starter code.

- EXCLUDE ALL explanations, code comments, import/package/library statements, additional

< classes or functions outside of the starter code scope, or starting code like if

< __name__ == "__main__": or func main() or package main or using namespace std;.

- Use but do not redefine any helper data structures provided in the starter code (even if
< commented out).

Claude-3.7-Sonnet

class Solution:
def stringCount(self, n: int) -> int:
MOD = 10**9 + 7
dp = [[[[0 for _ in range(2)] for _ in range(3)] for _ in range(2)] for _ in
— range(n+1)]
dplo] [o][o][0] = 1
for i in range(n):
for 1 in range(2):
for e in range(3):
for t in range(2):
count = dpl[il[1][e][t]
if count ==
continue
dpl[i+1] [min(1+1, 1)J[e][t] = (dpli+1][min(1+1, 1)]1[e]l[t] + count) %
— MOD
dpli+1][1] [min(e+1, 2)1[t] = (dpli+1][1] [min(e+1, 2)]1[t] + count) %
— MOD
dp[i+1][1] [e] [min(t+1, 1)] = (dpl[i+1]1[1][e] [min(t+1, 1)] + count) %
— MOD
dpl[i+11[11[el[t] = (dpli+11[1]1[el[t] + count * 23) 7 MOD
total = pow(26, n, MOD)
bad = 0
for 1 in range(2):
for e in range(3):
for t in range(2):
if 1 == 1 and e == 2 and t ==
continue
bad = (bad + dpl[n][1][el[t]) 7% MOD
return (total - bad) % MOD

Figure 5: This figure shows Claude-3.7-Sonnet’s inefficient solution using 4D dynamic programming
to count strings containing “leet.”
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Human Expert

class Solution:
def stringCount(self, n: int) -> int:
if n < 4:
return 0 # Cannot fit 'leet' with fewer than 4 characters

M = 10%%9 + 7
total = pow(26, n, M) # 41l possible lowercase strings

# Inclusion-Ezclusion: Subtract cases that fail to meet 'leet' criteria

# No 'L'

sub = pow(25, n, M)

# No 't'

sub = (sub + pow(25, n, M)) % M

# 0 or 1 'e'

sub = (sub + pow(25, n, M) + n * pow(25, n - 1, M)) % M

# No 'lL' and no 't'

sub = (sub - pow(24, n, M)) % M

# No 'l' and <=1 'e'

sub = (sub - pow(24, n, M) - n * pow(24, n - 1, M) % M
sub = (sub - pow(24, n, M) - n * pow(24, n - 1, M) % M
sub = (sub + pow(23, n, M) + n * pow(23, n - 1, M) % M
return (total - sub) % M

Figure 6: This figure presents the human expert’s elegant solution using the Inclusion-Exclusion
Principle, which directly calculates the answer by subtracting invalid configurations from the total
possible strings.
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