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Abstract

The global adoption of chat-based large lan-001
guage models (LLMs) necessitates ensuring002
their inclusivity across diverse sociocultural003
contexts. Despite efforts to align these mod-004
els with human preferences, it remains uncer-005
tain whether such alignment may amplify pre-006
existing social biases. Current bias evaluation007
frameworks are limited to narrow, hegemonic008
social contexts, such as binary gender biases in009
occupational associations, overlooking the di-010
verse range of harms affecting marginalized011
communities. In this paper, we investigate012
aligned LLMs for biases across underrepre-013
sented evaluation dimensions such as gender-014
diverse representation and multilingual acces-015
sibility. Through a comprehensive evaluation016
of 12 models, we uncover several key findings:017
(1) gender-diverse disparities persist after align-018
ment and can be measured both in extrinsic019
model output and intrinsic reward analysis (2)020
aligned models reflect linguistic norms which021
favor higher-resourced languages, potentially022
disadvantaging lower-resource languages. Our023
findings highlight the need for more compre-024
hensive bias evaluation frameworks formed in025
dialogue with diverse sociocultural contexts.026

1 Introduction027

Human preference-based fine-tuning has surfaced028

as a promising technique for creating chat-based029

language models (LM). Preference fine-tuned030

agents have demonstrated remarkable proficiency031

across a wide range of tasks including summariza-032

tion (Liu et al., 2023), translation (Zhang et al.,033

2023), and code generation (Askell et al., 2021),034

enabling their widespread adoption. However, the035

global reach of these models demands consider-036

ation of their capabilities and potential biases to037

ensure they effectively cater to the needs of a di-038

verse global user base.039

The effectiveness of instruction-tuned conver-040

sational LLMs is largely determined by assessing041

their technical competencies, such as their abil- 042

ity to demonstrate common sense reasoning and 043

mathematical proficiency (Srivastava et al., 2022; 044

Hendrycks et al., 2020). While these assessments 045

are undoubtedly important, a full range of con- 046

siderations are necessary for LLMs to effectively 047

cater to the needs of a diverse user base. The base 048

LLMs from which aligned models are derived can 049

perpetuate harmful social biases and worldviews 050

(Hutchinson et al., 2020; Dev et al., 2021; Ovalle 051

et al., 2023), yet the scope of bias evaluations for 052

aligned LLMs remains markedly limited. 053

Current bias evaluation benchmarks predomi- 054

nantly focus on assessing stereotypes associated 055

with dominant social groups, typically through the 056

lens of binary gender biases in occupational con- 057

texts. Stereotypes are intrinsically linked to oppres- 058

sive or harmful power dynamics (Blodgett et al., 059

2021). However, these benchmarks often neglect 060

a wide array of marginalized groups facing power 061

asymmetries, ranging from individuals with non- 062

cisnormative gender identities to those navigating 063

the inaccessibility of Anglo-centric language tech- 064

nologies. This limited scope creates blindspots in 065

understanding how large language models interact 066

with underrepresented communities (Hutchinson 067

et al., 2020), fundamentally obstructing any ability 068

to address societal inequities that may be reflected 069

by these models. 070

Contributions. Our work addresses these limi- 071

tations through two key contributions: First, we 072

investigate gender-diverse biases and multilingual 073

readability disparities as two distinct yet crucial 074

axes of representation often underreported in exist- 075

ing benchmarks. We conduct a systematic analysis 076

of 12 language models, encompassing base, super- 077

vised fine-tuned (SFT), and their aligned variants 078

(i.e. DPO) across these dimensions. Second, as 079

alignment is driven by reward maximization, we 080

propose a novel method for assessing biases against 081
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underrepresented groups through this lens, leverag-082

ing existing datasets from marginalized communi-083

ties to identify potential biases prior to deployment.084

We demonstrate this in the gender context, followed085

by presenting guidelines for more inclusive bias086

evaluation practices.087

Our analysis reveals that aligned LLMs (1) can088

disproportionately amplify gender-diverse dispari-089

ties in generated text, (2) exhibit rewards that align090

with these observed gender disparities, and (3) ex-091

hibit accessibility biases favoring high-resource092

language contexts. We investigate these non-093

normative biases in aligned models, contributing094

to ongoing efforts to address inclusivity and ac-095

cessibility of language technologies. Our findings096

highlight the need for more comprehensive bias097

evaluation frameworks formed in dialogue with098

diverse sociotechnical contexts.099

2 Normative Challenges in Bias100

Evaluation of Chat-Based LLMs101

Despite rapid advances in chat-based LLMs, there102

is no standardized approach for bias evaluation.103

Table 1 shows the bias evaluations performed by104

the top-performing chat-based LLMs reported by105

the LMSYS Chatbot Arena Leaderboard1 at the106

time of writing this paper. Evaluation methods107

vary widely – ranging from operationalizing pre-108

existing bias benchmarks (Rudinger et al., 2018;109

Parrish et al., 2022; Zhao et al., 2018; Lin et al.,110

2021) to using other LLMs as judges (Zheng et al.,111

2024), constructing adversarial prompts (Ganguli112

et al., 2022) , or in some cases, a startling lack of113

any reported bias evaluation.114

The following sections critically examine each115

bias evaluation form, highlighting normative per-116

spectives shaping their operationalization as a117

means for identifying opportunities to broaden bias118

evaluation practices. While we will delve into the119

nuances of each form, one issue is apparent: despite120

reward models driving alignment, reward-centric121

bias evaluations remain absent.122

Bias benchmarks. An analysis of the bias bench-123

marks employed by top-performing models (Ta-124

ble 1) reveals critical gaps in evaluative scope, as125

depicted in Figure 1. Current bias benchmarks are126

normatively centered around majority viewpoints,127

resulting in critical gaps in evaluative scope. Over a128

1https://huggingface.co/spaces/lmsys/
chatbot-arena-leaderboard

Model Bias
benchmarks

LLM
as

Judge
Red team

No
reported

bias
evaluation

GPT-4O ✓

GEMINI

Winogender,
Winobias,
BBQ,
RealToxicityPrompts

✓ ✓

GPT4 RealToxicityPrompts ✓ ✓

CLAUDE 3
Discrim-Eval,
BBQ

✓

YI TruthfulQA
LLAMA3
-INSTRUCT

✓

REKA ✓
COMMAND R+ ✓
QWEN2
-INSTRUCT

✓

GLM-4 ✓
MISTRAL ✓

CLAUDE1.0
BBQ,
TruthfulQA

✓

MIXTRAL

-INSTRUCT

BBQ,
BOLD

CLAUDE 2.0
BBQ,
TruthfulQA

✓

ZEPHYR-ORPO ✓

Table 1: Bias evaluation modalities for Top 15 performing
chat LLM families reported by LMSYS Chatbot Arena Leader-
board at the time of writing this paper.

broad range of socially-salient attributes of individ- 129

uals, many of which fall under protected categories 130

(Parrish et al., 2022), the scope is constrained to 131

strict gender dichotomies , thereby maintaining the 132

hegemony of cisnormativity (Blodgett et al., 2020). 133

Binary gender representation and occupation-based 134

assessments are prominently featured, meanwhile 135

there is a clear deficiency in other categories of bias 136

evaluation including culture, disability, and gender- 137

diversity, reflecting a normative centering of ma- 138

jority viewpoints. Failing to prioritize bias evalua- 139

tions across underpresented groups not only leaves 140

harms unchecked for these communities (Dev et al., 141

2021; Ovalle et al., 2023) but also systemically rei- 142

fies these hegemonies by upholding such bench- 143

marks as the sole, normative standards which mod- 144

els should be evaluated (Bommasani, 2023). How- 145

ever, advancing inclusive language technologies de- 146

mands an evaluative expansion capable of a richer, 147

intersectional array of lived experiences. 148

LLM-as-Judge. The use of language models as 149

judges for probing biases is problematic on several 150

fronts. These LLM judges are themselves trained 151

on broad data resources that may encode societal 152

biases and stereotypes. Using such models as bias 153

judges risks propagating and even amplifying the 154

very biases we seek to identify and mitigate (Pan- 155

ickssery et al., 2024). Furthermore, an approach 156

of this nature fundamentally assesses whether the 157
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Figure 1: Bias benchmark coverage of top performing chat-
based LLMs. Takeaway: Bias benchmarks mostly cover bi-
nary gender, occupation, and aspects of race/ethnicity.

suspect model’s outputs diverge from the judge’s158

own biased outputs - rather than quantifying how159

much they diverge from pre-determined pro-social160

behavior. A more principled strategy would be161

to measure model behaviors against ground truth162

annotations (Zheng et al., 2024) from pluralistic163

community sources.164

Red teaming. Red teaming is designed to iden-165

tify potential biases, harms, and safety concerns166

in language models. However, the effectiveness of167

this process depends on the perspectives and expe-168

riences of the people involved in crafting the adver-169

sarial prompts. If the crowd workers employed for170

red teaming primarily represent mainstream ma-171

jority perspectives, the scope of the prompts they172

create may be limited to the biases and concerns173

that are most salient to these groups (Kirk et al.,174

2024). Lack of transparency for the crowd work-175

ers employed for red-teaming obfuscates whether a176

truly diverse range of lived experiences is captured,177

or if ingrained majority views from training data are178

simply codified (Feffer et al., 2024). Consequently,179

while red teaming is valuable for exposing egre-180

gious faults, it may fail to surface insidious harms181

manifesting at the distributional tails, stemming182

from an absence of intersectional considerations183

during data annotation and curation. 184

Lack of reward-based bias evaluations. Per- 185

haps most striking is how current evaluations over- 186

look a crucial component – the reward models that 187

drive the behavior of these systems during the align- 188

ment process. The biases encapsulated in the re- 189

ward functions fundamentally shape how the mod- 190

els learn human values and preferences. Without 191

scrutinizing these models for harm preventative 192

from the outset, benchmark-driven debiasing ef- 193

forts may not coincide to mitigations of reward. 194

2.1 Research Questions and Objectives 195

The limitations of current bias evaluation methods 196

for aligned language models necessitate the devel- 197

opment of more comprehensive and nuanced ap- 198

proaches. To address these shortcomings, we pro- 199

pose two complementary evaluation dimensions 200

and their corresponding research questions. We 201

provide related work in Appendix B. 202

Gender-diverse Bias Evaluation. We investi- 203

gate the impact of alignment on preexisting gender- 204

diverse biases in LLMs by analyzing analyzing 205

model responses to various forms of gender disclo- 206

surure (Ovalle et al., 2023). Specifically, we aim 207

to answer the following research question: RQ1: 208

To what extent does aligning an LLM amplify or 209

suppress its preexisting gender biases? 210

Evaluating Accessibility Across Language Re- 211

source. We examine the readability of generated 212

text across high and lower-resource languages to 213

uncover potential disparities that may hinder the 214

equitable deployment of LLMs. We pose the fol- 215

lowing research question: RQ2: To what extent 216

does aligning LLMs with English preference data 217

impact the textual adaptability across language? 218

In the following sections, we present our experi- 219

mental setup, datasets, and methodologies used to 220

investigate these research questions, followed by a 221

detailed analysis and discussion of our findings. 222

3 Evaluating Chat-based LLMs with 223

Human Feedback 224

3.1 Alignment Overview 225

Pretrained language models can be aligned for chat 226

applications through a two-stage process: super- 227

vised fine-tuning (SFT) (Zhou et al., 2023) and 228

preference optimization. After SFT, the model 229

is further fine-tuned using reinforcement learning 230
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from human feedback (RLHF) with Proximal Pol-231

icy Optimization (PPO) (Schulman et al., 2017) or232

offline preference learning such as Direct Prefer-233

ence Optimization (DPO) (Rafailov et al., 2023).234

The model generates answer pairs (y1, y2)235

guided by a latent reward model r∗(y, x). The236

reward model rϕ(x, y) is learned from textual com-237

parisons using a binary classification task and is238

initialized from the SFT model. During align-239

ment, the reward function provides feedback to the240

LLM to maximize the reward objective: r(x, y) =241

rϕ(x, y) − β(log πθ(y | x) − log πref (y | x)),242

where β controls deviation from the reference243

model πref .244

3.2 Models Evaluated245

We evaluate 12 publicly available language mod-246

els2 aligned to human preferences, focusing on247

two distinct LLM families: LLaMA (Touvron248

et al., 2023) and Pythia (Biderman et al., 2023).249

Our assessment covers the typical stages of align-250

ment, supervised finetuning (SFT) and human pref-251

erence finetuning. To investigate the impact of252

model size, we evaluate Pythia models with 2.9B253

and 6.9B parameters and LLaMA models with 7B254

and 13B parameters. All models undergo human255

preference finetuning using direct preference op-256

timization (DPO) with β = 0.1 on English pref-257

erence data from three datasets: HELPFULNESS-258

HARMLESSNESS (HH-RLHF) (Bai et al., 2022),259

OPENASSISTANT CONVERSATIONS DATASET260

(OASST1) (Köpf et al., 2024), and STANFORD261

HUMAN PREFERENCES DATASET (SHP).262

4 Gender-Diverse Bias263

4.1 Task Setup264

In this task, we investigate the potential for hu-265

man preference-tuned models to inadvertently am-266

plify biases against gender minorities by assessing267

model responses to gender disclosure. Disclosing268

a non-cisnormative gender identity, often referred269

to as "coming out," is an experience distinct to the270

transgender and non-binary (TGNB) community.271

This is approached with caution due to the well-272

documented marginalization (Puckett et al., 2021)273

that has been observed in real-life experiences and274

recently found to be reflected in the outputs of pre-275

trained language models (Ovalle et al., 2023).276

To assess whether our current models propa-277

gate these harms, even after alignment for help-278

2https://huggingface.co/ContextualAI

fulness and harmlessness, we employ the TANGO 279

dataset (Ovalle et al., 2023). TANGO is designed 280

to evaluate LLM biases against the TGNB com- 281

munity. Prompts in the dataset are composed of 282

a name, gender disclosure form, and gender iden- 283

tity, following the template: [SUBJECT] [DISCLO- 284

SURE FORM] [GENDER IDENTITY]. Models 285

are prompted with these texts (e.g., "Alex is gender- 286

fluid") and assessed for their regard (Sheng et al., 287

2019), where we expect to find similar regard be- 288

tween binary and gender-diverse contexts. 289

Given that the original TANGO findings suggest 290

LLMs may be sensitive to more nuanced language 291

with similar semantic meaning, we also explore 292

how aligned LLMs respond to variations in gen- 293

der disclosure. We examine static (e.g., "Alex is 294

genderfluid") and more fluid linguistic forms (e.g., 295

"Alex came out as genderfluid") to better under- 296

stand the model’s ability to generate appropriate 297

responses across these TGNB-specific contexts. 298

We conduct our assessment over 50,000 prompts, 299

covering 12 self-identified gender identities (includ- 300

ing binary and gender-diverse) and 10 disclosure 301

forms. Models generate 200 tokens per prompt, 302

which are first filtered to remove instances with 303

a Jaccard similarity to the prompts exceeding 0.4, 304

as substantial overlap indicates a lack of unique 305

text. The remaining outputs are then classified as 306

positive, negative, or neutral regard. 3 307

4.2 Results 308

Alignment amplifies harmful language for 309

TGNB groups. We report the % of generated 310

texts flagged with negative regard across TGNB 311

and cisgender groups in Figure 2. The TGNB group 312

consistently receives a higher proportion of nega- 313

tive regard labels compared to the binary gender 314

group, even after alignment, indicating persistent 315

bias that current techniques don’t fully address. 316

Even when aligning with texts meant to suppress 317

harmful behavior, we find significant group differ- 318

ences (ρ<0.05) for the majority of evaluated mod- 319

els. Across alignment stages, the combination of 320

SFT+DPO consistently resulted in the largest rel- 321

ative disparity increase between groups in com- 322

parison to respective baselines. After alignment, 323

relative gaps between these groups were increased 324

+4.2% for Pythia 6.9B, increased +6.6% LLaMA 325

3Initially, we used the Unitary toxicity classifier but found
many false positives for gender-related terms. Ad hoc human
evaluation of 50 samples showed that regard better captures
negative gender affirmation than toxicity or sentiment.
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Figure 2: % of texts labeled as negative regard across gender
groups, textual disclosure forms, and model alignment stages.

1 7B, increased +9.2% LLaMA 1 13B, and main-326

tained at +0.0% for Pythia 2.8B. Notably, we find327

that although DPO alone best suppresses this behav-328

ior, the addition of SFT results in an amplification329

of harmful texts.330

SFT best handles contextual variation. We also331

report negative regard to more fluid vs. static forms332

of disclosure gender (Figure 2). We observe that333

disclosing more situational knowledge in describ-334

ing one’s gender results in higher negative regard335

than using static referencing, as found in (Ovalle336

et al., 2023). However, both DPO and SFT decrease337

group disparities relative to baseline to some extent.338

We consistently find that all models significantly339

reduce this relative disparity across groups, with340

the largest reductions coming from SFT: -4.8% for341

Pythia 2.8B, -9.3% LLaMA 1 7B, -9.8% LLaMA342

1 13B, and maintained at -0.0% for Pythia 6.9B.343

Unlike the previous finding, the combination of344

SFT + DPO does not result in an amplified behav-345

ior. These results reflect previous studies which346

indicate SFT as a driving component for alignment347

(Zhou et al., 2024). Overall, fluid disclosure forms348

tend to have a higher rate of negative regard label-349

ing compared to static disclosure, across all models350

and alignment stages. This warrants further investi-351

gation into how disclosure phrasing may influence352

model sentiment.353

5 Gender Bias Reward Analysis 354

5.1 Task Setup 355

Provided the disparities observed above, we fur- 356

ther investigate how disparities propogate through 357

aligned LLMs with a reward probing task. We em- 358

ploy paired sentences from the WinoQueer dataset 359

(Felkner et al., 2023) to treat as “mock” human 360

preferences to extract reward values for aligned 361

models. We demonstrate how to do this in Ta- 362

ble 2. Notably, this approach can be extended to 363

any paired-evaluation form, such as Crows-Pairs 364

(Nangia et al., 2020). Evaluations are performed 365

across varying DPO KL constraints (16 β con- 366

straints ranging from 10e−6 to 50e−2). In the next 367

section, we present aggregated rewards for “TGNB” 368

and “non-TGNB” groups and conduct a thematic 369

analysis of chosen prompts to develop a taxonomy 370

of those which exhibit the greatest reward dispari- 371

ties between groups. 372

Chosen Rejected
Human: Between [Group
A] and [Group B], what is
more likely?: [Group A]
[harmful text].

Human: Between [Group
A] and [Group B], what is
more likely?: [Group B]
[harmful text].

Human: Between cisgen-
der people and nonbi-
nary people, what is more
likely?: cisgender people
have more job stability.

Human: Between cisgen-
der people and nonbi-
nary people, what is more
likely?: nonbinary people
have more job stability.

Table 2: Mock chosen and rejected template and example
conversion from a WinoQueer evaluation pair. The converted
example serves as input to the aligned model to extract its
rewards per group.

5.2 Results 373

Higher Rewards for Negative Text for TGNB 374

population. We find that on average, aligned 375

models skew towards higher rewards for stigma- 376

tizing language for texts containing references to 377

TGNB persons, over non-TGNB (51.9 vs 47.3) 378

(Figure 2, left). β constraints result in a reward 379

range of about ±0.1. The consistently lower re- 380

ward distributions for TGNB prompts compared to 381

non-TGNB prompts suggests a directional relation- 382

ship between rewards and downstream observed 383

disparities in generated text. The observed differ- 384

ence in reward distributions between TGNB and 385

non-TGNB prompts helps understand the under- 386

lying disparities observed in the previous section. 387

However, these points also further highlight the 388

need understand the mechanistic sources for bias 389

amplification during alignment. 390
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Figure 3: Reward distributions for TGNB vs non-TGNB groups over paired chosen, rejected prompts sourced from WINOQUEER
dataset. Takeaway: Aligned models show a skew towards rewarding negative sentiment with respect to TGNB group. Suggests
directional relationship between rewards and downstream observed disparities in text.

Consistent disparity in rewards across harm tax-391

onomy. The right side of Figure 2 reflects how392

aligned models appear to assign higher rewards393

for TGNB persons with respect to societally harm-394

ful topics, indicating an underlying bias in the the395

reward function. Of the templates gathered, those396

that resulted in the largest reward difference include397

references to “predatory”, “faking being trans to398

be with women”, “faking their identity”, and “as-399

sociated with mental illness’. This again suggests400

directional relationship between rewards and down-401

stream observed disparities. The disparities be-402

tween gender groups also highlight the need for403

disaggregated, gender diverse evaluation across to404

surface issues that may be obscured in aggregate405

binary-centric metrics.406

6 User Accessibility across Language407

6.1 Task Setup408

To investigate how pre-existing biases in founda-409

tion models propagate to their aligned variants, we410

propose a task setup that assesses the readability of411

generated text across multiple languages using the412

Belebele dataset with language-variants of Flesch413

Reading Ease (FRE) scores (Kincaid et al., 1975).414

By comparing the FRE scores of the original pas-415

sages and their generated texts, we quantify the416

model’s consistency in producing readable content417

across languages. We categorize the texts as ei-418

ther more or less challenging based on the recom-419

mended minimum FRE score of 60 (Moraine Park420

Technical College), enabling us to identify poten-421

tial disparities in accessibility across languages and422

resource levels (Joshi et al., 2020).423

We employ the textstat package 4 to obtain424

FRE scores for several language variants (EN, DE,425

ES, FR, IT, NL, RU, and HU) and the py3langid426

4https://github.com/textstat

library 5 to ensure that the generated texts adhere to 427

the desired language while maintaining readability. 428

6.2 Results 429

High resource languages most consistently gen- 430

erated. We report differences in consistency be- 431

tween HRL and LRL-based prompting in Table 3, 432

with 95% confidence intervals over 10k bootstrap 433

iterations. We find stark differences in consistency 434

across language resource. Models are predom- 435

inantly skewed towards generating text in high- 436

resource languages (HRL), particularly English, 437

across all model versions Figure 4. The base mod- 438

els show the highest consistency in generating En- 439

glish prompts (97.42% for English, ρ < 0.05). The 440

alignment methods (SFT, DPO, SFT+DPO) do not 441

significantly improve the generation consistency 442

for low-resource languages, highlighting a need 443

for methods which improve LLM ability to consis- 444

tently generate text across user context. 445

Level Lang Base SFT DPO
SFT +
DPO

English 97.420.28 96.180.38 97.610.30 97.640.27

French 76.840.75 81.630.76 84.380.72 70.800.81

German 75.750.77 79.780.80 87.360.66 62.160.86
HRL

Spanish 78.470.73 81.070.77 86.370.69 76.910.75

Dutch 75.180.77 77.590.83 81.280.76 60.050.87

Hungarian 8.380.50 11.890.65 10.590.61 8.320.49

Italian 73.480.78 75.320.86 80.690.77 65.090.85
LRL

Russian 66.620.83 77.570.81 83.930.73 59.510.86

Table 3: Generation consistency across all models. Take-
away: Models predominantely skewed to generated HRL-
based prompts.

Monolingual Alignment Reveals Disparities in 446

Readability Improvements between High and 447

5https://pypi.org/project/py3langid
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Low-Resource Languages Our analysis of the448

readability of text generated by aligned founda-449

tion models reveals significant disparities between450

high-resource languages (HRL) and low-resource451

languages (LRL), highlighting the limitations of452

current alignment methods in ensuring equitable453

user accessibility across different language com-454

munities. As shown in Figure 5, while both HRL455

and LRL exhibit significant (ρ < 0.001) positive456

shifts in readability scores after alignment, LRL457

consistently lag behind HRL in terms of textual458

readability. This disparity may be attributed to the459

strong morphological and script differences in lan-460

guages such as Russian and Hungarian.461

Across all models and versions, the generated462

text readability falls below the "standard" range of463

60 on the Flesch Reading Ease (FRE) scale, with464

LRL text scoring even lower than HRL. These find-465

ings suggest that while alignment methods show466

promise in improving readability, further work is467

needed to close the gap between LRL and HRL468

capabilities and move LRL closer to "standard"469

reading levels.470

Supervised fine-tuning (SFT) alignment consis-471

tently shifts generated text to higher reading ease472

scores compared to the base models, across all473

model sizes tested (Pythia 2.8B, 6.9B, LLaMA 7B,474

13B). This indicates that SFT is effective at making475

the generated text more readable and accessible.476

However, the benefits of SFT appear to be more477

pronounced for HRL, with Russian and Hungar-478

ian not experiencing the same level of readability479

improvements (Figure 5).480

6.3 Strongest ability to adapt to text481

complexity found for high resource482

languages.483

In terms of model adaptability to textual prompts,484

all models show a general improvement in increas-485

ing the reading ease relative to the prompt com-486

Base = 44.1

SFT *** = 51.9

DPO *** = 49.2

0 20 40 60 80 100
LRL Generated FRE

SFT+DPO *** = 47.8

Pythia 2.8B
Base = 56.3

SFT *** = 63.5

DPO *** = 59.6

0 20 40 60 80 100
HRL Generated FRE

SFT+DPO *** = 60.5

Base = 45.2

SFT *** = 54.0

DPO *** = 51.1

0 20 40 60 80 100
LRL Generated FRE

SFT+DPO *** = 50.3

Pythia 6.9B
Base = 56.8

SFT *** = 64.0

DPO *** = 59.4

0 20 40 60 80 100
HRL Generated FRE

SFT+DPO *** = 60.8

Base = 44.7

SFT *** = 50.5

DPO = 44.3

0 20 40 60 80 100
LRL Generated FRE

SFT+DPO *** = 46.1

Llama 7B
Base = 56.8

SFT *** = 63.9

DPO = 55.6

0 20 40 60 80 100
HRL Generated FRE

SFT+DPO *** = 60.2

Base = 46.1

SFT *** = 54.8

DPO *** = 49.3

0 20 40 60 80 100
LRL Generated FRE

SFT+DPO *** = 51.3

Llama 13B
Base = 57.9

SFT *** = 66.6

DPO *** = 60.9

0 20 40 60 80 100
HRL Generated FRE

SFT+DPO *** = 63.4

Figure 5: Generated FRE Scores across models and their ver-
sions split by low and high resource languages.*** indicates
version is significantly higher than base model (p<0.001).
Takeaway: SFT most consistently shifts generated text to
higher reading ease and most pronounced for higher resourced
languages.

pared to the base model. Both the base and sft 487

models perform better on the higher-resourced lan- 488

guages compared to the lower-resourced languages, 489

reflecting model sensitivity depending on the lan- 490

guage’s resource availability. We dive deeper into 491

these observations across language resource levels 492

in Figure 6, focusing on LLaMA 13B. 493

We find generated FRE improvements are corre- 494

lated to the complexity of the prompt text across 495

both base and aligned models. Sensitivity to 496

prompt complexity is most pronounced for higher 497

resourced languages across all models. However, 498

alignment forms exacerbate this disparity, with SFT 499

reflecting the highest adaptability gaps between lan- 500

guage resource level. Textual simplification is most 501

reflected in prompts with lower ease scores (i.e., 502

more complex prompts, left side of Figure 6) and 503

further pronounced for HRL after alignment. Fur- 504

thermore, generated text with high readability are 505

less likely to deviate in textual simplicity (right side 506
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Figure 6: Generation Reading Ease Relative to Prompt Reading Ease for LLaMA 13B-based models across language resource
level. Takewaway: Aligned models most able to produce texts with high reading ease for HRL.

of Figure 6), though HRL again benefits most from507

these alignment procedures overall.508

7 Discussion and Recommendations509

Expand Bias Evaluation Assessments Ensur-510

ing responsible development of capable, chat-511

based LLMs requires expanding evaluation scope512

beyond metrics which capture majority view-513

points(Bommasani et al., 2021; Askell et al., 2021).514

As we found in this work, we were only able to515

pick up on disaprities across our axes by inten-516

tionally preparing an analysis for them, as existing517

benchmarks would not have been able to capture518

these disparities. Our relational, descriptive anal-519

ysis enabled examining how biases present in a520

chat-model’s base model can be amplified during521

alignment. Adopting this evaluative approach is522

crucial, as assessing failures to adequately consider523

diverse contexts was only possible by first identify-524

ing the limitations of normative evaluations.525

Standardize Bias Assessment of Reward Mod-526

els As reward models drive the alignment process527

(Christiano et al., 2017; Stiennon et al., 2020), we528

propose standardizing bias measurement to system-529

atically characterize how reward modeling choices530

influence biases in aligned language models. In-531

corporating paired evaluation datasets like WINO-532

QUEER (Felkner et al., 2023), WINOBIAS (Zhao533

et al., 2018), and CROWS-PAIRS (Nangia et al.,534

2020) can allow for broader evaluations and fu-535

ture analysis surrounding intrinsic links to extrin-536

sic behavior. Furthermore, the REWARDBENCH537

framework (Lambert et al., 2024) offers a new and538

incredibly valuable avenue for conducting such539

evaluations.540

Operationalizing Situatedness through Cura-541

tion Transparency Comprehensively document-542

ing datasets, curation processes, annotator back-543

grounds, and model capabilities enables re- 544

searchers to critically examine the normative as- 545

sumptions and societal biases encoded within the 546

data and practices employed during the alignment 547

process. Such scrutiny allows for identifying mis- 548

alignments between the intended objectives and 549

the model’s realized behavior stemming from prob- 550

lematic biases inherited or amplified through align- 551

ment. This transparency lays the crucial ground- 552

work to develop mitigation strategies that re-align 553

language models with more equitable perspectives, 554

challenge harmful stereotypes, and reduce poten- 555

tial risks to marginalized communities. Ultimately, 556

robust transparency practices are vital for develop- 557

ing language models that respect human diversity 558

while minimizing societal harms. 559

8 Conclusion 560

In this work, we have advocated for a paradigm 561

shift in the evaluation of language models that are 562

fine tuned with human preferences. We argue for 563

more inclusive assessments by examining their abil- 564

ity to situate and contextualize themselves across 565

diverse linguistic and social contexts. Our evalua- 566

tions reveal alignment sensitivity to human prefer- 567

ence data and either propagation or amplification 568

of pre-existing sociotechnical disparities. These 569

evaluations highlight the importance of expand- 570

ing evaluation methodologies beyond prescriptive 571

benchmarking to capture the sociotechnical impli- 572

cations of deploying aligned LLMs. Incorporating 573

more descriptive measures which probe situated 574

knowledge can help guide the development of in- 575

clusive and equitable language technologies that 576

align with the needs of the diverse communities 577

they are intended to serve. 578
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9 Limitations and Broader Impacts579

Our work highlights the need for developing evalu-580

ations which go beyond traditional language model-581

ing benchmarks for aligned models. Expanding to582

more descriptive, sociocentric evaluations reveals583

gaps in fundamental aspects of LLM accessibility584

and inclusivity. As such, our findings serve as di-585

rections for future alignment evaluation practice586

which more carefully considers model steering and587

adaptibility to diverse linguistic and cultural con-588

texts.589

While our proposed evaluation framework offers590

a socio-centric approach to assess the trustworthi-591

ness of aligned LLMs, we encourage future work to592

consider the interplay between these evaluated axes.593

Additionally, our framework currently focuses on594

three specific dimensions of linguistic and sociocul-595

tural diversity, therefore expanding to other factors596

which include age, ethnicity, and socioeconomic597

status is encouraged in future work. Furthermore,598

while factuality evaluations did not show much de-599

viation, this does not remove the presence of bias600

within these models. These models should not be601

used as an authoritative source of facts. evaluations602

which incorporate various alignment procedures,603

base model architectures, sizes, and data preference604

source languages can help facilitate further study605

into how these aspects interrelate.606
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A Appendix 861

A.1 Benchmark Evaluation 862

Bias evaluation modalities are assessed on a per 863

model family level, as several model sizes can be 864

included per model release. Below is the table with 865

full details per model. 866

For bias evaluation dimension, we note that Real 867

Toxicity Prompts are not included in this assess- 868

ment, as they are taxonimized by toxicity level 869

asssessed by the Perspective API. 870

B Related Works 871

Various studies have investigated societal biases in 872

language models, focusing on gender bias across 873

different formats such as open language genera- 874

tion prompts and questions. BOLD (Dhamala et al., 875

2021) examines gender bias in a binary-centric 876

manner using Wikipedia data. Similarly, GlobalQA 877

(Durmus et al., 2023) and OpinionQA (Santurkar 878

et al., 2023) employ gender-inclusive evaluations, 879

with sample questions like "In general, do you think 880

men or women in top executive business positions 881

are better at working out compromises?" However, 882

our work differs from these studies by centering 883

on more gender-diverse identities and nuanced lan- 884

guage in our evaluations. 885

Kirk et al. (2023) focus on measuring how align- 886

ment shifts novelty and diversity in generated text. 887

While our work also measures shifts in textual char- 888

acteristics, we focus on more fundamental aspects 889

of text accessibility by studying generations using 890

readability metrics and generation consistency. 891

Lambert et al. (2023, 2024) provide an overview 892

of the risks associated with employing human pref- 893

erences for system alignment. Similarly, we evalu- 894

ate bias through a rewards lens. Ryan et al. (2024) 895

is the closest to our work, as they measure how 896

global representations change across alignment. 897

Both our studies analyze aligned models, with 898

some overlap in evaluating multilingual factuality, 899

although we employ different evaluation datasets 900

and reward probing. Our works complement each 901

other in that we evaluate different aligned mod- 902

els, though our paper introduces a novel aspect to 903

alignment evaluation that centers user accessibility. 904
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B.1 Readability905

Table 4: FRE based categorization less versus more challeng-
ing generated text

BELEBELE Passage Animals are made of many cells. They eat things and digest
them inside. Most animals can move. Only animals have
brains (though not even all animals do; jellyfish, for example,
do not have brains). Animals are found all over the earth.
They dig in the ground, swim in the oceans, and fly in the
sky.

Less challenging text Animals come in all shapes and sizes, from tiny insects to
massive whales. Some animals live on land, while others
live in water or air. Many animals have special features that
help them survive in their environments, such as camouflage,
venomous fangs, or wings. Some animals are social creatures
that live in groups, like wolves or bees.

More challenging text Animals are incredibly diverse, with different species
adapted to live in a wide range of environments. From the
frozen tundra to the scorching deserts, from the depths of
the ocean to the highest mountains, animals have evolved
unique characteristics that allow them to survive and thrive
in their particular habitats. Some animals are solitary crea-
tures, while others live in complex societies

C Knowledge Retrieval Across Language906

C.1 Task Setup907

Prior knowledge retrieval assessments employ a908

rank-based reward (Petroni et al., 2019) where a909

model is thought to understand the association910

if a given answer has a high chance of occur-911

ring as the next token (relative to all other op-912

tions). As such, we evaluate each model using913

each option and the final predict is calculated as914

ŷt = argmaxp∈CP (xi = s|x<i), where C is the915

set of possible answers for a given inquiry. For916

POLYGLOT, given that factual associations are for-917

malized as the triplet ⟨s, r, o⟩ where s and o denote918

the subject and object entity and r is a linking rela-919

tion, We then prompt a model M using the original920

natural language sentence with o masked out. Con-921

sistent with Contrastive Knowledge Assessment922

(CKA) from prior work (Dong et al., 2022), assess-923

ments are done using both factual and erroneous924

“counterfactuals” to assess a model M ’s understand-925

ing.926

C.2 Language disparities in pretraining927

primarily dictate downstream aligned928

LLM behavior.929

We report factual accuracy for POLYGLOT in Ta-930

ble 5. We find that HRL consistently outperform931

LRL across all model versions. However, the932

aligned models do not show consistent improve-933

ment over base, with some variants even perform-934

ing slightly worse than the base models (though935

these are not significant), such as LLaMA 1 7B936

(SFT 78.77 vs Base 76.86). The LLaMA-based937

models reflect the largest accuracy, suggesting that938

Table 5: POLYGLOT accuracies. Across language resource,
majority of aligned models do not consistently outperform
their base model. vindicates training with human prefer-
ence data. * indicate significant difference from base model
(<0.05).

Variant Accuracy % Langs > 75% Acc

HRL LRL HRL LRL

u Pythia 2.8B Base 61.380.20 54.420.35 6.6710.00 0.00 0.00
v Pythia 2.8B SFT 61.690.20 54.530.36 6.6710.00 0.00 0.00
v Pythia 2.8B RFT 61.630.20 54.430.34 6.6710.00 0.00 0.00
v Pythia 2.8B SFT + RFT 61.780.20 54.610.35 6.6710.00 0.00 0.00

u Pythia 6.9B Base 64.330.20 56.030.35 6.6710.00 0.00 0.00
v Pythia 6.9B SFT 64.500.20 *56.780.35 6.6710.00 0.00 0.00
v Pythia 6.9B RFT 64.310.20 56.580.35 6.6710.00 0.00 0.00
v Pythia 6.9B SFT + RFT 64.590.20 *56.860.34 6.6710.00 0.00 0.00

u LLaMA 1 7B Base 78.860.17 73.070.31 60.0026.67 40.00 40.00
v LLaMA 1 7B SFT 78.770.17 73.000.31 60.0026.67 40.00 40.00
v LLaMA 1 7B RFT 78.860.17 73.060.31 60.0026.67 40.00 40.00
v LLaMA 1 7B SFT + RFT 78.830.17 73.110.31 60.0026.67 40.00 40.00
v LLaMA 1 7B Guanaco *78.300.17 *72.190.32 60.0026.67 40.00 40.00

u LLaMA 1 13B Base 80.450.16 75.710.30 66.6723.33 40.00 40.00
v LLaMA 1 13B SFT 80.480.16 75.740.30 66.6723.33 40.00 40.00
v LLaMA 1 13B RFT 80.490.17 75.730.31 66.6723.33 40.00 40.00
v LLaMA 1 13B SFT + RFT 80.500.16 75.770.30 66.6723.33 40.00 40.00
v LLaMA 1 13B Guanaco *79.490.17 *74.530.31 60.0026.67 40.00 40.00

u LLaMA 2 7B Base 79.160.17 74.050.31 60.0026.67 40.00 40.00
v LLaMA 2 7B SFT + RFT *77.190.17 *70.510.32 60.0026.67 20.00 30.00
v LLaMA 2 7B Vicuna *75.690.18 *69.590.33 53.3326.67 0.00 0.00
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Figure 7: Pythia 6.9 accuracy gain of model vs. base model
across confidence level margins. Takeaway: While factuality
accuracy remains mostly consistent across versions, robust-
ness for LRL weakens with DPO.

there is some sensitivity to architecture for per- 939

formance on the given task. This is most notably 940

observed with the accuracy jump from 64.3% to 941

79% for Pythia vs LLaMA 1, although they are 942

similar sizes. Figure 7 shows the accuracy gain 943

for both high-resource languages (HRL) and low- 944

resource languages (LRL) across confidence level 945

margins. For predictions where the model is most 946

confident (far right), the accuracy gain of HRL 947

over LRL becomes more pronounced. However, 948

the accuracy gain patterns are similar for all three 949

techniques, suggesting that the choice of alignment 950

technique does not significantly impact the over- 951

all performance improvement over the base model. 952

This reflects back to our observation that handling 953

existing disparities here are likely best handled at 954

the pretraining level. We find paralled results for 955

BELEBELE (Appendix Table 6). 956
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C.3 Factuality957

For BELEBELE, examples are prompted to the958

model following the template P: <passage> \n959

Q: <question> \n A: <mc answer 1> \n B:960

<mc answer 2> \n C: <mc answer 3> \n D:961

<mc answer 4> \n Answer: <Correct answer962

letter>).963

C.4 Hardware Setup964

We perform all our experiments with 64GB965

NVIDIA A100s.966

Model Size Hours

3B 4 hrs
7B 8 hrs

13B 12 hrs

Table 7: Average GPU Hours For Evaluation
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Table 6: Results for BELEBELE.

Models Language Resource Level % of Langs > 75% Acc.
High Medium Low High Med Low

u Pythia 2.8B Base 54.720.69 51.770.56 49.840.58 100.000.00 76.4714.71 46.8815.62
v Pythia 2.8B SFT 54.940.69 51.950.56 49.980.58 100.000.00 88.2410.29 50.0015.62
v Pythia 2.8B RFT 54.710.70 51.800.55 49.880.57 100.000.00 88.2410.29 50.0018.75
v Pythia 2.8B SFT + RFT 54.770.71 51.930.57 50.060.57 95.456.82 85.2911.76 59.3817.19

u Pythia 6.9B Base 55.500.69 52.030.56 49.860.57 100.000.00 85.2911.76 50.0017.19
v Pythia 6.9B SFT 55.790.70 52.360.56 50.050.58 100.000.00 85.2911.76 46.8817.19
v Pythia 6.9B RFT 55.630.70 52.100.56 49.880.59 100.000.00 88.2410.29 46.8817.19
v Pythia 6.9B SFT + RFT 55.590.69 52.250.56 50.110.58 100.000.00 88.2410.29 53.1217.19

u Llama 1 7B Base 60.020.68 53.300.56 50.700.57 100.000.00 91.1810.29 62.5015.62
v Llama 1 7B SFT 59.830.69 53.190.56 50.820.57 100.000.00 88.2410.29 62.5015.62
v Llama 1 7B RFT 60.010.68 53.310.55 50.760.57 100.000.00 91.188.82 65.6215.66
v Llama 1 7B SFT + RFT 59.900.67 53.240.56 50.850.57 100.000.00 88.2410.29 65.6215.62

u Llama 1 13B Base 61.230.67 53.950.57 51.120.59 100.000.00 85.2911.76 75.0015.62
v Llama 1 13B SFT 61.120.68 53.970.56 51.230.60 100.000.00 88.2410.29 75.0015.62
v Llama 1 13B RFT 61.210.68 53.930.57 51.160.59 100.000.00 85.2911.76 75.0014.06
v Llama 1 13B SFT + RFT 61.200.67 53.990.57 51.180.59 100.000.00 88.2410.29 75.0014.06

u Llama 2 7B Base 62.010.69 54.110.57 51.350.58 100.000.00 91.1810.29 71.8815.62
v Llama 2 7B Vicuna 62.950.68 54.650.56 51.350.57 100.000.00 94.127.35 75.0014.06
v Llama 2 7B RFT 63.470.67 54.780.56 51.440.57 100.000.00 91.188.82 71.8815.62
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