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Abstract

Prediction-Powered Inference (PPI) is a recently proposed statistical inference
technique for parameter estimation that leverages pseudo-labels on both labeled
and unlabeled data to construct an unbiased, low-variance estimator. In this work,
we extend its core idea to semi-supervised learning (SSL) for model training,
introducing a novel unbiased gradient estimator. This extension addresses a key
challenge in SSL: while unlabeled data can improve model performance, its benefit
heavily depends on the quality of pseudo-labels. Inaccurate pseudo-labels can
introduce bias, leading to suboptimal models. To balance the contributions of
labeled and pseudo-labeled data, we utilize an interpolation parameter and tune it
on the fly, alongside the model parameters, using a one-dimensional online learning
algorithm. We verify the practical advantage of our approach through experiments
on both synthetic and real datasets, demonstrating improved performance over
classic SSL baselines and PPI methods that tune the interpolation parameter offline.

1 Introduction

Semi-supervised learning (SSL) has garnered significant attention due to its success in leveraging
both labeled and unlabeled data to improve model performance [1H13]]. A standard SSL approach
augments pseudo-labeled data with trusted labeled data and then fits a new model—or fine-tunes a
pre-trained one—by minimizing empirical risk [4-6] [13H22]. A key limitation of this approach arises
when the pseudo-labels are inaccurate. For instance, consider a minority subpopulation on which the
pre-trained model performs poorly. In such cases, the resulting pseudo-labels introduce bias into the
optimization objective. This issue is especially problematic when trusted labeled data is scarce and
pseudo-labeled data is abundant. Under these conditions, the SSL model becomes biased toward the
erroneous pseudo-labels, effectively ignoring the informative trusted labels from the minority group
and failing to improve performance.

Recently, several approaches have been proposed to address the issue of biased risk using pseudo-
labels, with Prediction-Powered Inference (PPI) [23H26] emerging as a notable example. PPI is
designed to construct valid confidence intervals for parameters of interest by leveraging both labeled
and pseudo-labeled data while correcting for potential biases in the latter, offering robustness in
inference under minimal assumptions. Building on the principles introduced in PPI, subsequent
works have extended these ideas to practical SSL settings [[14} [27], incorporating corrections for
pseudo-label bias directly into the learning objective to improve robustness and generalization.

Nevertheless, existing PPI-based SSL methods leave two critical gaps: (i) Their analyses evaluate the
effect of pseudo-labels only asymptotically—at the population optimum, an idealized point never
exactly reached during training—and offer no guarantees about how pseudo-labels affect the actual
convergence of the learning algorithm. (ii) Realizing the full benefit of pseudo-labeled data hinges on
an interpolation parameter that balances their quality against the variance of the labeled data. Prior
work chooses this parameter offline, assuming knowledge of the pseudo-label quality and the labeled
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data variance [14}24]. Unfortunately, these quantities are unknown in practice, so an estimated fixed
value may be markedly sub-optimal.

Contributions

We present Prediction-Powered SSL (PP-SSL), a novel framework for unbiased semi-supervised
learning. We analyze PPI-inspired gradient estimates and demonstrate how their variance decreases
as the pre-trained teacher model’s accuracy improves and the amount of unlabeled data increases.
We further show how this reduced variance leads to faster convergence. This contrasts with prior
work [[14}27], which provides only asymptotic guarantees and no finite-time convergence bounds.

Our work also guides us on how to choose the interpolation parameter A € [0, 1] to optimally balance
the effect of pseudo-labeled data against the variance of the labeled data. Unfortunately, the optimal
choice of A relies on impractical prior knowledge of the labeled data variance and the teacher model’s
accuracy. To address this, we design an online learning approach that tunes \ on the fly during training
and achieves guarantees matching those of the optimal A. This result highlights the significance of
moving from offline to online analysis, enabling a rigorous account of training dynamics.

Numerical experiments on both real and synthetic data demonstrate the advantage of our online SSL
framework on regression and classification tasks. Our method outperforms both classic (biased) SSL
and PPI-like training methods in scenarios where there is a subgroup in the data on which the teacher
model performs poorly. [1_-]

2 Preliminaries and background

Consider n labeled data points, sampled i.i.d. from some unknown distribution P = Px x Py |x,
denoted by D; = {(x%,y")}_,, where (z%,3") € X x V. Also, assume we have N unlabeled data

7
points sampled i.i.d. from the same Px, denoted by Dy = {Z'}}¥,. In this work, we focus on the
more common and interesting scenario where unlabeled data is abundant while labeled data is scarce

and costly to obtain, i.e., N > n.

Background and related work

Semi-supervised learning (SSL) is a machine learning paradigm that leverages both labeled and
unlabeled data to improve model performance. In contrast, standard supervised learning relies solely
on labeled data and typically resort to optimizing the empirical loss (a.k.a. empirical risk):

1 — o
Ly(w) = - Zﬁ(w;xl,yl), (D
i=1

where w € R? denotes the trainable model parameters. A common SSL approach is pseudo-
labeling [4H6, 28], where a model f : X — ) is used to generate artificial labels for the unlabeled
data to augment training. There are two main strategies for choosing this model. The first is self-
training [[14H17], where the same model being trained is also used to generate pseudo-labels that are
continuously updated during training. In contrast, we adopt the teacher-student framework [[18-22],
in which a fixed teacher model produces pseudo-labels that remain constant while a separate student
model is trained. This setup offers greater stability and is better suited for theoretical analysis of
pseudo-label bias. The typical loss used in such settings is

N
Lss.(w) = Ly (w) + L (w), where L (w) = %Zﬁ(w; i, f(E)) . 2)

=1

However, pseudo-labeling may introduce confirmation bias, where erroneous pseudo-labels rein-
force the model’s mistakes [S)]. Theoretical analyses of pseudo-labeling in SSL have primarily
focused on offline settings. Previous works [5} [17] study convergence and confirmation bias un-
der confidence-based pseudo-labeling, but their analyses are limited to self-training with biased
estimators. The authors of [22] analyze knowledge distillation (e.g., teacher-student) as a variance
reduction mechanism but assume a self-distillation setup with identical teacher and student models

'Software for reproducing the experiments is available at https://github.com/noashoham/PP-SSL
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and derive guarantees in an infeasible setting without ensuring unbiased risk estimation. In contrast,
our theoretical contribution analyzes gradient variance in the online teacher-student setting and
provides convergence guarantees under unbiased risk minimization.

In the context of statistical inference, Angelopoulos et al. [23]] proposed the Prediction-Powered
Inference (PPI) framework, which mitigates the bias introduced by pseudo-labels through their use
on both labeled and unlabeled data, employing the following loss:

n

Lopi(w) = Ln(w) + L (w) — Li(w), where L (w) = %Zﬁ(w; 2 f@). 3)
i=1

This formulation reduces the estimator’s variance when f is accurate while remaining unbiased even
when the teacher model f is inaccurate. This is due to the fact that, in expectation, the pseudo-label
loss on the unlabeled data equals the pseudo-label loss on the labeled data, thereby canceling out the
bias introduced by the teacher. Since when teacher predictions are inaccurate PPI can result in higher
variance (larger confidence intervals), Angelopoulos et al. [24] proposed PPI++, introducing a tuning
parameter A € [0, 1] to interpolate the standard, supervised loss with the PPI loss:

Loptas(w) = Ln(w) + A (i{v(w) - L{L(w)) = (1= ) L (w) + ALppr(w). @)

The above generalizes the PPI loss, interpolating between supervised learning (A = 0) and vanilla
PPI (A = 1). As the authors of [24] focus on parameter inference, they tune A offline to minimize the
asymptotic variance of the parameter estimate. However, both PPI and PPI++ focus exclusively on
offline confidence interval construction for parameter estimation (e.g., linear model weights) and do
not address semi-supervised training setting.

More recently, Doubly-Robust Self-Training [[14] extended this line of work by applying a PPI-like
loss for training, using a pre-defined step function for the tunable weight A and providing asymptotic
variance guarantees. Sifaou and Simeone [27]] similarly build on the PPI form, aiming to improve
robustness to teacher model errors, but still restrict their analysis and application to offline settings.

In this work, we aim to extend the PPI framework to semi-supervised training by developing a method
that adaptively tunes the interpolation weight A\ during training using an online learning algorithm.
Our approach dynamically balances the contributions of labeled and pseudo-labeled data to minimize
cumulative gradient variance, enabling more stable and effective learning than previous methods that
rely on fixed or offline-tuned weight.

3 Prediction-Powered Semi-Supervised Learning

In this section, we describe our proposed Prediction-Powered SSL (PP-SSL) framework, an unbiased
semi-supervised learning algorithm. PP-SSL introduces a novel training paradigm that leverages
prediction-powered gradient estimates. Formally, our objective is to minimize the expected loss
function £ : R% — R, defined as,

min L(w) = Eq )~p[l(w;z,y)] .

weRE
To this end, we consider iterative first-order optimization approach, where in each round ¢, we have
access to a batch of n labeled samples, {(z}, y;)}i=; ~ P, where P = Px X Py|x; a batch of N
unlabeled samples, {ﬂg}fil ~ Px; and a prediction model (i.e., teacher) f : X — ). Using the
labeled data, the unlabeled data, and the teacher model, we compute a stochastic gradient estimate
of £, which is used to update the current iterate w,. This process is repeated over multiple rounds,
ultimately producing an output we,. Since we focus on non-convex optimization problems (e.g.,
neural networks training), where global minimization is generally intractable, we aim to find an
approximate stationary point for which ||V £(woy)||? is near-zero in expectation.

Teacher’s quality. The effectiveness of leveraging the teacher model depends on its ability to
accurately predict the true labels. We quantify this through the teacher’s prediction error, defined as

5f = E(m,y)wP(y - f(x))Q . (5)

As we will show later, £/ plays a central role in the convergence guarantees of our approach.



Notations. Throughout, we use ||-|| to denote the Ly norm. We define F; to be the filtration at
iteration ¢, which encompasses all randomness up to that time. We use E and V to denote expectation
and variance, respectively, with E; and V, representing their conditional counterparts given F;.
Finally, we use standard big-O notation, where O(-) hides numerical constants.

Prediction-Powered gradients. Our approach leverages stochastic gradient estimates inspired by
the PPI++ loss (Equation (@)). Let us introduce the following notations (omitting iteration index t):

n N
i, n 1 i 4 ~ 1 ~i ~i
D Viwsaty'); g ==y Vilwsat, f@h)); M = Y V(i a £(i)
] i=1 i=1

Here, ¢g" represents a standard mini-batch gradient estimator based on n labeled samples; g™f
replaces the true labels with predictions from the model f; and "/ is the gradient based on
the unlabeled samples with pseudo-labels generated by f. We use these gradients to construct a
prediction-powered gradient, defined for some parameter A € [0, 1] as follows:

gop = 9" +A GV —g™7) . (6)

Since the labeled and unlabeled data are sampled from the same underlying feature distribution Py,
it can be easily verified that gpp is an unbiased gradient estimator:

E[gpp] = E[g"] + AE[gN — g™T] = E[g"] = VL(w) . ©)

Notably, the convergence of (unbiased) gradient-based optimization methods, such as stochastic
gradient descent (SGD), that utilize this estimator depends on its variance. Intuitively, when we set
A = 0, we resort to standard SGD (with mini-batch gradients); however, as we show, if the predictions
of f are accurate, and with more unlabeled data, we can significantly reduce the gradient’s variance,
resulting in faster convergence for A > 0.

We begin in Section [3.1|by analyzing the variance of the prediction-powered gradient and deriving
the optimal tuning of A to minimize it. This tuning yields the tightest possible convergence bounds
within our framework. However, the optimal value of A depends on unknown quantities, making this
approach infeasible in practice. Therefore, in Section we treat \ as a trainable parameter and
co-optimize it alongside the model parameters. Specifically, we employ a one-dimensional adaptive
online learning algorithm to dynamically update A on the fly so as to minimize the cumulative
variance of the gradients over time. We establish that this approach introduces only lower-order terms
into the convergence rate.

Assumptions. For the purpose of formal analysis, we introduce the following assumptions. We
assume the objective £ is -smooth, i.e., L(u) < L(w) + VL(w) T (u — w) + g || — wl|® for all
u,w € R?. In addition, suppose that the constants o2 and o> defined below are finite:

0% = sup By yop |VO(w;z,y) — VL(W)|? < 00, ®)
weRd
and

I’ < oo, ©

02 = sup E, yop HVEZ;(UJ; z,y) — VLI (w)
weRd
where ¢/ (w; z,y) == l(w; x,y) — {(w; z, f(x)) is the instance-dependent loss error function, which
quantifies the difference between the losses when using the true label y and the teacher-provided
pseudo-label f(z), and L (w) = E, ,p[¢{(w;z,y)] is the corresponding expected loss error
function. Note that the assumption in Equation (8] is standard and establishes a bounded variance of
the instance-dependent loss gradient. The assumption in Equation (9) implies that the variance of
the noisy loss error gradient is bounded as well. The next lemma establishes that o2 can be directly

related to the teacher’s expected prediction error £/ defined in Equation (3).

Lemma 3.1. Assume that the gradient V{(w;x,y) is Ly-Lipschitz iny, i.e., for any w € R%, z € X,
and y1,y> € Y, we have || Vl(w;,y1) — Vl(w;2,y2)|| < Ly|yr — yo|- Then, 07 < L3, - €Y.

In Appendix [A] we provide a proof and show that the Lipschitzness condition applies to both the
squared and the logistic losses, among others. In the next section, we show how the performance of
our approach depends on o2, which is related to £ f by the above inequality.



3.1 Prediction-Powered SSL with optimal tuning

Next, we analyze the variance of the gradient estimates defined in Equation (€) and show that, with

an optimal choice of )\, the variance can be significantly lower than that of the standard gradient

estimates based solely on labeled data.

Lemma 3.2. For every \ € R, the variance of gpp defined in Equation @ is bounded as follows:
n

1 .V(gép) <(1- /\)2 o2 4+ N2 (7“02 +(1+7r) Ug) ,

where r := n/N denotes the ratio of labeled to unlabeled samples.

From this result, with the proof in Appendix we can optimally tune A to minimize the variance.

Corollary 3.3. The variance bound in Lemma|3.2|is minimized for

1 o?

e . 10
1+r o024 02 (10)
o2
. . . . . * (72 6(72 +r
Substituting this value yields the following bound.: 7 -V(gf\)P) <o?. “{T .

o2 o -1 . . .
Let V* = % . % denote the optimal variance bound stated in Corollary When
4r

the pseudo-labels are accurate (namely, 02 < ¢2), V* approaches %2 - 145> reflecting the benefit
of incorporating high-quality unlabeled data, which results in substantial variance reduction (as
r < 1). On the other hand, when the pseudo-labels are highly unreliable (02 > o2), the bound
approaches 402 /n, effectively recovering the standard (labeled-only) gradient variance (up to a
factor of 4, which is asymptotically equivalent); in this case, the optimal interpolation parameter \*
naturally down-weights the gradients from unlabeled data. This observation differs from conventional
pseudo-labeling methods, which may reduce empirical variance but typically introduce bias when
the pseudo-labels are incorrect. In contrast, PP-SSL provides a principled mechanism for leveraging
unlabeled data that improves statistical efficiency without compromising correctness. Additionally,
in Appendix |[C| we present a detailed comparison between the optimal parameter A* derived in
Corollary [3.3and the one proposed in PPI++ [24], within the context of linear regression.

Convergence rate. The unbiasedness property (Equation (7)), together with the variance bound
(Corollary [3.3), directly implies that using the prediction-powered gradient estimates within first-
order methods such as SGD yields a convergence rate of O(,/V*/T + 1/T') for smooth non-convex
functions [29]]. Here, V* can be substantially smaller than the variance of standard gradients estimates,
as discussed above. Thus, the reduced variance directly translates to faster convergence.

3.2 Prediction-Powered SSL with online tuning

As we have shown in the previous section, proper tuning of A can significantly reduce variance
and, consequently, accelerate convergence. Unfortunately, the optimal choice A* depends on o
and o2 (Equation ), which are typically unknown in practice. To address this, we propose an
adaptive approach that dynamically adjusts ) throughout the optimization process, while achieving
performance similar to \*. Specifically, we employ the AdaGrad algorithm [30] to update A online,
alongside w, without requiring the knowledge of o2 or o2. We elaborate on this approach next.

Online learning and AdaGrad. Online learning is a decision-making framework in which an
algorithm makes predictions and updates them based on information revealed over time. It is
particularly well-suited for dynamically evolving environments. Online learning can be described
as a sequential game, where in each round ¢, a learner makes a decision u; € D, after which the
environment reveals a (possibly arbitrary or even adversarially chosen) loss function h;, and the
learner incurs a loss of h(u;). The most common metric for evaluating the performance of an online
learner is the regret, defined as the cumulative difference between the losses incurred by the learner’s
decisions and those of the best fixed decision in-hindsight,

T T
RE = Z hi(ug) — umeigz hi(u) .
t=1 t=1



Algorithm 1: PP-SSL with Online Tuning

1: Input: Prediction model f : X — ), learning rate factor 7.

2: Initialize wy € R4, \; € (0,1]

3: fort=1,...,Tdo

4:  Receive n labeled samples {(xi,y)}™ ; and N unlabeled samples {7},
5.  Compute stochastic gradients:

RS i
gt < 52W(wt;m;,yg) df *ZVE we; 4, (&) — — ZVZ wy; x4, f (7))

i=1

Construct prediction-powered gradient estimate: gt’\t — g+ M- df

2)_

Define h;(\) == ||g; + Ad] ||? and update ), using AdaGrad (Equation )

6

7:  Update model parameter: w1 < wy — 1y gg\t, where 7 = 1o (th
8

9: end for

One of the most powerful online learning methods is AdaGrad [30], which updates u; as follows

. —1/2
us1 = lp(ug — 7 Vhe(ug)) , and v := Rp <22 ||Vhs(us)||2> ) (11)

s=1
where Rp := max, ,ep ||u — v]| is the diameter of D, and IIp(v) := arg min,cp ||u — v||? is the
orthogonal projection of v onto D. AdaGrad enjoys the following guarantees; see, e.g., [31].
Lemma 3.4 (AdaGrad’s Regret Bound). Let h1, ..., hr be any sequence of convex functions defined

over a bounded, convex set D with diameter Rp. Then, for any comparator w* € D and any initial
solution uy € D, AdaGrad (1)) ensures,

T
Z (he(u) u*)) < Rp QZ 1R () ||
t=1

t=1

Importantly, AdaGrad only requires knowledge of the diameter, and otherwise automatically tunes
its learning rate ;. In addition, note that AdaGrad’s regret bound depends on the sum of squared
gradient norms, which will be crucial for the theoretical guarantees we derive.

Using AdaGrad to dynamically tune \. Recall that our choice of \* aims to minimize the variance
of the gradient estimates. Importantly, the performance of first-order methods like SGD as well as
Adam [33] and AdaGrad is directly related to the cumulative variance of gradient estimates, i.e., to

23:1 V(g¢), where g; is the gradient estimate used at time ¢. Since our prediction-powered gradient

estimates employ a parameter )\, we can denote it as g;'. This suggests that we can cast the cumulative
variance minimization problem as an online learning problem with h; : [0, 1] — R defined as,

he(N) == )% = [lop + @Y = gD

where we have used Equation @) for g}. Importantly, it is immediately apparent that h(-) is convex
in \; this enables the use of AdaGrad to dynamically tune )\; in order to reduce the cumulative
second moment. Since g} is always (conditionally) unbiased, then minimizing the cumulative second
moment is equivalent to minimizing the cumulative variance.

Specifically, for our one-dimensional parameter \ € [0, 1], the AdaGrad update rule is given by:

¢ —1/2
At41 = clamp ()\t - ’)’cht(/\t);O’ 1) PN RS (22 ||Vhs()‘s)||2> > (12)

where clamp(+; a, b) := min(max(a, -), b) denotes projection onto the interval [a, b].

2This is in fact the scalar version of AdaGrad, also known as AdaGrad-Norm [31] 32].



Overall dynamic approach. Our dynamic PPI-inspired training approach is depicted in Algo-
rithm|I] At each round, we employ n labeled samples, N unlabeled samples, and the teacher model
f to yield a prediction-powered gradient gt)"', as in Equation @) The latter is then used to update the
model weights w;11 as well as to craft a second moment estimate h;(\). Then, we update \; using
the AdaGrad update rule on h;(-), as given in Equation . Note that our update rule for w; also
employs an AdaGrad stepsize of the form 7, = 770(22:1 llg2<1|?)~1/2; this is crucial for properly
adapting to o and o2 without prior knowledge of these quantities. While we concretely employ
AdaGrad for simultaneously tuning w and A, one can alternatively use any stochastic optimization
method (e.g., SGD) for training w, and any online learning approach for tuning . As Theorem[3.5]
below shows, our specific choice of using AdaGrad for both parameters allows us to implicitly and
optimally adapt to the unknown o2 and o2. This provides a substantial advantage over alternative
approaches that require hyperparameter tuning to achieve comparable performance.

The next theorem establishes the convergence of PP-SSL (Algorithm[T)) and shows that it performs
similarly to employing the optimal (yet practically unknown) A*. We provide a proof in Appendix [B]

Theorem 3.5. Suppose, in addition to the previous assumptions, that L(-) is M-bounded,
i.e., max,cpra |[L(w)| < M, and that the stochastic gradients are G-bounded, |V{(w;z,y)|| < G

forallw € Rz € X,y € ). Then, Algorithmwith a learning rate parameter of ng = \/2M /(3
ensures the following convergence rate:

T .
E [;gmwnﬂ <O< MAVT | MS mc) |

T T T

where V* is the variance bound obtained for the optimal choice of \* (see Corollary[3.3).

The convergence rate in Theorem [3.5]consists of three terms. The first two terms correspond to the rate
we would obtain upon using A* throughout all updates. However, since we do not know \* in advance
and instead learn it during training, we incur an additional term of order /M SG /T Fortunately, this
extra term decays substantially faster than the leading term, which decays as O(y/V*/T). Therefore,

the overall convergence rate is of order O(1/V*/T'), matching the rate with the optimal choice of A*.

4 Experiments

In this section, we demonstrate the benefits of our proposed method through a series of experiments.
We evaluate performance on both a synthetic dataset (Section and three real-world datasets
(Sections[4.2] 4.3.Tand [4.3.2)). Our experiments encompass both regression and classification tasks.
For regression tasks, we report Mean Absolute Error (MAE), Mean Squared Error (MSE), and the
coefficient of determination (R?). For classification tasks, we report accuracy. Additional experiments
analyzing the choice and dynamics of X are provided in Appendix [H]

Baseline methods. We compare our proposed PP-SSL method to 4 baseline training methods:
(1) Teacher model f used for pseudo-labeling; (2) Only Labeled model that is trained only on
limited labeled data (n samples) by minimizing (I); (3) SSL model trained both on labeled and
pseudo-labeled data (n + N samples) by minimizing (2)); and (4) PPI++ model trained both on
labeled and pseudo-labeled data (n + N samples) minimizing the debiased SSL loss (4) with A = Ajp
from [24]E] Importantly, our PP-SSL model is also trained both on the same limited labeled data and
pseudo-labeled data, minimizing (@) but with A obtained by Algorithm

4.1 Experiments on synthetic data with a linear model

Dataset. We design a synthetic linear regression experiment with two groups to simulate a scenario
in which the Teacher model exhibits different performance across groups. Each input has m = 10
features: the first nine are drawn from a standard normal distribution, and the last is a binary indicator
denoting group membership. For group A, labels are generated using a linear model with additive
zero-mean Gaussian noise. Group A comprises the 80% of samples with the smallest clean labels,
i.e., the outputs of the true model before adding noise. The remaining samples form group B, where

3Vanilla PPI is omitted due to its inferior performance compared to PPT++ with tunable ).
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Figure 1: MSE on synthetic data as a function of noise bias . Results are shown for: (a) the full test
set; (b) Group A, where the teacher model is accurate (oracle-like); and (c) Group B, which includes
additive biased noise. Results evaluated on 100 independent experiments.

labels follow the same linear model but include an additional biased Gaussian noise term with mean
u, which controls the magnitude of the bias. This induces a distributional shift between the two
groups. The Teacher is a fixed linear regressor that serves as an oracle for group A by using the true
model weights for prediction.

Experimental setup. We set n = 20, N = 1,000, and nese = 1,000. We vary the noise bias
u € {0.1,1,3,5,7} to control the intensity of the distributional shift. All methods (except the
Teacher) implemented by fitting a linear regression model using ADAM optimizer with the same
hyper-parameters and batch size. See Appendix [D| for more details on data generation process,
training schemes, additional experimental setups, and results that include the R? metric.

Main Results. Figure|[T]presents group-wise MSE obtained by different models across varying group
B’s noise bias levels p. As can be seen, the average MSE across the two groups (left panel) increases
as u grows, but our PP-SSL shows better performance, demonstrating the advantage of using debiased
SSL risk with adaptive A when the pseudo-labels are biased. In group A (middle), the Teacher model
provides oracle predictions by design, and thus the SSL method has strong performance. However, in
group B (right) the SSL model performs even worse than the Only Labeled model as the Teacher
performs poorly. This is in striking contrast with our PP-SSL that tends to achieve the best MSE for
that group, especially in the high bias regimes. Crucially, PP-SSL outperforms PPI++ although the
two use a debiased risk but with different strategies to tune .

In the above experiment, all models have access to the group indicator during both training and
testing. In Appendix |D} we report similar results for the setting where the group indicator is not
provided to the models.

Adaptive tuning of \. To evaluate the benefit of
adaptively tuning A\, we conduct a targeted exper-
iment comparing PP-SSL with a PPI++-inspired
baseline, that employs prediction-powered gradi-
ents (see Eq. (6)) but uses a fixed A value through- %

out training. In Figure[2] we show the final MSE %3

on the test set for PP-SSL (dashed line) and the R—
baseline for different A values. Our adaptive 5 \\\
method consistently achieves performance com-

parable to the baseline with the best fixed A value. 0.0 0.2 04 06 038 1.0
The optimal error depends on the teacher’s quality A

(bias), with smaller A values preferred for highly
biased teachers, which aligns with our theory.
These results demonstrate that our method auto-

matically adjusts to the teacher’s quality, achieving Figure 2: Final test set MSE for PP-SSL and PPI
near-optimal performance. baseline with constant A for varying A values.

s =1 =5 . =7
—— PPI e PP-SSL

4.2 Experiments on real tabular data with a linear model

Dataset. We evaluate our method on the “California Housing” dataset [34]], which contains 8 numeric
features and a target variable representing house prices, across 20,640 samples. To demonstrate the
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Figure 3: Results for the California Housing dataset: MSE of various methods as a function of
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0.5 means twice as many group A samples as group B. Results correspond to 100 data splits.
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Figure 4: Results for age estimation: MAE as a function of Ng /N4, across 5 data splits.

importance of the debiased SSL risk we split the data into two groups. Group A includes the (xt, y?)
with the 40% lowest target y*; otherwise the samples are assigned to group B.

Experimental setup and results. We split the data by setting n~ 100, N ~ 18,000, ny, ~ 1,000
for validation, and nyey == 1,000 for testing. For all methods, we train a linear model. The Teacher
model is trained on V4 ~ 50 disjoint labeled samples from group A, and a varied number of samples
from group B, denoted by Np, in the range of 5 to about 50. See Appendix [E| for more details.
Following Figure 3| we can see that as N /N4 increases and the Teacher’s performance on group
B improves, and all methods show reduced MSE values. PPI++ and PP-SSL have comparable MSE
across the board, where both methods tend to outperform the other baselines as the teacher becomes
less accurate due to the limited data from Group B. Additional experiments in Appendix |E|further
support these observations.

4.3 Experiments on real visual data with a deep neural network
4.3.1 UTKFace data

Dataset. We use the facial age estimation UTKFace dataset [35]]. This dataset contains about 20,000
face images with age annotations ranging from 0 to 116 years. We select the aligned and cropped
version of the dataset, and resize the images to 224 x 224 pixels.

Experimental setup and results. We repeat a similar setup to that from Section[d.2] Specifically, we
split the data by setting n~ 700, N =~ 16,500, nyy =~ 2,000, and n =~ 2,000. For all methods, we
train a ResNet50 model [36]. The teacher model is trained on IV 4 ~ 800 disjoint labeled samples
from group A (ages over 30) and a varied number of samples from group B (ages 0-29), with Ng
ranging from 10 to about 800. As portrayed in Figure[d] the SSL method is highly sensitive to the
performance of the Teacher model: observe how SSL performs worse than the Only Labeled
approach. By contrast, PPI++ and PP-SSL achieve lower MSE values, where our method has a
noticeable advantage. This experiment shows that the debiasing approach can offer performance
gains over the Only Labeled baseline, even when the Teacher model is relatively weak. In
Appendix |E we provide additional implementation details and results based on MSE and R? metrics.
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Figure 5: Accuracy on CIFAR-10 data as a function of corruption type. Results are shown for: (a) the
full test set; (b) Group A, clean images; and (c) Group B, corrupted images. Results evaluated on 5
different seeds.

4.3.2 CIFAR-10 data

Dataset. We evaluate our method on the CIFAR-10 dataset [37]] and its corrupted variant, CIFAR-10-
C [38]. CIFAR-10 contains 60,000 images of size 32 x 32 from 10 classes, split into 50,000 training
images and 10,000 test images.

Experimental setup and results. To simulate a biased teacher, we split the dataset into two groups:
Group B consists of the dog, cat, and deer classes from CIFAR-10-C (corrupted samples), while
Group A consists of the remaining clean CIFAR-10 classes. Corruptions such as Saturate, Spatter,
and Speckle Noise from the CIFAR-10-C benchmark were applied to both training and test samples
in Group B. We followed a standard SSL protocol, where features are extracted using a ResNet50
pretrained on ImageNet, and a linear classifier was trained on top. The teacher model is a linear
classifier trained on a small clean subset. See Appendix [G]for additional details. As shown in Figure[5]
PP-SSL consistently outperforms all baselines in terms of both total accuracy and Group B (corrupted)
accuracy, while maintaining comparable performance on Group A (clean). The performance gap on
Group B varies with the corruption type, reflecting the differing degrees of pseudo-label inaccuracy
under different distortions. Additional corruption types and severity levels yielded similar trends,
which we omit here for brevity.

5 Discussion

We introduce PP-SSL, a semi-supervised online learning framework that incorporates a debiased
empirical risk to account for errors in pseudo-labels generated by a teacher model. We demonstrate
that our approach to dynamically update the interpolation parameter, which governs the reliance
on pseudo-labeled data during training, consistently enhances performance compared to baseline
methods, especially when the teacher model exhibits degraded performance on a specific subgroup.

A key limitation of our method, shared by many SSL methods, is the assumption that labeled and
unlabeled data are drawn from the same underlying distribution. In practice, unlabeled examples may
come from different domains or be produced by generative models, introducing distributional shifts
and bias. Extending our framework to handle such shifts is a natural direction for future work. For
instance, importance weighting can be introduced to correct for covariate shift, either by reweighting
the gradient estimator used for A adaptation or by modifying the loss itself. More complex shifts,
such as those induced by synthetic or generative data, would likely require adaptations to both the
pseudo-labeling mechanism and the gradient-based weighting strategy.

Our theoretical analysis provides the first gradient variance bounds for PPI-based methods, yet
assumes a fixed teacher for tractability. Extending these guarantees to self-training scenarios with
evolving teachers remains challenging due to non-stationarity and requires more nuanced dynamic
regret analysis. While not currently covered by our theory, PP-SSL remains practically applicable to
self-training, where the model iteratively generates pseudo-labels the PPI loss remains unbiased.

Overall, our work offers a principled step toward more adaptive and reliable SSL, with both theoretical
and practical implications. Similar to works in this field, this research has potential social implications.
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A Relating the teacher’s prediction error to the gradient variance

In this section, we prove Lemma 3.1} which establishes a connection between the teacher model’s
prediction error &/ = E, ,.p(y — f(x))? and the variance bound of the error loss gradient o2,
defined in Equation @) This result holds for any loss function whose gradient V{(w;x,y) is
Ly -Lipschitz in y. We then show that both the squared loss and the logistic loss satisfy this condition.

For ease of reference, we state Lemma@] from the main manuscript.

Lemma Assume that the gradient V/(w; z,y) is Ly-Lipschitz in y, i.e., forany w € R?, 2 € X,
and y1,y2 € Y, we have |[Vl(w;z,y1) — Vl(w;z,ys)|| < Lylyr — yo|- Then, 07 < L3 - €7
Proof of Lemma Recall that ¢4 (w; z,y) = £(w;x,y) — L(w;z, f(z)). Since VI(w;x,y) is
Ly -Lipschitz in y, we have:

I

E||VE (wi2,y)||” = E || Ve(w;z,y) — Ve(w;z, f(2)]]* <E[L} (y - f(2))°] = LEET.

Since the variance is always upper bounded by the second moment, we get:
E||Ve! (w;z,y) — VLI (w)|]* < E||VE (wia,y)|” < L€

Finally, as this bound holds for any w € R4, it also holds for the supremum, and thus 03 < L%,E f.o

Next, we consider the squared and logistic losses and show that their gradients are Lipschitz with
respect to the y input. Let ¢, : X — ) denote a model parameterized by weights w € R¢,
and assume that |V, ¢, (7)|| < R for all w € R? and x € X. For instance, for a linear model
¢w(r) = w' , this condition holds when the input features are bounded, i.e., ||| < R.

Squared loss.  The squared L; loss is defined as {1, (w; z,y) = % (¢u(z) — y)? with gradient
Vi, (w;z,y) = (¢w(T) — y) Ve (x). Therefore, for any y1, y2 € Y, we have:

Ver, (w;2,y1) — Ve, (w; 2, y2) || = |(y2 — y1) Vwdw (@) = [y1 — v2| [Vwdw(@)|
SRy — 2.

Therefore, the squared loss gradient is Lipschitz with coefficient R.

Logistic loss. The logistic loss is defined as fioo (w;z,y) = —ylog(o(¢w(z))) — (1 —
y) log (1 — o(¢w(x))), where o(u) = 1/(1 4 e~%) is the sigmoid function. Its gradient is given by
Vg (Wi z,y) = (0(pw(x)) — y) Vwdw (). Thus, for any y1,y2 € ), we have:

||v£log.(w;xa yl) - vglog.(w;xva)H = ”(yQ - yl) ngbw(x)” = |y1 - y2| ||vw¢w(x)”
<R-ly1 —y2|-

Similarly to the squared loss, the logistic loss gradient is also Lipschitz with coefficient R. For both
cases, Lemma implies that o2 is bounded by R2£7.

B Theoretical analysis of prediction-powered gradients and PP-SSL

In this section, we begin by establishing the variance bound of the prediction-powered gradient in
Appendix Then, in Appendix we prove the convergence result for our PP-SSL method, as
stated in Theorem

B.1 Proof of Lemma[3.2]

Proof. Let us define V=4 SN Ve(w; E, §), where §f' is the true (unknown) label of 77, i.e.,
g ~ Py|x(-|#%). Thus, we can decompose ggp == g™ + g~/ — g™/ as follows:

gpp =g" + (5™ = ") = (VL (w) = VL)) + (6" — ™) = (VL(w) = VL (w)) ,
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where L£f (w) = Eyupy [((w;z, f(x))]. Note that gpp = (1 — \)g" + Agbp. Considering the
variance of gpp and substituting this expression, we obtain:

V(gpp) = Ellgpp — VL(w)|?
=E (1 =) (9" = VLwW)) + A (9pp — VL(w))
< 4(1 = \)E|lg" — VL) | + 4N ||V — VL(w)|” +
ANE||(§Y — 3) = VLl w)||* + 4B || (9" — g™7) — VLl (w)
=4(1 - N)2V(g") +4X* (V(3N) + V(N = gV 7) + V(g™ — g™7)) ,
where the first inequality follows from ||327, w;||* < n 3", ||lus||*, and we also used £/ (w) =

L(w) — L£f(w). Dividing by 4 and plugging the variance bounds from Equations and (E[)
(accounting for mini-batch gradients) yields:

V(gf}P) , 02 5 (0? o2 o? (1-— /\)2 0?2 + \2 (r02 + (14 r)ag)
2\IPP) (1 L2 g % 4 %
T (1—-2X) - + A ~ + N + .

where 1/N = r/n. Finally, multiplying by n concludes the proof. O

I

I

)

n

B.2 Proof of Theorem 3.3

Proof. Recall that we use the AdaGrad stepsize to update wy, i.e., for some parameter ny > 0, we
update w; as follows:
A 7o
wt+1 = Wt — ntgt t, Where m = t—)\ .
2ot g2

Therefore, we can employ the following lemma (see, e.g., Lemma G.3 in [39])

(AdaGrad-Norm)

Lemma B.1. For a S-smooth and M-bounded function (i.e., maxcra |[L(w)| < M), the iterates

w1, . .., wr defined by the above update rule satisfy:

T
SV L) < (275” +noﬁ>

t=1

T T

2
S lg I+ (VL(w) — g TV L(we) -
t=1 t=1

Now, recalling that g;* is an unbiased estimator of V£(w;), in the sense that E,_ [g;*] = VL(w;),
taking expectation of the bound above yields:

T 2M T—2
S EIvE@I < (2L 4 n05) £\ 3 6]
t=1 o t=1

T
= <2M + Uoﬁ) By > he(h)
"o =

o] T T
< < + 7705> E RE(A*) + Z he(A*) (13)

"o t=1 t=1
where the equality follows from the definition h¢()\) := | g;||?, and the last inequality uses the

definition of regret, R (\*) := Zthl hi(Ae) — 23:1 hie(A*).
Since we update )\; using AdaGrad as well (see Equation (12))), we can bound the regret R%(/\*), as

formalized in the following lemma (proved in Appendix [B.3).

X x Y, we have ||Vl (w;z,y)|| < G. Then, the 1D-AdaGrad algorithm used in Equation (12) yields
the following regret bound:

Lemma B.2. Assume the stochastic gradients are G-bounded; that is, for any w € R? an“a:, y) €

T
RAE(A*) < 128G% +8G |2 hy(X¥) .

t=1
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Plugging this regret bound into Equation (T3) gives:

T T
ZEHVE wy)||? < (M+noﬁ> 128G2 +8G, |2 he(N)+ ) h(A*) . (14)

t=1 t=1

Observe that the last two terms under the square root take the form 8Gv2A + A, where A =

Zthl ht(A\*), which we can bound using the helper Lemma below, which we prove in Ap-
pendix B.4]

Lemma B.3. Forany A,C > 0, it holds that C/A + A < 2C? + 2A.

Hence, from Equation (T4), it follows that:

T
oM
§ :EHVK wy)||* < ( +n05> 128G2 + 256G2 +2 Y hy(A
0

t=1

15)

where the second inequality holds because va +b < y/a + Vb for any a,b > 0, and the last
inequality follows from Jensen’s inequality applied to the concave function H(z) := /z. Next,
focusing on Eh;(A*), we apply the law of total expectation to obtain:

* * * (T)
Ehi(X*) = E|lg} | = EE_1]lg} |* = E[Vee1(g ) + [|Eemrgy ||?]

Y EVe1(62)] +EIVLw)|

where (1) follows from the definition of conditional variance and (1) is due to the (conditional)
unbiasedness of g} . Note that the conditional variance with the optimal \*, V;_1 (g} ), is bounded

by V* := 4ko? /n according to Corollary where & = (H'ﬂi"# Therefore,
Ehy (") < V* + E[VL(w,)]?

Substituting this back into Equation (I5), we get:

T
M 2M
Z]EHVE wy)||? < (n +n05) 8V6G + <?7 +n05> 2V*T +2) "E|[VL(wy)||?

t=1

2M 2M d
< (B o) s+ (2L s ) | VT + |23 EITLw)P
0 0 t=1

(16)
We can now solve this inequality for ZtT:l E(VL(w:)]|?
in Appendix

LemmaB4. Let A,B,C > 0. If A < BVA+ C, then A < 4B? 4 2C.

using the following lemma, which we prove

Applying Lemma [B.4]to the inequality in Equation (T6), we get:

ZEHVL (wy) ) <2<27jw+noﬂ> (8fG+\/W) +8<+n06>2 .

t=1

16



Setting o = /2M /3 gives the following bound:

T
D EVL(wy)|* < 64/3MBG + 8/ MBV*T + 64M§ .
t=1

Finally, dividing by 7" concludes the proof. O

B.3 Proof of Lemma|[B.2]

Proof. By the definition of hs()\) = [|g\ |2 = |lg¢ + )\df , the gradient (derivative) of h; is given

by Vhi(\) = 2(d{ ,97). Applying the Cauchy-Schwarz inequality, we can bound this gradient norm
as follows:

IV I” < 4df 719217 = 4lldf [he(Ae) < 16G%hi(M) | (17)
where the last inequality follows from the bounded gradients assumption and the triangle inequality:

Al

N n
% S Vl(wy; &, £(71) — % > Vil(ws;a, f(x}))
=1

i=1

IA

N n
1 ~q ~q 1 i %
v 2 Vet 3 @) + - 3 [V o, fla)]| < 26
i=1 i=1
Substituting Equation into the AdaGrad regret bound from Lemma[3.4] and noting that for our
case D = [0, 1] with diameter Rp = 1, we obtain:

T T
REO) <42 IIVh)I® < 4] 3262 he(r)

t=1

T
= 4G, | 2RI (V) +2th A%)

< AGH/2RE(N) + 4G, Zth
t=1

where the last inequality is due to v/a + b < y/a + v/b. Solving this inequality for RE(A\*) (using
Lemma B.4) yields the result:

T
RAE(A*) < 128G% +8G |2 hy(X7) .

t=1

B.4 Proof of Lemma|[B.3

Proof. We consider two cases:
Case 1: A > CvA. [Inthiscase, CvVA+ A < 2A.

Case 2: A < CVA. Dividing both sides by v/A, we obtain /A < C'. Hence:

CVA+ A<20VA<20?.

Combining both cases, we have Cv/A + A < max{24,2C?} < 2C? 4 24, which concludes the
proof. O

B.5 Proof of Lemma[B.4]

Proof. Consider two cases. First, if BVA > C, then A < 2B+ A, which implies A < 4B2. Second,
if BVA < C, then A < 2C. Inboth cases, we conclude that A < max {4B%,2C} < 4B%*+2C. O
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C A comparative analysis of optimal \ tuning for PPI++ and PP-SSL

Next, we theoretically compare the optimal weighting parameter \ in our method (PP-SSL) and in
Prediction-Powered Inference (PPI++). This parameter plays a crucial role in balancing the influence
of labeled and unlabeled data in both approaches, directly affecting the variance. While both methods
aim to reduce variance in parameter estimation, they derive the optimal A from different optimization
objectives. We analyze the derivations of the original PPI++ expression, and our variance bound
minimization from Corollary[3.3] For clarity and concrete interpretation, we focus on linear regression
with mean squared error loss throughout our analysis.

C.1 PPI++ expression

In this section, we analyze the optimal A\ expression defined in [24} Proposition 2]:

- Tr(H o, (Cov(Viey-, VL) + Cov(VEL . Vi, ) H D)
Pr 2(1 + r)Tr(H Cov(Ve! ) H 1 ’

where H,,- is the Hessian of loss (V2/,,-) with the optimal parameter w*.

For linear regression with MSE loss, we consider a model § = " w with loss £(w, (z,y)) =

3 (y — « "w)? and prediction loss ¢/ (w, (z, f(z))) = 5 (f(z) — « " w)?. This yields the following
gradients:

Viy=2(z"w—y), VI =z w-fz)),

with Hessian H,, = zx”, which at w* becomes H,,- = E[zz”] = X,.

T T

We define the true residual ¢ = y — 2 ' w* and pseudo-label residual ey = f(z) — «

us to express the gradients as V/,,» = —x¢c and Vﬂf:* = —xey. Since we use the true regression

coefficient vector w*, it is reasonable to assume independence between features x and residuals €, € .
Under this simplified assumption, the covariance terms become Cov(V{,,-, V£, ) = E[zaTee ¢ =
3, - Cov(e, ) and Cov(VeL . ) = Elzz"e}] =%, - Var(ey).

w*, allowing

We now substitute into the optimal A\ formula:
A = Tr(E;l(ZI - Cov(e, Ef) +3s - (COV(Ev Ef))T)E;I)
2(1+7)Tr(X5 'S, - Var(ef) Xz 1)
B Tr(S; 18, - Cov(e,e), )

covis symmetric (1 + 1) Tr(S5 '3, - Var(ef) Sz ')

This results in the simplified optimal value for Ajp,, in the linear case:
1 Cov(e,ey)

1+r Var(ep)

APpLt = (18)

This demonstrates that for the general linear case with MSE loss, the optimal A depends on the
covariance between true € and pseudo-labeled ¢ residuals, the variance of the pseudo-labeled
residualsVar(e ¢), and the labeled-unlabeled data ratio r.

C.2 PP-SSL expression

From Corollary the optimal A* that minimizes the variance bound is:

1 o?

N=—r e ———,
1+r o2+ 0?2
where r = n/N is the labeled-unlabeled ratio and o and o2 are constants from Assumption @

For linear regression with MSE loss, by assuming independence between features and residuals we
have:

0? = sup E, yop |VO(w;z,y) — VL(w)|* = Eyy~prle? ]| = Var(e)Tr(Z,),
weR?
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and
o2 = Exnyp(efc N~ HCOV(IE,Ef)QH) = Var(ey) - Tr(E;).
Substituting the two expressions into App_gg; , yields
\x 1 Var(e)
FPSSL 1 4 Var(e) + Var(ey)”

The above expression shows that the optimal Af g, depends on the variances of true and pseudo-
labeled residuals, and »—the ratio between the number of labeled and unlabeled points.

While both PPI++ and PP-SSL down-weight the contribution of the pseudo-labeled data based on the
accuracy of the teacher, they differ in key ways. When pseudo-labels are perfect (i.e., €y = €), both
PPI++ and PP-SSL assign high weights to the pseudo-label term: A\jp gq; = ﬁ and A\pp = ﬁ
with PPI++ placing more trust in the pseudo-labels. When pseudo-labels are noisy or uncorrelated
with the true residuals, both methods reduce the contribution of the pseudo-labeled data by assigning

smaller \* values.

The analysis of PP-SSL under the simple linear regression model with MSE loss can be conducted
not only through minimizing a bound on the gradient variance, but also by directly minimizing the
gradient variance itself. In fact, this direct optimization yields the same analytical solution for \* as
in PPI++; see the derivation below. However, the two methods differ in practice: PPI++ computes
gradients and Hessians at the optimal point using all data offline, while PP-SSL adapts A dynamically
during training by minimizing the variance of the gradient estimate on-the-fly. Consequently, the
actual values of \ used in training often differ between the two approaches, despite the similar
underlying theory. This is reflected in performance differences, as shown in Figure

For completeness, we conclude this discussion by presenting the analytical solution for our A\* that
minimizes the prediction-powered gradient variance under a linear model. Recall ¢8¥'(w) from

Equation [6] its Cov (g5 (w)) can be reformulated as
_ Cov(VE)  A(Cov(VY, V5 + Cov (VS V0))
n n

Cov (V)

Cov(g5 (w)) (e UT

For linear regression with MSE loss, assuming independence between features and residuals, as
detailed before, the covariance matrices share a common factor X, resulting in

Cov(g5" (w)) (Var(e) — A(2Cov(e,ey)) + A*(r + 1) Var(ey)) .

T
By taking the gradient with respect to A, equating it to zero, and re-arranging the terms we get:
1 Cov(e,ey)

~ 147 Var(eg)

*
>‘linear

Observe the above A

Iinear oincides with the one from Equation (I8§).

D Synthetic regression experiments with two-groups: supplementary details

In this section, we provide additional experimental details related to the experiments described in
Sectionfd.1] This includes the data generation process and hyperparameter configuration (Section[D.T)),
extended results for the same experimental setup (Section|[D.2), and a new experiment where the
group indicator is assumed to be unknown (Section[D.3). Lastly, Section [D.4] presents a comparison
between models trained with and without access to the group indicator.

D.1 Experimental details

Metrics We performed tests of solving regression problems, therefore our metrics are as expected
for those experiments:

» MSE (Mean Squared Error), defined as ﬁ S (f(z') — y*)?, where f(x) is a regression
model. (lower is better)
Mtest iy__,,1\2
o R?, defined as 1 — %, where ¢ is the empirical mean of y values in the test
i=1
set. (higher is better)
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Setup and environment The experiments were conducted on a system running Ubuntu 20.04.6
LTS, each experimnt (single seed) with 2 CPU cores of Intel(R) Xeon(R) Gold CPUs at 2.40 GHz,
32 GB of RAM. The software environment used Python 3.11.3 and PyTorch 2.5.1.

Data generation process We design a controlled synthetic regression experiment to evaluate the
performance of our method in a setting with group-wise label shift. The dataset consists of n samples
2" € R™, where each row is independently drawn from a standard normal distribution A(0, I,,, ).
The weight vector w € R™ is also sampled from N(0, I,,). The target labels are computed as
y' = w' 2" + b’, where b € R is a bias term drawn from A(0, ,,). To create two distinct groups,
we define a split threshold 7 = 0.2, which corresponds to the 7-th percentile of the linear projection
w2 (excluding the bias term). For samples in the second group (i.e., those above the threshold),
we modify the target by adding noise: y = w 'z + b + €, where € ~ N(u, 1). By varying p, we
control the shift in label distribution between groups and evaluate the robustness of each method.
In the experiments from Section .1} which assume access to the group indicator, we augment the
generated features with an additional feature representing the group identity. This results in m + 1
input features. The ground truth labels are generated using a weight vector w € R™*1, where the
last component—corresponding to the group feature—is zero. This setup allows us to train a model
with an expanded input space, enabling it to capture potential group-dependent variations in the data.

Model details We train a linear model in PyTorch with weights of size m (or m + 1 when the
group indicator feature is included) and a bias term, using the ADAM optimizer.

Hyperparameters Table[ST|summarizes the hyperparameters used in the experiments described in

Sections [D.3}[D.2} and @.1}

Table S1: Experimental settings for synthetic regression and two-groups regression tasks

Synthetic regression Synthetic regression
Parameter without group indicator  with group indicator
Total number of samples 2000 2000
Number of features (m) 10 10 (+1 group indicator)
Split value (1) 0.2 0.2
Optimizer Adam Adam
Batch size 256 256
Learning rate 0.001 0.001
Epochs 3000 3000
Number of labeled samples (n) 20 20
Number of unlabeled samples (V) 990 990
Number of test samples (7est) 790 790
Number of validation samples (ny,) 200 200
Labeled fraction 1% 1%
Unlabeled fraction 50% 50%
Validation fraction 10% 10%
Test fraction 39% 39%
Number of seeds 100 100
Early stopping Enabled Enabled

D.2 Training with access to the group indicator

This section provides a detailed report of the experiments summarized in Section[d.I] We evaluate
performance across a range of noise means p € [0.1, 7], which are applied as a bias to group B.
Models are assessed using mean squared error (MSE) and R? scores, both overall and per group.
Figure |S1|presents the MSE for all methods across the extended range of noise biases i, expanding
upon the results shown in Figure|l] Figure repons the corresponding R? scores on the full test set.
Note that higher R? values indicate better performance, while R < 0 implies that a naive predictor
(i.e., always predicting the mean ¢) performs better. Following that figure, we can see that our method
matches or outperforms all baselines across the full range of noise values. The performance gap
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increases as the bias in group B increases, demonstrating our method’s robustness to inaccurate
pseudo-labels and its ability to effectively leverage the group indicator.
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Figure S1: MSE on synthetic data as a function of noise bias . Results are shown for the entire test
set. Results evaluated on 100 independent experiments.
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Figure S2: R? on synthetic data as a function of noise bias z. Results on the entire test set when
training with access to the group indicator feature. Results evaluated on 100 independent experiments.

D.3 Training without access to the group indicator

This experiment extends the setup from Section[d.1] but differs in a key aspect: it does not assume
access to the group indicator for each sample.

The data is generated as described in Section[D.T} using the hyperparameters specified in Table ST}
Figure [S3] shows the group-wise MSE. For group A, where the teacher is accurate, all methods
perform similarly well, with the Teacher model outperforming others. However, in group B, which
is affected by biased noise, we can see the advantage of our approach—especially as the noise mean p
increases. This highlights our method’s robustness even in the absence of explicit group information.
As can be seen in Figure [S4|our method also achieves the lowest MSE and the highest R? under high
noise-bias conditions across both groups, while maintaining competitive results when noise-bias is
low.

Figure [S3] presents the MSE curves evaluated on the training and test data. As can be seen, our
PP-SSL method converges faster than the Only Labeled baseline, which is in line with the analysis
from Section 3] Observe also that PPI++ exhibits a similar convergence rate.

D.4 Effect of group indicator: a comparative analysis

We now provide a side-by-side comparison of the performance of the models trained with and without
access to the group indicator. Figure [S6|shows that including a group indicator significantly improves
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Figure S3: MSE on synthetic data without group indicator as a function of noise bias p. Results are
shown for: (a) the full test set; (b) Group A, where the teacher model is accurate (oracle-like); and (c)
Group B, which includes additive biased noise. Results evaluated on 100 independent experiments.
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Figure S4: Overall MSE and R? on synthetic data without group indicator, across all test samples
versus noise bias ;1 added to group B.

model performance, as expected. These results highlight the value of leveraging group information,
particularly for methods like ours that can effectively utilize this knowledge.

E Tabular real data experiments: supplementary details

In this section, we provide additional experimental details related to the experiments described in
Section[d.2} This includes the data split process and hyperparameter configuration (Section[E-I), and
extended results for the same experimental setup (Section [E.2).

E.1 Experimental details

Metrics We report both MSE and R? metrics to evaluate model performance.

Setup and environment All experiments were run on an Ubuntu 20.04.6 LTS system. In order to
run single seed experiment, hardware included 2 CPU cores from an Intel(R) Xeon(R) Gold processor
at 2.40 GHz and 32 GB of RAM. The software environment used Python 3.11.3.

Data preparation We use the California Housing dataset [34], which consists of 20,640 samples
and 8 numerical features: median income, house age, average rooms per household, average bedrooms
per household, population, average household size, latitude, and longitude. The target variable is
median house value. To simulate a natural distribution shift, we partitioned the data into two groups
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Figure S5: Train and test MSE (loss) during model training using 4 = 0.1 for synthetic data
experiment.
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Figure S6: Synthetic experiments comparison of MSE across different methods as a function of noise
level on the entire test set, with and without access to the group indicator feature. Right: Models
are trained with an additional input feature indicating group membership. Left: Models are trained
without access to group membership information.

based on the T-percentile of the target variable y. Group A consists of samples with lower target
values (bottom 7 percent), and group B contains higher-value samples. We chose 7 = 0.4, meaning
the bottom 40% of the samples belong to group A. Figure|S7|shows the sorted target values used for
this grouping.

Model details We use a linear model of the form w 'z + b, trained for 1,000 epochs on each
configuration. For consistency and fair comparison, all methods (including the Only Labeled
baseline) were implemented using numpy code, as PPI++ and our method could not be supported
directly by Scikit-learn.

Hyperparameters Table[S2]summarizes the key hyperparameters and dataset statistics used in the
California Housing experiment.

E.2 Additional results

In what follows, we provide additional results for the experiment from Section @ Figure |S_§|
reports the overall R? score on the full test set, covering both groups A and B. Figure [S8| shows
the MSE across the two groups with a broader range of N values that were omitted in Section[4.2]
for readability. Overall, one can see that the results follow the same trends as those presented in
Section [4.2]
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Figure S7: Ordered target house prices illustrating the 40% threshold for group splitting.

Table S2: California Housing Experiment Parameters

Parameter Value

Number of labeled samples (1) 102 (0.5%)

Number of unlabeled samples (V) 16,327 (79%)

Pre-train sample count (N4 + max Ng) 102 (0.5%)

Pre-train samples from group A (N4) 51

Pre-train samples from group B (Np) {51, 38, 25,12, 10, 5,2, 1}
Number of test samples (7¢est) 4,108 (20%)

Number of features (m) 8

Split threshold (7) 0.4

Number of seeds 100

Epochs 1000

Optimizer SGD

Batch size Full dataset

Learning rate 0.01

Early stopping Enabled (patience: 10 steps)

F Visual real data experiments: supplementary details

F.1 Experimental details

Metrics For evaluation, we report the Mean Average Error (MAE) on the full test set as well as

separately on group A (ages 0-30) and group B (ages 31+). MAE is defined as % e f () -y,

test =1

where f(z) is a regression model. (lower is better) We report also MSE and R?.

Setup and environment All experiments were conducted on a high-performance computing cluster
running Ubuntu 20.04.6 LTS. The hardware configuration includes 98 CPU cores (Intel(R) Xeon(R)
Gold 2.40GHz), 256 GB of RAM, and 8 NVIDIA A40 GPUs. The software stack consists of Python
3.11.3, PyTorch 2.5.1, and CUDA 12.4.

Data preparation We use the UTKFace dataset [35], which comprises over 20,000 face images
labeled with age, gender, and ethnicity. Images are preprocessed by applying standard face alignment
followed by resizing to 128x128 pixels. For data augmentation during training, we apply random
horizontal flipping, random rotations, and color jitter to improve generalization. The age labels in
UTKFace range from 0 to 116 years, which we treat as a regression problem to predict the exact age.

Model details All models are based on the ResNet-50 architecture pretrained on ImageNet, down-
loaded from "https://download.pytorch.org/models/resnet50-11ad3fa6.pth". The fi-
nal classification head is replaced with a fully connected module composed of: Dropout(0.2) —
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Figure S8: Results on California Housing dataset: MSE as a function of Nz /N 4 on the entire test
set. Other details are as in Figure 3]
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Figure S9: Results on California Housing dataset: R? as a function of %—i on the entire test set. Other
details are as in Figure 3]

Linear(2048, 256) — ReLLU — Linear(256, 1), as implemented in the open-source codebase in [40)].
This architecture is used across all methods.

Hyperparameters We use the same training setting for all methods, as summarized in Table [S3]

F.2 Additional results

In Section .31 we present experiments using the MAE performance metric. Here, we complement
those by reporting additional results using the MSE and R? metrics, evaluated both per group and
on the entire test set. Figure presents the results based on the MSE metric, while Figure [STI]
displays the corresponding R scores.

Notably, our proposed PP-SSL method consistently achieves the best performance among all semi-
supervised approaches. It demonstrates noticeable improvements, with particularly strong gains in
group B where the Teacher model in relatively inaccurate. Additionally, the low variability of the
results highlights the stability of PP-SSL across different training runs.

G CIFAR-10 real data experiments: supplementary details

G.1 Experimental details
Metrics For evaluation, we report the top-1 Accuracy on the full test set as well as separately on

Group A (clean classes) and Group B (corrupted classes). Accuracy is defined as correct-classification
by all classifications.
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Table S3: Training and experimental configuration for the UTKFace age estimation experiments.

Parameter Value

Backbone architecture ResNet-50 pretrained on ImageNet

Model final layers Dropout(0.2) — Linear(2048,256) — ReLU — Linear(256,1)
Loss function L1

Optimizer SGD

Momentum 0.9

Weight decay 0.001

Initial learning rate 0.001

Batch size 512

Epochs 100

Early stopping
Number of seeds

Patience = 10 (based on validation loss)
5

Pretrain set fraction
Labeled set fraction
Unlabeled set fraction

7% (1,628 samples)
3% (698 samples)
70% (16,288 samples)

Validation set fraction
Test set fraction

Group A size (ages 0-29)
Group B sizes (ages 30+)

10% (2,326 samples)

10% (2,062 samples)

813 samples

{16, 33, 81, 163, 325, 488, 816}
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Figure S10: Results for age estimation: MAE as a function of N /N4, across 5 data splits. Other
details are as in Figure E|

Setup and environment All experiments were conducted on a high-performance computing cluster
running Ubuntu 20.04.6 LTS. The hardware configuration includes 98 CPU cores (Intel(R) Xeon(R)
Gold 2.40GHz), 256 GB of RAM, and 8 NVIDIA A40 GPUs. The software stack consists of Python
3.11.3, PyTorch 2.5.1, and CUDA 12.4.

Data preparation We use the CIFAR-10 dataset [37]], a standard benchmark comprising 60,000
color images in 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck),
with 6,000 images per class. The dataset is split into 50,000 training images and 10,000 test images.
For our experiment, we reserve 5,000 images from the training set to pretrain a teacher model, and
the remaining 45,000 images are used for student training.

All images are resized to 256 x 256 and center-cropped to 224 x 224 to match the input requirements
of pretrained ResNet-50 models. We apply standard data augmentation for training, including
random resized crops and horizontal flipping. To evaluate model robustness, we optionally add visual
corruptions (e.g., Gaussian noise, saturation, brightness) to selected classes such as cat, dog, and deer
using a class-aware corruption transform prior to normalization.

Model details We extract features using a ResNet-50 model pretrained on ImageNet, ob-
tained from the official PyTorch model zoo at https://download.pytorch.org/models/
resnetb50-11ad3fa6.pth. The ResNet encoder outputs a 2048-dimensional feature vector for
each image. We replace the final classification head with a single linear layer of shape (2048, 10) to
classify among the 10 CIFAR-10 classes.
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Figure S11: Results for age estimation: R? as a function of Nz /N 4, on the entire test set across 5

data splits. Other details are as in Figure

In knowledge distillation settings, we initialize the teacher with a pretrained linear model and load
the checkpoint into a duplicate of the student architecture. The teacher is frozen during training and
provides soft targets for distillation-based supervision.

Hyperparameters Table[S4]summarizes the key hyperparameters and dataset statistics used in the
California Housing experiment.

Table S4: California Housing Experiment Parameters

Parameter Value

Number of labeled samples (1) 4,500 (9%)
Number of unlabeled samples (N) 40,500 (81%)
Number of pretrain samples (Np-.) 5,000 (10%)

Number of test samples (7est) 10,000
Number of features in classifier 2048

Number of seeds 5

Epochs 100

Optimizer SGD

Batch size 256

Learning rate 0.001

Labeled Loss CE

Unlabeled Loss KL divergence

G.2 Experimental Setup

In this section, we present an empirical study on semi-supervised learning under class-conditional
corruption, using the CIFAR-10 dataset as a controlled testbed. Our goal is to investigate how the
presence of visual corruption in a subset of classes affects learning, and how prediction-powered
or distillation-based methods can mitigate these effects. To that end, we inject various types of
corruption into the dataset in the image space (e.g., saturation, brightness, Gaussian noise). We split
the training data into “noisy” and “clean” subsets based on class labels, and study how different
training strategies perform in this mixed-quality regime.

Following recent semi-supervised learning pipelines, we first extract 2048-dimensional features from
all training and test images using a fixed ResNet50 backbone pretrained on ImageNet. To enable a
teacher-student framework, we first split the training set into two parts. A disjoint subset of 5000
clean training samples is used to train a teacher model. This model is trained in a supervised manner
using the standard cross-entropy loss. Once trained, the teacher model is saved and used to guide
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downstream learning via knowledge distillation. We evaluate performance separately on corrupted
and non-corrupted classes to understand the strengths and limitations of each method under real-world
noise scenarios.

To simulate a semi-supervised learning scenario, we split the feature-extracted training data such
that only 10% of samples have labels, and the remaining 90% are treated as unlabeled. A linear
classifier is trained on this data, with supervision provided via hard labels and, when available, soft
predictions from the teacher model. The loss function combines cross-entropy for labeled data with a
Kullback-Leibler divergence term for distillation (pseudo-labeled data):

Lss. = Lcg + A - Lk, Lpp.ssi. = Lcg + A - (Cfv,KL - Lz,KL)v

where for a sample with true label vector y € {0,1}¢ and predicted probabilities p € [0, 1]¢, the
cross-entropy loss is defined as:

C
Lew(p,y) ==Y yilog(pi),
1=1

where C' is the number of classes and p; is the predicted probability for class <. When applying knowl-
edge distillation, we further incorporate a KL divergence loss between the probability distribution
produced by the teacher model and that of the student model. The KL divergence is given by:

C
Lalallp) = alog (Z) |
i=1 v

where ¢ is the distribution from the teacher, and p is the student’s predicted distribution.

G.3 Additional Results

Table S5: Results for corruption severity = 1

Labeled SSL PPI++ PP-SSL Teacher

Brightness

Total 81.42+0.03  81.48+0.06 77.92+0.02 81.23+0.11  85.68+0.01
Group A 85.83+0.03 85.97+0.05 81.99+0.04 84.93+0.06 88.50+0.03
Group B 3.72+0.74 4.92+1.41  56.93+0.12 60.55+0.26  4.81+0.30

Saturate

Total 74.89+0.09  74.65+0.30 70.82+0.14 74.97+0.65 79.15+0.06
Group A 79.11+0.35 78.88+0.97 81.14+0.03  84.12+0.21 75.46+0.09
GroupB  88.62+0.02  88.70+£0.03 85.49+0.03  88.24+0.04  88.53+0.03

Shot Noise

Total 84.2240.07 84.41+0.19 80.96+£0.03 83.91+0.18 88.48+0.03
Group A 57.44+1.12 56.38+3.20 70.99+0.10 74.41+0.55 45.31+0.26
GroupB  78.21+0.33  78.45+0.45 80.58+0.03 83.56+0.09 74.45+0.07

Spatter

Total 82.31£0.03  82.34+0.05 80.16+x0.03  83.10+0.06 82.86+0.02
Group A 88.40+0.04 88.52+0.06 85.48+0.03 88.28+0.10  88.50+0.03
GroupB  54.36+1.10 54.95+1.52 69.18+0.09 72.57+0.21 42.06+0.23

Speckle Noise

Total 74.08+0.11  73.89+0.17 75.88+0.06 78.82+0.09 69.81+0.10
Group A  63.15+£0.22 63.57£0.42 76.92+0.03  79.93+0.09 63.19+0.07
GroupB  88.43+0.03  88.53+0.02 85.46+0.03 88.27+0.04  88.53+0.03
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Table S6: Results for corruption severity = 5

Labeled SSL PPI++ PP-SSL Teacher
Brightness
Total 82.89+0.07 82.87£0.19 80.97+0.17 84.26+0.11 81.14+0.06
Group A 72.10+0.28 71.63+0.75 72.65+0.63  77.59+0.38 64.15+0.17
GroupB  87.52+0.03 87.68+0.09 84.54+0.14 87.12+0.04 88.48+0.06
Saturate
Total 80.73+£0.09 80.67+£0.13  79.95+0.06 83.324+0.02 77.15+0.15
Group A 62.94+0.28 62.61+0.41 67.92+0.19 72.94+0.10 51.07+0.52
Group B 88.35+0.02 88.41+0.02 85.11£0.07 87.77+0.03  88.48+0.04
Shot Noise
Total 79.29+£0.20 79.31+£0.45 78.92+0.09 81.99+0.16 77.34+0.14
Group A 57.93+0.65 57.67+1.44 63.57£0.19 67.31+0.39 51.87+0.44
GroupB  88.45+0.03 88.58+0.06 85.49+0.09 88.28+0.10  88.50+0.05
Spatter
Total 66.09+0.42 66.13+0.58 76.75+£0.05 79.20+0.11 65.46+0.26
Group A 13.92+1.39 13.77+£1.95 56.37+£0.23  58.09+0.34 12.63+0.91
Group B 88.45+0.03 88.58+0.03 85.49+0.05 88.25+0.04 88.67+0.06
Speckle Noise
Total 77.69+0.23 77.86+0.31 78.52+0.08 81.53+0.11 76.30+0.15
Group A 52.62+0.74 52.95+1.02 62.33+0.21 65.79+0.31 48.13+0.45
Group B 88.44+0.03 88.54+0.02 85.46+0.06 88.27+0.04 88.65+0.05

Training

Figure S12: Convergence graph training loss as a function of epochs during CIFAR-10 training

Analysis. Tables[S3] [S6] shows that our method improves the accuracy on the corrupted classes
across different corruption severities, with the adaptive choice of A leading to improved performance
compared to baselines. The results confirm the robustness of PP-SSL to varying levels of noise.

In addition to accuracy, in Figure[ST2]

in practice.
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we also evaluated convergence time. PP-SSL converges faster
than the only-labeled baseline, standard SSL, and PPI++, which require more training epochs to
stabilize. This faster convergence further highlights the efficiency of our adaptive weighting strategy



H Additional Experiments on the Choice of )

In this section, we provide additional experiments that validate our theory regarding the optimal
weight parameter \. These results complement the insights derived in Corollary

H.1 Synthetic Regression: Theoretical vs. Empirical \*

We first conduct a controlled synthetic regression experiment to compare the theoretical A* from
Corollary [3.3|(i.e., in Eq. with the empirical value that minimizes the gradient variance. Since the
theoretical A* (denotes as Ag,,,, below) is derived by minimizing an upper bound on the variance
rather than the variance itself, it need not coincide exactly with the empirical variance minimizer

(denoted as \* ).

practice

Experimental setup. Synthetic data is generated according to the linear noisy model y = x " w* +e,
with x ~ N(0, I;) where d = 10, ¢ ~ N'(0,02) where 02 = 0.01, and w* ~ N(0, I;). We sample
n = 50 labeled examples and N € {200, 2000} unlabeled examples from this model. A synthetic
teacher provides pseudo-labels of the form f(x) = x'(w* + be;) + (, where b € R is a bias
parameter and ¢ ~ N (0, O'?) introduces noise. Both b and 0? control the teacher’s quality. Since
directly mapping them to o and o7 is non-trivial, we set b € {0.1,1}, o7 € {0.01,1.5} and

T

empirically estimate 0% and 2. We consider the MSE loss £(w; z,y) = 4 (2 "w — y)? and estimate

its gradient at a randomly sampled test point @ ~ N (0, Iy).
Results. Table[S7|reveals that A, consistently approaches the performance (in terms of measured
variance) of A, ;.. across different settings. The theoretical value yields variance reductions within
a narrow margin of the empirical optimum.

Table S7: Comparison between theoretical and empirical A*. Theoretical values match empirical
ones closely in terms of minimizing gradient variance.

r ‘72 b ‘ 02 0'5 /\Eleory /\;ractice Var()‘:;leory) Var( A;ractice)
0.025 0.01 0.1 | 104078 0.0793 0.9682  0.99 0.0050 0.0046
0.025 1.5 1 14.1715  7.6479  0.6336 0.70 0.1733 0.1669
0.25 0.01 0.1 | 11.5082 0.0440 0.7969  0.77 0.0749 0.0709
0.25 1.5 1 11.9349 10.1486 0.4324 0.35 0.1034 0.1004

H.2 Adaptive Dynamics of A

Next, we investigate how the adaptive algorithm adjusts A over training epochs in relation to teacher
quality. We track A; when initialized at Ay = 1 across 1000 epochs for teachers of varying pseudo-
label mean squared error (MSE).

Results. Table[S8|shows that A, converges automatically toward the theoretical A*. Moreover, the
limiting value of A increases as the teacher error decreases, which matches intuition: better teachers
justify a higher weight on pseudo-labels.

Table S8: Adaptive dynamics of A across epochs. \; converges toward the theoretical \*, with larger
A for higher-quality teachers.

Teacher MSE Ao Ato0 A200 A0  Ad00  Aso0  Aeoo  A7o0  Asoo  Agoo  A1000 ‘ Al

theory

0.01 1.000 0.966 0946 0934 0.929 0926 0.925 0924 0924 0924 0.924 | 0.968
0.04 1.000 0.945 0902 0.866 0.836 0811 0.791 0.775 0.761 0.751 0.742 | 0.795
0.05 1.000 0.930 0.867 0.812 0.766 0.727 0.696 0.671 0.651 0.635 0.622 | 0.634
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H.3 Comparison to the Infeasible Best Fixed )\

Finally, we benchmark our adaptive method (PP-SSL) against an oracle baseline that uses the
infeasible “best” fixed A\ minimizing test error. We employ the subgroup bias synthetic regression
setup from Section [4.1]

Results. Table[S9|shows that PP-SSL matches the performance of the infeasible oracle across all
bias levels. This demonstrates that adaptivity is sufficient to recover the performance of the best fixed
A, without prior knowledge of the optimal value.

Table S9: Comparison of PP-SSL to the (infeasible) best A. Our adaptive algorithm matches the
oracle performance across all bias settings.

Bias y¢ | Inf. \* | Inf. MSE (Total/A/B) | PP-SSL A | PP-SSL MSE (Total/A/B)

0.1 0.50 1.93/1.76/2.59 0.46 1.93/1.77/2.58
0.5 0.50 1.85/1.69/2.50 0.59 1.85/1.69/2.50
3.0 0.35 2.76/1.95/6.05 0.33 2.76/1.96/6.04
5.0 0.35 2.45/2.07/4.05 0.36 247/2.06/4.12

Summary. Across all three settings, we observe strong alignment between the theoretical prescrip-
tion, the adaptive algorithm, and the empirical optimum. This provides further evidence that the
proposed choice of A is both theoretically sound and practically effective.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims presented in the abstract and introduction are substantiated by
the theoretical results in Section[3] as well as the empirical results in Section[dand in the
Appendix.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our method in Section [5
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate ”Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The theoretical results and assumptions are presented in Section [3] with
complete proofs are provided in the Appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section [d outlines the experimental setup, with full details provided in the
appendix. Code is included in a public GitHub repository https://github.com/noashoham/PP-
SSL.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

33


https://github.com/noashoham/PP-SSL
https://github.com/noashoham/PP-SSL

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper includes the complete code in the supplementary materials, along
with detailed experimental settings and dataset descriptions in the Appendix. The “California
Housing” and “UTKFace” datasets used in the paper are publicly available and properly cited.
A public GitHub repository will be released upon publication to ensure full reproducibility.
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» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details regarding the experiments described in Section [4| appear at the
Appendix.
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» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All plots are shown as boxplots to capture variability across runs, and tables
report means along with standard errors. Corresponding figures can be found in Section 4]
and in the Appendix and tables can be found in the appendix.
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* The answer NA means that the paper does not include experiments.
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* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information about the computational resources used in this work
in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in this paper follows the NeurIPS Code of Ethics in all
aspects.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: In Section [5] we discuss the potential positive and negative impacts of our
method.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not involve the release of high-risk models or datasets. All

data used are standard, publicly available benchmarks, and no additional safeguards are
necessary.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All datasets and external sources utilized in this work are appropriately cited.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new assets. However, we provide a well-
documented software package.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core methodology in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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