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Tackling Sparse Facts for Temporal Knowledge Graph Completion
Anonymous Author(s)

ABSTRACT
Temporal knowledge graph completion (TKGC) seeks to develop
more comprehensive knowledge representations by addressing
missing relationships and entities within temporal knowledge
graphs (TKGs), thereby enhancing reasoning and predictive ca-
pabilities in downstream tasks. Nonetheless, real-world knowl-
edge—such as the progression of social network interactions and
the unfolding of news events—is inherently dynamic, resulting
in substantial sparsity issues in TKGs that profoundly impair the
performance of TKGC models. To overcome this challenge, we in-
troduce the Adaptive Neighborhood Enhancement Layer (ANEL),
a novel module that can be effortlessly integrated into existing
TKGC models to substantially elevate the representation quality
of sparse entities. ANEL first derives initial entity embeddings
through a base model and then uncovers concealed semantic rela-
tionships between entities via a latent relation module, enriching
the explicit relationships within the knowledge graph. Further-
more, ANEL incorporates an adaptive latent information adjust-
ment component, which dynamically calibrates the influence of
latent information based on the entity’s relational structure: en-
tities with fewer connections derive greater benefit from latent
information, while entities with denser connections become less
dependent on latent augmentation, ensuring precise and resilient
representations. We conducted comprehensive experiments on four
prominent benchmark datasets, and the results underscore the ef-
fectiveness and superiority of ANEL in TKGC tasks. The code is
available at: https://anonymous.4open.science/r/ANEL-177F.
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1 INTRODUCTION
Knowledge graphs (KGs) utilize a graph-based framework to reveal
intricate relationships within data, emerging as vital tools for the
structured representation and organization of knowledge. By en-
coding real-world information in the form of triples—comprising a
subject entity, a relation, and an object entity—KGs construct a net-
work that facilitates the in-depth analysis of complex inter-entity
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interactions. This architecture endows KGs with formidable seman-
tic representation and reasoning capabilities, significantly boosting
performance across various downstream tasks. Their applications
span a wide array of fields, including question-answering systems
[1], recommendation engines [2–4], and information retrieval sys-
tems [5]. For instance, in question-answering systems, KGs en-
able more precise and contextually informed responses through
enhanced reasoning; in information retrieval, they improve the
accuracy and relevance of search outputs; in recommendation en-
gines, they analyze user behavior and preferences to generate more
personalized suggestions. However, in practice, KGs often grap-
ple with significant information gaps and incomplete data, which
can severely hamper their ability to faithfully represent real-world
knowledge, thereby diminishing their efficacy in various applica-
tions. To address this challenge, KG Completion (KGC) plays a
crucial role [6]. KGC employs machine learning and inference tech-
niques to predict and fill in missing triples, thereby enriching and
expanding KGs while bolstering their performance across a wide
range of applications.

KGC, as a critical downstream task within KGs, has garnered
significant attention from the research community due to its fo-
cus on inferring missing facts by identifying patterns and rules
within existing KG data. A variety of KGC approaches leverage KG
embeddings (KGEs) to project high-dimensional data into lower-
dimensional spaces, facilitating the creation of a mapping function
between entities and their relationships. This mapping function
is then used to evaluate the plausibility of predicted facts. While
these methods demonstrate strong performance in predicting miss-
ing facts, real-world knowledge is often subject to temporal shifts,
such as those observed in news updates and evolving social dynam-
ics. To maintain accuracy, each dataset is typically annotated with
timestamps. For instance, Donald Trump served as President of the
United States from November 9, 2016, to January 11, 2021 (Trump,
Is President of, United States, 20161109-20210111). Addressing these
temporal changes, Temporal KGs (TKGs) have been introduced,
linking events to specific timestamps. However, the recurrence of
similar events in different temporal contexts creates distinct facts.
For example, the ICEWS dataset [7] records the same event with
different timestamps: (Angola, Make a visit, China, 2014-06-06) and
(Angola, Make a visit, China, 2015-06-23). This added temporal com-
plexity poses substantial challenges for the task of temporal KGC
(TKGC).

Despite the significant advancements made by current TKGC
models, accurately predicting entities with sparse relationships or
newly introduced entities within TKGs remains a formidable chal-
lenge. We conducted an in-depth analysis of widely utilized bench-
mark datasets in the TKG domain, such as ICEWS14 [8], ICEWS18
[9], GDELT [10], and ICEWS05-15 [9], with particular attention to
the impact of neighboring entities on prediction performance (e.g.,
MRR). Using the REGCN [11] TKGCmodel, we evaluated entity pre-
diction across various temporal subgraphs under different neighbor
counts. To consolidate our findings, we categorized entities by their
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neighbor counts and calculated the average MRR for each group,
leading to the final analytical insights. As shown in Figure 1, the
blue bar chart illustrates the distribution of entities by neighbor
count within TKGs, revealing that entities with only one neighbor
form the largest group, emphasizing the pervasive sparsity within
TKGs—a limitation that restricts the available information for fact
completion. The accompanying light blue bar chart depicts the re-
lationship between neighbor count and the prediction performance
of entities with missing facts. Our analysis demonstrates a positive
correlation between the number of neighbors and enhanced predic-
tion accuracy, underscoring the crucial influence of neighbor count
on prediction outcomes.
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Figure 1: The influence of varying entity neighbor quantities
on entity prediction efficacy across the ICEWS14, ICEWS18,
ICEWS05-15, and GDELT benchmark datasets utilizing the
REGCN model.

In this work, we propose a model-agnostic Adaptive Neighbor-
hood Enhancement Layer (ANEL) specifically designed to address
the challenge of fact sparsity in TKGs. This enhancement layer
can be seamlessly integrated with any TKGC model, improving the
representation of entities with limited neighbors and consequently
boosting prediction accuracy for missing facts. When entities have
a large number of neighbors, the framework enhances their repre-
sentations by aggregating information from surrounding entities;
in contrast, when neighbors are sparse, the enhancement layer
leverages latent neighbor information to enrich these entities with
essential data. Extensive experiments conducted on widely recog-
nized benchmark datasets, such as ICEWS and GDELT, demonstrate
that our proposed ANEL framework markedly improves entity pre-
diction performance, especially in scenarios characterized by sparse
neighbor connections. Our principal contributions are as follows:

• We systematically analyzed and quantified the influence of
entity neighbor count on prediction performance within
TKGs, uncovering the critical impact neighbor count has
on overall model effectiveness.

• We introduced a novel, model-agnostic ANEL module that
can be effortlessly incorporated into any existing TKGC
model, substantially improving the representation of enti-
ties with limited neighbors.

• We carried out extensive experimental validation on four
widely recognized TKG benchmark datasets, showcasing
the efficacy of our proposed enhancement layer.

2 RELATEDWORK
Existing TKGC models can be broadly divided into two categories:
non-neural models and Neural network-based TKGE models [12].

Non-neural models typically extend traditional KG embedding
approaches by incorporating temporal information into the repre-
sentations of entities and relations, using transformed distances to
assess the plausibility of facts. For instance, the t-transE [13] cap-
tures temporal information indirectly by ordering relations based
on the time of occurrence; the HyTE [14] employs time information
as a hyperplane to map entity-relation pairs; while the ChronoR
[15] maps entities and relations into complex space, incorporating
time information and linear operators for reasoning, and using
rotations to infer complex relationships. Another subset of non-
neural network methods uses tensor decomposition to evaluate
the plausibility of quadruples, as seen in models like T-DistMult
[16], TNTComplEX [17], TeLM [18], Cont [19], and TuckERTNT
[16]. To address uncertainties in the representations of entities and
relations and enhance the model’s expressiveness, the AtiSE [20]
models entity embeddings as Gaussian distributions, and the RE-
NET framework [9] uses conditional probability distributions to
describe the patterns of fact occurrence. Additionally, the DBKGE
[21] applies the mean and variance of Gaussian distributions to
entity embeddings to capture embedding uncertainties and improve
representation quality. Despite being intuitively designed and rela-
tively simple, these models often produce embeddings with limited
quality due to their simplicity and limited parameterization.

Neural network-based TKGE models excel in representation
learning and the capture of temporal information, effectively han-
dling time dependencies and dynamic evolution within KGs. A
key advantage of these models is their ability to reveal complex
entity relationships and their evolution over time through vari-
ous architectures. For instance, TKGE models combining Graph
Neural Networks (GNNs) with Recurrent Neural Networks (RNNs)
are among the most common architectural types. GNNs excel at
capturing structural dependencies between entity nodes, while
RNNs track the changes in entities and relationships over different
time points. Specifically, the DACHA [22] employs a dual graph
convolutional network (GCN) based on historical relationships to
capture the influence of relational interactions within a graph’s
neighborhood and uses a self-attention encoder to model depen-
dencies between different event types. Similarly, the TeMP [23]
combines a Relational GCN (RGCN) to capture the influence of
neighboring entities and employs a frequency-based gated GRU
to handle dependencies among inactive facts. The REGCN [11]
also utilizes RGCN to capture the effects of neighboring entity
interactions, while an autoregressive GRU is used to model the
associations between temporal facts. Moreover, emerging technolo-
gies such as Capsule Networks [24–26], Transformers [27, 28], Bert
[29, 30], Meta-Learning [31–33], Reinforcement Learning [34, 35],
and Large Language Models [36, 37] have also been widely applied
to TKGC tasks, providing robust support for further enhancing
model performance. Although graph neural network-based TKGC
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methods can predict missing information using the neighborhood
information of target nodes, sparse neighborhood information can
hinder the update of entity representations and affect model per-
formance. Zhang et al. [38] introduced a latent relation learning
approach; however, it inadequately delves into the richness of ex-
isting entity information, making it susceptible to incorporating
superfluous noise. Moreover, it lacks adaptability, thereby restrict-
ing its applicability across diverse models. Conversely, Mirtaheri
et al. [39] proposed a TKGC model related to entity degree that
affords a degree of flexibility. Nevertheless, this method overlooks
the structural intricacies and contextual semantics of latent entity
relations, both of which are pivotal for refining entity embeddings
and bolstering predictive accuracy.

3 PRELIMINARY AND DEFINITION
In this section, we systematically introduce the basic definitions of
temporal knowledge graphs (TKGs) and provide a detailed descrip-
tion of the key symbols and the process involved in TKG completion
(TKGC) tasks.

TKGC involves predicting or filling in previously missing factual
data as the KG evolves over time. These tasks are commonly known
as extrapolation and interpolation. This paper primarily focuses
on the extrapolation task within TKGs. A TKG consists of multiple
graph snapshots taken at different time pointsG = (G1,G2, . . . ,G𝑡 ),
where each snapshot G𝑡 = (F𝑡 , E𝑡 ,R𝑡 ) reflects the set of facts F𝑡
formed by interactions between entities in the entity set E𝑡 and
relationships in the relationship set R𝑡 at time step 𝑡 . Each fact can
be represented as a quadruple F𝑡 = (𝑠, 𝑟, 𝑜, 𝑡), where 𝑠 and 𝑜 are the
subject and object entities, respectively, 𝑟 denotes the relationship
between them, and 𝑡 is the timestamp of the interaction. Unlike
static knowledge graphs (KGs), TKG extrapolation places significant
emphasis on real-time data updates.

The TKGC model treats the prediction task as a sequence of
tasks across multiple time steps 𝑇 = (𝑇1,𝑇2, . . . ,𝑇𝑛). Each sub-task
𝑇𝑡 includes mutually exclusive training data 𝐷train𝑡 ∈ 𝐺𝑡 , testing
data 𝐷test𝑡 ∈ 𝐺𝑡 , and validation data 𝐷val𝑡 ∈ 𝐺𝑡 to ensure unbiased
evaluation. The model starts by learning from the training data
𝐷train1 at the first time step, using the validation data 𝐷val1 to tune
hyperparameters. In each subsequent time step, the model builds
on the parameters from previous steps, iteratively updating them
to enhance prediction accuracy for future data.

4 ADAPTIVE NEIGHBORHOOD
ENHANCEMENT LAYER

TKGs are characterized by dynamic structures, where some enti-
ties may frequently engage in relationships during certain periods
while remaining inactive during others. This temporal imbalance
leads to sparse connections for certain entities at specific time steps.
Additionally, as TKGs evolve, entities and relationships are continu-
ously expanded and updated. Newly introduced entities may receive
attention and connections in certain parts of the graph, while be-
ing neglected in others, resulting in insufficient connections and
representations. These sparsely connected entities typically have
lower-quality representations within the KGs, resulting in subopti-
mal performance of TKGC models when tasked with predictions
involving these entities.

We propose an Adaptive Neighborhood Enhancement Layer
(ANEL), a module that can be seamlessly integrated into any tem-
poral knowledge graph completion (TKGC) model. Its purpose is
to enhance the embedding representations of sparsely connected
and low-activity entities by enriching their latent structural infor-
mation and semantic context. First, the TKGC model is used to
extract the basic features of the entities, generating their initial
representations. Then, the ANEL module systematically explores
and adaptively supplements the latent structural and semantic in-
formation based on the sparsity of the entity relationships. Through
this process, ANEL effectively improves the base model’s ability to
represent sparsely connected and low-activity entities. According
to the format outlined in [39], the entity representations processed
by ANEL are as follows:

𝑒𝑠,𝑡 = 𝑓 (𝑠) + 𝜙 (𝑠)𝑔(𝑠) (1)
In this formulation, 𝑒𝑠,𝑡 signifies the ultimate representation of

the query entity 𝑠 at time 𝑡 , whereas 𝑓 (𝑠) denotes the embedding of
entity 𝑠 produced by the underlying TKGC model. The entity activ-
ity function 𝜙 (𝑠) is defined as 1

1+exp( |N𝑡
𝑠 | )

, where |N𝑡
𝑠 | represents

the number of interacting neighbors of entity 𝑠 at time 𝑡 , reflecting
the entity’s activity level at that particular moment. A lower value
of 𝜙 (𝑠) indicates heightened activity of the entity at timestamp
𝑡 , characterized by frequent interactions with other entities. For
such highly active entities, supplementary information is generally
redundant due to the richness of interaction data. Conversely, for
less active entities with sparse interaction data, it may be neces-
sary to explore potential interactions to enhance the quality of
their representations. The enhancement of entity representations
through latent neighborhoods involves three principal stages: the
construction of a latent graph 𝑔(𝑠), temporal neighbor sampling,
and the aggregation of latent neighborhoods.

4.1 Latent graph construction
For the prediction task (𝑇1 = (𝑠, 𝑟, ?, 𝑡1)), we begin by generating a
candidate set of potentially related entities𝐶𝑠𝑡1 = (𝑜𝑖 ∈ 𝐺𝑡1 ) by filter-
ing out those that do not directly interact with entity 𝑠 at the current
timestamp 𝑡1, as entities appearing within the same timeframe are
seldom coincidental and often exhibit latent connections. For exam-
ple, events such as (𝑅𝑢𝑠𝑠𝑖𝑎,𝑚𝑖𝑙𝑖𝑡𝑎𝑟𝑦𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛,𝑈𝑘𝑟𝑎𝑖𝑛𝑒, 202202)
and (𝑈𝐾, 𝑎𝑖𝑑,𝑈𝑘𝑟𝑎𝑖𝑛𝑒, 202202) are likely intertwined due to their
temporal alignment.

Subsequently, a base model encoder is utilized to initialize the
candidate entities’ features, embedding structural information into
their respective feature representations, as demonstrated by the
equation ℎ𝑜𝑖 = Encoder(𝑜𝑖 ). This step enhances the model’s capac-
ity to uncover intricate relationship patterns within the temporal
graph. Finally, the Pearson correlation coefficient is utilized to quan-
tify the linear relationships between the features of the candidate
entities and the target entity, providing a more sophisticated un-
derstanding of their interconnections.

𝑑 (𝑠, 𝑜𝑖 ) = PearsonSimilarity(ℎ𝑠 , ℎ𝑜𝑖 ) (2)
To refine the precision of identifying entities with potential

interaction relationships and optimize the model’s computational
efficiency, we employ the K-Nearest Neighbors algorithm [40] to
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Figure 2: Illustration of the proposed ANEL integrated with the base model, which first generates initial embeddings, refines
entity features through a latent neighbor graph, and combines the adaptive information component’s output with the base
model’s entity features for entity prediction.

select the top 𝑘 entities most similar to the query entity based on
their feature embeddings. These selected entities are then integrated
as new neighbors to construct the potential graph structure. The
edges in the potential graph G𝑙 are defined as:

G𝑙 =

{
1, if 𝑑 (𝑠, 𝑜) ∈ top-𝐾 (𝐶𝑠𝑡1 )
0, otherwise

(3)

When an entity has few links at time 𝑡 or is a new entity, and the
number of potential neighbors in the current temporal subgraph is
less than 𝑘 , we supplement the potential neighbors by searching
from the previous temporal subgraph at 𝑡 − 1. Since the appearance
of entities at the same time is often non-random, suggesting some
underlying interaction or shared context, we prioritize selecting
entities that co-occur with the target entity at the same time. This
ensures that the potential neighbors are temporally relevant and
likely to share meaningful interactions.

4.2 Latent Neighbourhood Repretation
Aggregation

To fully exploit the rich relational information embedded in the
potential graph, we execute relation-aware propagation and ag-
gregation operations within the latent neighborhood graph of the
target entity [38, 41, 42]. By utilizing relation-aware propagation,
the target entity assimilates varied relational information from its
surrounding entities, enriching its representation with enhanced
contextual semantics. The entity representation, updated through
the incorporation of latent neighborhood information, is expressed
as:

h(𝑙 )𝑜 = 𝜎
©­«

∑︁
(𝑠,𝑟,𝑜 ) ∈G (𝑙 )

𝛼𝑠𝑟𝑜W
(𝑙 )
𝑟

(
h(𝑙 )𝑠 + hr

)
+W(𝑙 )

𝑜 ho (𝑙−1)
ª®¬ (4)

Here, h(𝑙 )𝑜 denotes the embedding of entity 𝑜 at layer 𝑙 , and h𝑜
refers to its representation. The function 𝜎 corresponds to the 𝑅𝑒𝐿𝑈
activation function, whileW(𝑙 )

𝑜 andW(𝑙 )
𝑟 represent the learnable

parameters for entities and relations, respectively, in the 𝑙-th layer
of the learning process. The attention weight 𝛼𝑠𝑟𝑜 is used to dis-
tinguish the significance of entity 𝑜 in relation to entity 𝑠 within
the potential graph. Following the approach outlined in [41], the
attention score 𝛼𝑠𝑟𝑜 for each fact is normalized, with the softmax
function applied to calculate the relative importance of entity 𝑜 to
entity 𝑠 within the potential graph G𝑙 :

𝛼𝑠𝑟𝑜 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑤𝑠𝑟𝑜 )

𝑤𝑠𝑟𝑜 =
exp(𝑤𝑠𝑟𝑜 )∑

𝑤∈N𝑠
exp(𝑤𝑤𝑟𝑜 )

𝑤𝑠𝑟𝑜 = 𝜶 (𝑙 )𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈
(
W(𝑙 )

𝑎𝑡𝑡

[
h(𝑙−1)𝑠 ∥h(𝑙−1)𝑟 ∥h(𝑙−1)𝑜

] )
,

∀(𝑠, 𝑜) ∈ G𝑙

(5)

where 𝜶 (𝑙 ) and W(𝑙 )
𝑎𝑡𝑡 represent the learnable parameters for the

subject entity, relation, and object entity at layer 𝑙 , respectively.
The ∥ denotes the concatenation of different vectors. The vectors
h(𝑙−1)𝑠 , h(𝑙−1)𝑜 , and h(𝑙−1)𝑟 represent the hidden representations of
the subject entity, object entity, and relation at layer 𝑙 − 1, respec-
tively. The set N𝑠 represents the direct neighbors of entity 𝑠 in the
graph G𝑙 , while N𝑜 denotes the set of entities that have interacted
with entity 𝑠 in the same graph.

5 EXPERIMENTS
In this section, we assess the efficacy of the proposed adaptive
neighborhood enhancement layer (ANEL) for entity prediction
in TKGC, utilizing four prominent TKG datasets. The research
questions are as follows:
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• RQ1: How does the performance of the TKGC model inte-
grated with ANEL compare to baseline models?

• RQ2: How do variations in model weight parameters influ-
ence the performance of the TKGC model when ANEL is
applied?

• RQ3:What are the individual contributions of the ANEL
components to the overall performance in TKGC tasks?

5.1 Experiment Settings
5.1.1 Datasets. To validate the efficacy of our proposed ANEL,
we employed four widely recognized benchmark datasets in the
domain of TKGs: ICEWS14 [8], ICEWS05-15 [9], ICEWS18 [9], and
GDELT [10]. The first three datasets, sourced from the Integrated
Crisis Early Warning System (ICEWS), chronicle interactions be-
tween geopolitical entities for the years 2014, 2005-2015, and 2018,
respectively. Conversely, the GDELT dataset records global news
events from 1979 onwards, encompassing data from worldwide
news broadcasts and online media. We processed the datasets fol-
lowing the methodology outlined in [9], partitioning each into
training, validation, and test sets with an 80%, 10%, and 10% split,
respectively. Detailed dataset statistics are presented in Table 1.

Table 1: Common TKGE benchmarks and their attributes

Datasets Entities Relations Facts Train Facts Time Steps
ICEWS14 7128 230 90730 74845 365

ICEWS05-15 10488 251 479329 368868 4017
ICEWS18 23033 256 468558 373018 304
GDELT 7691 240 3419607 1734399 366

5.1.2 Evaluation Metrics. In our experimental validation, we
use the state-of-the-art TKGC model TiRGN [43], which performs
best on extrapolation tasks, and the second-best performing model
REGCN [11] as our base models to validate the effectiveness of our
proposed ANEL method. For the evaluation metrics, we use two
widely recognized measures to assess model performance in TKGC
tasks: Hit@k and Mean Reciprocal Rank (MRR). Hit@k measures
the percentage of cases where the correct entity appears in the
top 𝑘 predicted results, providing insight into the accuracy of the
model’s top-ranked predictions. MRR calculates the average of the
reciprocal ranks of correct predictions, offering a more granular
evaluation of model ranking performance across all tasks. In this
study, we employ Hit@1,3,10 to evaluate model performance. We
report both our results and those from the baseline experiments,
using the same time-aware filtering method as applied by Li et al.
[43], to ensure a fair and consistent comparison.

5.1.3 Baselines. In our baseline model setup, we select several
high-performing static and TKGCmodels as benchmarks. The static
KGC models include DistMult [44], ConvE [45], RotatE [46], and
ComplEx [47]. These models handle only entities and relations with-
out considering temporal information. In contrast, the TKGC mod-
els include TNTComplEx [17], RE-NET [48], CyGNet [49], xERTE
[50], TITer [51], REGCN [11], TiRGN [43] and CENET [52]. These
models incorporate temporal information, allowing them to better
capture and predict evolving relationships and entities over time.

• DistMult [44] represents relationships between entities in a KG
by performing bilinear dot products between the embeddings of
the head entity, relation, and tail entity.

• ConvE [45] captures complex relationships in KGs by trans-
forming entity and relation embeddings into 2D matrices and
applying convolutional neural networks to them.

• RotatE [46] models relationships by rotating the head entity
vector to the tail entity vector in the complex space, representing
triplet relationships in KGs.

• ComplEx [47] embeds entities and relations in the complex
space and uses the complex dot product to model symmetric,
antisymmetric, and complex relational patterns.

• TNTComplEx [17] is a TKGE method that represents temporal
data as fourth-order tensors in the complex space, leveraging
complex numbers to efficiently model the interaction between
entities, relations, and time.

• RE-NET [48] captures dynamic interactions between entities
and relations over time by using a recurrent neural network
(RNN) combined with a relational graph convolutional network
(RGCN) to model temporal evolution.

• CyGnet [49] predicts new facts by leveraging historical and
cyclic events within a temporal context, focusing on the recur-
rence of specific event types over time.

• xERTE [50] is an interpretable model that predicts new events by
using subgraphs and attention mechanisms to focus on relevant
historical information for explaining predictions.

• TITer [51] is a reinforcement learning-based model that predicts
future facts by selecting optimal time paths—sequences of events
that unfold over time—using reinforcement learning. The model
learns to navigate historical temporal data and identifies key
event sequences that are most likely to influence future predic-
tions, optimizing its path selection through iterative feedback.

• REGCN [11] uses a graph convolutional network (GCN) to learn
structural features in KGs and combines it with an RNN to model
temporal sequences, capturing dynamic relationships between
entities over time.

• TiRGN [43] models evolving entity relationships in dynamic
KGs by using a local encoder to capture dependencies between
historical facts and a global encoder to capture repeating histori-
cal patterns over time.

• CENET [52] is a contrastive learning-based TKGC model that
uses contrastive learning to decide whether historical informa-
tion should be used to predict new facts.

5.1.4 Implementation Deatils. We implemented the proposed
ANEL using the PyTorch framework and the PyG library on a node
with A800 GPUs. For optimization, we chose the Adam optimizer
with a learning rate set to 0.001, and the embedding dimensions
were fixed at 200.

For hyperparameter tuning in the ANEL, we used grid search
on the validation set to ensure optimal performance. The search
range for k was 3, 6, 9, 12, 15, 18, 21 and the dropout parameter
was searched within 0.2, 0.4, 0.6. For the four benchmark datasets
employed in the experiment—ICEWS14, ICEWS05-15, ICEWS18,
and GDELT—the optimal k values for REGCN-ANEL and TiRGN-
ANEL were determined to be 6, 9, 6, 12, and 15, 15, 3, 9, respectively.
Furthermore, a dropout rate of 0.4 was applied in each layer. With
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Table 2: ICEWS14, ICEWS05-15, ICEWS18 and GDELT. Best results are in bold.

Model
ICEWS14 ICEWS05-15 ICEWS18 GDELT

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10
DistMult [44] 25.31 17.83 42.20 18.39 11.16 30.32 16.59 10.01 31.69 15.64 9.37 29.33
ConvE [45] 31.23 21.20 50.37 30.40 20.21 49.96 24.16 15.47 44.32 17.03 10.21 33.17
RotatE [46] 27.41 18.53 47.46 19.47 10.32 38.91 15.33 6.90 32.82 5.43 1.87 13.64

ComplEx [47] 31.79 22.91 51.43 22.55 14.22 40.96 18.76 11.39 25.73 12.07 8.24 20.29
TNTComplEx [17] 30.02 23.33 49.11 27.52 19.50 42.85 21.21 13.26 36.89 19.51 12.38 33.39

RE-NET [48] 38.21 28.43 54.11 42.77 30.89 63.29 28.83 19.07 47.53 19.65 12.45 34.07
CyGnet [49] 37.32 27.14 57.49 39.95 28.91 60.96 26.35 16.23 44.71 19.72 11.83 33.21
xERTE [50] 40.69 32.65 57.26 46.57 37.76 63.87 29.28 21.01 45.56 18.75 11.92 32.45
TITer [51] 41.70 32.71 58.44 47.61 38.33 64.89 29.97 22.04 44.86 18.20 11.62 31.23
REGCN [11] 41.75 31.59 61.46 46.44 35.99 66.45 32.2 22.08 51.98 19.63 12.34 33.78
TiRGN [43] 43.67 33.09 62.21 49.36 38.73 69.72 33.26 22.87 53.64 21.66 13.61 37.68
CENET [52] 41.25 32.23 58.16 47.05 37.16 67.57 29.63 19.87 48.12 19.67 11.94 34.96

REGCN-ANEL (Ours) 43.28 32.93 63.11 49.22 38.4 69.89 33.57 23.15 53.31 20.38 12.88 35.02
TiRGN-ANEL (Ours) 44.74 34.4 64.66 50.59 39.69 71.27 34.04 23.53 54.71 22.06 13.85 38.33

Table 3: Performance comparison of REGCN and REGCN +
ANEL (Ours) on Benchmark datasets.

Dataset Model MRR H@1 H@3 H@10

ICEWS14
REGCN 41.75 31.59 46.43 61.46
REGCN-ANEL (Ours) 43.28 32.93 48.03 63.11

△ improve 3.67% 4.24% 3.45% 2.69%

ICEWS18
REGCN 32.20 22.08 36.25 51.98
REGCN-ANEL (Ours) 33.57 23.15 37.40 53.31

△ improve 4.26% 4.85% 3.17% 2.56%

ICEWS05-15
REGCN 46.44 35.99 52.08 66.45
REGCN-ANEL (Ours) 49.22 38.4 55.15 69.89

△ improve 5.99% 6.7% 5.9% 5.18%

GDELT
REGCN 19.63 12.34 20.91 33.78
REGCN-ANEL (Ours) 20.38 12.88 21.77 35.02

△ improve 3.82% 4.38% 4.12% 3.67%

Table 4: Performance comparison of TiRGN and TiRGN +
ANEL (Ours) on Benchmark datasets.

Dataset Model MRR H@1 H@3 H@10

ICEWS14
TiRGN 43.67 33.09 48.11 62.21
TiRGN-ANEL (Ours) 44.74 34.4 49.82 64.66

△ improve 2.5% 3.96% 3.55% 3.94%

ICEWS18
TiRGN 33.26 22.87 37.58 53.64
TiRGN-ANEL (Ours) 34.04 23.53 38.41 54.71

△ improve 2.35% 2.89% 2.21% 2.0%

ICEWS05-15
TiRGN 49.36 38.73 55.27 69.72
TiRGN-ANEL (Ours) 50.59 39.69 56.67 71.27

△ improve 2.49% 2.48% 2.53% 2.22%

GDELT
TiRGN 21.66 13.61 23.28 37.68
TiRGN-ANEL (Ours) 22.06 13.85 23.76 38.33

△ improve 1.85% 1.76% 2.06% 1.73%

these parameters, we present the experimental outcomes of our

proposed ANEL model after integrating it with the baseline archi-
tecture. For the other comparison experiments, we used the default
model parameters.

5.2 Main Results (RQ1)
Table 2 presents a comparison of various models’ performance on
entity prediction tasks within a benchmark dataset. To highlight
the flexibility and effectiveness of our ANEL framework, we incor-
porated it into two leading TKGC models. We chose the TiRGN
model, which achieved the highest entity prediction accuracy, and
the REGCN model, which secured the second position. By integrat-
ing ANEL, we developed two hybrid models—TiRGN-ANEL and
REGCN-ANEL—to evaluate their performance in entity prediction
tasks.

As demonstrated in Tables 2, the TiRGN-ANEL and REGCN-
ANELmodels significantly surpass static models in entity prediction
tasks, primarily because static models are incapable of capturing
essential temporal dynamics in KGC. Moreover, both TiRGN-ANEL
and REGCN-ANEL exceed their original base architectures. This
advancement is largely attributable to the REGCN model’s depen-
dency on the most recent entity representations, which overlooks
wider global dependencies that evolve over time. While the TiRGN
model accounts for these global dependencies, its approach remains
somewhat constrained. ANEL refines this by dynamically adjusting
the integration of global dependencies based on the number of
neighboring entities. In contrast, models like RE-NET and CyGNET
underperform due to their inability to fully leverage temporal in-
formation within the same time step. Likewise, xERTE and TITer,
which depend on path-searching strategies for entity prediction,
struggle when critical paths are absent for certain entities.

Tables 3 and 4 illustrate the performance enhancements in MRR
and H@{1,3,10} metrics for entity prediction following the integra-
tion of the proposed ANEL with the baseline models. The findings
indicate that the REGCN-ANEL model increases the average en-
tity prediction accuracy by 4.13% across four benchmark datasets,
surpassing the base REGCN model, while TiRGN-ANEL achieves
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a 2.54% improvement. The variance in accuracy gains arises from
the fact that the TiRGN model leverages not only the original TKG
but also historical interaction data between entities as input. Con-
sequently, the TiRGN model has already incorporated latent infor-
mation to some degree to enhance the original TKG, whereas the
REGCN model relies solely on the TKG data as input.

5.3 Facts Sparsity Study (RQ1)
To evaluate the influence of data sparsity on the predictive perfor-
mance of our TiRGN-ANEL and REGCN-ANEL models, we ran-
domly removed between 10% and 90% of the facts from the ICEWS14
training set and assessed the models using the complete test set.
Figure 3 provides a comparative analysis of MRR and Hits@10 in
entity prediction tasks across four models: the ANEL-augmented
TiRGN and REGCN, alongside the top-performing base models,
TiRGN and REGCN. As the figure shows, the performance of all
models declines with reduced training data. However, our TiRGN-
ANEL and REGCN-ANEL models consistently outperform their
base counterparts, exhibiting greater robustness to fact sparsity
due to the integration of the ANEL mechanism.
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Figure 3: The performance comparison of entity prediction
between the ANEL-enhanced REGCN/TiRGN completion
model and the basemodel on the sparsified ICEWS14 dataset.

5.4 Sensitivity Analysis (RQ2)
In the proposed ANEL, the parameter 𝑘 determines the number of
neighbors associated with the current entity in the latent graph,

which is built upon filtered neighbors. The relationships between
these neighbors in the latent graph are essential for updating the
current entity’s representation. To examine the effect of different
𝑘 values on the entity prediction MRR for the ANEL model and
the base models REGCN/TiRGN, we conducted experiments with
various 𝑘 values (3, 6, 9, 12, 15, 18, 21) to observe their impact on
model performance (When k is 0, it refers to the prediction result
of the baseline model). As depicted in Figures 4 and 5, the results
demonstrate how varying 𝑘 influences the model’s MRR metric.

The experimental results reveal that as the value of 𝑘 increases,
the MRR of the ANEL fusion completion model initially rises and
then declines. This is because, at lower 𝑘 values, a moderate num-
ber of potential neighbors provides valuable information, enhanc-
ing the representation of the current entity and improving model
performance. However, when 𝑘 exceeds a certain threshold, the
inclusion of too many potential neighbors introduces noise, which
deteriorates the quality of the entity representation. This finding un-
derscores that while the ANEL fusion completion model is adept at
extracting rich information from potential neighbors to strengthen
entity representation, careful selection of the number of neighbors
is essential to prevent noise interference and sustain the model’s
effectiveness.

5.5 Ablation Study (RQ3)
The integration of the ANEL model with diverse base architectures
surpasses the baseline models in entity prediction tasks across
standard benchmark datasets. To evaluate the contribution of each
component within ANEL, we performed an ablation study. In par-
ticular, we sequentially omitted the latent neighborhood mining
component, the adaptive information module, the latent neighbor-
hood aggregation module, and the attention mechanism from the
REGCN-ANEL and TiRGN-ANEL models, assessing these modified
versions on four datasets: ICEWS14, ICEWS05-15, ICEWS18, and
GDELT.

As illustrated in Tables 5 and 6, the fully integrated ANEL model,
when paired with the base models, delivers superior performance
compared to the ANEL variants with individual components re-
moved, underscoring the significance of each module. Notable ob-
servations include:

• Latent Neighbourhood Mining Component: We employ
TiRGN and REGCN, two top-performing models for entity pre-
diction in TKGC, as baseline models, incorporating the latent
neighborhoodmining (LNM) component introduced in this study.
Across four benchmark datasets, all baseline models augmented
with LNM substantially outperformed their counterparts lacking
the latent information mining component (w/o LNM). This high-
lights that the LNM component offers valuable supplementary
insights for TKGC tasks, enhancing the models’ capability to
capture essential temporal relationship dependencies.

• Adaptive informationComponent:The complete ANELmodel
also surpasses the variants without the Adaptive Information
component (w/o AI), suggesting the necessity of a regulatory
mechanism that gauges the need for latent relational data. This is
especially crucial for sparse entities with fewer relational connec-
tions, as they gain from the supplementary information offered
by this component, leading to more precise predictions.
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Figure 4: Performance of REGCN-ANEL under different
𝑘− value innce in the ICEWS14, ICEWS18, ICEWS05-15,
and GDELT benchmark.
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Figure 5: Performance of TiRGN-ANEL under different
𝑘− value innce in the ICEWS14, ICEWS18, ICEWS05-15,
and GDELT benchmark.

• Latent Neighbourhood Aggregation Component: The La-
tent Neighborhood Aggregation (LNA) component strengthens
the model’s capacity to represent sparse entities by extracting
potential neighborhood information. To validate the LNA compo-
nent’s impact on entity prediction tasks, we excluded it from the
model and compared the prediction performance across various
datasets with the complete model. The results revealed a notable
decline in accuracy when the LNA component was omitted (w/o
LNA), confirming that LNA aids the model in capturing addi-
tional latent temporal relationships by enriching neighborhood
information, thereby boosting overall prediction performance.

• Attention Mechanism Component: To assess the contribu-
tion of the attention mechanism, we excluded it and examined
its impact on the performance of the base models integrated
with ANEL (w/o AM). The results indicate that the full model
outperforms the variant lacking the attention mechanism, con-
firming that the attention mechanism effectively identifies and
distinguishes the significance of various latent entities. This dif-
ferentiation enhances the base models’ capacity to deliver more
accurate entity predictions.

Table 5: Performance of different variants of REGGN-ANEL
on various datasets

Model ICEWS14 ICEWS05-15 ICEWS18 GDELT
w/o LNM 41.75 46.44 32.2 19.63
w/o AI 42.24 48.48 32.67 20.21
w/o LNA 42.03 48.44 32.82 20.08
w/o AM 42.39 48.64 32.93 20.12
REGGN-ANEL 43.28 49.22 33.57 20.28

6 CONCLUSION
In this paper, we introduce ANEL to address the pervasive issue
of sparsity in TKGC tasks. Our approach begins by generating an

Table 6: Performance of different variants of TiRGN-ANEL
on various datasets

Model ICEWS14 ICEWS05-15 ICEWS18 GDELT
w/o LNM 43.67 49.39 33.26 21.66
w/o AI 42.52 50.14 33.77 21.83
w/o LNA 44.07 49.92 33.54 21.81
w/o AM 44.17 49.89 33.39 21.73
TiRGN-ANEL 44.71 50.59 34.04 22.06

initial embedding for each entity through a base model. We then
incorporate a latent relationmodule that captures supplementary la-
tent information for entities inadequately defined by their observed
relationships. This is followed by an adaptive latent information
component, which dynamically adjusts the level of latent informa-
tion based on the observed data: entities with fewer direct relations
are enriched with additional latent information, while those with
denser relational data rely less on latent augmentation. The refined
entity embeddings are then utilized for entity prediction tasks. Ex-
tensive experiments and analyses across four benchmark datasets
demonstrate the efficacy and superiority of our proposed ANEL in
TKGC.
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