
Under review as submission to TMLR

On the Expressive Power of a Variant of the Looped
Transformer

Anonymous authors
Paper under double-blind review

Abstract

Besides natural language processing, transformers exhibit extraordinary performance in
solving broader applications, including scientific computing and computer vision. Previ-
ous works try to explain this from the expressive power and capability perspectives that
standard transformers are capable of performing some algorithms. To empower transform-
ers with algorithmic capabilities and motivated by the recently proposed looped transformer
(Yang et al., 2024; Giannou et al., 2023), we design a novel transformer framework, dubbed
Algorithm Transformer (abbreviated as AlgoFormer). We provide an insight that efficient
transformer architectures can be designed by leveraging prior knowledge of tasks and the
underlying structure of potential algorithms. Compared with the standard transformer and
vanilla looped transformer, the proposed AlgoFormer can perform efficiently in algorithm
representation in some specific tasks. In particular, inspired by the structure of human-
designed learning algorithms, our transformer framework consists of a pre-transformer that
is responsible for task preprocessing, a looped transformer for iterative optimization al-
gorithms, and a post-transformer for producing the desired results after post-processing.
We provide theoretical evidence of the expressive power of the AlgoFormer in solving some
challenging problems, mirroring human-designed algorithms. Furthermore, some theoretical
and empirical results are presented to show that the designed transformer has the potential
to perform algorithm representation and learning. Experimental results demonstrate the
empirical superiority of the proposed transformer in that it outperforms the standard trans-
former and vanilla looped transformer in some specific tasks. An extensive experiment on
a real language task (neural machine translation of German and English) further validates
the expressiveness and effectiveness of AlgoFormer.

1 Introduction

The emergence of the transformer architecture (Vaswani et al., 2017) marks the onset of a new era in natural
language processing. Transformer-based large language models (LLMs), such as BERT (Devlin et al., 2019)
and GPT-3 (Brown et al., 2020), revolutionized impactful language-centric applications, including language
translation (Vaswani et al., 2017; Raffel et al., 2020), text completion/generation (Radford et al., 2019;
Brown et al., 2020), sentiment analysis (Devlin et al., 2019), and mathematical reasoning (Imani et al., 2023;
Yu et al., 2024). Beyond the initial surge in LLMs, these transformer-based models have found extensive
applications in diverse domains such as computer vision (Dosovitskiy et al., 2021), time series (Li et al., 2019),
bioinformatics (Zhang et al., 2023b), and addressing various physical problems (Cao, 2021). While many
studies have concentrated on employing transformer-based models to tackle challenging real-world tasks,
yielding superior performances compared to earlier models, the mathematical understanding of transformers
remains incomplete.

The initial line of research interprets transformers as function approximators. Edelman et al. (2022) delve
into the learnability and complexity of transformers for the class of sparse Boolean functions. Gurevych
et al. (2022) explore the binary classification tasks, demonstrating that the transformer can circumvent
the curse of dimensionality with a suitable hierarchical composition model for the posterior probability.
Takakura & Suzuki (2023) investigate the approximation ability of transformers as sequence-to-sequence

1

Under review as submission to TMLR

functions with infinite-dimensional inputs and outputs. They highlight that the transformer can avoid the
curse of dimensionality under the smoothness conditions, due to the feature extraction and property sharing
mechanism. However, viewing transformers solely as functional approximators, akin to feed-forward neural
networks and convolutional neural networks, may not provide a fully satisfying understanding.

Another line of studies focuses on understanding transformers as algorithm learners. Garg et al. (2022)
empirically investigate the performance of transformers in in-context learning, where the input tokens are
input-label pairs generated from classical machine learning models, e.g., (sparse) linear regression and de-
cision tree. They find that transformers can perform comparably as standard human-designed machine
learning algorithms. Some subsequent works try to explain the phenomenon. Akyürek et al. (2023) char-
acterize decoder-based transformer as employing stochastic gradient descent for linear regression. Bai et al.
(2023) demonstrate that transformers can address statistical learning problems and employ algorithm selec-
tion, such as ridge regression, Lasso, and classification problems. Zhang et al. (2023a) and Huang et al. (2023)
simplify the transformer model with reduced active parameters, yet reveal that the simplified transformer
retains sufficient expressiveness for in-context linear regression problems. In Ahn et al. (2023), transformers
are extended to implement preconditioned gradient descent. The looped transformer is proposed in Giannou
et al. (2023), and is shown to have the potential to perform basic operations (e.g., addition and multiplica-
tion), as well as implicitly learn iterative algorithms Yang et al. (2024). More related and interesting studies
can be found in Huang et al. (2023); Von Oswald et al. (2023); Mahankali et al. (2024).

In this paper, inspired by the recently proposed looped transformer (Yang et al., 2024; Giannou et al., 2023),
we propose a novel transformer framework, which we refer to as AlgoFormer, and strictly enforce it as an
algorithm learner by the structure regularization on its architecture. The transformer framework consists
of three modules (sub-transformers), i.e., the pre-, looped, and post-transformers, designed to perform
distinct roles. The pre-transformer is responsible for preprocessing the input data, and formulating it into
some mathematical problems. The looped transformer acts as an iterative algorithm in solving the hidden
problems. Finally, the post-transformer handles suitable postprocessing to produce the desired results.
In contrast to standard transformers, the AlgoFormer is more likely to implement algorithms, due to its
algorithmic structures shown in Figure 1.

Our main contributions can be summarized as follows:

• We introduce a novel transformer framework (as shown in Figure 1), inspired by looped transformer
(Yang et al., 2024; Giannou et al., 2023), namely the AlgoFormer. This framework is designed as
efficient algorithm learners, mimicking the structure of human-designed algorithms ; see Section 2.

• We theoretically show the expressive power of the AlgoFormer in solving three challenging tasks in
implementing some practical human-designed algorithms (Theorems 3.1-3.3), including some task-
specific pre- and post-processing, as well as the gradient descent; see Section 3.

• Beyond the gradient descent, we prove that the AlgoFormer can implement the (second-order)
Newton’s method in linear regression problems (Theorem 4.1). While our results primarily focus on
encoder-based transformers, we also extend our findings to decoder-based transformers (Theorem
4.2); see Section 4.

• We experimentally investigate the behavior of the AlgoFormer with different hyperparameters in
handling some challenging in-context learning tasks. The empirical results on both synthetic and
real language tasks support the expressiveness and the powerfulness of the AlgoFormer; see Section
5.

This paper is organized as follows. The motivations for the design of the transformer framework, includ-
ing a brief introduction to transformer layer architectures and the algorithmic structure of the proposed
transformer framework, are presented in Section 2. We provide detailed results for the expressiveness of the
designed AlgoFormer in tackling three challenging tasks, in Section 3. In Section 4, we additionally show
that the designed transformer is capable of implementing Newton’s method, a second-order optimization
algorithm, beyond the gradient descent. We also extend our results for decoder-only transformers, which
can only access data in the previous tokens for regression. In Section 5, experimental results studying the

2

Under review as submission to TMLR

𝑇𝐹!"#

𝑇𝐹$%%!

𝑇𝐹$%%!

… …

𝑇𝐹$%%!

𝑇𝐹!%&'

Pre-transformer

Looped transformer

Post-transformer

Input prompt

output

Figure 1: Algorithmic structure of the AlgoFormer. The pre-transformer conducts “statements 1” in the
Algorithm; the looped transformer performs “statements 2” inner the for loop; the post-transformer carries
out “statements 3”. Here, TFpre, TFloop, and TFpost are multi-layer transformers; “statements” represent
some fundamental operations in classical algorithms.

behavior of the designed transformer framework are reported. We also empirically compare it with the
standard transformer and vanilla looped transformer. Some concluding remarks and potential limitations
are discussed in Section 6.

2 Motivation and Proposed Method

In this section, we mainly discuss the construction and intuition of the AlgoFormer. Its advantages over
the standard transformer is then conveyed. Before going into details, we first elaborate the mathematical
definition of transformer layers.

2.1 Preliminaries

A one-layer transformer is mathematically formulated as:

Attn (X) = X +
h∑

i=1
W

(i)
V X · softmax

(
X⊤W

(i)⊤
K W

(i)
Q X

)
,

TF (X) = Attn (X) + W2ReLU (W1Attn (X) + b1) + b2,

(1)

where X ∈ RD×N is the input tokens; h is the number of heads; {W
(i)
V , W

(i)
K , W

(i)
Q } denote value, key and

query matrices at i-th head, respectively; {W2, W1, b2, b1} are parameters of the shallow feed-forward ReLU
neural network. The attention layer with softmax activation function mostly exchanges information between
different tokens by the attention mechanism. Subsequently, the feed-forward ReLU neural network applies
nonlinear transformations to each token vector and extracts more complicated and versatile representations.

2.2 Algorithmic Structures of Transformers

As discussed in the introduction, rather than simply interpreting it as an implicit function approximator,
the transformer may in-context execute some implicit algorithms learned from training data. However, it is
still unverified whether the standard multi-layer transformer is exactly performing algorithms.

Looped transformer. Equipped with the supposition that transformers can perform some basic operations,
a shallow transformer is sufficient to represent iterative algorithms, as shown in the green part of Figure 1.
The idea is first mentioned in Giannou et al. (2023), where they show that transformers can implement matrix
addition and multiplication. Therefore, some iterative algorithms in scientific computing can be potentially
realized by looped transformers. However, their construction does not explicitly imply the expressive power
of transformers defined in Equation 1. Recently, Yang et al. (2024) empirically studied the behavior of looped
transformers with different choices of hyperparameters in solving regression problems. Their experimental

3

Under review as submission to TMLR

results further confirm the hypothesis that transformers are exactly learning iterative algorithms in solving
linear regression problems, by strictly regularizing the transformer structure as looped transformers.

AlgoFormer. As shown in the green part of Figure 1, vanilla looped transformers (Yang et al., 2024;
Giannou et al., 2023) admit the same structure as iterative algorithms. However, real applications are usually
much more complicated. For example, given a task with data pairs, a well-trained researcher may first pre-
process the data under some prior knowledge, and then formulate a mathematical (optimization) problem.
Following that, some designed solvers, usually iterative algorithms, are performed. Finally, the desired results
are obtained after further post-processing. The designed AlgoFormer (Algorithm Transformer), visualized in
Figure 1, enjoys the same structure as wide classes of algorithms. Specifically, we separate the transformer
framework into three parts, i.e., pre-transformer TFpre, looped transformer TFloop, and post-transformer
TFpost. Here, those three sub-transformers are standard multi-layer transformers in Equation (1). Given
the input token vectors X and the number of iteration steps T , the output admits:

TFpost (TFloop (· · · TFloop︸ ︷︷ ︸
T iterations

(TFpre(X))) · · ·). (2)

Although we present AlgoFormer as in Equation (2), which consists of three modules, the key insight here
is that the AlgoFormer can be designed flexibly based on the prior knowledge of the algorithm structure
for the given task. Importantly, we do not restrict AlgoFormer to the specific form outlined in Equation
(2). Compared with standard transformers, the AlgoFormer acts more as the algorithm learner, by strictly
regularizing the loop structure. In contrast to Giannou et al. (2023) and Yang et al. (2024), which primarily
focus on tasks solvable by iterative algorithms, our approach introduces additional transformer modules
(e.g., pre- and post-transformers) for processing. These components are crucial for addressing the processing
needs of real-world applications. This design makes the AlgoFormer capable of representing more complex
algorithms and solving challenging tasks more efficiently. Additionally, one of the core insights of our work
is that transformer architectures can be designed more efficiently, flexibly, and diversely by leveraging prior
knowledge and the pre-defined structure of potential algorithms. This approach enables AlgoFormer to
generalize across a broader range of applications while maintaining high efficiency and adaptability, such as
representing algorithms involving nested loops, multiple loops, or multi-processing.

Efficiency. In algorithm representation (as shown in Figure 1), the vanilla looped transformer, the standard
transformer, and the proposed AlgoFormer exhibit expressiveness regardless of efficiency (parameter sizes
and computation). However, the AlgoFormer may enjoy more efficiency in some tasks. In specific algo-
rithm representation with iterations, the standard transformer has redundant parameters, compared with
the vanilla looped transformer and the AlgoFormer. For algorithms that require preprocessing and post-
processing, the AlgoFormer is more efficient for representation. We observe that the pre-transformer and
the post-transformer in the AlgoFormer can be fused with the looped transformer. For example, suppose
the pre-, looped, and post-transformers are all one-layer and one-head. In that case, the AlgoFormer can
be realized by a one-layer and four-head looped transformer, where three heads contribute to perform pre-,
looped, and post-transformer, and the additional head acts as the head selection. But the drawback is also
obvious that the vanilla looped transformer with more heads introduces redundant computation.

2.3 Training Strategy

Our training strategy builds upon the methodology introduced in Yang et al. (2024). Let P i =
[x1, f(x1), · · · , xi−1, f(xi−1), xi] represents the input prompt for 1 ≤ i ≤ N . We denote the AlgoFormer
as TFt

Algo(·; Θ), where f(·) is a task-specific function that varies across different sequences and t indicates
the number of loops (iterations) in Equation 2, and Θ represent the transformer parameters. Instead of
evaluating the loss solely on TFT

Algo(·; Θ) with T iterations, we minimize the expected loss over averaged
iteration numbers:

min
Θ

EP

[
1

T − T0

T∑
t=T0

1
N

N∑
i=1

∥∥TFt
Algo(P i; Θ) − f(xi)

∥∥2
2

]
, (3)

where T0 = max{T − ∆T, 0} is the initial step for evaluating performance, T is the maximal loop iterations
during training, and ∆T is the number of loop iterations included in the loss. To stabilize the training,

4

Under review as submission to TMLR

we adopt the moving average over loop iterations from T0 to T in the loss. Incorporating the loss from
T0 to T ensures that the transformer module faithfully applies iterative algorithms and generalizes beyond
the number of training loops. This approach helps enhance the transformer’s capability for tasks requiring
a varying number of iterations. Experimental results in Sections 5.2 and 5.3 further demonstrate that the
transformer not only applies certain iterative algorithms but also generalizes well to longer loop iterations
beyond those encountered during training.

3 Expressive Power

In this section, we theoretically show by construction that AlgoFormer is capable of solving some challenging
tasks, akin to human-designed algorithms. The core idea is as follows. Initially, the pre-transformer under-
takes the crucial task of preprocessing the input data, such as representation transformation. The looped
transformer is responsible for iterative algorithms in optimization problems. Finally, it is ready to output the
desired result by the post-transformer. Through the analysis of AlgoFormer’s expressive power in addressing
these tasks, we expect its potential to make contributions to the communities of scientific computing and
machine learning. Throughout the section, we assume that the maximal number of data samples is N and
all sample observations (e.g., xi and yi) are bounded.

3.1 Regression with Representation

We consider regression problems with representation, where the output behaves as a linear function of the
input with a fixed representation function. Here, we adopt the L-layer MLPs with (leaky) ReLU activation
function as the representation function Φ∗(·). Specifically, we generate each in-context sample by first
sampling the linear weight A from the prior PA, and then generating the input-label pair {(xi, yi)} with
xi ∈ Rd ∼ Px, yi = AΦ∗(xi) + ϵi and ϵi ∼ N

(
0, σ2I

)
. We aim to find the test label ytest := AΦ∗(xtest),

given the in-context samples and test data {x1, y1, · · · , xN , yN , xtest}. Here, the weight matrix A varies
across different sequences of in-context samples but remains constant within a single sequence, and is learned
in-context. The representation function Φ∗, on the other hand, is fixed across all samples of sequences and
is learned during training. A reliable solver is expected first to identify the representation function and
transform the input data x to its representation Φ∗(x). Then it reduces to a regression problem, and some
optimization algorithms are performed to find the weight matrix from in-context samples. Finally, it outputs
the desired result ytest by applying transformations on the test data. We prove by construction that there
exists an AlgoFormer that solves the task, akin to the human-designed reliable solver.
Theorem 3.1. There exists a designed AlgoFormer with TFpre (an (L + 1)-layer two-head transformer),
TFloop (a one-layer two-head transformer), and TFpost (a one-layer one-head transformer), that outputs
AΦ∗ (xtest) from the input-label pairs {x1, y1, · · · , xN , yN , xtest} by fitting the representation function and
applying gradient descent for multi-variate regression. The emulation of each step is not exact, as there is
some error introduced in each step. However, the error can be made arbitrarily close to zero by increasing
the temperature of the softmax and adjusting another free parameter, neither of which affects the size of the
network.

Remarks. The detailed proof is available in Appendix A.1. Our construction of the transformer framework
involves three distinct sub-transformers, each assigned specific responsibilities. The pre-transformer, char-
acterized by identity attention, is dedicated to representation transformation through feed-forward neural
networks. This stage reduces the task to a multivariate regression problem. Subsequently, the looped trans-
former operates in-context to determine the optimal weight, effectively acting as an iterative solver. Finally,
the post-transformer is responsible for the post-processing and generate the desired result AΦ∗ (xtest). Here,
the input prompt to the transformer is formulated as

P =

 x1 0 · · · xN 0 xtest
0 y1 · · · 0 yN 0
px

1 py
1 · · · px

N py
N px

N+1

 ,

where px
i , and py

i denote positional embeddings and will be specified in the proof. Due to the differing
dimensions of the input x and its corresponding label y, zero padding is incorporated to reshape them into

5

Under review as submission to TMLR

vectors of the same dimension. The structure of the prompt P aligns with similar formulations in previous
works (Bai et al., 2023; Akyürek et al., 2023; Garg et al., 2022). For different input prompts P , the hidden
linear weights A are distinct but the representation function Φ∗(·) is fixed. In comparison with the standard
transformer adopted in Guo et al. (2024), which investigates similar tasks, the designed AlgoFormer has a
significantly lower parameter size, making it closer to the envisioned human-designed algorithm. Notably, we
construct the looped transformer to perform gradient descent for the multi-variate regression. However, the
transformer exhibits remarkable versatility, as it has the capability to apply (ridge) regularized regression
and more effective optimization algorithms beyond gradient descent. For more details, please refer to Section
4.

3.2 AR(q) with Representation

We consider the autoregressive model with representation. The dynamical (time series) system is generated
by xt+1 = AΦ∗ ([xt+1−q, · · · , xt]) + ϵt, where Φ∗ (·) is a fixed representation function (e.g., we take the L-
layer MLPs), and the weight A varies from different sequences but remains constant within a single sequence.
Our goal is to learn Φ∗ (·) during training and to perform in-context learning of the weight matrix A. In
standard AR(q) (multivariate autoregressive) models, the representation function Φ∗ (·) is identity. Here, we
investigate a more challenging situation in which the representation function is fixed but unknown. A well-
behaved solver should first find the representation function and then translate it into a modified autoregressive
model. With standard Gaussian priors on the white noise ϵt, the Bayesian estimator of the AR(q) model
parameters admits arg maxA

∏N
t=1 f(xt|xt−1, · · · , xt−q) = arg minA

∑N
t=1 ∥xt − AΦ∗ ([xt−q, · · · , xt−1])∥2

2,
where f(xt|xt−1, · · · , xt−q) is the conditional density function of xt, given previous q observations. A
practical solver initially identifies the representation function and transforms the input time series into its
representation, denoted as Φ∗(xt). Then the problem is reduced to an autoregressive form. Similar to
the previous subsection, we prove by construction that there exists a AlgoFormer, akin to human-designed
algorithms, capable of effectively solving the given task.
Theorem 3.2. There exists a designed AlgoFormer with TFpre (a one-layer q-head transformer with an
(L+1)-layer one-head transformer), TFloop (a one-layer two-head transformer), and TFpost (a one-layer one-
head transformer), that predicts xN+1 from the data sequence {x1, x2, · · · , xN } by copying, transformation
of the representation function and applying gradient descent for multi-variate regression. The emulation
of each step is not exact, as there is some error introduced in each step. However, the error can be made
arbitrarily close to zero by increasing the temperature of the softmax and adjusting another free parameter,
neither of which affects the size of the network.

Remarks. The detailed proof can be found in Appendix A.2. The technical details are similar to Theorem
3.1. The input prompt to the transformer is formulated as

P =
[

x1 x2 · · · xN

px
1 px

2 · · · px
N

]
,

where px
i denote positional embeddings and will be specified in the proof. Additionally, the pre-transformer

copies the feature from the previous q tokens, utilizing q heads for parallel processing.

3.3 Chain-of-Thought with MLPs

Chain-of-Thought (CoT) demonstrates exceptional performances in mathematical reasoning and text genera-
tion (Wei et al., 2022). The success of CoT has been theoretically explored, shedding light on its effectiveness
in toy cases (Li et al., 2023) and on its computational complexity (Feng et al., 2023). In this subsection, we
revisit the intriguing toy examples of CoT generated by leaky ReLU MLPs, denoted as CoT with MLPs, as
discussed in Li et al. (2023). We begin by constructing an L-layer MLP with leaky ReLU activation. For an
initial data point x ∼ Px, the CoT point sℓ represents the output of the ℓ-th layer of the MLP. Consequently,
the CoT sequence {x, s1, · · · , sL} is exactly generated as the output of each (hidden) layer of the MLP. The
implicit L-layer MLP remains the same within a single sequence but varies across different sequences, and
it is learned in-context. The target of CoT with MLPs problem is to find the next state ŝℓ+1 based on
the CoT samples {x1, s1

1, · · · , sL
1 , x2, · · · , xN , s1

N , · · · , sL
N , xtest, ŝ1, · · · , ŝℓ}, where {ŝ1, · · · , ŝℓ} denotes the

6

Under review as submission to TMLR

CoT prompting of xtest. We establish by construction in Theorem 3.3 that the AlgoFormer adeptly solves
the CoT with MLPs problem, exhibiting a capability akin to human-designed algorithms.
Theorem 3.3. There exists a designed AlgoFormer with TFpre (a seven-layer two-head transformer), TFloop
(a one-layer two-head transformer), and TFpost (a one-layer one-head transformer), that finds ŝℓ+1 from
samples {x1, s1

1, · · · , sL
1 , x2, · · · , xN , s1

N , · · · , sL
N , xtest, ŝ1, · · · , ŝℓ} by filtering and applying gradient descent

for multi-variate regression. The emulation of each step is not exact, as there is some error introduced in
each step. However, the error can be made arbitrarily close to zero by increasing the temperature of the
softmax and adjusting another free parameter, neither of which affects the size of the network.

Remarks. We put the proof in Appendix A.3. The pre-transformer first identifies the positional number ℓ,
and subsequently filters the input sequence into {sℓ

1, sℓ+1
1 , sℓ

2, sℓ+1
2 , · · · , sℓ

N , sℓ+1
N , ŝℓ}. This filtering transfor-

mation reduces the problem to a multi-variate regression problem. Compared with Li et al. (2023), where
an assumption is made, we elaborate on the role of looped transformers in implementing gradient descent.
While the CoT with MLPs may not be explicitly equivalent to CoT tasks in real applications, Theorem 3.3
somewhat implies the potential of the AlgoFormer in solving CoT-related problems.

4 Extensions and Further Analysis

In this section, we provide complementary insights to the results discussed in Section 3. Firstly, as discussed
in the remark following Theorem 3.1, we construct the looped transformer that employs gradient descent
to solve (regularized) multi-variate regression problems. However, in practical scenarios, the adoption of
more efficient optimization algorithms is often preferred. Investigating the expressive power of transformers
beyond gradient descent is both intriguing and appealing. As stated in Theorem 4.1, we demonstrate that the
AlgoFormer can proficiently implement Newton’s method for solving linear regression problems. Secondly,
the definition in Equation 1 implies the encoder-based transformer. In practical applications, a decoder-
based transformer with causal attention, as seen in models like GPT-2 (Radford et al., 2019), may also be
favored. For completeness, it is also compelling to examine the behavior of decoder-based transformers in
algorithmic learning. Our findings, presented in Theorem 4.2, reveal that the decoder-based AlgoFormer
can also implement gradient descent in linear regression problems. The primary distinction lies in the fact
that the decoder-based transformer utilizes previously observed data to evaluate the gradient, while the
encoder-based transformer calculates the gradient based on the full data samples.

4.1 Beyond the Gradient Descent

Newton’s (second-order) methods enjoy superlinear convergence under some mild conditions, outperforming
gradient descent with linear convergence. This raises a natural question:

Can the transformer implement algorithms beyond gradient descent, including higher-order optimization
algorithms?

In this section, we address this question by demonstrating that the designed AlgoFormer can also realize
Newton’s method in regression problems.

Consider the linear regression problem given by:

arg min
w

1
2N

N∑
i=1

(
w⊤xi − yi

)2
. (4)

Denote X = [x1, x2, · · · , xN]⊤ ∈ RN×d, y = [y1, y2, · · · , yN]⊤ ∈ RN×1 and S = X⊤X. A typical Newton’s
method for linear regression problems follows the update scheme:

M0 = αS, where α ∈
(

0,
2

∥SS⊤∥2

]
, Mk+1 = 2Mk − MkSMk, wNewton

k = MkX⊤y. (5)

As described in Söderström & Stewart (1974); Pan & Schreiber (1991), the above update scheme (Newton’s
method) enjoys superlinear convergence, in contrast to the linear convergence of gradient descent. The
following theorem states that Newton’s method in Equation 5 can be realized by the AlgoFormer.

7

Under review as submission to TMLR

Theorem 4.1. There exists a designed AlgoFormer with TFpre (a one-layer two-head transformer), TFloop (a
one-layer two-head transformer), and TFpost (a two-layer two-head transformer), that implements Newton’s
method described by Equation 5 in solving regression problems. The emulation of each step is not exact,
as there is some error introduced in each step. However, the error can be made arbitrarily close to zero by
increasing the temperature of the softmax and adjusting another free parameter, neither of which affects the
size of the network.

Remarks. The proof can be found in Appendix A.4. The pre-transformer performs preparative tasks, such
as copying from neighboring tokens. The looped-transformer is responsible for updating and calculating
Mkxi for each token xi at every step k. The post-transformer compute the final estimated weight wNewton

T

and outputs the desired the results wNewton⊤
T xtest, where T is the iteration number in Equation 2 and

Equation 5. In a related study by Fu et al. (2023), similar topics are explored, indicating that transformers
exactly perform higher-order optimization algorithms. However, our transformer architectures differ, and
technical details are distinct.

4.2 Decoder-based Transformer

In the preceding analysis, the encoder-based AlgoFormer (with full attention) demonstrates its capability to
solve problems by performing algorithms. Previous studies (Giannou et al., 2023; Bai et al., 2023; Zhang
et al., 2023a; Huang et al., 2023; Ahn et al., 2023) also focus on the encoder-based models. We opted
for an encoder-based transformer because full-batch data is available for estimating gradient and Hessian
information. However, in practical applications, decoder-based models, like GPT-2, are sometimes more
prevalent. In this subsection, we delve into the performance of the decoder-based model when executing
iterative optimization algorithms, such as gradient descent, to solve regression problems.

We consider the linear regression problem in Equation 4. Due to the limitations of the decoder-based
transformer, which can only access previous tokens, implementing iterative algorithms based on the entire
batch data is not feasible. However, it is important to note that the current token in a decoder-based
transformer can access data from all previous tokens. To predict the label yi based on the input prompt
P i = [x1, y1, · · · , xi], the empirical loss for the linear weight at xi is given by

wi ∈ arg min
w

L
(
w; P i

)
:= 1

2(i − 1)

i−1∑
j=1

(
w⊤xj − yj

)2
. (6)

In essence, the linear weight is estimated using accessible data from the previous tokens, reflecting the
restricted information available in the decoder-based transformer.
Theorem 4.2. There exists a designed AlgoFormer with TFpre (a one-layer two-head transformer), TFloop
(a one-layer two-head transformer), and TFpost (a two-layer two-head transformer), that outputs wi⊤

T xi

for each input data xi, where wi
T comes from arg minw L

(
w; P i

)
after T steps of gradient descent. The

emulation of each step is not exact, as there is some error introduced in each step. However, the error can
be made arbitrarily close to zero by increasing the temperature of the softmax and adjusting another free
parameter, neither of which affects the size of the network.

Remarks. The detailed proof is available in Appendix A.5. The technical details closely resemble those in
Theorem 3.1, with the key distinction being that the decoder-based transformer can solely leverage data from
previous tokens to determine the corresponding weight wi. Our findings align with those in Guo et al. (2024),
although our transformer architectures and attention mechanisms differ. In a related study by Akyürek et al.
(2023), similar topics are explored, demonstrating that the decoder-based transformer performs single-sample
stochastic gradient descent, while our results exhibit greater strength with wi ∈ arg minw L

(
w; P i

)
. The

construction of a decoder-based transformer for representing Newton’s method is more challenging. We left
it as a potential topic for future investigation.

5 Experiments

In this section, we conduct a comprehensive empirical evaluation of the performance of AlgoFormer in
tackling challenging tasks, specifically addressing regression with representation, AR(q) with representation,

8

Under review as submission to TMLR

0 5 10 15 20 25 30 35 40
in-context samples

10 3

10 2

10 1

100
sq

ua
re

 e
rro

r
Standard
Looped
AlgoFormer

(a) Regression with representation

0 5 10 15 20 25 30 35 40
in-context samples

10 2

10 1

sq
ua

re
 e

rro
r

Standard
Looped
AlgoFormer

(b) AR(q) with representation

0 5 10 15 20 25 30 35 40
in-context samples

10 2

10 1

sq
ua

re
 e

rro
r

Standard
Looped
AlgoFormer

(c) CoT with MLPs

Figure 2: The validation error of trained models (the standard transformer, the vanilla looped transformer,
and the AlgoFormer), assessed on regression with representation, AR(q) with representation, and CoT with
MLPs tasks. By choosing suitable hyperparameters (i.e., we set (T, ∆T) = (20, 15)), the AlgoFormer has
significantly better performance than the standard transformer and the vanilla looped transformer on those
tasks.

and CoT with MLPs, as outlined in Section 2. Additionally, we also implement AlgoFormer on the neural
machine translation task of German and English, demonstrating its expressiveness and effectiveness in the
real-world language task.

5.1 Experimental Settings and Hyperparameters

Experimental settings. In all experiments, we adopt the decoder-based AlgoFormer, standard transformer
(GPT-2), and vanilla looped transformer Yang et al. (2024). For synthetic tasks, we utilize N = 40 in-context
samples as input prompts and d = 20 dimensional vectors with D = 256 dimensional positional embeddings
for all experiments. To ensure fairness in comparisons, all models are trained using the Adam optimizer, with
a learning rate η = 1e − 4 and a total of 500K iterations to ensure convergence. The standard transformer
is designed to have L = 12 layers while pre-, looped and post-transformers are all implemented in one-
layer. The default setting for the AlgoFormer, as well as the vanilla looped transformer, involves setting
(T, ∆T) = (20, 15). Here, the prompt formulation and the training loss in Equation (3) may slightly differ for
different tasks. For example, in the AR(q) task, the input prompt is reformulated as P i = [x1, · · · , xi−1, xi]
and xi+1 = f([xi+1−q, · · · , xi]) is the target for prediction. However, the training strategy can be easily
transmitted to other tasks. Here, both the iteration numbers T0 and T are hyperparameters, which will be
analyzed in the next subsection.

Regression with representation. In this task, we instantiate a 3-layer leaky ReLU MLPs, denoted as
Φ∗(·), which remains fixed across all tasks. The data generation process involves sampling a weight matrix
A ∈ R1×20. Subsequently, input-label pairs {(xi, yi)}40

i=1 are generated, where xi ∼ N (0, I20), ϵi ∼ N
(
0, σ2)

and yi = AΦ∗(xi)+ϵi. In Figure 2a, we specifically set σ = 0. Additionally, we explore the impact of different
noise levels by considering σ = 0.1 and σ = 1. Here, our target is to learn the representation function Φ∗(·)
during training and to perform in-context learning of the weight matrix A.

AR(q) with representation. For this task, we set q = 3 and employ a 3-layer leaky ReLU MLP
denoted as Φ∗(·), consistent across all instances. The representation function accepts a 60-dimensional
vector as input and produces 20-dimensional feature vectors. The time series sequence {xt}N

t=1 is gener-
ated by initially sampling A ∼ N (0, I20×20). Then the sequence is auto-regressively determined, with
xt+1 = AΦ∗ ([xt+1−q, · · · , xt]) + ϵt, where ϵt ∼ N (0, I20). Here, our target is to learn the representation
function Φ∗(·) during training and to perform in-context learning of the weight matrix A.

CoT with MLPs. In this example, we generate a 6-layer leaky ReLU MLP to serve as a CoT sequence
generator, determining the length of CoT steps for each sample to be six. The CoT sequence, denoted as
{x, s1, · · · , sL} is generated by first sampling x ∼ N (0, I20), where sℓ ∈ R20 represents the intermediate
state output from the ℓ-th layer of the MLP. Here, our target is to perform in-context learning of the generator
function (i.e., the 6-layer leaky ReLU MLP).

9

Under review as submission to TMLR

5.2 AlgoFormer Exhibits High Expressiveness

In this subsection, we conduct a comparative analysis of the AlgoFormer against the standard and vanilla
looped transformers across challenging tasks, as outlined in Section 3. Figure 2 illustrates the validation error
trends, showcasing a decrease with an increasing number of in-context samples, aligning with our intuition.
Crucially, the AlgoFormer consistently outperforms both the standard and the vanilla looped transformer
across all tasks, highlighting its superior expressiveness in algorithm learning. Particularly in the CoT with
MLPs task, both the AlgoFormer and the standard transformer significantly surpass the vanilla looped
transformer. This further underscores the significance of preprocessing and postprocessing steps in handling
complex real-world applications. The carefully designed algorithmic structure of the AlgoFormer emerges as
an effective means of structural regularization, contributing to enhanced algorithm learning capabilities.

5.3 Impact of Hyperparameters

In this subsection, we conduct the empirical analysis of the impact of the hyperparameters on the AlgoFormer.

0 25 50 75 100 125 150 175 200
loop iteration

0.0
0.2
0.4
0.6
0.8
1.0
1.2

sq
ua

re
 e

rro
r

T=12
T=20
T=30
T=50

(a) ∆T = 5

0 25 50 75 100 125 150 175 200
loop iteration

0.0

0.2

0.4

0.6

0.8

1.0

sq
ua

re
 e

rro
r

T=12
T=20
T=30
T=50

(b) ∆T = 10

0 25 50 75 100 125 150 175 200
loop iteration

0.0

0.2

0.4

0.6

0.8

1.0

sq
ua

re
 e

rro
r

T=12
T=20
T=30
T=50

(c) ∆T = 15

Figure 3: The validation error of trained models, evaluated on regression with representation task, with
varying hyperparameters T and ∆T . The AlgoFormers are trained for T loops, defined in Equation 3, and
the evaluation focuses on square loss at longer iterations, where the number of loop iterations far exceeds T .

0 5 10 15 20 25 30 35 40
in-context samples

10 3

10 2

10 1

100

sq
ua

re
 e

rro
r

Standard L=3
Standard L=12
Standard L=14
Standard L=20
Standard L=22
AlgoFormer L=1
AlgoFormer L=2

(a) Varying numbers of layers

0 5 10 15 20 25 30 35 40
in-context samples

10 3

10 2

10 1

100

sq
ua

re
 e

rro
r

h=2
h=4
h=8
h=16

(b) Varying numbers of heads

Figure 4: The validation error of trained models, evaluated on regression with representation task, with
varying numbers of layers (denoted as L) and heads (denoted as h). In the context of AlgoFormer, the
number of layers L corresponds to the layers in the pre-, looped, and post-transformers, all of which are
L-layer transformers. The AlgoFormers are trained with (T, ∆T) = (20, 15), defined in Equation 3.

Loop iterations. We conduct comprehensive experiments on the AlgoFormer with varying loop numbers,
on solving the regression with representation task. The results highlight the crucial role of both T and ∆T
in the performance of the AlgoFormer. It is observed that a larger ∆T contributes to the stable inference
of transformers. Comparing Figure 3a with Figures 3b and 3c, it is evident that a larger ∆T enhances
stable long-term inference. The number of loop iterations T determines the model capacity in expressing
algorithms. However, it is important to note that there exists a trade-off between the iteration numbers
(T, ∆T) and computational costs. Larger (T, ∆T) certainly increases model capacity but also leads to higher
computational costs and challenges in model training, as reflected in Figure 3.

10

Under review as submission to TMLR

0 5 10 15 20 25 30 35 40
in-context samples

10 3

10 2

10 1

100

101

sq
ua

re
 e

rro
r

Newton Iter=5
Newton Iter=10
Newton Iter=15
Newton Iter=20
GD Iter=5
GD Iter=10
GD Iter=15
GD Iter=20
AlgoFormer T=10
AlgoFormer T=20

(a) Linear regression, σ = 0

0 5 10 15 20 25 30 35 40
in-context samples

10 2

10 1

100

101

sq
ua

re
 e

rro
r

Newton Iter=5
Newton Iter=10
Newton Iter=15
Newton Iter=20
GD Iter=5
GD Iter=10
GD Iter=15
GD Iter=20
AlgoFormer T=10
AlgoFormer T=20

(b) Linear regression, σ = 0.1

0 5 10 15 20 25 30 35 40
in-context samples

100

101

sq
ua

re
 e

rro
r

Newton Iter=5
Newton Iter=10
Newton Iter=15
Newton Iter=20
GD Iter=5
GD Iter=10
GD Iter=15
GD Iter=20
AlgoFormer T=10
AlgoFormer T=20

(c) Linear regression, σ = 1.0

Figure 5: The validation error of trained AlgoFormer models and the linear regression models optimized
by gradient descent and Newton’s method. The AlgoFormers are trained with (T, ∆T) = (20, 15) and
(T, ∆T) = (10, 10), defined in Equation 3.

Number of heads and layers. In our experiments on the AlgoFormer, we vary the numbers of heads and
layers in TFloop while addressing the regression with representation task. The results reveal a consistent
trend that an increase in both the number of heads and layers leads to lower errors. This aligns with
our intuitive understanding, as transformers with greater numbers of heads and layers exhibit enhanced
expressiveness. However, a noteworthy observation is that 4-layer and 16-head transformers may exhibit
suboptimal performance, possibly due to increased optimization challenges during model training. This
finding underscores the importance of carefully selecting the model size, as a larger model, while offering
higher expressiveness, may present additional training difficulties. The visualized results are shown in Figure
4. Moreover, compared with the standard transformer, even with the same number of layers, the AlgoFormer
exhibits better performance in those tasks, mainly due to the introduced algorithmic structure. This finding
highlights the role of the structure regularization of the model. Therefore, we have reasons to believe that
the good performance of the AlgoFormer not only comes from the higher expressiveness with deeper layers
but also from the structure regularization of model architecture, which facilitates easier training and good
generalization.

In Figure 3, we also provide insights into the behavior of AlgoFormer during inference. Although the Al-
goFormer is trained with T=20 loop iterations, the inference is conducted with significantly longer loop
iterations (e.g., T=200), As T increases beyond the training length, AlgoFormer demonstrates improved
performance and eventually stabilizes (i.e., converges). This behavior suggests that the inner looped trans-
formers are effectively performing iterative computations that converge to a stable solution.

5.4 AlgoFormer and Human-Designed Algorithms

In this subsection, we compare the AlgoFormer with Newton’s method and gradient descent in solving
linear regression problems. We adopt the same default hyperparameters, with their selection grounded in a
comprehensive grid search.

As illustrated in Figure 5, we observe that in the noiseless case, the AlgoFormer outperforms both Newton’s
method and gradient descent in the beginning stages. However, Newton’s method suddenly achieves nearly
zero loss (machine precision) later on, benefiting from its superlinear convergence. In contrast, our method
maintains an error level around 1e − 3. With increasing noise levels, both Newton’s method and gradient
descent converge slowly, while our method exhibits better performance.

Several aspects contribute to this phenomenon. Firstly, in the noiseless case, Newton’s method can precisely
recover the weights through the linear regression objective in Equation 6, capitalizing on its superlinear
convergence. On the other hand, the AlgoFormer operates as a black-box, trained from finite data. While
we demonstrate good model expressiveness, the final generalization error of the trained transformer results
from the model’s expressiveness, the finite number of training samples, and the optimization error. Despite
exhibiting high expressiveness, the trained AlgoFormer cannot eliminate the last two errors entirely. This

11

Under review as submission to TMLR

observation resonates with similar findings in solving partial differential equations (Raissi et al., 2019) and
large linear systems (Gu & Ng, 2023) using deep learning models.

Secondly, with larger noise levels, Newton’s method shows suboptimal results. This is partly due to the
inclusion of noise, which slows down the convergence rate, and Newton’s method experiences convergence
challenges when moving away from the local solution. In terms of global convergence, the AlgoFormer
demonstrates superior performance compared to Newton’s method.

Human-designed algorithms, backed by problem priors and precise computation, achieve irreplaceable per-
formance. It’s important to note that deep learning models, including transformers, are specifically designed
for solving black-box tasks where there is limited prior knowledge but sufficient observation samples. We
expect that transformers, with their substantial expressiveness, hold the potential to contribute to designing
implicit algorithms in solving scientific computing tasks.

5.5 Applications to Language Tasks

In this subsection, we extend the evaluation of the proposed AlgoFormer to real-world language tasks, com-
plementing its performance in real applications. Specifically, we focus on Neural Machine Translation using
the IWSLT 2015 German-English dataset. The experimental setup includes a standard Transformer with
12 layers, 8 attention heads, a feature dimension of 256, and a learning rate of 5e-5. The pre-, looped, and
post-transformers are all implemented as single layers, with T set to 12 and ∆T to 10 (see the hyperpa-
rameters in Equation 3 for training). The input German text is treated as a prefix, and the output English
text is generated autoregressively using decoder-based transformers for all three models. The translation
performance is evaluated using cross-entropy loss, where lower values indicate better results. Additionally,
BLEU (Bilingual Evaluation Understudy) is a widely used metric for measuring the quality of translation
tasks, with higher scores indicating better performance.

The results are presented in the table below:

Model Standard Looped AlgoFormer
Cross entropy 4.99 4.73 4.61

BLUE 9.30 10.56 14.72

As shown in the results, AlgoFormer outperforms both the standard Transformer and the vanilla looped
Transformer in the Neural Machine Translation task, suggesting that conventional models may have inherent
redundancies. This aligns with recent findings on the redundancy in large language models (Chen et al., 2024;
Frantar & Alistarh, 2023; Xia et al., 2024). These preliminary results indicate the potential of AlgoFormer,
which is designed as an algorithmic conductor, in real-world language tasks.

5.6 Computation Comparison

The additional computational costs and complexity introduced by AlgoFormer over the standard transformer
and the vanilla looped transformer depend on the specific structure of the AlgoFormer framework. In
our experimental settings, these costs are negligible. Compared to the standard transformer, the total
computation overhead is primarily determined by the loop iterations T and the number of loops ∆T included
in the training loss. Since T in our experiments is comparable to the number of layers in the standard
transformer, the dominant additional computation comes from ∆T . This overhead can be mitigated by
using smaller batch sizes, ensuring that the proposed method does not introduce significant computational
overhead compared to the standard transformer. The main complexity lies in the training strategy outlined
in Equation 3, which ensures stable training.

When compared to the vanilla looped transformer, the computational overhead comes from the pre- and
post-transformer modules. However, if these modules are of similar size to the looped transformer, the
additional computational cost is negligible, especially when the loop iteration T is much greater than the
number of layers in these modules. For instance, in our experiments, we set the pre-, looped-, and post-
transformer layers to 1, with T = 20 during training. In this scenario, the additional computation introduced

12

Under review as submission to TMLR

by the pre- and post-transformer modules constitutes approximately 1/10 of the total computation. During
inference, where T is typically much larger than during training (e.g., T=200 loop iterations in Figure 3),
the additional computational overhead is further reduced to about 1/100.

6 Conclusion and Discussion

In this paper, we introduce a novel AlgoFormer, an algorithm learner designed from the looped trans-
former, distinguished by its algorithmic structures. We provide an insight that the efficient transformer
framework can be designed by considering the prior knowledge of the task and the structure of potential
algorithms. Comprising three sub-transformers, each playing a distinct role in algorithm learning, the Al-
goFormer demonstrates expressiveness and efficiency while maintaining a low parameter size. Theoretical
analysis establishes that the AlgoFormer can tackle challenging in-context learning tasks, mirroring human-
designed algorithms. Our experiments further validate our claim, showing that the proposed transformer
outperforms both the standard transformer and the vanilla looped transformer in specific algorithm learning
and real-world language tasks.

While the proposed AlgoFormer framework offers flexibility and efficiency, several potential limitations and
challenges warrant discussion.

First, the dependence on prior knowledge for designing concrete architecture. The design of the AlgoFormer
framework relies heavily on prior knowledge of tasks and the structure of potential algorithms. In scientific
computing tasks, where problems are often well-formulated and informed by domain knowledge, this reliance
can be an advantage, enabling the design of task-specific, efficient architectures. However, for real-world
language tasks, the abstract and unstructured nature of the problems often limits the availability of such
prior knowledge. This can make it challenging to design an optimal AlgoFormer architecture for these tasks.
While the insights of AlgoFormer can significantly benefit the scientific computing community, extending its
design principles to language tasks may require more advanced techniques, such as automated architecture
search or meta-learning, to determine suitable architectures without extensive prior knowledge.

Second, the training complexity of AlgoFormer with more complicated algorithmic structures. Although
incorporating more complex algorithmic structures into AlgoFormer, such as nested looped transformers,
enhances its expressiveness, training AlgoFormer can become more challenging. It inevitably introduces
additional computational costs and requires adjustments to the training strategy. These challenges could
limit the usability of AlgoFormer in scenarios where algorithmic structures are complicated to model.

Third, the scalability of AlgoFormer to large-scale applications. The scaling behavior of AlgoFormer has
not been thoroughly investigated in this paper. The tasks studied are primarily hand-generated scientific
problems or toy cases, and the language task considered is of medium scale. Similarly, the model sizes used
in this study are relatively small compared to state-of-the-art large language models (LLMs). To fully assess
the potential of AlgoFormer, future research should explore its scalability to larger, more challenging tasks
and datasets, as well as the associated computational and memory requirements when deploying AlgoFormer
at scale.

There are some potential topics for future research. For example, AlgoFormer exhibits a strikingly similar
structure to diffusion models. This similarity arises from the fact that both the AlgoFormer (algorithms) and
diffusion models draw inspiration from dynamical systems. Consequently, an interesting question arises: can
the empirical training techniques and theoretical insights from the well-explored diffusion model literature
be translated to the AlgoFormer for understanding the transformer mechanism?

References
Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement pre-

conditioned gradient descent for in-context learning. Advances in Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=LziniAXEI9.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algorithm
is in-context learning? investigations with linear models. In International Conference on Learning Repre-

13

https://openreview.net/forum?id=LziniAXEI9

Under review as submission to TMLR

sentations, 2023. URL https://openreview.net/forum?id=0g0X4H8yN4I.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Provable in-
context learning with in-context algorithm selection. Advances in Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=liMSqUuVg9.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in Neural Information Processing Systems, 33:1877–1901, 2020. URL https://proceedings.
neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in Neural Information Pro-
cessing Systems, 34:24924–24940, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
d0921d442ee91b896ad95059d13df618-Abstract.html.

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. Compressing large language models by streamlining the
unimportant layer. arXiv preprint arXiv:2403.19135, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, 1:4171–4186,
2019. URL https://aclanthology.org/N19-1423.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable creation
in self-attention mechanisms. In International Conference on Machine Learning, pp. 5793–5831. PMLR,
2022. URL https://proceedings.mlr.press/v162/edelman22a.html.

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards revealing the
mystery behind chain of thought: a theoretical perspective. Advances in Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=qHrADgAdYu.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot.
In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn higher-order optimization
methods for in-context learning: A study with linear models. arXiv preprint arXiv:2310.17086, 2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn in-
context? a case study of simple function classes. Advances in Neural Information Processing Systems, 35:
30583–30598, 2022. URL https://openreview.net/forum?id=flNZJ2eOet.

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris Papailiopou-
los. Looped transformers as programmable computers. In International Conference on Machine Learning,
volume 202, pp. 11398–11442. PMLR, 2023. URL https://proceedings.mlr.press/v202/giannou23a.
html.

Yiqi Gu and Michael K Ng. Deep neural networks for solving large linear systems arising from high-
dimensional problems. SIAM Journal on Scientific Computing, 45(5):A2356–A2381, 2023.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do transform-
ers learn in-context beyond simple functions? a case study on learning with representations. International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=ikwEDva1JZ.

Iryna Gurevych, Michael Kohler, and Gözde Gül Şahin. On the rate of convergence of a classifier based on
a transformer encoder. IEEE Transactions on Information Theory, 68(12):8139–8155, 2022.

14

https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=liMSqUuVg9
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2021/hash/d0921d442ee91b896ad95059d13df618-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d0921d442ee91b896ad95059d13df618-Abstract.html
https://aclanthology.org/N19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.mlr.press/v162/edelman22a.html
https://openreview.net/forum?id=qHrADgAdYu
https://openreview.net/forum?id=flNZJ2eOet
https://proceedings.mlr.press/v202/giannou23a.html
https://proceedings.mlr.press/v202/giannou23a.html
https://openreview.net/forum?id=ikwEDva1JZ

Under review as submission to TMLR

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. arXiv preprint
arXiv:2310.05249, 2023.

Shima Imani, Liang Du, and Harsh Shrivastava. MathPrompter: Mathematical reasoning using large lan-
guage models. In Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 5: Industry Track), pp. 37–42. Association for Computational Linguistics, 2023. URL
https://aclanthology.org/2023.acl-industry.4.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy. The
impact of positional encoding on length generalization in transformers. Advances in Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=Drrl2gcjzl.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. Enhancing
the locality and breaking the memory bottleneck of transformer on time series forecasting. Advances in
Neural Information Processing Systems, 32, 2019. URL https://papers.neurips.cc/paper_files/
paper/2019/hash/6775a0635c302542da2c32aa19d86be0-Abstract.html.

Yingcong Li, Kartik Sreenivasan, Angeliki Giannou, Dimitris Papailiopoulos, and Samet Oymak. Dissecting
chain-of-thought: Compositionality through in-context filtering and learning. In Advances in Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=xEhKwsqxMa.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is provably the
optimal in-context learner with one layer of linear self-attention. International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=8p3fu56lKc.

Santiago Ontanon, Joshua Ainslie, Zachary Fisher, and Vaclav Cvicek. Making transformers solve composi-
tional tasks. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 3591–3607, 2022. URL https://aclanthology.org/2022.acl-long.251.

Victor Pan and Robert Schreiber. An improved newton iteration for the generalized inverse of a matrix,
with applications. SIAM Journal on Scientific and Statistical Computing, 12(5):1109–1130, 1991.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=R8sQPpGCv0.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21(1):5485–5551, 2020. URL https://jmlr.org/papers/
volume21/20-074/20-074.pdf.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, 2019.

Torsten Söderström and GW Stewart. On the numerical properties of an iterative method for computing
the moore–penrose generalized inverse. SIAM Journal on Numerical Analysis, 11(1):61–74, 1974.

Shokichi Takakura and Taiji Suzuki. Approximation and estimation ability of transformers for sequence-
to-sequence functions with infinite dimensional input. In International Conference on Machine Learning,
volume 202, pp. 33416–33447. PMLR, 2023. URL https://proceedings.mlr.press/v202/takakura23a.
html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Pro-
cessing Systems, 30, 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

15

https://aclanthology.org/2023.acl-industry.4
https://openreview.net/forum?id=Drrl2gcjzl
https://papers.neurips.cc/paper_files/paper/2019/hash/6775a0635c302542da2c32aa19d86be0-Abstract.html
https://papers.neurips.cc/paper_files/paper/2019/hash/6775a0635c302542da2c32aa19d86be0-Abstract.html
https://openreview.net/forum?id=xEhKwsqxMa
https://openreview.net/forum?id=8p3fu56lKc
https://aclanthology.org/2022.acl-long.251
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://proceedings.mlr.press/v202/takakura23a.html
https://proceedings.mlr.press/v202/takakura23a.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Under review as submission to TMLR

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, An-
drey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In Interna-
tional Conference on Machine Learning, pp. 35151–35174. PMLR, 2023. URL https://proceedings.
mlr.press/v202/von-oswald23a.html.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information
Processing Systems, 35:24824–24837, 2022. URL https://openreview.net/forum?id=_VjQlMeSB_J.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared LLaMA: Accelerating language model
pre-training via structured pruning. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=09iOdaeOzp.

Liu Yang, Kangwook Lee, Robert D Nowak, and Dimitris Papailiopoulos. Looped transformers are better
at learning learning algorithms. In International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=HHbRxoDTxE.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=N8N0hgNDRt.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context. arXiv
preprint arXiv:2306.09927, 2023a.

Shuang Zhang, Rui Fan, Yuti Liu, Shuang Chen, Qiao Liu, and Wanwen Zeng. Applications of transformer-
based language models in bioinformatics: a survey. Bioinformatics Advances, 3(1):vbad001, 2023b.

16

https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v202/von-oswald23a.html
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=HHbRxoDTxE
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt

Under review as submission to TMLR

A Technical Proofs

In this section, we provide comprehensive proofs for all theorems stated in the main content.

Notation. We use boldface capital and lowercase letters to denote matrices and vectors respectively. Non-
bold letters represent the elements of matrices or vectors, or scalars. For example, Ai,j denotes the (i, j)-th
element of the matrix A. We use ∥ · ∥2 to denote the 2-norm (or the maximal singular value) of a matrix.

A.1 Proof for Theorem 3.1

Positional embedding. The role of positional embedding is pivotal in the performance of transformers.
Several studies have investigated its impact on natural language processing tasks, as referenced in (Kazem-
nejad et al., 2023; Ontanon et al., 2022; Press et al., 2022). In our theoretical construction, we deviate from
empirical settings by using quasi-orthogonal vectors as positional embedding in each token vector. This
choice, also employed by Li et al. (2023); Giannou et al. (2023), is made for theoretical convenience.
Lemma A.1 (Quasi-orthogonal vectors). For any fixed ϵ > 0, there exists a set of vectors {p1, p2, · · · , pN }
of dimension O (log N) such that p⊤

i pi > p⊤
i pj + ϵ for all i ̸= j.

Before going through the details, the following lemma is crucial for understanding transformers as algorithm
learners.
Lemma A.2. A one-layer two-head transformer exhibits the capability to implement a single step of gradient
descent in multivariate regression.

Proof. Let us consider the input prompt with positional embedding as follows:

P :=

x1 0 · · · xN 0 xtest 0
0 y1 · · · 0 yN 0 0

1
N x1 0 · · · 1

N xN 0 0 0
Akx1 − y1 0 · · · AkxN − yN 0 Akxtest 0

1 0 · · · 1 0 1 0
0 1 · · · 0 1 0 1
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1

,

where the 0-1 indicators are used to identify features, labels, and the test data, respectively. We denote the
loss function for the multi-variate regression given samples {x1, y1, · · · , xN , yN } as

L (A) = 1
2N

N∑
j=1

∥Axj − yj∥2
2 ,

then
∂L
∂A

(Ak) = 1
N

N∑
j=1

(Akxj − yj) x⊤
j .

Now, let us define

WQP =
[

cx1 0 · · · cxN 0 cxtest 0
1 1 · · · 1 1 1 1

]
,

WKP =
[1

N x1 0 · · · 1
N xN 0 0 0

0 0 · · · 0 0 0 C

]
,

and
WV P = eC

[
Akx1 − y1 0 · · · AkxN − yN 0 Akxtest 0

]
,

17

Under review as submission to TMLR

for some scalers C, c > 0. Here, we denote

Z := P ⊤W ⊤
K WQP =

c
N x⊤

1 x1 0 · · · c
N x⊤

1 xN 0 c
N x⊤

1 xtest 0
...

...
. . .

...
...

...
...

c
N x⊤

N x1 0 · · · c
N x⊤

N xN 0 c
N x⊤

N xtest 0
0 0 · · · 0 0 0 0
0 0 · · · 0 0 0 0
C C · · · C C C C

,

then
eC · softmax (Z2i−1,2j−1) ≈ 1 + c

N
x⊤

i xj ,

where the two sides of the “≈” can be arbitrarily close if C > 0 is sufficiently large and c > 0 is sufficiently
small. The constant here can be canceled by introducing another head. Therefore, the output of the attention
layer is

2∑
i=1

W
(i)
V P · softmax

(
P ⊤W

(i)⊤
K W

(i)
Q P

)
≈ c

[
∂L
∂A (Ak)x1 0 · · · ∂L

∂A (Ak)xN 0 ∂L
∂A (Ak)xtest 0

]
.

The transformer layer’s output, after passing through the feed-forward neural network, is expressed as:

x1 0 · · · xN 0 xtest 0
0 y1 · · · 0 yN 0 0

Ak+1x1 − y1 0 · · · Ak+1xN − yN 0 Ak+1xtest 0
1 0 · · · 1 0 1 0
0 1 · · · 0 1 0 1
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1

.

This signifies the completion of one step of gradient descent with Ak+1 = Ak −η ∂L
∂A (Ak) and a positive step

size η > 0.

Proof for Theorem 3.1. We start by showing that L-layer transformer can represent L-layer MLPs. It
is observed that the identity operation (i.e., Attn (X) = X) can be achieved by setting WV = 0 due to
the residual connection in the attention layer. Each feed-forward neural network in a transformer layer
can represent a one-layer MLP. Consequently, the representation function Φ∗(·) can be realized by L-layer
transformers. At the output layer of the L-th layer transformer, let A0 be an initial guess for the weight.
The current output token vectors are then given by:

P :=

Φ∗ (x1) 0 · · · Φ∗ (xN) 0 Φ∗ (xtest) 0
0 y1 · · · 0 yN 0 0

A0Φ∗ (x1) 0 · · · A0Φ∗ (xN) 0 Ak+1Φ∗ (xtest) 0
p1 p1 · · · pN pN pN+1 pN+1
1
N

1
N · · · 1

N
1
N 0 0

1 0 · · · 1 0 1 0
0 1 · · · 0 1 0 1
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1

.

Here, the set of quasi-orthogonal vectors {p1, · · · , pN+1} is generated, according to Lemma A.1. The next
transformer layer is designed to facilitate the exchange of information between neighboring tokens. Let

WKP = WQP =
[

p1 p1 · · · pN pN pN+1 pN+1
]

and
WV P =

[
0 y1 · · · 0 yN 0 0

]
,

18

Under review as submission to TMLR

then
WV P · softmax

(
P ⊤W ⊤

K WQP
)

≈
[1

2 y1
1
2 y1 · · · 1

2 yN
1
2 yN 0 0

]
,

where the two sides of the “≈” can be arbitrarily close if the temperature of the softmax function is sufficiently
large, due to the nearly orthogonality of positional embedding vectors. It’s important to note that the feed-
forward neural network is capable of approximating nonlinear functions, such as multiplication. Here, we
construct a shallow neural network that calculates the multiplication between the first d elements and the
value 1

N in each token. Passing through the feed-forward neural network together with the indicators, we
obtain the final output of the first (L + 1)-layer transformer TFpre:

Φ∗ (x1) 0 · · · Φ∗ (xN) 0 Φ∗ (xtest) 0
0 y1 · · · 0 yN 0 0

1
N Φ∗ (x1) 0 · · · 1

N Φ∗ (xN) 0 0 0
A0Φ∗ (x1) − y1 0 · · · A0Φ∗ (xN) − yN 0 A0Φ∗ (xtest) 0

p1 p1 · · · pN pN pN+1 pN+1
1 0 · · · 1 0 1 0
0 1 · · · 0 1 0 1
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1

.

According to the construction outlined in Lemma A.2, there exists a one-layer, two-head transformer TFloop,
independent of the exact values of input data samples (tokens), that can implement gradient descent for
finding the optimal weight A∗ in the context of multivariate regression. The optimization aims to minimize
the following empirical loss:

min
A

1
2N

N∑
i=1

∥AΦ∗ (xi) − yi∥2
2 .

After k-steps of looped transformer TFloop, which corresponds to applying k steps of gradient descent, the
resulting token vectors follows

Φ∗ (x1) 0 · · · Φ∗ (xN) 0 Φ∗ (xtest) 0
0 y1 · · · 0 yN 0 0

1
N Φ∗ (x1) 0 · · · 1

N Φ∗ (xN) 0 0 0
AkΦ∗ (x1) − y1 0 · · · AkΦ∗ (xN) − yN 0 AkΦ∗ (xtest) 0

p1 p1 · · · pN pN pN+1 pN+1
1 0 · · · 1 0 1 0
0 1 · · · 0 1 0 1
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1

.

These token vectors are then ready for processing by the output transformer layer TFpost. The post-
transformer is designed to facilitate communication between the last two tokens and position the desired
result AkΦ∗ (xtest) in the appropriate position. We can similarly set

WKP = WQP =
[

p1 p1 · · · pN pN pN+1 pN+1
]

,

WV P =
[

AkΦ∗ (x1) − y1 0 · · · AkΦ∗ (xN) − yN 0 AkΦ∗ (xtest) 0
]

,

and pass it through the feed-forward neural network. This results in the final output:[
Φ∗ (x1) 0 · · · Φ∗ (xN) 0 Φ∗ (xtest) 0

0 y1 · · · 0 yN 0 AkΦ∗ (xtest)

]
,

which completes the proof.

19

Under review as submission to TMLR

A.2 Proof for Theorem 3.2

The following lemma highlights the intrinsic “copying" capability of transformers, a pivotal feature for
autoregressive models, especially in the context of time series analysis.
Lemma A.3. A one-layer transformer with q heads possesses the ability to effectively copy information from
the previous q tokens to the present token.

Proof. We construct the input prompt with positional embedding as follows:

x0 x1 x2 · · · xN

p0 p1 p2 · · · pN

p−1 p0 p1 · · · pN−1
...

...
...

. . .
...

p−q p1−q p2−q · · · pN−q

0 1 2 · · · N

.

The i-th head aims to connect and communicate the current token with the previous i-th token. Specifically,
we let

W
(i)
K P =

[
p0 p1 p2 · · · pN

]
,

W
(i)
Q P =

[
p−i p1−i p2−i · · · pN−i

]
,

and
W

(i)
V P =

[
x0 x1 x2 · · · xN

]
,

we have
W

(i)
V P · softmax

(
P ⊤W

(i)⊤
K W

(i)
Q P

)
≈

[
∗ x1−i x2−i · · · xN−i

]
.

Here, we use “*” to mask some unimportant token values. Therefore, the q-head attention layer outputs

x0 x1 x2 · · · xN

∗ x0 x1 · · · xN−1
∗ ∗ x0 · · · xN−2
...

...
...

. . .
...

∗ ∗ ∗ · · · xN−q

0 1 2 · · · N

.

Here, the samples are only supported on {xt} with 0 ≤ t ≤ N . It is common to alternatively define xt = 0
for t < 0. Passing through the feed-forward neural network, together with the indicators at the last row, we
can filter out the undefined elements, i.e.,

x0 x1 x2 · · · xN

0 x0 x1 · · · xN−1
0 0 x0 · · · xN−2
...

...
...

. . .
...

0 0 0 · · · xN−q

0 1 2 · · · N

.

Proof for Theorem 3.2 According to Lemma A.3 and Theorem 3.1, the (L+2)-layer pre-transformer TFpre
is able to do copying and transformation of the representation function. The output after the preprocessing
is given by [

x0 x1 x2 · · · xN

Φ∗ (x1−q:0) Φ∗ (x2−q:1) Φ∗ (x3−q:2) · · · Φ∗ (xN+1−q:N)

]
,

where we denote xi:j as the concatenation [xi, xi+1, · · · , xj] for notational simplicity. Similar to the construc-
tion in Lemma A.2, a one-layer two-head transformer TFloop is capable of implementing gradient descent on
the multivariate regression. Finally, the post-transformer TFpost moves the desired result to the output.

20

Under review as submission to TMLR

A.3 Proof for Theorem 3.3

According to Lemma 5 in (Li et al., 2023), a seven-layer, two-head pre-transformer TFpre is introduced
for preprocessing the input CoT sequence. This pre-transformer performs filtering, transforming the input
sequence into the structured form given by Equation 7.

0 · · · sℓ−1
1 0 · · · sℓ−1

2 0 · · · 0 0 · · · ŝℓ−1

0 · · · 0 sℓ
1 · · · 0 sℓ

2 · · · 0 0 · · · 0
0 · · · 1 0 · · · 1 0 · · · 0 0 · · · 1
0 · · · 0 1 · · · 0 1 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 1

 . (7)

Specifically, it identifies the positional index ℓ−1 of the last token ŝℓ−1, retains only sℓ−1
i and sℓ

i for 1 ≤ i ≤ N ,
and filters out all other irrelevant tokens. In this context, the representation function Φ∗(·) corresponds to
L-layer leaky ReLU MLPs. Notably, the transformation siℓ = σ

(
W ℓsiℓ−1)

is expressed, where W ℓ denotes
the weight matrix at the ℓ-th layer, and σ(·) represents the leaky ReLU activation function. Given the
reversibility and piecewise linearity of the leaky ReLU activation, we can assume, without loss of generality,
that sℓ

i = W ℓsℓ−1
i in Equation 7. Consequently, the problem is reduced to a multi-variate regression,

and a one-layer two-head transformer TFloop is demonstrated to effectively implement gradient descent for
determining the weight matrix W ℓ, as shown in Lemma A.2. Subsequently, the post-transformer TFpost
produces the desired result σ

(
W ℓŝiℓ−1)

.

A.4 Proof for Theorem 4.1

In this section, we first show that the one-layer two-head transformer can implement a single step of Newton’s
method in Equation 5, with the special form of input token vectors. Then, we introduce the pre-transformer,
designed to convert general input tokens into the prescribed format conducive to the transformer’s operation.
Finally, the post-transformer facilitates the extraction of the desired results through additional computations,
given that the output from the looped-transformer corresponds to an intermediate product.
Lemma A.4. A transformer with one layer and two heads is capable of implementing one step of Newton’s
method in the linear regression problem in Equation 4.

Proof. Let us consider the input prompt with positional embedding as follows:

P :=

x1 0 · · · xN 0 xtest 0
0 y1 · · · 0 yN 0 0

Mkx1 0 · · · MkxN 0 0 0
1 0 · · · 1 0 0 0
0 1 · · · 0 1 0 0
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1

.

Let
WQP =

[
Mkx1 0 · · · MkxN 0 0 0

1 1 · · · 1 1 1 1

]
,

WKP =
[

cx1 0 · · · cxN 0 cxtest 0
0 0 · · · 0 0 0 C

]
,

and
WV P = eC

[
Mkx1 0 · · · MkxN 0 0 0

]
.

Similarly, denote Z := P ⊤W ⊤
K WQP , we can establish that

eCsoftmax (Z2i−1,2j−1) ≈ 1 + cx⊤
i Mkxj . (8)

21

Under review as submission to TMLR

To nullify the constant term, an additional attention head can be incorporated. Therefore, the output takes
the form:

WV P softmax
(
P ⊤W ⊤

K WQP
)

≈
[

cMkSMkx1 ∗ · · · cMkSMkxN ∗ ∗
]

.

Here, we use “*” to mask some unimportant token values. Upon passing through the feed-forward neural
network with indicator

[
1 0 · · · 1 0 0 0

]
and weight 1/c, the resulting output is

x1 0 · · · xN 0 xtest 0
0 y1 · · · 0 yN 0 0

Mk+1x1 0 · · · Mk+1xN 0 0 0
1 0 · · · 1 0 0 0
0 1 · · · 0 1 0 0
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1

,

where Mk+1 = 2Mk − MkSMk.

Proof for Theorem 4.1. For TFpre, we adopt the following configurations:

WQP =
[

x1 0 · · · xN 0 0 0
1 1 · · · 1 1 1 1

]
,

WKP =
[

cx1 0 · · · cxN 0 cxtest 0
0 0 · · · 0 0 0 C

]
,

and
WV P = eC

[
x1 0 · · · xN 0 0 0

]
.

Denote Z := P ⊤W ⊤
K WQP , we can show that

eCsoftmax (Z2i−1,2j−1) ≈ 1 + cx⊤
i xj .

We may include another attention head to remove the constant. Therefore, the output is formulated as

WV P softmax
(
P ⊤W ⊤

K WQP
)

≈
[

cSx1 ∗ · · · cSxN ∗ ∗
]

.

After passing through the feed-forward neural network with indicators
[

1 0 · · · 1 0 0 0
]

and
weight α/c, the resulting output becomes:

x1 0 · · · xN 0 xtest 0
0 y1 · · · 0 yN 0 0

M0x1 0 · · · M0xN 0 0 0
1 0 · · · 1 0 0 0
0 1 · · · 0 1 0 0
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1

,

where M0 = αS.

As illustrated in Lemma A.4, after T iterations of the looped transformer TFloop, it produces the following
output:

x1 0 · · · xN 0 xtest 0
0 y1 · · · 0 yN 0 0

MT x1 0 · · · MT xN 0 0 0
1 0 · · · 1 0 0 0
0 1 · · · 0 1 0 0
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1

.

22

Under review as submission to TMLR

In the post-transformer, additional positional embeddings are introduced to address technical considerations.
The input is structured as follows:

x1 0 · · · xN 0 xtest 0
0 y1 · · · 0 yN 0 0

MT x1 0 · · · MT xN 0 0 0
p1 p1 · · · pN pN pN+1 pN+1
1 0 · · · 1 0 0 0
0 1 · · · 0 1 0 0
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1

,

where the positional embedding vectors p1, · · · , pN+1 are designed to be nearly orthogonal (Lemma A.1). To
initiate the weight wNewton

T , we propagate the target label y to adjacent tokens using the following attention
mechanism:

WKP = WQP =
[

p1 p1 · · · pN pN pN+1 pN+1
]

and
WV P = 2

[
0 y1 · · · 0 yN 0 0

]
.

This operation results in the attention layer producing the following output:

x1 0 · · · xN 0 xtest 0
y1 y1 · · · yN yN 0 0

MT x1 0 · · · MT xN 0 0 0
p1 p1 · · · pN pN pN+1 pN+1
1 0 · · · 1 0 0 0
0 1 · · · 0 1 0 0
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1

.

In the next layer, analogous to the construction in Equation 8, we define the following transformations:

WQP =
[

cx1 0 · · · cxN 0 cxtest 0
1 1 · · · 1 1 1 1

]
,

WKP =
[

MT x1 0 · · · MT xN 0 0 0
0 0 · · · 0 0 0 C

]
,

and
WV P = eC

[
y1 y1 · · · yN yN 0 0

]
,

for some C, c > 0. Defining the matrix

Z := P ⊤W ⊤
K WQP =

cx⊤
1 MT x1 0 · · · cx⊤

1 MT xN 0 cx⊤
1 MT xtest 0

...
...

. . .
...

...
...

...
cx⊤

N MT x1 0 · · · cx⊤
N MT xN 0 cx⊤

N MT xtest 0
0 0 · · · 0 0 0 0
0 0 · · · 0 0 0 0
C C · · · C C C C

,

we can show that
eC · softmax (Z2i−1,2j−1) ≈ 1 + cx⊤

i MT xj ,

where the closeness of the two sides of the approximation “≈” can be achieved by selecting C > 0 sufficiently
large and c > 0 sufficiently small. The constant term can be removed by introducing another head. Therefore,
the output of the attention layer is expressed as

2∑
i=1

W
(i)
V X · softmax

(
X⊤W

(i)⊤
K W

(i)
Q X

)
≈ c

[
∗ ∗ · · · ∗ ∗ wNewton⊤

T xtest ∗
]

.

Finally, the feed-forward neural network yields the desired prediction wNewton⊤
T xtest.

23

Under review as submission to TMLR

A.5 Proof for Theorem 4.2

In this section, we extend the realization of gradient descent, as demonstrated in Lemma A.2 for encoder-
based transformers, to decoder-based transformers. Although the construction is similar, the key distinction
lies in the decoder-based transformer’s utilization of previously viewed data for regression, consistent with
our intuitive understanding. The following lemma is enough to conclude the proof for Theorem 4.2.
Lemma A.5. The one-layer two-head decoder-based transformer can implement one step of gradient descent
in linear regression problems in Equation 6.

Proof. We consider the input prompt with positional embedding as follows:

x1 0 · · · xi−1 0 xi

0 y1 · · · 0 yi−1 0
0 x1 · · · 0 xi−1 0

w1
k 0 · · · wi−1

k 0 wi
k

0 0 · · · 1
i−2 0 1

i−1
1 0 · · · 1 0 1
1 0 · · · 0 0 0
0 1 · · · 0 0 0

.

We construct the attention layer with

WQP i =
[

w1
k 0 · · · wi−1

k 0 wi
k

1 1 · · · 1 1 1

]
,

WKP i =
[

cx1 0 · · · cxi−1 0 cxi

0 C · · · 0 0 0

]
,

and
WV P i = eC/c

[
x1 0 · · · xi−1 0 xi

]
.

Here, we adopt causal attention, where the attention mechanism can only attend to previous tokens. The
output is [

∗ ∗ · · ·
∑i−2

j=1 wi−1⊤
k xjxj ∗

∑i−1
j=1 wi⊤

k xjxj

]
.

For the second head, we similarly let

WQP i =
[

1 0 · · · 1 0 1
1 0 · · · 1 0 1

]
,

WKP i =
[

0 cy1 · · · 0 cyi−1 0
C 0 · · · 0 0 0

]
,

and
WV P i = −eC/c

[
0 x1 · · · 0 xi−1 0

]
.

Then, we have the output [
∗ ∗ · · · −

∑i−2
j=1 yjxj ∗ −

∑i−1
j=1 yjxj

]
The attention layer outputs

x1 0 · · · xi−1 0 xi

0 y1 · · · 0 yi−1 0
0 x1 · · · 0 xi−1 0

w1
k 0 · · · wi−1

k 0 wi
k

∗ ∗ · · ·
∑i−2

j=1
(
wi−1⊤

k xj − yj

)
xj ∗

∑i−1
j=1

(
wi⊤

k xj − yj

)
xj

0 0 · · · 1
i−2 0 1

i−1
1 0 · · · 1 0 1
1 0 · · · 0 0 0
0 1 · · · 0 0 0

.

24

Under review as submission to TMLR

Since the feed-forward layer is capable of approximating nonlinear functions, e.g., multiplication, the trans-
former layer outputs

x1 0 · · · xi−1 0 xi

0 y1 · · · 0 yi−1 0
0 x1 · · · 0 xi−1 0

w1
k+1 0 · · · wi−1

k+1 0 wi
k+1

0 0 · · · 1
i−2 0 1

i−1
1 0 · · · 1 0 1
1 0 · · · 0 0 0
0 1 · · · 0 0 0

,

where wj
k+1 = wj

k − η ∂L
∂w

(
wj

k; P j
)

= wj
k − η

j−1
∑j−1

h=1
(
wh⊤

k xh − yh

)
xh.

25

	Introduction
	Motivation and Proposed Method
	Preliminaries
	Algorithmic Structures of Transformers
	Training Strategy

	Expressive Power
	Regression with Representation
	AR(q) with Representation
	Chain-of-Thought with MLPs

	Extensions and Further Analysis
	Beyond the Gradient Descent
	Decoder-based Transformer

	Experiments
	Experimental Settings and Hyperparameters
	AlgoFormer Exhibits High Expressiveness
	Impact of Hyperparameters
	AlgoFormer and Human-Designed Algorithms
	Applications to Language Tasks
	Computation Comparison

	Conclusion and Discussion
	Technical Proofs
	Proof for Theorem 3.1
	Proof for Theorem 3.2
	Proof for Theorem 3.3
	Proof for Theorem 4.1
	Proof for Theorem 4.2

