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Abstract

Retrieval-Augmented Generation (RAG) enhances large language models by incorporating
external knowledge, yet suffers from critical limitations in high-stakes domains—mnamely,
sensitivity to noisy or contradictory evidence and opaque, stochastic decision-making. We
propose ARGRAG, an explainable, and contestable alternative that replaces black-box rea-
soning with structured inference using a Quantitative Bipolar Argumentation Framework
(QBAF). ARGRAG constructs a QBAF from retrieved documents and performs determin-
istic reasoning under gradual semantics. This allows faithfully explanaining and contesting
decisions. Evaluated on two fact verification benchmarks, PubHealth and RAGuard, AR-
GRAG achieves strong accuracy while significantly improving transparency.

1. Introduction

Retrieval-Augmented Generation (RAG) has emerged as a powerful framework that en-
hances the performance of large language models (LLMs) by incorporating external knowl-
edge through a retrieve-then-generate paradigm (Khandelwal et al., 2019; Ram et al., 2023,;
Borgeaud et al., 2022; Izacard and Grave, 2021). By conditioning the generation process on
retrieved documents, RAG systems can answer questions or complete tasks with broader
and more up-to-date knowledge than what is stored in the model parameters alone (Siri-
wardhana et al., 2023; Lewis et al., 2020).

Despite its success, RAG faces several critical limitations that challenge its reliability
and applicability in high-stakes scenarios. First, the retrieval process is imperfect. The
underlying retriever is typically optimized for surface-level lexical or semantic similarity
rather than for factual consistency or task-specific relevance (BehnamGhader et al., 2023).
As a result, it may retrieve documents that are irrelevant, or contradictory—particularly in
settings where misinformation and disinformation are prevalent (Deng et al., 2025; Khaliq
et al., 2024). Such noisy retrieval can mislead the generator, as LLMs are highly sensitive
to the input context and may incorporate spurious or conflicting information into their
responses (Petroni et al., 2020; Cuconasu et al., 2024; Wan et al., 2024). Second, the
decision-making process in RAG is inherently stochastic, driven by the probabilistic nature
of autoregressive generation. This randomness can cause the model to produce incorrect or
inconsistent outputs, even when relevant and accurate evidence is available (Longpre et al.,
2021; Jiang et al., 2021; Potyka et al., 2024; He et al., 2025). Moreover, the reasoning behind
the model’s predictions is opaque: RAG systems may generate correct answers accompanied
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Figure 1: Overview of ARGRAG on a fact verification example. Given a claim, evidence
(including supporting, contradictory, and passages) is retrieved. In
Step 1, ARGRAG assigns to the claim and evidence, and identifies
support and attack relations between them to construct a QBAF. In Step 2, final
argument strengths are computed using QE gradual semantics over the QBAF.
In Step 3, the claim is classified as true or false based on its final strength. The
resulting QBAF provides a faithful explanation and supports contestability by
allowing structured user interventions.

by explanations that may not faithfully reflect the decision process or retrieved evidence
(Turpin et al., 2023; Stechly et al., 2025). These limitations raise serious concerns about the
robustness, transparency, and reliability of RAG-based systems—especially in high-stakes
domains such as healthcare, finance, or law. In such settings, accuracy alone is not sufficient;
it is equally important for the system to be robust to noise, provide faithful explanations,
and support trustworthy decision-making.

In this paper, we propose ARGRAG, an explainable and contestable alternative to
standard RAG systems that rely solely on LLMs for reasoning. Our approach is based on a
Quantitative Bipolar Argumentation Framework (QBAF) (Baroni et al., 2015); see Figure 1
for an overview. A QBAF consists of arguments, each assigned an initial strength, along with
explicit support and attack relations between arguments. Rather than relying on the LLM to
perform reasoning over retrieved documents, we use the LLM only to structure the retrieved
documents into a QBAF. We then perform deterministic inference under gradual semantics
to compute the final strengths of arguments. ARGRAG’s reasoning process is inherently
interpretable (Baroni et al., 2019) and facilitates faithful explanations via visualizations of
the QBAF and the gradual reasoning process or via dialogues. Users can contest the decision
made, for example by modifying assumptions about the inherent strength of arguments or
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their relationship to other arguments as we illustrate in Section 4. In Section 5, we evaluate
ARGRAG on two fact verification benchmarks—PubHealth and RAGuard, and show that it
exhibits robustness to noisy and contradictory retrieved evidence.

2. Preliminaries
2.1. RAG-based Fact Verification

Retrieval-Augmented Generation. We let 7 denote the vocabulary of possible tokens.
Given a sequence t = (t1,...,ty,) € T™, autoregressive language models define a probability
distribution over the sequence as:

m
P(ty, ... tm) = [ [ Polti | t<o), (1)
i=1
where t; := (t1,...,t;—1) and 6 are the model parameters. This formulation is typically im-

plemented using the decoder part of Transformer models (Vaswani et al., 2017), as adopted
by GPT models (Achiam et al., 2023).

RAG improves generation by retrieving relevant documents (z1,...,z) € Z* from an
external corpus Z and conditioning generation on this context. Let Rz : T* — Z* be a
retriever mapping a token sequence to k retrieved documents. The RAG objective can be
expressed as:

m
P(ty,....tm) = [[ Po(ti | tei, Rz(t<:)). (2)
i=1
R AG-based Fact Verification. Given a natural language claim ¢ € 7*, the objective is
to determine whether it is true or false based on evidence retrieved from a large unstructured
corpus Z (Bekoulis et al., 2021; Zhou et al., 2025a). In the common non-parametric setting
(Ram et al., 2023), a retriever Rz(c) returns a set of k relevant documents (z1, ..., zx),
which are concatenated with the claim to form the input [Rz(c); ¢] to the language model.
The model then predicts a binary label y € {True,False} representing the veracity of the
claim.

2.2. Quantitative Bipolar Argumentation Frameworks

QBAFs solve decision problems in an intuitive way by weighing up supporting and attacking
arguments (Baroni et al., 2015).

Definition 1 (QBAF) A Quantitative Bipolar Argumentation Framework is a quadruple
Q = (A, Att, Sup, B), where A is a finite set of arguments, Att C A x A is a binary attack
relation, and Sup C A x A is a binary support relation such that Att 0 Sup = (. The
function 5 : A — [0,1] assigns a base score (apriori belief) to each argument.

QBAFs compute a final strength o(a) € [0, 1] for each argument a € A under a specified
gradual semantics (Rago et al., 2016; Amgoud and Ben-Naim, 2017; Baroni et al., 2019).
These semantics are typically defined by an iterative update procedure that initializes the
strength values with the base score and then iteratively updates the base scores based on
the strength of attackers and supporters until they converge. Frequently applied semantics
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include Df-QuAD (Rago et al., 2016), Euler-based (Amgoud and Ben-Naim, 2017) and
quadratic energy (QE) (Potyka, 2018) semantics.

QBAF semantics can be compared based on semantical properties. The Euler-based
semantics was motivated by the observation that strength values under Df~-QuAD can satu-
rate, which results in violation of some monotonicity properties. The Euler-based semantics
avoided this issue, but introduced some new problems including an asymmetric treatment
of attacks and supports. All these problems can be avoided by applying the QE semantics.
However, more recently, it has been noted that Df-QuAD satisfies an interesting conserva-
tiveness property that neither the Euler-based nor the QE semantics satisfy (Potyka and
Booth, 2024). The relevance of these properties depends on the application. We will focus
on the QE semantics in the following since it satisfies almost all properties. We give a for-
mal definition of the properties in Appendix A, and compare to Df-QuAD and Euler-based
semantics in an ablation study later.

The QE update function updates arguments by aggregating the strength of attackers
and supporters and using the aggregate to adapt the base score. The aggregate is computed

as E(a) = 3 pesup(a) 7(0) — Dpear(a) 0(0) and updates the strength to S(a) + (1 — B(a)) -

h(E(a))—p(a)-h(—E(a)), where h(z) = %. The update process can be formulated

as a continuous dynamical system to improve convergence of strength values (Potyka, 2018).
Intuitively, this formulation reflects a con-

tinuous tug-of-war between the argument’s 0.65 -

initial belief S(a) and the influence of its s

context: supporters increase the score via go.eo-

h(E(a)), while attackers decrease it via 3 0.55 1

h(—E(a)). As shown in Figure 2, the ar- é 0.50 -

gument strengths evolve over time toward 3

a stable equilibrium that balances these < 0451

competing influences. Each line shows the 0.40 -

strength trajectory of a specific argument 0 5 a 6
from the example in Figure 1—the claim, Time

two supporting evidence items (EV1, EV2), Figure 2: Evolution of argument strengths
and one contradicting evidence item (EV3). over time under QE semantics.

All strengths are initialized uniformly at 0.5

and updated iteratively according to the QE

semantics. The system gradually converges, with the final strengths reflecting the overall
argumentative structure encoded in the support and attack relations.

3. Argumentative Retrieval-Augmented Generation (ArgRAG)

This section introduces ARGRAG, detailing how we construct arguments, identify support
and attack relations using LLM-based prompting, compute final argument strengths via QE
semantics, and formalize properties that guarantee contestability. The overall procedure is
summarized in Algorithm 1.

Argument Construction. In our method, we define the set of arguments as the claim
and its top-k retrieved evidence passages. Formally, given a claim ¢, we construct the
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argument set A = {ag, a1,...,ax}, where ag corresponds to the claim itself, and (a1, ..., ax)
is the tuple of documents retrieved by a retriever Rz(c). All arguments a; € A are initialized
with a uniform base score 3(a;) = 0.5, reflecting no prior bias.

Relation Annotation We use a two-step prompting procedure with an LLM to annotate
the relations between arguments. The prompt templates used for each step are provided in
Appendix B.2.

e Step 1: Identifying claim-evidence relations. We prompt the LLM to classify
each evidence item a; € {a;...,ar} as either support, contradict, or irrelevant
with respect to the claim ag. Arguments labeled irrelevant are removed from the
argument set, resulting in an updated set A’ C A. For the remaining items, we add
directed edges (a;, ap) to either the support relation Sup or the attack relation Att,
based on the classification.

e Step 2: Identifying evidence-evidence relations. We then prompt the LLM
once with all remaining evidence arguments in A"\ {ag} to identify pairwise relation-
ships. The model returns two sets, containing pairs of evidence items that support
or contradict each other, respectively. For each pair (a;,a;) in either set, we add
bidirectional edges (a;,a;) and (aj,a;) to the corresponding relation Sup or Att.

Fact Verification with ArgRAG. The constructed QBAF consists of the updated ar-
gument set A’, the support and attack relations Sup and Att, and the base score function 3.
To compute the final strength scores o, we apply the QE gradual semantics (see Section 2.2).
The final prediction is determined by the strength of the claim node o(ag) compared against
a predefined threshold 7 (default: 0.5). If o(ag) > 7 , the claim is classified as true; other-
wise, it is false. In cases where all retrieved evidence is labeled as irrelevant, we fallback
to directly querying the LLM without retrieved context.

4. Explanation and Contestation

ArgRAG is inherently explainable and contestable. While LLMs can generally be asked for
explanations for their decisions, it remains unclear how faithful the explanations are. That
is, the explanation may not be aligned with the reasoning process, and it may just rationalize
the decision instead of explaining it faithfully. Since ArgRAG is based on explicitly creating
an argumentation framework and reasoning about it, we can explain the decision faithfully.

Explanation. When the generated QBAF is of manageable size, users can directly in-
terpret the decision based on the strength of pro and contra arguments by inspecting a
visualization like in Figure 1. To gain deeper insight into how these strengths are deter-
mined, users can examine the strength evolution over time, as shown in Figure 2. For
example, we can see how the strength of evidence 1 initially increases slower due to the
fact that its attacker (evidence 3) and supporter (evidence 2) are similarly strong. As the
process continues, evidence 3 is continuously weakened, while evidence 1 is strengthened,
which results in a faster increase until the strength values eventually converge.

When the QBAF is too large or the user prefers not to examine low-level details, we
can generate dialogue-based explanations similar to Cocarascu et al. (2019). To explain
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Algorithm 1: ARGRAG for Fact Verification

Input: Claim ¢, Retriever Rz, Threshold 7 (default: 0.5), a backbone LLM.
Output: Prediction y € {True,False}, QBAF Q = (A4, Att, Sup, 3), Final Argument
Strengths o.

Argument Construction:

Retrieve top-k evidence documents: (z1,...,z;) < Rz(c);

Construct argument set: A = {ag,a1,...,ar} where ag < ¢, a; < z; fori =1,... k;
Initialize base strengths: 3(a) < 0.5 for all a € A;

Relation Annotation:

Step 1: Claim-Evidence Relations

Use LLM to classify each a; € {a; ..., ar} as support, contradict, or irrelevant
w.r.t. ag;

Remove irrelevant arguments from A to get A’ C A;

Add directed edges (a;,ap) to Sup or Att according to classification of remaining a;;

Step 2: Evidence-Evidence Relations

Prompt the LLM once with all evidence in A"\ {ag} to identify support and
contradict pairs, returned as sets SupPairs and AttPairs;

foreach (a;, a;) € SupPairs do
‘ Add bidirectional edges (a;,a;) and (aj,a;) to Sup;

end

foreach (a;,a;) € AttPairs do
‘ Add bidirectional edges (a;, a;) and (aj,a;) to Att;

end

Strength Computation
Apply QE gradual semantics to compute final strength o(a) for all a € A;

Prediction:
if A’\{ap} =0 then

| y < LLM output for verifying ap;
else

|y < True if o(ag) > 7, else False;
end

return y, Q, o

the strength of an argument a with o(a) > 0.5, we first identify its strongest supporter
Sup*(a) and attacker Att*(a), and generate an explanation of the form: “a is accepted
because [Sup*(a)] even though [Att*(a)].” If no attackers are present, the “even though”
clause is omitted. For arguments with o(a) < 0.5, we replace accepted with rejected and
switch the roles of supporters and attackers. For example, in Figure 1, our explanation for
accepting the claim is of the form “[Claim] is accepted because [Evidence 2] even though
[Evidence 3]”. For evidence 3, the explanation would be of the form “[Evidence 3] is rejected
because [Evidence 2]”.
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Contestation. ARGRAG supports user intervention by enabling two natural forms of
contestation:

e Contest Base Score: A user may disagree with a base score and ask the system to
lower or to increase it.

e Contest Polarity: A user may disagree with the polarity of an argument. For
example, an argument may have been classified falsely as an attacker, and the user
may want to change its polarity to neutral or support.

In both cases, the changes can be incorporated into the QBAF automatically, and the result
can be recomputed and presented to the user. For example, based on the quality of the
studies associated with evidence 1 and 3, the user may want to change their base scores to
0.1 and 0.9. The strength of evidence 1, 2 and 3 will then change to 0.09, 0.5 and 0.89,
and the strength of the claim will drop to 0.46. Hence, under these assumptions, the claim
should not be accepted.

5. Experiments

5.1. Experimental Settings

Datasets. We evaluate our method on two fact verification datasets. The first is Pub-
Health (Kotonya and Toni, 2020), a dataset for explainable fact-checking of public health
claims. It contains 11,832 claims covering a wide range of topics, including biomedical sci-
ence and government healthcare policy. Following the SELF-RAG (Asai et al., 2024) setup,
we retrieve evidence for each claim from the English Wikipedia dump from Dec. 20, 2018
(Lee et al., 2019), preprocessed by Karpukhin et al. (2020) for information retrieval. The
second dataset is RAGuard (Zeng et al., 2025), which targets fact verification in settings
with misleading, contradictory, or irrelevant information. It includes 2,648 political claims
made by U.S. presidential candidates from 2000 to 2024, each labeled as true or false. The
associated evidence corpus contains 16,331 documents sourced from Reddit discussions,
capturing naturally occurring misinformation and diverse viewpoints.

Retrieval and Generation Pipeline. Our RAG pipeline uses Contriever-MS MARCO
(Izacard et al., 2022) as the default dense retriever. We retrieve the top 5 or top 10 docu-
ments per query to support generation. For text generation, we employ GPT-familiar LLM
backbones (Achiam et al., 2023), including GPT-3.5 Turbo, GPT-40-mini, and GPT-4.1-
mini. These models are chosen for their strong instruction-following abilities, consistent API
behavior, and a favorable trade-off between generation quality and computational efficiency.

Baselines. We compare our method against five baselines. The w/o Retriever baseline
directly prompts the LLM without any external evidence. IC-RALM (Ram et al., 2023)
follows the standard retrieval-augmented generation setup with in-context evidence. IC-
RALM+, inspired by Adeyemi et al. (2024), augments this by explicitly prompting the
LLM to identify and ignore irrelevant evidence before answering. EXP (Fontana et al., 2025)
extends IC-RALM by asking the model to produce both a natural language explanation and
a trustworthiness score (0-100) based on the retrieved evidence. Finally, CoT builds on EXP
by incorporating Chain-of-Thought prompting (Wei et al., 2022) to encourage multi-step
reasoning. Full prompt templates and configurations are provided in Appendix B.1.
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PubHealth RAGuard
GPT-3.5 GPT-40-mini GPT-4.1-mini | GPT-3.5 GPT-40-mini GPT-4.1-mini
w/o Retriever 0.826 0.840 0.838 0.768 0.771 0.725
IC-RALM (Top5) 0.700 0.671 0.654 0.694 0.697 0.685
IC-RALM (Top10) 0.735 0.722 0.670 0.697 0.713 0.716
IC-RALM+ (Topb) 0.734 0.673 0.637 0.691 0.700 0.694
IC-RALM+ (Top10) 0.756 0.711 0.654 0.691 0.713 0.703
EXP (Top5) 0.621 0.741 0.630 0.621 0.731 0.725
EXP (Topl0) 0.617 0.754 0.648 0.627 0.752 0.737
CoT (Topb) 0.618 0.741 0.641 0.607 0.709 0.718
CoT (Topl0) 0.618 0.749 0.647 0.618 0.755 0.719
ARGRAG (Top5) 0.835 0.846 0.892 0.801 0.805 0.803
ARGRAG (Topl0) 0.838 0.855 0.898 0.804 0.813 0.804

Table 1: Overall comparison of all baseline and proposed methods on the PubHealth and
RAGuard datasets, using three LLM backbones (GPT-3.5, GPT-40-mini, GPT-
4.1-mini). We evaluate each method with Top-5 and Top-10 retrieved documents.
The best result in each setting is highlighted in bold, and the second best is
underlined, and our method is shaded in gray for emphasis.

Implementation Details. Retrieval is implemented using Llamalndex (Liu, 2022), which
handles document chunking, preprocessing, and query routing. For fast nearest-neighbor
search over dense embeddings, we integrate FAISS (Douze et al., 2024; Johnson et al., 2019)
as the vector index. Language model inference is conducted via the OpenAI API (OpenAl,
2025) with temperature set to 0 for deterministic outputs. We use a maximum token limit
of 15 for w/o Retriever, IC-RALM, and IC-RALM+; 4096 for EXP and CoT; and 2048
for generating QBAFs in ARGRAG. Our QBAF is implemented using the Uncertainpy
library with quadratic energy gradual semantics. We use the RK4 algorithm for computing
strength values, using step size § = 0.1 and termination condition € = 0.001.

5.2. Results and Analysis

Overall Performance. Table 1 reports the accuracy of all evaluated methods on the
PubHealth and RAGuard datasets using three different GPT backbones. We first observe
that all baseline RAG methods perform worse than the no-retrieval baseline, a finding con-
sistent with prior work (Asai et al., 2024; Vladika et al., 2025). This highlights a known
limitation of RAG systems in fact verification: when relying solely on LLM generation, the
model becomes highly sensitive to noisy or contradictory evidence retrieved from external
sources. In contrast, ARGRAG consistently achieves the highest accuracy across
both datasets and all LLM backbones, demonstrating the robustness and effectiveness
of structured argumentative reasoning within the RAG framework. Notably, ARGRAG
significantly outperforms other RAG-based baseline methods and is the only RAG-based
method that outperforms the no-retrieval baseline across all settings. Methods incorpo-
rating explanation and reasoning (EXP and CoT) tend to perform comparably or slightly
better than standard RAG (IC-RALM, IC-RALM+) in most cases. This suggests that
prompting the LLM to reflect via explanations or Chain-of-Thought reasoning can help
mitigate the impact of noisy or contradictory evidence. However, their performance is in-
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consistent; for example, both methods underperform standard RAG on PubHealth when
using GPT-3.5. This variability and lack of interpretability underscore the need for more
principled and transparent reasoning mechanisms, such as the one employed in ARGRAG.

Finally, we observe a modest performance gain when increasing the number of retrieved
documents from Top-5 to Top-10, indicating that access to additional evidence can be
beneficial—so long as the reasoning component is capable of handling the added complexity.
ARGRAG maintains strong performance across both retrieval depths, further validating its
robustness to varying evidence quantity and quality.

Ablation Study. Figure 3 presents an Lo Relation Annotation _Initial Strength _Semantic Scoring
ablation study evaluating the impact of re- ' == Wi retrieval
lation annotation strategies, base score ini-
tialization, gradual semantics, and prompt
sensitivity. For all experiments, we use
three semantically equivalent but syntacti-
cally varied prompts, generated by GPT-
40, to assess prompt sensitivity. We report == wio retrieval
the mean and standard deviation of results
across these prompt variants in the figure.
First, we compare using only claim-
evidence relations (EV2C) with the full
argument graph including both claim-
evidence and evidence-evidence relations ) .
(FULL). While EV2C already outperforms Figure 3: Ablation Study.
the no-retriever baseline, the FULL variant
achieves consistently higher accuracy, particularly on RAGuard. This suggests that mod-
eling interactions between evidence items is critical for handling conflicting evidence. In-
terestingly, EV2C exhibits lower variance under prompt changes, likely due to requiring
fewer annotated relations. Second, initializing base scores without prior knowledge (NP)
outperforms using retriever scores (RS), indicating that retriever confidence may not align
with the actual relevance or trustworthiness of retrieved content. Finally, we observe only
minor performance differences across different gradual semantics (Euler (Amgoud and Ben-
Naim, 2017), QE (Potyka, 2018), DFQuAD(Rago et al., 2016)), suggesting that the choice
of semantics can be guided by interpretability or computational considerations without
sacrificing accuracy.
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6. Related Work

Recent studies have shown that the performance of LLMs can degrade in the presence of
irrelevant or contradictory context (Petroni et al., 2020; Cuconasu et al., 2024; Wan et al.,
2024; Longpre et al., 2021; Zeng et al., 2025). To mitigate this, prior work has focused
on fine-tuning either the retriever alone or both the retriever and the backbone LLM to
improve retriever-generator alignment and re-rank retrieved documents by task relevance
(Yoran et al., 2024; Wang et al., 2025; Ke et al., 2024; Asai et al., 2024). However, such
fine-tuning requires high-quality training data and cannot be directly applied to proprietary
models like the GPT series.
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Other approaches aim to improve LLM reasoning by inducing intermediate graph-like
structures (Wei et al., 2022; Yao et al., 2023; Besta et al., 2024; Marks et al., 2025; Zhou
et al., 2025b). However, these methods do not guarantee a faithful alignment between the
reasoning steps and the final output, as the entire process is embedded within the model’s
autoregressive decoding (Turpin et al., 2023; Xia et al., 2025; Stechly et al., 2025). In
contrast, our method provides faithful and deterministic explanations by structuring the
reasoning process explicitly through QBAF's.

The most closely related work is ArgLLM (Freedman et al., 2025), which also employs
deterministic reasoning via QBAFs to enhance LLM decision-making. However, while our
arguments are created from a retrieval engine, ArgLLM generates arguments from LLMs.
To do so, ArgLLM asks an LLM for one argument that supports/attacks the claim if
possible. The default QBAF will therefore contain at most three arguments. QBAFs of
increasing depth are defined by recursively asking for a supporter/attacker of generated
arguments. Another important difference to our work is that ArgLLM does not consider
relationships between generated arguments, whereas we consider potential attacks and sup-
ports between arguments. The authors also prove some contestability guarantees, which,
intuitively, state that adding a pro/contra argument or increasing its base score will make
the claim stronger/weaker as desired. The guarantees hold for both Df-QuAD and QE
semantics, but as shown in the appendix of Freedman et al. (2024), the QE semantics gives
slightly stronger guarantees. However, experimentally, they found that both semantics work
similarly well, which is also what we observed for ArgRAG in the RAG setting.

7. Discussion and Conclusion

In this paper, we introduced ARGRAG, a training-free neurosymbolic framework that com-
bines RAG with QBAF for robust, explainable, and contestable fact verification. By model-
ing support and attack relations between the claim and retrieved evidence, and computing
final argument strengths using QE semantics, ARGRAG achieves strong performance under
noisy or conflicting retrieval. The resulting QBAF serves as a faithful explanation of the
prediction and supports contestability, enabling human oversight and intervention.

In future work, we aim to improve ARGRAG in several directions. First, we currently
treat the claim and each retrieved document chunk as a single argument; however, depending
on the chunk length, a single retrieved passage may contain multiple, even contradictory
arguments. In future work, we plan to apply techniques from argument mining (Lippi and
Torroni, 2016) to extract finer-grained arguments within each document. Second, since
using retriever scores for base initialization underperforms uniform initialization in our
experiment, we will explore re-ranking methods (Zhuang et al., 2023; Kim and Lee, 2024)
to assign more reliable base scores. Finally, while our current framework focuses on handling
noise and contradictions in external knowledge, conflicts may also arise within the LLM’s
internal knowledge or between internal and external sources (Longpre et al., 2021; Xu et al.,
2024). Incorporating internal knowledge extracted from the LLM into the QBAF—alongside
external evidence—could enable argumentative reasoning over both sources and help resolve
a broader range of knowledge conflicts in the RAG setting.

10
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Appendix A. Additional Properties of ArgRAG

In this section, we present key axiomatic properties satisfied by the QE gradual semantics
used in ARGRAG.

Property 3 (Neutrality) Let Q@ = (A, Att, Sup,) be a QBAF with final strengths o.
Suppose there exist a,b € A such that Att(a) C Att(b), Sup(a) C Sup(b), Att(a)USup(a) =
Att(b) U Sup(b) U{d} for some d € A, and B(d) =0, then o(a) = o(b).

This Neutrality property ensures that adding an attacker or supporter with no influence
(i.e., zero base score) to an argument does not affect its final strength. For instance, if
irrelevant evidence is not filtered out during Step 1 of relation annotation, a user can still
mitigate its influence by manually assigning it a base score of zero.

Property 4 (Monotony) Let @ = (A, Att, Sup,B) be a QBAF with final strengths o.
Suppose there exist a,b € A such that 0 < f(a) = B(b) < 1, Att(a) C Att(b), Sup(a) 2
Sup(b), then o(a) > o(b).

Monotony guarantees that, all else being equal, an argument with fewer attackers and
more supporters will not lead to a lower final strength. In the context of ARGRAG, if a
piece of evidence is updated (e.g., via reranking or user intervention) to gain more support
or face fewer contradictions, its influence on the claim should appropriately increase or at
least not decrease.

Property 5 (Franklin) Let Q = (A, Att, Sup, 8) be a QBAF with final strengths o. Sup-
pose there ezist a,b € A such that 5(a) = B(b), Att(a) = Att(b)U{x}, Sup(a) = Sup(b)U{y}
for some z,y € A, and o(x) = o(y), then o(a) = o(b).

The Franklin property ensures that if two arguments differ only by one additional at-
tacker and one additional supporter, and both of these new arguments have equal strength,
then the influence cancels out—Ileaving the final strength of the two arguments unchanged.
In other words, equal and opposite evidence should balance out. Suppose two retrieved
evidence passages each reference similar sources, but one supports the claim and another
that contradicts it with equal strength. When both are added symmetrically to the QBAF,
their effects should neutralize. This reassures users that adding balanced arguments won’t
arbitrarily shift the decision, which is especially useful for contestability.

Property 6 (Weakening) Let Q = (A, Att, Sup,3) be a QBAF with final strengths o.
Let a € A with B(a) > 0. Suppose that f : Sup(a) — Att(a) is an injective function such
that o(x) < o(f(x)) for all x € Sup(a) and

o Attt (a)\ f(Sup(a)) # 0, where Att™ = {b € Att(a) | o(b) > 0};
e or there is an x € Sup(a) such that o(x) < o(f(x)),

then o(a) < f(a).
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Property 7 (Strengthening) Let Q = (A, Att, Sup,B) be a QBAF with final strengths
o. Let a € A with f(a) < 1. Suppose that f : Att(a) — Sup(a) is an injective function such
that o(x) < o(f(x)) for all x € Att(a) and

o Sup™t(a)\ f(Att(a)) # 0, where Sup™ = {b € Sup(a) | o(b) > 0};
e or there is an x € Att(a) such that o(z) < o(f(x)),

then o(a) > f(a).

Weakening guarantees that if the strength of an argument’s attackers dominates that of
its supporters, its final strength decreases below its base score. Conversely, Strengthening
ensures that when supporters outweigh attackers, the argument’s final strength increases.

Property 8 (Duality) Let Q = (A, Att, Sup,B) be a QBAF with final strengths o. Let
a,b € A such that 5(a) = 0.5+¢€, 5(b) = 0.5 — € for some € € [0,0.5]. If there are bijections
[ Att(a) — Sup(b), g : Sup(a) — Att(b) such that o(x) = o(f(x)) and o(y) = o(g(y)) for
all z € Att(a),y € Sup(a), then o(a) — f(a) = o(b) — B(D).

The Duality property ensures that symmetric argumentation structures with opposing
priors lead to symmetrically shifted outcomes. Specifically, if two arguments a and b have
base scores that are equally offset from 0.5 in opposite directions, and their sets of attackers
and supporters are structurally mirrored with equal strengths, then their final strength
deviations from the base scores are also mirrored.

Appendix B. Prompt Templates

B.1. Prompt Templates for Baseline Methods

You are a fact-checking expert.

For each input claim, output only true if the claim is factually correct,
or false if it is not. Respond with a single word (true or false) | no
explanations, justifications, or additional text.

Claim: {claim}
Answer:

You are a fact-checking expert.

Given a claim and retrieved evidence, output true if the claim is factually
supported, or false if it is not. Base your answer only on the provided
evidence and your own knowledge if necessary. Respond with a single word
(true or false) | no explanations, reasoning, or additional text.

Claim: {claim}
Evidence: {evidence}
Answer:
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You are a fact-checking expert.

Given a claim and retrieved evidence, output true if the claim is factually
supported, or false if it is not. Base your answer primarily on the provided
evidence, using your own knowledge only if necessary. Consider only evidence
that is directly relevant to the claim. Respond with a single word (true or
false) | no explanations, reasoning, or additional text.

Claim: {claim}
Evidence: {evidence}
Answer:

You are a fact-checking expert.

Your task is to evaluate the truthfulness of a claim based on the provided
evidence. You must provide a score from O to 100, where O represents
definitively False and 100 represents clearly True. Your score should reflect
your assessment of the claim’s truthfulness in relation to the evidence.

Return a JSON object with two keys: first, your analysis in the "explanation"
key, then a comma, finally a score with the "score" key. The score should
match the analysis and your assessment of the claim’s truthfulness.

Claim: {claim}
Evidence: {evidence}

Remember to always follow the json format: format You must always PROVIDE
ONLY A SINGLE JSON evaluating the truthfulness of the claim in relation to

the evidence. DO NOT include markdown formatting (such as triple backticks or
‘json‘ tags) in the output.

QUTPUT_FORMAT = ’{"explanation": <explanation>, "score": <score>}’
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You are a fact-checking expert.

Your task is to evaluate the truthfulness of a claim based on the provided
evidence. You must provide a score from O to 100, where O represents
definitively False and 100 represents clearly True. Your score should reflect
your assessment of the claim’s truthfulness in relation to the evidence.

Return a JSON object with two keys: first, your analysis in the "explanation"
key, then a comma, finally a score with the "score" key. The score should
match the analysis and your assessment of the claim’s truthfulness.

Claim: {claim}
Evidence: {evidence}

Remember to always follow the json format: format You must always PROVIDE
ONLY A SINGLE JSON evaluating the truthfulness of the claim in relation to

the evidence. DO NOT include markdown formatting (such as triple backticks or
‘json‘ tags) in the output. Let’s think step by step.

QUTPUT_FORMAT = ’{"explanation": <explanation>, "score": <score>}’

B.2. Prompt Templates for ArgRAG

The prompt we use for Step 1 in relation annotation:

Task: Given a claim and multiple pieces of evidence, analyze the relationships
between evidence with respect to the claim.

Instructions:

- Support: Two evidence items that reinforce each other regarding the claim.
- Contradict: Two evidence items that conflict with each other regarding the
claim.

Output Format:
Return a single JSON object with two keys: '"support" and "contradict", each
mapping to a list of evidence pairs.

Example format:
{"support": [["El", "EQ"], ["El", "E3"]], "contradict": [[IIEQII, "ES"]]}

Claim: {claim}
Evidence: {evidence}

You must always PROVIDE ONLY A SINGLE JSON without any additional explanation
or commentary. DO NOT include markdown formatting (such as triple backticks or
‘json‘ tags) in the output.

The prompt we use for Step 2 in relation annotation:
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Task: Given a claim and multiple pieces of evidence, classify each evidence as
"support", "contradict", or "irrelevant" to the claim. Classify each evidence
as either supporting, contradicting, or irrelevant to the claim.

Instructions:

- Support: Evidence that backs the claim.

- Contradict: Evidence that counters or limits the claim.
- Irrelevant: Evidence unrelated to the claim.

Output Format:
Return a single JSON object with three keys: '"support", "contradict", and
"irrelevant", each mapping to a list of evidence items.

Example Format:
{"support": ["E1"], "contradict": ["E3", "E4"], "irrelevant": ["E2", "E5"]}.

Claim: {claim}
Evidence: {evidence}

You must always PROVIDE ONLY A SINGLE JSON without any additional explanation
or commentary. DO NOT include markdown formatting (such as triple backticks or
‘json‘ tags) in the output.

Appendix C. Analysis of Score Distributions

In Figure 4, we compare scores from the EXP, CoT, and the final argument strength o(a)
from ARGRAG, using both Top-5 and Top-10 retrieved documents. The final strengths
produced by ARGRAG show a clearer separation between positive (True) and negative
(False) claims, reflecting more consistent calibration and alignment with the ground truth.
In contrast, EXP and CoT scores are less discriminative, with considerable overlap between
positive and negative distributions.

Currently, our argumentation graph includes only support and attack relations between
arguments. In future work, we plan to extend this by incorporating richer types of relations
such as caused by, and explore more sophisticated forms of probabilistic reasoning on these
extended graphs (Zhu et al., 2023, 2024).
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4: Distribution of scores from different methods on the PubHealth dataset using
GPT-4.1-mini. We compare scores from the EXP, CoT, and the final argument
strength o(ap) from ARGRAG, using both Top-5 and Top-10 retrieved docu-

ments.
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