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ABSTRACT
Most existing graph neural networks (GNNs) are limited to undi-
rected graphs, whose restricted scope of the captured relational
information hinders their expressive capabilities and deployments
in real-world scenarios. Compared with undirected graphs, directed
graphs (digraphs) fit the demand for modeling more complex topo-
logical systems by capturing more intricate relationships between
nodes, such as formulating transportation and financial networks.
While some directed GNNs have been introduced, their inspiration
mainly comes from deep learning architectures, which lead to re-
dundant complexity and computation, making them inapplicable to
large-scale databases. To address these issues, we propose LightDiC,
a scalable variant of the digraph convolution based on the mag-
netic Laplacian. Since topology-related computations are conducted
solely during offline pre-processing, LightDiC achieves exceptional
scalability, enabling downstream predictions to be trained sepa-
rately without incurring recursive computational costs. Theoreti-
cal analysis shows that LightDiC utilizes directed information to
achieve message passing based on the complex field, which corre-
sponds to the proximal gradient descent process of the Dirichlet
energy optimization function from the perspective of digraph sig-
nal denoising, ensuring its expressiveness. Experimental results
demonstrate that LightDiC performs comparably well or even out-
performs other SOTA methods in various downstream tasks, with
fewer learnable parameters and higher training efficiency. Notably,
LightDiC is the first DiGNN to provide satisfactory results in the
most representative large-scale database (ogbn-papers100M).
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1 INTRODUCTION
Graph neural network (GNN) is a new machine learning paradig
for graph-structured data, offering powerful tools for data science
community to analyze and leverage information for various down-
stream tasks such as node-level [16, 27, 44], link-level [3, 8, 48],
and graph-level [32, 46, 52]. However, limitations are evident since
undirected graphs fail to capture the intricate relationships between
entities, leading to poor representations. These issues severely re-
strict the performance of GNNs in analyzing complicated real-world
applications and the future development of graph-based machine
learning and databases. For instance, when analyzing the citation
network in the field of computer science (CS), the rise of AI4Industry
and AI4Science in recent years has diversified and enriched cita-
tion relationships (i.e., the citation relationship occurs not only in
the same field). Therefore, if we solely represent such data using
an undirected graph, the locally directed information (e.g., CS→
Biomedical or Physics→ CS) is overlooked, leading to potential
misguidance and erroneous model predictions.

To address these issues, the directed graph (digraph) is consid-
ered a promising approach for capturing advanced complexities
in real-world scenarios, such as social networks [4, 36]. However,
since most undirected GNNs perform poorly when being directly
implemented on digraphs due to asymmetrical topology, it is a para-
mount necessity to design a novel directed GNN (DiGNN). Recent
approaches [24, 30, 41] design two groups of learnable parameters
that are separated based on the directed dichotomy to encode nodes.
They appear to be effective intuitively, but their application is con-
fined to small-size toy datasets and performance is unstable due
to over-fitting. An interesting alternative solution is to define the
weight-free spectral convolution by approximating the symmetric
digraph Laplacian based on the original asymmetrical topology,
which has been extensively studied in graph theory [9, 11, 38]. In
particular, magnetic Laplacian emerges as a powerful tool for mod-
eling the digraphs based on the complex number [14, 18, 19] due to
its superior performance and interpretability.

Despite its effectiveness, many real-world digraphs are sparse
and complex. Existing DiGNNs require extra information among
long-distanced nodes and vast amounts of trainable weights to
learn the connection patterns, which leads to deep-coupled model
architectures [24, 30, 40, 41, 51]. They aim to expand the receptive
field (RF) of a node by aggregating information from the 𝐾-hop
neighborhoods. However, as the number of layers in the model
increases, the RF grows exponentially, leading to unaffordable train-
able weights and memory costs on a single machine [49]. Although
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sampling-based strategies can selectively aggregate neighbors, they
are imperfect because the quality of the sampling greatly influences
model performance. This limits the scalability of DiGNNs, even in
distributed environments, due to high communication costs. More-
over, undirected sampling strategies cannot be directly applied in
DiGNNs due to directed edges. Recent advancements towards undi-
rected scalable GNNs focus on model simplification [17, 44, 50],
separating the feature propagation and model training to substan-
tially reduce the computational cost. Meanwhile, since the undi-
rected graph Laplacian is a special case of digraph Laplacian, the
decoupled design can be directly applied to DiGNNs.

Our contributions. (1) New Perspective. In this paper, we com-
mence by elucidating the inherent constraints of undirected graphs
in capturing intricate relationships. Following this, we underscore
the pivotal role played by digraphs in addressing and advancing the
comprehension of real-world data science challenges. Subsequently,
our attention turns to the issue of scalability in existing DiGNN
models. (2) Simple yet Effective Approach. To address scalability is-
sues, we propose a variant of digraph convolution called LightDiC
consisting of three decoupled modules. Specifically, LightDiC first
constructs a complex Hermitian matrix called magnetic Laplacian,
which is then combined with weight-free message aggregation to
perform graph propagation. The above process corresponds to the
proximal gradient descent process of the Dirichlet energy optimiza-
tion function. Finally, LightDiC collapses the complex value-based
learning process into a single linear transformation for the elegance
of simplicity. (3)High Scalability and Predictive Performance. Exten-
sive experiments on 7 digraph datasets demonstrate that LightDiC
performs equally well or even better than other state-of-the-art
baselines on various downstream tasks in terms of training effi-
ciency (up to 358x faster), and model size (up to 16x smaller).

2 PRELIMINARIES
2.1 Problem Formalization
We consider a digraph G = (V, E) with |V| = 𝑛 nodes, |E | = 𝑚
edges. Each node has a feature vector of size 𝑓 , stacked up in the
feature matrix X ∈ R𝑛×𝑓 . G can be described by an asymmetrical
adjacency matrix A(𝑢, 𝑣), 𝑢, 𝑣 ∈ V . A(𝑢, 𝑣) = 1 if (𝑢, 𝑣) ∈ E and
A(𝑢, 𝑣) = 0 vice versa. D = diag (𝑑1, · · · , 𝑑𝑛) ∈ R𝑛×𝑛 denotes the
degree matrix of A, where 𝑑𝑖 is the degree of node 𝑣𝑖 . Typical
downstream tasks in digraphs include node-level and link-level.

Node-level classification. SupposeV𝑙 is the labeled set, and
the goal of it is to predict the labels for nodes in the unlabeled set
V𝑢 with the supervision ofV𝑙 . For convenience, we call it Node-C.

Link-level prediction. Three typical link prediction tasks: (1)
Direction: predict the edge direction of pairs of vertices 𝑢, 𝑣 for
which either (𝑢, 𝑣) ∈ E or (𝑣,𝑢) ∈ E; (2) Existence: predict if
(𝑢, 𝑣) ∈ E exists in the fixed order of pairs of vertices (𝑢, 𝑣); (3)
Three-class link classification: classify an edge (𝑢, 𝑣) ∈ E, (𝑣,𝑢) ∈ E,
or (𝑢, 𝑣), (𝑣,𝑢) ∉ E. For convenience, we call it Link-C.

2.2 Directed GNNs
Directed spatialmessage-passing. In the undirected cases, where
the adjacency matrix A is symmetric and D is the degree matrix
of A, some undirected GNNs [17, 20, 28, 42, 45, 50] follow strict

spatial symmetric message-passing mechanisms to design different
learnable aggregation functions, which are utilized to establish
relationships among the current node and its neighbors. For node
𝑢, the 𝑙-th aggregator parameterized by W(𝑙 ) is represented as:

H(𝑙 )𝑢 = Aggregate
(
W(𝑙 ) ,H(𝑙−1)𝑢 ,

{
H(𝑙−1)𝑣 ,∀𝑣 ∈ N (𝑢)

})
, (1)

where H(0) = X,H(𝑙 ) is the node embeddings in 𝑙-th aggregation
function. N(𝑢) represents the one-hop neighbors of 𝑢.

To compute node embeddings in digraphs based on the asymmet-
rical adjacency matrix A, DGCN [41] introduces first and second-
order neighbor proximity (NP) strategies to devise aggregation
functions, employing two sets of independent learnable parameters
for incoming and outgoing edges. DIMPA [24] increases the RF by
aggregating 𝐾-hop neighborhoods at each model layer and lever-
ages directed edges to independently represent source and target
nodes. NSTE [30] is inspired by the 1-WL graph isomorphism test,
where the information aggregation weights are tuned based on the
parameterized directed message-passing process. DiGCN [40] fol-
lows the aforementioned directed spatial message-passing rules and
leverages the NP to increase RF. Meanwhile, it notices the inherent
connections between digraph Laplacian and stationary distributions
of PageRank and theoretically extends personalized PageRank to
construct real symmetric digraph Laplacian. This method advances
the research on extending undirected spectral graph convolution
to digraphs, enabling symmetric spectral message passing.
Symmetric spectral message-passing. Compared to the strict
spatial symmetry message-passing rules in undirected graphs, some
approaches [5, 6, 21, 22, 43] define symmetric message-passing from
the spectral analysis of the undirected graph Laplacian, which is de-
fined as L = D−A = UΛUT. L is a symmetric, positive-semidefinite
matrix, and therefore has an orthonormal basis of eigenvectors U as-
sociated with non-negative eigenvalues Λ. Based on this, GCN [29]
leverages U to achieve spectral convolutions on undirected graphs
via the first-order approximation of Chebyshev polynomials to
learn a function related to Λ, which can be formally represented as

X(𝑙+1) = 𝛿
((

D̃−1/2ÃD̃−1/2
)

X(𝑙 )W(𝑙 )
)
, (2)

where Ã = A + I, D̃ is the degree matrix of Ã, and X(𝑙 ) is 𝑙-layer
node embeddings while X(0) = X. In addition, W(𝑙 ) denotes the
trainable weights at layer 𝑙 , and 𝛿 (·) denotes the activation function.

To overcome the asymmetry of A on the digraphs and implement
symmetric spectral message passing, MagNet [51] utilizes complex
numbers to model directed information, it proposes a spectral GNN
for digraphs based on a complex Hermitian matrix known as the
magnetic Laplacian. Meanwhile, MagNet uses additional trainable
parameters to combine the real and imaginary filter signals sepa-
rately to achieve better predictive performance. MGC [47] adopts a
truncated variant of PageRank named Linear-Rank, which designs
and builds low-pass and high-pass filters for homogeneous and het-
erogeneous digraphs based on the magnetic Laplacian. The core of
the above DiGNNs following symmetric spectral message-passing
mechanisms lies in identifying and defining symmetric (conjugated)
relations based on directed edges. Subsequently, through conduct-
ing spectral analysis on these topological relations, these methods
achieve a symmetric spectral message-passing process.

2



Table 1: Algorithm analysis of existing DiGNNs in three message-passing mechanisms. 𝑛,𝑚, and 𝑓 are the number of nodes, edges, and feature
dimensions, respectively. 𝑏 is the batch size. 𝑘 and 𝐾 correspond to the 𝑘-order proximity of neighbors and the number of times we aggregate
features. 𝜔 is the time complexity of computing the approximate linear rank using Gaussian random matrices or Monte Carlo sampling. 𝐿 is
the number of layers in learnable classifiers trained with features and 𝑐 represents the complex numbers consisting of real and imaginary parts.

Model Mechanism Pre-processing Training Inference Memory

DGCN Directed Spat. 𝑂 (𝑚𝑘 ) 𝑂 (𝐿𝐾𝑚𝑓 + 𝐿𝐾𝑛𝑓 2 ) 𝑂 (𝐿𝐾𝑚𝑓 + 𝐿𝐾𝑛𝑓 2 ) 𝑂 (𝑏𝐿𝐾 𝑓 +𝐾𝑓 2 )
NSTE Directed Spat. - 𝑂 (𝐿𝐾𝑘𝑚𝑓 + 𝐿𝐾𝑘𝑛𝑓 2 ) 𝑂 (𝐿𝐾𝑘𝑚𝑓 + 𝐿𝐾𝑘𝑛𝑓 2 ) 𝑂 (𝑏𝐿𝐾𝑘 𝑓 +𝐾𝑘 𝑓 2 )
DIMPA Directed Spat. 𝑂 (𝑚) 𝑂 (𝐿𝐾𝑘2𝑚𝑓 + 𝐿𝐾𝑘2𝑛𝑓 2 ) 𝑂 (𝐿𝐾𝑘2𝑚𝑓 + 𝐿𝐾𝑘2𝑛𝑓 2 ) 𝑂 (𝑏𝐿𝐾𝑘2 𝑓 + 𝑘 +𝐾𝑓 2 )
DiGCN Mix Spat. Spect. 𝑂 (𝑘𝑚) 𝑂 (𝐿𝐾𝑚𝑓 + 𝐿𝐾𝑛𝑓 2 ) 𝑂 (𝐿𝐾𝑚𝑓 + 𝐿𝐾𝑛𝑓 2 ) 𝑂 (𝑏𝐿𝐾 𝑓 +𝐾𝑓 2 )

DiGCN-IB Mix Spat. Spect. 𝑂 (𝑚𝑘 ) 𝑂 (𝐿𝐾𝑚𝑓 + 𝐿𝐾𝑛𝑓 2 ) 𝑂 (𝐿𝐾𝑚𝑓 + 𝐿𝐾𝑛𝑓 2 ) 𝑂 (𝑏𝐿𝐾 𝑓 +𝐾𝑓 2 )
DiGCN-Appr Mix Spat. Spect. 𝑂 (𝑚) 𝑂 (𝐿𝑚𝑓 + 𝐿𝑛𝑓 2 ) 𝑂 (𝐿𝑚𝑓 + 𝐿𝑛𝑓 2 ) 𝑂 (𝑏𝐿𝑓 + 𝑓 2 )

MGC Symmetric Spect. 𝑂 (𝑚 + log𝐾𝑐𝑚𝜔 𝑓 ) 𝑂 (𝐿𝑛𝑐2 𝑓 2 ) 𝑂 (𝐿𝑛𝑐2 𝑓 2 ) 𝑂 (𝑏𝐿𝑓 + 𝑓 2 )
MagNet Symmetric Spect. 𝑂 (𝑚) 𝑂 (𝐿𝑚𝑐 𝑓 + 𝐿𝑛𝑐 𝑓 2 ) 𝑂 (𝐿𝑚𝑐 𝑓 + 𝐿𝑛𝑐 𝑓 2 ) 𝑂 (𝑏𝐿𝑓 + 𝑓 2 )

LightDiC (ours) Symmetric Spect. 𝑂 (𝑚 +𝐾𝑐𝑚𝑓 ) 𝑂 (𝑛𝑐𝑓 2 ) 𝑂 (𝑛𝑐𝑓 2 ) 𝑂 (𝑏𝑓 + 𝑓 2 )

2.3 Complexity Analysis
In this section, we review recent proposed DiGNNs and analyze
their theoretical time and space complexity in Table 1. To begin
with, we clarify that the training and inference time complexity
of the DGCN with 𝐿 layers and 𝐾 aggregators can be bounded by
𝑂 (𝐿𝐾𝑚𝑓 + 𝐿𝐾𝑛𝑓 2), where 𝑂 (𝐿𝐾𝑚𝑓 ) represents the total cost of
the weight-free sparse-dense matrix multiplication inAggregate (·)
from Eq. (1), with DGCN utilizing GCN as the mechanism of ag-
gregation function, and 𝑂 (𝐿𝐾𝑛𝑓 2) being the total cost of the fea-
ture transformation achieved by applying 𝐾 learnable aggregator
weights. At first glance, 𝑂 (𝐿𝐾𝑛𝑓 2) may appear to be the dominant
term, considering that the average degree 𝑑 in scale-free networks
is typically much smaller than the feature dimension 𝑓 , thus result-
ing in 𝐿𝐾𝑛𝑓 2 > 𝐿𝐾𝑛𝑑 𝑓 = 𝐿𝐾𝑚𝑓 . However, in practice, the feature
transformation can be performed with significantly less cost due
to the improved parallelism of dense-dense matrix multiplications.
Consequently, 𝑂 (𝐿𝐾𝑚𝑓 ) emerges as the dominating complexity
term of DGCN, and the execution of full neighbor propagation
becomes the primary bottleneck for achieving scalability.

NSTE [30] performs an additional aggregation based on the 𝑘-
order proximity in each learnable aggregator, which is bounded by
𝑂 (𝐿𝐾𝑘𝑚𝑓 + 𝐿𝐾𝑘𝑛𝑓 2). DIMPA [24] extends the RF by considering
incoming and outgoing edges independently in each aggregation
step𝑂 (𝐿𝐾𝑘2𝑚𝑓 +𝐿𝐾𝑘2𝑛𝑓 2). The existing methods, such as DGCN,
NSTE, and DIMPA, follow directed spatial message-passing mech-
anisms, which inherently rely on directed edges for aggregator
design, making them challenging to handle large-scale digraphs.
Furthermore, their use of two sets of independent learnable weights
to encode source and target nodes results in a large 𝐾 , which fur-
ther exacerbates the computational costs. DiGCN [40] has three
variants, which involve directed spatial and symmetric spectral
message passing. Hence, we call them Mix Spatial Spectral. Among
them, DiGCN and DiGCN-IB are similar to DGCN as they both use
𝑘-order NP as pre-processing, but the generated real symmetric
adjacency matrix is different. DiGCN-Appr extends approximate
personalized PageRank for constructing digraph Laplacian as pre-
processingwith time complexity of𝑂 (𝑚), which is equivalent to the
undirected symmetric adjacency matrix. Then, the training rule of
DiGCN remains similar to DGCN, but without 𝐾 times aggregation.

For methods following the symmetric spectral message passing
mechanisms, both MGC [47] and our proposed LightDiC follow
the decoupled paradigm, MageNet [51] combines the propagation
and training process into a deep coupled architecture. In the pre-
processing, all approaches achieve a time complexity of 𝑂 (𝑚) to
obtain the magnetic Laplacian, with the introduction of a 𝑂 (𝑐)
complexity due to the complex-valued matrix. Then, MGC conducts
multiple graph propagation approximately with significantly larger
𝐾 , bounded by𝑂 (log𝐾𝑐𝑚𝜔 𝑓 ). In contrast, LightDiC performs only
a finite number of graph propagation with small 𝐾 , bounded by
(𝑂𝐾𝑐𝑚𝑓 ). In the training, as the magnetic Laplacian involves real
and imaginary parts, the fully square recursive computation cost
of MagNet grows exponentially with the increase of the number
of nodes and edges, reaching 𝑂 (𝐿𝑚𝑐 𝑓 + 𝐿𝑛𝑐 𝑓 2). In contrast, MGC
performs complex-valued forward propagation with a complexity
of (𝐿𝑛𝑐2 𝑓 2), while LightDiC further decouples the complex-valued
matrices and reduces the computation complexity to 𝑂 (𝑛𝑐 𝑓 2) by
employing the simple linear logistic regression.

3 LIGHTDIC FRAMEWORK
In this section, we first introduce LightDiC, which extends digraph
convolution to large-scale scenarios through three decoupled steps:
Step 1: predefined magnetic graph operator; Step 2: feature pre-
process; Step 3: model training. Remarkably, Step 1 and 2 are offline
processes that are separated from the model training. Therefore,
LightDiC performs digraph structure-related computations solely
during pre-processing. This allows us to train the downstream pre-
diction process separately, avoiding the need for expensive recur-
sive computations caused by the coupling of layer-to-layer feature
propagation and transformation (details in Sec. 3.1 and Fig. 1).

Subsequently, we provide essential theoretical analysis to demon-
strate the applicability and interpretability of our method in real-
world applications. Specifically, we first define the feature smooth-
ing of digraphs from the perspective of the complex field and es-
tablish a connection with the spectral analysis of the magnetic
Laplacian. Building upon this, we demonstrate that the feature
pre-processing in LightDiC aligns with the proximal gradient de-
scent process of the Dirichlet energy optimization function, which
ensures the expressiveness of our approach (details in Sec. 3.2).

3
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Figure 1: Overview of our proposed LightDiC, including Step 1: predefined magnetic graph operator based on asymmetric digraph adjacency
matrix, Step 2: feature pre-processing, and Step 3: model training with processed features.

3.1 LightDiC Pipeline
Predefined magnetic graph operator. Since A is asymmetric,
direct attempts to define aggregators or analyze the correspond-
ing Laplacian typically yield high bias and complex eigenvalues. A
preferable solution is adopting magnetic Laplacian L𝑚 [9, 11, 38],
which is a complex-valued Hermitian matrix that encodes the asym-
metric nature of a digraph via the complex part of its entries

L(𝑞)𝑚 := D𝑚 − A(𝑞)𝑚 = D𝑚 − A𝑚 ⊙ exp
(
𝑖Θ(𝑞)

)
,

A𝑚 (𝑢, 𝑣) := 1/2 (A(𝑢, 𝑣) + A(𝑣,𝑢)) ,

Θ(𝑞) (𝑢, 𝑣) := 2𝜋𝑞 (A(𝑢, 𝑣) − A(𝑣,𝑢)) , 𝑞 ≥ 0,

(3)

where D𝑚 is the degree matrix of A𝑚 . The real part in L𝑚 (𝑢, 𝑣)
indicates the presence of the edge from 𝑢 to 𝑣 , and the imaginary
part indicates the direction. We follow the previous works [23, 47,
51] to use a 𝑞 parametric magnetic Laplacian to determine the
strength of the directed information. Meanwhile, some studies [12,
13, 15] clarify that different values of 𝑞 highlight different digraph
motifs, and therefore, the appropriate value of 𝑞 from datasets is
useful in data-driven contexts. Since we only consider unsigned
digraphs, there exists cosΘ(𝑞) ≥ 0. Moreover, due to the periodicity
of the sinΘ(𝑞) ,Θ(𝑞) ∈ [−𝜋/2, 𝜋/2], we have 𝑞 ∈ [0, 1/4]. When
setting 𝑞 = 0, directed information becomes negligible. For 𝑞 = 1/4,
we have L𝑚 (𝑢, 𝑣) = −L𝑚 (𝑣,𝑢) whenever there is an edge from 𝑢 to
𝑣 only. Based on this, we predefine the magnetic graph operator
(MGO) with self-loop (Ã𝑚 = A𝑚 + I) as follows

MGO := Â𝑚 =

(
D̃−1/2𝑚 Ã𝑚D̃−1/2𝑚 ⊙ exp

(
𝑖Θ(𝑞)

))
. (4)

We notice that recent studies SGC [44] and MagNet [51] employ a
similar decouple paradigm and the same MGO, respectively. How-
ever, SGC solely operates on undirected graphs in the real domain
and exists room for an improved message function. MagNet over-
looks feature pre-processing and utilizes the complex-domain re-
cursive GCN as a fundamental module during training, leaving it

unsuitable for large-scale digraphs. Further detailed comparisons
on LightDiC, MagNet, and SGC can be found in [1].

Notably, MGO is essentially a low-pass filter. Although a com-
plex frequency response function can theoretically achieve better
performance, we aim to propose a simple yet effective variant of
digraph convolution with scalability rather than pursuing the ulti-
mate performance with marked computational costs. Meanwhile,
our theoretical analysis in Sec. 3.2 shows that the above MGO can
still achieve both excellent performance and interpretability.
Feature pre-processing. Building upon the aforementioned MGO,
we can define the 𝐾-step weight-free feature propagation by re-
moving the neural network W and nonlinear activation 𝛿 (·)

X̃(𝐾 ) = Â𝐾𝑚X̃(0) , X̃(𝐾 ) := Real
(
X̃(𝐾 )

)
, Imag

(
X̃(𝐾 )

)
, (5)

where Real(X̃(0) ) = Imag(X̃(0) ) = X. Notably, the neighborhood
expansion of the complex domain consists of both real part Real(·)
and imaginary part Imag(·). After𝐾-step feature propagation shown
in Eq. (5), we correspondingly get a list of propagated features (mes-
sages) under different steps: [X̃(0) , X̃(1) , . . . , X̃(𝐾 ) ]. Building upon
this, we propose to encode multi-scale directed complex structural
information in a weight-free mannerMessage-Aggregation(·)

X̃ = Message-Aggregation
(
X̃(0) , X̃(1) , . . . , X̃(𝐾 )

)
. (6)

This decision to exclude weighted manner is driven by the need
to handle the real and imaginary components as distinct entities.
Integrating a weighted fusion of these complex value-based prop-
agated features would impose considerable training complexity.
Furthermore, the effective weighted aggregation of these compo-
nents poses a unique challenge, hinging heavily on well-designed
learning architectures and consequently leading to a marked in-
crease in computation costs. This diverts from our initial aspiration
to develop a simple yet efficient approach for large-scale digraph
representation learning. Therefore, we choose to opt for a weight-
free strategy in encoding structural insights in the complex domain.
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From a theoretical standpoint, the small eigenvalues correspond
to smoother eigenvectors within the eigendecomposition of MGO
(see Sec. 3.2). Therefore, we use MGO to smooth node features by
Eq. (5), which can be regarded as the proximal gradient descent
process of the Dirichlet energy. Then, inspired by the inception
module [39], we treat Â𝑚 as convolution kernel and X̃(0) as an
initial residual term carrying non-smoothed features to encode
multi-scale structural information based on the Eq. (6).

In a nutshell, LightDiC first executes 𝐾-step feature smoothing
by the low-frequency spectrum of L𝑚 . Then, it leverages these
smoothed features to encode multi-scale structural insights X̃. We
notice that a recent work SIGN [17] uses a learnable combination.
However, as we previously pointed out, naive weighted message
aggregation is not applicable to intricate processes in the complex
domain. We will elaborate on this matter extensively in [1].
Model training. To eliminate the unnecessary complexity, we fold
the complex learning function into a linear predictor. It efficiently
reduces the computational overhead associated with recursive cal-
culations involving the complete square expansions of real and
imaginary components. For large-scale learning grounded in the
complex domain, the benefits of this simplicity are self-evident.

Z = Softmax
((
Real

(
X̃
)
| |Imag

(
X̃
))

W
)
, (7)

where ·| |· represents the concat operation. To perform link-level
tasks, we concatenate the embeddings of node pairs for predic-
tion. Notably, complex model architectures and more learnable
parameters may yield higher predictive performance. However, the
purpose of our model framework is to highlight the validity and
scalability of complex domain-based feature propagation.

3.2 Theorem Analysis
Smoothness and Dirichlet energy on digraphs. We first de-
fine the smoothness of digraphs based on the magnetic Laplacian
and Euler equation. Specifically, we can integrate the angle 𝜃𝑢𝑣
associated with each edge 𝑒𝑢𝑣 and have Definition 1 and Lemma 1.

Definition 1. Let L𝑚 ∈ C𝑁×𝑁 be the magnetic Laplacian of
a digraph G. Given node feature matrix X ∈ C𝑁×1, the complex
domain-based smoothness of X over G is defined as X†L𝑚X.

Lemma 1. The total variation of the digraph signal X is a smooth-
nessmeasure, quantifying howmuch the signalX changes with respect
to the digraph topology encoded in magnetic Laplacian L𝑚 as the
following quadratic form, which is also known as Dirichlet energy

X†L𝑚X =
∑︁
(𝑢,𝑣) ∈E

|X𝑢 − 𝑒𝑖𝜃𝑢𝑣 X𝑣 |2 =
∑︁
(𝑢,𝑣) ∈E

|𝑒−𝑖𝜃𝑢𝑣 X𝑢 − X𝑣 |2 . (8)

Then, from the perspective of signal denoising, suppose that the
digraph signal y has noises 𝜖 , we can define the objective function
that minimizes the global Dirichlet energy of digraphs as follows

Definition 2. Given digraph signal y ∈ C𝑁×1 with noises 𝜖 , the
optimization function of global Dirichlet energy is defined as

min
X∈C

Z(x) = min
X∈C
∥X − y∥2 + X†L𝑚X. (9)

Here minX∈C Z(x) consists of two terms: X†L𝑚X measures the
smoothness of resulting signals, and ∥X − y∥2 guarantees that the
resulting signals y keep information of the original signals X.

Spectral analysis of complex domain propagation. Based on
the Eq. (9), it is known that X∗ = (L𝑚 + I)−1y is the solution of this
optimization. However, directly computing the inverse of L𝑚 + I is
prohibitive on large-scale scenarios, LightDiC implicitly optimizes it
through the spectral analysis of magnetic Laplacian. To demonstrate
our point, we first prove that LightDiC is essentially a low-pass
filter (Lemma 2) and the small eigenvalues are referred to relatively
smooth eigenvectors in the eigendecomposition (Lemma 3).

Lemma 2. In digraph signal processing perspective, the complex
domain feature propagation in our proposed LightDiC is a digraph
convolution operation Â𝐾𝑚 with a low-pass filter 𝑔(𝜆𝑖 ) = (1 − 𝜆𝑖 )𝐾 .

Similar to the GCN, we fit the convolution kernel using a first-
order approximation of Chebyshev polynomials, which retains
eigenvector components related to lower eigenvalues and discards
those related to higher eigenvalues. Here we further investigate
what the low eigenvalues of the digraph reflect.

Lemma 3. Let L𝑚 ∈ C𝑛×𝑛 be a Hermitian matrix with eigenvalues

𝜆1 ≤ · · · ≤ 𝜆𝑛 , we have 𝜆𝑘 = max𝑆∈C𝑛, 𝑑𝑖𝑚 (𝑆 )=𝑘 minX∈𝑆
X†L𝑚X

X†X
and 𝜆1 = minX∈C𝑛 X†L𝑚X. The smoothness X†L𝑚X is minimized
by the eigenvector u1 corresponding to the smallest eigenvalue 𝜆1.

Building upon this, we can derive that the smaller eigenvalues
have corresponding eigenvectors with bigger smoothness. In other
words, the magnetic Laplacian-guided complex domain message
passing (i.e., feature pre-process in LightDiC) is essentially a process
of smoothing digraph nodes based on the low eigenvalue spectrum.
LightDiC and Dirichlet energy optimization function. Finally,
as we report in [1], LightDiC implicitly optimizes the digraph
smoothness, which corresponds to the proximal gradient descent
process of the Dirichlet energy optimization function as follows

Lemma 4. Given the digraph Fourier transform for a signal X :
V → C by X̂ = U†X, so that X̂(𝑘) = ⟨X, u𝑘 ⟩, the unitary complex
numbers u1, · · · , u𝑛 as the Fourier basis for digraphs, the Fourier
inverse formula is X = UX̂ =

∑𝑛
𝑘=1 X̂(𝑘)u𝑘 . Start from X̃(0) = X

(node feature), Â𝐾𝑚X implicitly optimize the Fourier inverse formula
by applying 𝐾 proximal gradient descent steps.

Until now, we have provided the theoretical generalization of
spectral GNNs to digraphs through the magnetic Laplacian. While
the magnetic Laplacian has garnered significant attention in graph
theory, its integrationwith DiGNNs is both novel and essential. This
integration provides a unified theoretical framework (i.e. Smooth-
ness, Dirichlet energy, and Spectral analysis) and model design
principles, which explain why LightDiC can achieve impressive
performance on a simple linear predictor. Simultaneously, the inter-
pretability and transparent nature of this approach are crucial for
instilling confidence in applying LightDiC to real-world scenarios.

4 EXPERIMENTS
In this section, we first introduce experimental setups. Then, we
aim to answer the following questions to verify the effectiveness of
our proposed LightDiC: Q1: Compared to both existing DiGNNs
and undirected scalable GNNs, how does LightDiC perform in terms
of predictive accuracy and efficiency? Q2: If LightDiC is effective,
what contributes to its performance gain? Q3: How does LightDiC
perform when applied to real-world sparse digraphs?
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Table 2: The statistical information of the experimental digraph datasets.

Datasets #Node #Edges #Features #Node Classes #Node Train/Val/Test #Edge Train/Val/Test #Task Description

CoraML 2,995 8,416 2,879 7 140/500/2355 80%/15%/5% Node/Link-level citation network
CiteSeer 3,312 4,591 3,703 6 120/500/2692 80%/15%/5% Node/Link-level citation network
WikiCS 11,701 290,519 300 10 580/1769/5847 80%/15%/5% Node/Link-level weblink network
Slashdot 75,144 425,702 100 - - 80%/15%/5% Link-level social network
Epinions 114,467 717,129 100 - - 80%/15%/5% Link-level social network
WikiTalk 2,388,953 5,018,445 100 - - 80%/15%/5% Link-level co-editor network

ogbn-papers100M 111,059,956 1,615,685,872 128 172 1207k/125k/214k 80%/15%/5% Node/Link-level citation network

4.1 Experimental Setup
Datasets. Citation networks (CoraML, Citeseer, and papers100M)
in [7, 26], social networks (Slashdot and Epinions) in [33, 35], web-
link network (WikiCS) in [34], and co-editor network (WikiTalk)
in [31]. The dataset statistics are shown in Table.2 and more de-
scriptions can be found in [1]. Notably, we use the directed version
of datasets instead of the one provided by the PyG library (CoraML,
CiteSeer)1, WikiCS paper2 and the raw data given by the OGB (ogb-
papers100M)3. In addition, for Slashdot, Epinions, and WikiTalk,
the PyGSD [25] library reveals only the topology and lacks the
corresponding node features and labels. Therefore, we generate the
node features using eigenvectors of the regularised topology.
Baselines. (1) Spatial: DGCN [41], DIMPA [24] and NSTE [30]; (2)
Mix: DiGCN [40] and its two variants, DiGCN-Appr, DiGCN-IB; (3)
Spectral: MagNet [51] and MGC[47]. To verify the scalability and
generalization of LightDiC, we compare with the undirected base-
lines: GCN [29], GraphSAGE [20], UniMP [37], SGC [44], SIGN [17],
GBP [10], S2GC [53], and GAMLP [50]. The descriptions of them
are provided in [1]. For link-level dataset split, we are aligned with
previous work [23, 25, 51]. We repeat each experiment 10 times to
represent unbiased performance and running time (second report).
We also employ multiple metrics AUC, Macro-F1, and Accuracy to
evaluate experimental results, with Accuracy as the default metric.
Implementation Details. The hyper-parameters of baselines are
tuned by Optuna [2] or set according to the original paper if avail-
able. The parameter 𝑞 and 𝐾 are acquired by means of interval
search from {0, 0.25} and {2, 10}. As for the learning rate, we use a
grid search from {0.1, 0.001}. We employ mini-batch training with
batch size 5K by default. Moreover, the experiments are conducted
on the machine with Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz,
and NVIDIA GeForce RTX 3090 with 24GB memory and CUDA
11.8. The operating system is Ubuntu 18.04.6 with 768GB memory.

4.2 End-to-end Comparison
Node-level Performance. To answer Q1, we report the node-
level performance in Table 3 and Table 5. Our findings indicate that
LightDiC consistently achieves either the highest or second-highest
performance across CoraML, CiteSeer, and WikiCS. This is attrib-
uted to the explicit digraph signal smoothing mechanism as proved
in [1], setting it apart from MagNet. Moreover, DiGCN, DIMPA,
and NSTE exhibit instability and slightly worse performance due to
over-fitting. For the large-scale ogbn-papers100M, we observe that
existing DiGNNs lack the necessary scalability, resulting in OOM

1https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
2https://github.com/pmernyei/wiki-cs-dataset
3https://ogb.stanford.edu/docs/nodeprop/

and OOT errors. For undirected baselines, significant performance
degradation occurs both in spectral and spatial methods. In the
former, the lack of a theoretical foundation supporting the spectral
analysis of asymmetric topologies leads to abnormal eigenvalues,
misleading the model and adversely affecting predictive perfor-
mance. In the latter, adherence to a strictly spatially symmetric
message-passing mechanism hinders the recognition of intricate
directed relationships, resulting in sub-optimal performance. For
more extensive performance analysis, please refer to Sec. 4.3.
Link-level Performance. Table 4 and Table 3 show that LightDiC
achieves high scalability and exhibits best performance on CiteSeer
and WikiTalk in all three link-level tasks with various evaluation
metrics. Even without achieving the best performance, LightDiC
ranks as a powerful contender for the second-best performance
as other methods lack uniform competitiveness. The remarkable
performance in link-level tasks signifies its adeptness in captur-
ing complex directed topologies. Moreover, we observe that raw
features are better suited for direction prediction, while topology-
based generated features are more effective for predicting existence.
Notably, undirected GNNs under coarse undirected transformation
do not present satisfying results in three link-level tasks, which in-
tuitively validates their inability to cope with directed topologies as
they struggle to capture rich interactions among nodes and extract
knowledge from information-impaired undirected representations.

4.3 Efficiency and Scalability Analysis
To answer Q1, we provide efficiency reports in Table 3, Table 6,
and Fig. 2. Notably, in the pre-process, DGCN and NSTE generate
high-order node dependency to increase RF. DiGCN generates a
symmetric digraph Laplacian, while DIMPA directly increases RF
during training. In Table 3, LightDiC achieves remarkable perfor-
mance while significantly reducing running time and parameters,
resulting in gains of up to 30x and 16x. Meanwhile, LightDiC main-
tains stable and competitive performance in Table 4 while DiGCN,
DIMPA, and MagNet encounter OOM and OOT errors. Moreover,
Table 5 reveals that all the existing DiGNNs encounter failures.

According to the Table 5 and Table 6, our findings are as fol-
lows: (1) Relying on more complex architectures, SIGN and GAMLP
incur increased complexity but with better results in comparison.
Yet they remain less competitive in directed scenarios. In contrast,
LightDiC introduces computations in the complex domain, having
slightly higher complexity than SGC. But this trade-off yields satis-
factory performance. (2)While without pre-processing, GraphSAGE
and UniMP introduce additional trainable weights and sampling
processes that must be executed in every epoch, which leads to
additional memory costs and significant computational complexity.
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Table 3: Performance, pre-process/training/inference time and learnable parameters. The best result is bold. The second result is underline.

Node Classification CoraML CiteSeer WikiCS
Test Acc (Pre.)Train Infer. Param. Test Acc (Pre.)Train Infer. Param. Test Acc (Pre.)Train Infer. Param.

DGCN 80.35±0.83 (2.4) 11.3 0.36 200K 61.16±1.32 (2.1) 14.6 0.42 253K 78.25±0.61 (4.7) 84.8 0.63 37K
DiGCN 80.72±0.92 (2.0) 15.4 0.42 580K 62.70±1.05 (2.2) 19.5 0.50 738K 79.73±0.57 (4.4) 28.4 0.45 86K

DiGCN-IB 80.86±0.90 (2.8) 17.5 0.47 580K 62.78±1.22 (2.6) 21.2 0.54 738K 80.05±0.54 (5.8) 159.3 0.70 86K
DiGCN-Appr 80.74±0.31 (1.4) 4.36 0.08 190K 60.57±0.60 (1.3) 5.50 0.12 242K 79.31±0.34 (2.8) 8.35 0.18 25K

DIMPA 81.12±0.84 (-) 11.8 0.36 371K 61.64±1.25 (-) 14.2 0.45 476K 78.88±0.42 (-) 47.0 0.55 42K
NSTE 81.75±0.96 (2.5) 9.81 0.30 370K 61.58±1.59 (2.8) 11.9 0.39 475K 79.05±0.53 (5.0) 25.4 0.46 40K
MagNet 81.48±0.70 (1.0) 11.4 0.18 380K 63.46±1.04 (0.7) 11.9 0.27 485K 79.59±0.39 (1.5) 14.6 0.30 51K
MGC 84.08±0.94 (2.2) 4.60 0.10 190K 63.25±1.35 (2.0) 7.27 0.15 242K 79.26±0.48 (5.4) 8.12 0.08 25K

LightDiC (ours) 84.16±0.72 (1.6) 1.95 0.04 40K 63.74±0.81 (1.5) 4.30 0.06 45K 79.84±0.36 (3.6) 5.60 0.03 6K

Table 4: Performance under suitable topology for each method. OOM and OOT are the out-of-memory and more than 2 hours of training.

Datasets Tasks GCN SAGE SIGN GAMLP DiGCN DIMPA NSTE MGC MagNet LightDiC
CoraML
E-AUC

D-Macro-F1

Existence 84.5±0.2 85.9±0.3 85.6±0.2 86.0±0.3 87.9±0.3 88.4±0.5 88.7±0.4 89.4±0.3 88.6±0.4 89.2±0.2
Direction 82.6±0.3 82.3±0.4 83.1±0.3 83.8±0.4 86.7±0.3 87.5±0.3 87.6±0.4 87.9±0.2 87.5±0.3 88.0±0.2
Link-C 69.2±0.4 69.4±0.5 68.9±0.4 69.3±0.5 72.9±0.5 74.0±0.4 74.2±0.6 74.0±0.2 73.8±0.4 74.8±0.3

CiteSeer
E-AUC

D-Macro-F1

Existence 76.8±0.2 77.3±0.3 78.2±0.3 78.8±0.4 84.6±0.3 84.8±0.4 84.7±0.5 84.9±0.3 85.3±0.4 86.1±0.3
Direction 79.2±0.4 79.1±0.3 79.4±0.3 79.7±0.5 84.7±0.4 85.2±0.3 84.8±0.4 85.6±0.3 85.5±0.3 86.8±0.2
Link-C 62.3±0.4 62.6±0.5 62.4±0.4 62.5±0.6 63.8±0.4 64.0±0.5 64.3±0.6 64.1±0.3 64.0±0.3 65.2±0.2

WikiCS
E-AUC

D-Macro-F1

Existence 86.9±0.2 87.2±0.2 86.9±0.3 87.1±0.4 89.6±0.3 89.4±0.2 89.7±0.2 89.5±0.1 89.5±0.2 89.6±0.2
Direction 84.6±0.2 85.0±0.3 84.8±0.3 85.2±0.3 87.6±0.4 87.8±0.4 87.5±0.3 87.6±0.2 87.6±0.2 87.7±0.1
Link-C 75.2±0.3 75.6±0.2 75.4±0.3 75.7±0.4 80.0±0.3 79.8±0.3 79.8±0.4 79.6±0.2 79.9±0.1 80.4±0.2

Slashdot
E-AUC

D-Macro-F1

Existence 87.3±0.3 87.6±0.5 87.9±0.5 88.0±0.4 90.3±0.3 90.1±0.4 90.3±0.3 90.5±0.1 90.4±0.2 90.8±0.2
Direction 85.4±0.3 85.6±0.3 85.8±0.3 86.0±0.4 90.4±0.2 90.6±0.1 90.5±0.1 90.3±0.1 90.4±0.1 90.5±0.1
Link-C 78.4±0.2 77.8±0.1 78.5±0.4 78.5±0.3 84.1±0.1 84.3±0.1 84.1±0.2 84.0±0.1 84.1±0.2 84.5±0.1

Epinions
E-AUC

D-Macro-F1

Existence 89.4±0.1 89.0±0.1 89.2±0.2 89.5±0.2 94.2±0.1 94.0±0.2 93.8±0.1 94.2±0.1 94.0±0.1 94.4±0.1
Direction 83.3±0.2 83.5±0.2 83.4±0.2 83.7±0.1 85.9±0.1 86.0±0.1 85.8±0.1 85.8±0.2 86.2±0.1 86.0±0.1
Link-C 82.2±0.2 82.4±0.1 81.9±0.1 82.5±0.1 85.7±0.1 86.1±0.1 85.9±0.2 86.2±0.1 86.5±0.2 86.4±0.1

WikiTalk
E-AUC

D-Macro-F1

Existence 90.2±0.1 90.0±0.1 90.3±0.1 90.3±0.1 OOT OOM 94.6±0.1 94.8±0.1 OOM 95.3±0.1
Direction 86.5±0.1 86.4±0.1 86.5±0.1 86.7±0.1 OOT OOM 91.5±0.1 91.4±0.1 OOM 91.8±0.1
Link-C 85.2±0.1 85.6±0.1 85.4±0.1 85.5±0.1 OOT OOM 90.2±0.1 90.1±0.1 OOM 90.5±0.1

Table 5: Performance on directed ogbn-papers100M within 12 hours.

Type Model Node-C Existence Direction Link-C

Undirected

MLP 47.2±0.3 86.5±0.1 90.4±0.1 85.6±0.2
SGC 45.8±0.1 84.6±0.1 87.6±0.1 83.1±0.1
GBP 48.3±0.2 85.3±0.2 88.4±0.1 84.5±0.1
SIGN 52.5±0.2 86.8±0.2 89.5±0.2 85.0±0.1
S2GC 50.6±0.1 86.4±0.1 88.5±0.2 84.6±0.1
SAGE 55.2±0.2 87.4±0.1 91.0±0.2 86.1±0.2
UniMP 54.7±0.3 87.3±0.2 90.2±0.2 86.4±0.2
GAMLP 56.8±0.3 87.7±0.2 90.6±0.1 86.0±0.2

Directed
MGC OOT OOT OOT OOT
NSTE OOM OOM OOM OOM
MagNet OOM OOM OOM OOM
LightDiC 65.4±0.2 91.6±0.1 93.8±0.1 90.3±0.1

We observe that most weight-free pre-processing computations
can be represented as sparse matrix multiplications. They are easily
parallelism through distributed frameworks and accelerated by
tailored matrix computing strategies, allowing us to focus more on
training, inference, and memory costs. Considering the predictive

performance shown in Table 3, Table 4, and Table 5, LightDiC
exhibits significant advantages in these three complexity aspects.

To further validate scalability, we provide a visualization of the
training efficiency in Fig. 2, where MGC-Shallow represents the low
computational overhead variant of MGC with shallow filter order
and propagation steps. It demonstrates that LightDiC maintains
impressive scalability and performance with low complexity, as
evidenced by quick convergence and high efficiency. For a more
comprehensive analysis of computational and storage efficiency
from an algorithmic complexity perspective, please refer to Sec. 2.3.

4.4 Sensitivity Analysis
To answer Q2, we delve into two pivotal factors influencing the
performance of LightDiC: the number of propagation steps 𝐿 in the
pre-process and the magnetic parameter 𝑞 in the training phase.
Table 7 reveals that MGC’s reliance on approximated linear rank
necessitates the involvement of deep propagated features, which
hinders its scalability(i.e., OOT errors in Table 5). Meanwhile, the
coupled architecture of MagNet limits its potential for deep design
in medium- and large-scale digraph datasets. In contrast, LightDiC
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(a) Link Classification on Epinions (b) Link Classification on WikiTalk
Figure 2: Convergence curves with the relative training time on Epinions and WikiTalk datasets. The shaded area is the result range of 10 runs.

(a) Node Classification on WikiCS (b) Link Classification on WikiCS
Figure 3: Performance of magnetic Laplacian-based DiGNNs.

Table 6: Epoch-Batch efficiency on directed ogbn-papers100M.

Method Pre-process(s) E-Train.(s) E-Infer.(s) B-GPU Mem. Param.
MLP - 8.80±0.28 4.42±0.22 8233M 151K
SGC 854.33±1.56 8.24±0.22 4.36±0.22 2897M 22K
GBP 735.60±1.22 9.26±0.25 4.90±0.19 9476M 151K
S2GC 976.83±1.17 9.45±0.26 6.14±0.33 10431M 151K
SIGN 1062.06±0.86 11.72±0.31 6.77±0.49 10760M 165K
SAGE - 47.94±1.10 122.31±1.18 16392M 342K
UniMP - 64.13±1.46 118.85±1.50 22764M 659K
GAMLP 1384.76±1.60 13.68±0.40 8.10±0.43 16378M 455K
LightDiC 945.72±1.43 8.75±0.18 4.47±0.24 4269M 45K

Table 7: Performance on WikiCS with different model depths.

Tasks Model Depth NSTE MGC MagNet LightDiC

Node-C

2-Layer 79.1±0.5 72.5±1.4 79.6±0.4 79.8±0.4
8-Layer OOM 76.6±1.0 73.7±0.3 78.8±0.3
32-Layer OOM 79.3±0.5 OOM 77.4±0.3
64-Layer OOM 78.5±0.6 OOM 76.3±0.2

Link-C

2-Layer 79.8±0.4 75.8±0.9 80.0±0.1 80.2±0.2
8-Layer OOM 78.5±0.7 78.3±0.2 79.9±0.1
32-Layer OOM 79.6±0.2 OOM 78.9±0.2
64-Layer OOM 79.0±0.1 OOM 78.2±0.1

benefits from flexibility in its decouple and simple learning architec-
ture, while both MagNet and LightDiC encounter over-smoothing
challenges. Additionally, Fig. 3 illustrates that the model perfor-
mance hinges on the appropriate choice of 𝑞, which governs the
angle of complex-domain feature propagation between nodes. The
deep architecture of MGC exacerbates the impacts of unsuited 𝑞. In
contrast, both LightDiC and MagNet exhibit a more consistent per-
formance across a range of 𝑞 values due to appropriate propagation
steps, signifying their stability in this regard.

(a) Feature Sparsity (b) Edge Sparsity (c) Label Sparsity

Figure 4: Node-C performance on CoraML under sparsity settings.

4.5 Performance on Sparse Digraphs
To answerQ3, we provide experimental results in Fig. 4, where these
sparsity issues are significant, especially in large-scale digraphs.
For feature sparsity, we assume that the feature representation of
unlabeled nodes is partially missing. In this case, it is necessary
to obtain additional feature information from neighbors through
appropriate propagation. Fig. 4 shows that DIMPA and NSTE may
suffer from limited RF due to the depth of the model, which leads
to sub-optimal performance. On the contrary, MagNet, MGC, and
LightDiC can customize the number of propagation steps to achieve
a larger RF, thus alleviating the problem of feature sparsity, which
is also applicable to edge and label-sparse scenarios. To simulate
edge sparsity, we randomly remove a fixed percentage of edges
from the original digraph, providing a realistic challenge. For label
sparsity, we change the number of labeled samples for each class.
Experimental results from Fig. 4 show that our proposed LightDiC,
as compared to baselines, is more robust to the sparsity scenarios.

5 CONCLUSION
In this study, we propose LightDiC for real-world digraph applica-
tions. It follows a user-friendly decoupled paradigm and achieves
impressive performancewhile enjoying high efficiency. Remarkably,
LightDiC is the only existing DiGNN that can be practically scaled
to billion-level digraphs, opening avenues for future advancements.
Through theoretical analysis, we demonstrate that LightDiC inher-
ently optimizes smoothness, aligning with the proximal gradient
descent process of the Dirichlet energy optimization function.

Broader Impacts and Limitations. LightDiC pursues the ut-
most simplicity in its architecture to meet scalability challenges.
To improve performance, a promising direction would be to ex-
plore the node-wise RF by a well-designed attention mechanism.
Additionally, we use parameterized 𝑞 since it has been proven ef-
fective in the data-driven context. However, the exploration of
node-adaptive 𝑞 holds the potential to gain deeper insights into the
inherent mechanisms underlying complex field message passing.
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A OUTLINE
The appendix is organized as follows:

1.1 Proof of Lemma.3.1.
1.2 Proof of Lemma.3.2.
1.3 Proof of Lemma.3.3.
1.4 Proof of Lemma.3.4.
1.5 Comparison with SGC and MagNet.
1.6 Dataset Description.
1.7 Compared Baselines.
1.8 Message Aggregation Functions.

A.1 Proof of Lemma.3.1
We represent the adjacency matrix and the diagonal degree matrix
of a digraph G = (V, E) with |V| = 𝑛 nodes, |E | = 𝑚 edges by
A, D. Based on this, let L𝑚 ∈ C𝑁×𝑁 be the magnetic Laplacian
of a digraph G. The node feature matrix represents X ∈ C𝑁×1,
the smoothness of X over G is defined as X†L𝑚X. Then, the total
variation of the graph signalX is a smoothnessmeasure, quantifying
how much the signal X changes with respect to the graph topology
encoded in magnetic Laplacian L𝑚 as the following quadratic form,
which is also known as Dirichlet energy

X†L𝑚X =
∑︁
(𝑢,𝑣) ∈E

|X𝑢 − 𝑒𝑖𝜃𝑢𝑣 X𝑣 |2 =
∑︁
(𝑢,𝑣) ∈E

|𝑒−𝑖𝜃𝑢𝑣 X𝑢 − X𝑣 |2 . (10)

First, by expanding L𝑚X, we have

(L𝑚X)𝑘 =
∑︁

𝑤∈N𝑖𝑛 (𝑘 )∪N𝑜𝑢𝑡 (𝑘 )

(
X𝑘 − 𝑒𝑖𝜃𝑘𝑤 X𝑤

)
. (11)

Based on this, X†L𝑚X can be formulated as:

X†L𝑚X =
∑︁
𝑘∈V

∑︁
𝑤∈N𝑖𝑛 (𝑘 )∪N𝑜𝑢𝑡 (𝑘 )

(
X𝑘 − 𝑒𝑖𝜃𝑘𝑤 X𝑤

)
=

∑︁
(𝑢,𝑣) ∈E

X†𝑢X𝑢 − 𝑒𝑖𝜃𝑢𝑣 X†𝑢X𝑣 + X†𝑣X𝑣 − 𝑒𝑖𝜃𝑣𝑢 X†𝑣X𝑢

=
∑︁
(𝑢,𝑣) ∈E

X†𝑢X𝑢 + X†𝑣X𝑣 −
(
𝑒𝑖𝜃𝑢𝑣 X†𝑢X𝑣 + 𝑒𝑖𝜃𝑣𝑢 X†𝑣X𝑢

)
=

∑︁
(𝑢,𝑣) ∈E

|X𝑢 |2 + |X𝑣 |2−

|X𝑢 | |X𝑣 |
(
𝑒𝑖 (−𝜃X𝑢 +𝜃X𝑣 +𝜃𝑢𝑣) + 𝑒𝑖 (−𝜃X𝑣 +𝜃X𝑢 +𝜃𝑣𝑢)

)
=
∑︁
(𝑢,𝑣) ∈E

|X𝑢 |2+|X𝑣 |2−2|X𝑢 | |X𝑣 | cos
(
𝜃X𝑢
− 𝜃X𝑣

− 𝜃𝑢𝑣
)
,

(12)

the last equality holds because 𝜃𝑢𝑣 = −𝜃𝑣𝑢 . Since

|X𝑢 − 𝑒𝑖𝜃𝑢𝑣 X𝑣 |2 = | |X𝑢 |𝑒𝑖𝜃X𝑢 − 𝑒𝑖𝜃𝑢𝑣 |X𝑣 |𝑒𝑖𝜃X𝑣 |2

= | |X𝑢 |𝑒𝑖𝜃X𝑢 − |X𝑣 |𝑒𝑖 (𝜃X𝑣 +𝜃𝑢𝑣 ) |2

= | |X𝑢 | cos𝜃X𝑢
+ 𝑖 |X𝑢 | sin𝜃X𝑢

−(
|X𝑣 | cos

(
𝜃X𝑣
+ 𝜃𝑢𝑣

)
+ 𝑖 |X𝑣 | sin

(
𝜃X𝑣
+ 𝜃𝑢𝑣

) )
|2

= | |X𝑢 | cos𝜃X𝑢
− |X𝑣 | cos(𝜃X𝑣

+ 𝜃𝑢𝑣)+(
|X𝑢 | sin𝜃X𝑢

− |X𝑣 | sin
(
𝜃X𝑣
+ 𝜃𝑢𝑣

) )
|2

=
(
|X𝑢 | cos𝜃X𝑢

− |X𝑣 | cos(𝜃X𝑣
+ 𝜃𝑢𝑣)

)2 +(
|X𝑢 | sin𝜃X𝑢

− |X𝑣 | sin
(
𝜃X𝑣
+ 𝜃𝑢𝑣

) )2
= |X𝑢 |2 + |X𝑣 |2−
2|X𝑢 | |X𝑣 | cos

(
𝜃X𝑢
− 𝜃X𝑣

− 𝜃𝑢𝑣
)

= |𝑒−𝑖𝜃𝑢𝑣 X𝑢 − X𝑣 |2,
(13)

the lemma is proved.

A.2 Proof of Lemma.3.2
In LightDiC, we predefine the magnetic graph operator

MGO := Â𝑚 =

(
D̃−1/2𝑚 Ã𝑚D̃−1/2𝑚 ⊙ exp

(
𝑖Θ(𝑞)

))
. (14)

MGO is a digraph operator defined in terms of the global topology
based on the complex domain, modeling the directional information
through the imaginary part. Based on this, we can define complex
domain-based message-passing mechanisms for digraphs. Now we
further analyze the digraph operator used in our proposed LightDiC:(
D̃−1/2𝑚 Ã𝑚D̃−1/2𝑚 ⊙ exp

(
𝑖Θ(𝑞)

))
.

As an analogy of spectral graph convolution on undirected
graphs, the directed spectral graph convolution is also based on the
convolution theorem. The Fourier transform for a signal X : V→ C
is defined as X̂ = U†X, so that X̂(𝑘) = ⟨X, u𝑘 ⟩, where V and C
represents vertex domain an complex field-based Fourier domain
respectively. Note that the elements of u1, · · · , u𝑛 are complex num-
bers, obtained by eigendecomposition of the magnetic Laplacian
L𝑚 , we regard u1, · · · , u𝑛 as the Fourier basis for digraphs. Since U
is unitary, we have the Fourier inverse formula:

X = UX̂ =

𝑁∑︁
𝑘=1

X̂(𝑘)u𝑘 . (15)

Here, convolution corresponds to point-wise multiplication on the
Fourier basis. Thus, the convolution of X with a filter g in the
Fourier domain can be defined as �g★X(𝑘) = g̃(𝑘)X̃(𝑘). According
to Eq.(15), g★X = UDiag(ĝ)X̂ = (UDiag(ĝ)U†)X, the convolution
matrix can be written as:

G = UΣU†, (16)

For a diagonal matrix Σ, different filter refers to different choices of
Σ. In practice, in order to avoid explicit eigen-decomposition, Σ is
often set as polynomials of Λ. Suppose Λ̃ is a normalized eigenvalue
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matrix, which is defined as Λ̃ = 2
𝜆max

Λ − I, we can write

Σ =

𝐾∑︁
𝑘=0

w𝑘 T𝑘 (Λ̃) . (17)

T𝑘 can be set as various orthogonal polynomial bases. When choos-
ing Tk as the 𝑘-order Chebyshev polynomial which is defined by
T0 (𝑥) = 1, T1 (𝑥) = 𝑥 , and T𝑘 (𝑥) = 2𝑥 T𝑘−1 (𝑥) +T𝑘−2 (𝑥) for 𝑘 ≥ 2.
Since (UΛ̃U†)𝑘 = UΛ̃𝑘U†, we have:

GX = U
𝐾∑︁
𝑘=0

w𝑘 T𝑘 (Λ̃)U†X =

𝐾∑︁
𝑘=0

w𝑘 T𝑘 (L̃𝑚)X. (18)

Here, L̃𝑚 is defined as L̃𝑚 = 2
𝜆max

L𝑚 − I. We set 𝐾 = 1, assume that

L𝑚 = L(𝑞)𝑚 , 𝜆max ≈ 2 and w = w0 = −w1, we can obtain that:

GX = W
(
I + D−1/2𝑚 A𝑚D−1/2𝑚 ) ⊙ exp

(
𝑖Θ(𝑞)

))
X. (19)

By applying further renormalization tricks to avoid instabilities
arising from vanishing/exploding gradients, it yields

GX = W
(
D̃−1/2𝑚 Ã𝑚D̃−1/2𝑚 ⊙ exp

(
𝑖Θ(𝑞)

))
X, (20)

where Ã𝑚 = A𝑚 + I and D̃𝑚 (𝑖, 𝑖) =
∑
𝑗 Ã𝑚 (𝑖, 𝑗).

According to the analysis, we can find that the complex domain
feature propagation in our proposed LightDiC is a complex spectral
convolution with a low-pass filter.

Since Â𝐾𝑚X =

(
D̃−1/2𝑚 Ã𝑚D̃−1/2𝑚 ⊙ exp

(
𝑖Θ(𝑞)

))
X, we have Â𝑚 =

D̃−1/2𝑚 Ã𝑚D̃−1/2𝑚 ⊙ exp
(
𝑖Θ(𝑞)

)
≈ I − L𝑚 . Then, Â𝐾𝑚 = (I − L𝑚)𝐾 =

U(I − Σ)𝐾U†, applying this operation on the digraph signal X
(Â𝑚X = U (I − Σ)𝐾 U†) is identical to: (i) convert X to the Fourier
domain (U†X); (ii) applying a low-pass filter 𝑔(𝜆𝑖 ) = (1 − 𝜆𝑖 )𝐾 for
𝑖 = 1, · · · , 𝑛 on the signal on the Fourier domain ((I−Σ)𝐾U†X); (iii)
applying inverse Fourier transform on the signal (U(I − Σ)𝐾U†X).

The function (I − X)𝐾 is a monotonically decreasing function.
Since each signal X ∈ C𝑛 can be written as X =

∑𝑛
𝑖=1 𝜔𝑖u𝑖 . The

operation will keep the information of eigenvector components
corresponding to the lower eigenvalues and ignore the components
corresponding to the higher eigenvalues.

A.3 Proof of Lemma.3.3
Since in real-world graphs, the feature varies smoothly over the
graph, an intuition of our feature pre-processing is to smooth sig-
nals. To evaluate the smoothness of Â𝐾𝑚x, we first analyze the
smoothness of the eigenvectors of Â𝑚 .

According to Courant-Fischer theorem theorem [? ], we have

Lemma 5. Let L𝑚 ∈ C𝑛×𝑛 be a Hermitian matrix with eigenvalues
𝜆1 ≤ · · · ≤ 𝜆𝑛 , then we have

𝜆𝑘 = max
𝑆∈C𝑛, 𝑑𝑖𝑚 (𝑆 )=𝑘

min
X∈𝑆

X†L𝑚X
X†X

(21)

The smoothness metric X†L𝑚X is minimized by the eigenvector
u1 corresponding to the smallest eigenvalue. Furthermore, we can
expect that smaller eigenvalues have corresponding eigenvectors
with smaller smoothness. We provide an example digraph G to
prove our point, the four eigenvectors of the magnetic Laplacian

L(𝑞)𝑚 := D𝑚 −A(𝑞)𝑚 = D𝑚 −A𝑚 ⊙ exp
(
𝑖Θ(𝑞)

)
with 𝑞 = 0.25 of G is

illustrated in Fig. 5. It shows that the magnetic Laplaican of G has 4
eigenvectors u1, u2, u3, u4 ∈ C𝑛 . The elements of these four eigen-
vectors are all complex numbers, we represent a complex number 𝑥
by the magnitude |𝑥 | and the angle 𝜃 = argtan (Imag(𝑥)/Real(𝑥)).
Each eigenvector u𝑘 can be regarded as a complex graph signal on
graphs, with u𝑘 (𝑖) being the complex signal on node 𝑖 ∈ V. We
depict the value of the four eigenvectors in Figure.5, we also plot
the angle of each eigenvector element. Then, the smoothness of
each eigenvector can be computed as u†

𝑘
L𝑚u𝑘 according to our

definition. Since L𝑚u𝑘 = 𝜆𝑘u𝑘 , 𝜆𝑘 = u†
𝑘

L𝑚u𝑘 , the smoothness
value exactly equals the eigenvalue. u1 corresponding to the small-
est eigenvalue has the smallest smoothness value, followed by u2,
u3 and u4. It can be seen that the eigenvectors corresponding to
smaller eigenvalues vary more smoothly on graphs. As a result, the
low eigen-components of the node feature also vary very smoothly
over the graph. Thus, the complex domain propagation keeps the
low-frequency components of the feature and ignores the high-
frequency components. The resulting signal is smooth while keep-
ing the information of the node feature.

A.4 Proof of Lemma.3.4
Given digraph signal y ∈ C𝑁×1 with noises 𝜖 , the optimization
function is defined as minX 𝑓 (X) = minX∈C ∥X − y∥2 + X†L𝑚X.

In order to solve a convex optimization problem minX 𝑓 (X), the
proximal gradient descent method updates the current solution
X(𝑡 ) by X(𝑡+1) ← X(𝑡 ) + 𝜆∇𝑓 (X(𝑡 ) ) where 𝜆 is the step size and
∇𝑓 (X) is the gradient of 𝑓 (X) w.r.t. X. Since Z(X) = minX∈C ∥X −
y∥2 + X†L𝑚X, we have:

𝜕Z(X)
𝜕X

= 2L𝑚X + 2X − 2y. (22)

Then, start from a initial solution X(0) = X, the 𝑘 + 1 step gradient
descent can be computed as:

X(𝑘+1) = X(𝑘 ) − 𝛼 [(L𝑚 + I)X(𝑘 ) − y], (23)

where 𝜆 = 𝛼
2 is the step size. In practice, the convergence speed

of such an update strategy is often slow, pre-conditioning is a
well-known technique in numerical optimization to accelerate the
convergence. By applying pre-conditioning and re-arranging the
terms, we have:

X(𝑘+1) = (1 − 𝛼)X(𝑘 ) + 𝛼D̃−1𝑚 [A𝑚X(𝑘 ) + y], (24)

where D̃−1𝑚 = (D𝑚 + I)−1. Therefore, start from an initial solu-
tion X(0) = D1/2

𝑚 X, after the first gradient step, X(1) is equiva-
lent to the one layer model D̃−1/2𝑚 Ã𝑚D̃−1/2𝑚 X up to a simple re-
parameterization by D̃−1/2𝑚 . Thus, the 𝐾-step propagated features
Â𝐾𝑚X =

(
D̃−1/2𝑚 Ã𝑚D̃−1/2𝑚 ⊙ exp

(
𝑖Θ(𝑞)

))
X is equivalent to apply-

ing such a proximal gradient update for 𝐾 times.
Up to this point, we have presented the theoretical extension

of spectral GNNs to digraphs using the magnetic Laplacian. This
integration offers a unified theoretical framework encompassing
smoothness, Dirichlet energy, and spectral analysis.
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Figure 5: Illustration of all the eigenvectors of a magnetic Laplacian L(𝑞)𝑚 = D𝑚 − A𝑚 ⊙ exp
(
𝑖Θ(𝑞)

)
with 𝑞 = 0.25 of an example graph G. The

eigenvectors corresponding to smaller eigenvalues vary more smoothly on graphs. When evaluating the smoothness of a signal X as X†LX, the
smoothness of u1 = [0.51𝑒𝑖0.31𝜋 , 0.54𝑒𝑖0.34𝜋 , 0.49𝑒−𝑖0.09𝜋 , 0.46𝑒−𝑖0.39𝜋 ]T is 𝜆1 = 0.11, followed by the smoothness of u2 (0.93), u3 (2.07) and u4 (2.89).

A.5 Comparison with SGC and MagNet.
Comparison with SGC [44]. LightDiC differs from the related
work SGC in: (i) Application-guided Generalization: SGC is limited
in handling undirected graphs, and our experiments have revealed
its significant performance degradation in large-scale digraphs. In
contrast, LightDiC focuses more on digraphs with complex topolo-
gies and aims to provide a universal solution for both directed and
undirected graphs through MGO. (ii) Paradigm-guided Scalability:
SGC is recognized for introducing the decoupling design paradigm
to address scalability challenges posed by large-scale graph data.
Inspired by this, subsequent undirected methods like SIGN [17],
S2GC [53], GBP [10], GAMLP [50], and GRAND+ [16] have further
improved performance through well-designed learnable mecha-
nisms. However, LightDiC is the first to successfully apply this de-
coupling paradigm to large-scale digraphs, offering a novel attempt
to address real-world data science challenges. (iii) Technical-guided
Innovation: SGC relies on symmetrically normalized adjacency
matrices for smoothing signals on undirected graphs and utilizes
the propagated features from the final step for downstream task
training. Comparatively, LightDiC employs the magnetic Laplacian
to smooth signals on digraphs in the complex number domain. We
theoretically demonstrate that both the real and imaginary parts
contain rich topological insights. Consequently, LightDiC proposes
a weight-free message aggregation function that combines infor-
mation from these two different encoding perspectives.

ComparisonwithMagNet [51]. LightDiC differs fromMagNet
in: (i) Scalability: While MagNet achieves efficient convolutions
on digraphs using the magnetic Laplacian, it inherits unnecessary
computational redundancy from deep learning (complex compu-
tations and more learnable parameters). Additionally, MagNet’s
model depth and applicability are limited to shallow design and toy-
sized datasets due to the recursive computations in the complex
number domain, lacking scalability. In contrast, LightDiC mini-
mizes precomputation overhead through a decoupling design para-
digm, making it solely dependent on efficient matrix multiplication
based on sparse matrices. LightDiC also compresses complex learn-
ing processes into simple linear mappings to maximize training
and inference efficiency. (ii) Encoding Strategy: Unlike MagNet,
which employs recursive GCN as the encoding strategy, Light-
DiC introduces a weight-free message aggregation function based
on appropriate theoretical extensions on digraphs. This function
encodes multi-scale deep structural information, enhancing pre-
dictive performance. (iii) Supplemental Interpretability: MagNet
theoretically proves that the symmetrically conjugated magnetic
Laplacian shares properties similar to symmetrically normalized
undirected graph Laplacians. It also provides empirical analysis of
its eigenvalues and eigenvectors. Building upon this, LightDiC ex-
tends theoretical spectral analysis from undirected to digraphs from
the perspective of graph signal denoising. It uses this perspective
to guide the design of suitable encoding mechanisms.
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A.6 Dataset Description
The description of all digraph benchmark datasets is listed below:

CoraML, CiteSeer [7], and ogbn-papers100M [26] are three
citation network datasets. In these three networks, papers from
different topics are considered nodes, and the edges are citations
among the papers. The node attributes are binary word vectors,
and class labels are the topics the papers belong to.

WikiCS [34] is a Wikipedia-based dataset for benchmarking
GNNs. The dataset consists of nodes corresponding to computer
science articles, with edges based on hyperlinks and 10 classes
representing different branches of the field. The node features are
derived from the text of the corresponding articles. They were
calculated as the average of pre-trained GloVe word embeddings [?
], resulting in 300-dimensional node features.

Slashdot [35] is from a technology-related news website with
user communities. The website introduced Slashdot Zoo features
that allow users to tag each other as friends or foes. The dataset is
a common signed social network with friends and enemies labels.
In our experiments, we only consider friendships.

Epinions [33] is a who-trust-whom online social network. Mem-
bers of the site can indicate their trust or distrust of the reviews
of others. The network reflects people’s opinions of others. In our
experiments, we only consider the "trust" relationships.

WikiTalk [31] contains all users and discussions from the incep-
tion of Wikipedia until Jan. 2008. Nodes in the network represent
Wikipedia users and a directed edge from node 𝑣𝑖 to node 𝑣 𝑗 denotes
that user 𝑖 edited at least once a talk page of user 𝑗 .

A.7 Compared Baselines
The main characteristics of all baselines are listed below

DGCN [41]: DGCN proposes the first and second-order prox-
imity of neighbors to design a new message-passing mechanism,
which in turn learns aggregators based on incoming and outgoing
edges using two sets of independent learnable parameters.

DIMPA [24]: DIMPA represents source and target nodes sepa-
rately. However, DIMPA aggregates the neighborhood information
within 𝐾 hops in each layer to further increase the receptive field
(RF), and it performs a weighted average of the multi-hop neigh-
borhood information to capture the local network information.

NSTE [30]: NSTE is inspired by the 1-WL graph isomorphism
test, which uses two sets of trainable weights to encode source and
target nodes separately. Then, the information aggregation weights
are tuned based on the parameterized feature propagation process
to generate node representations.

DiGCN [40]: DiGCN notices the inherent connections between
graph Laplacian and stationary distributions of PageRank, it the-
oretically extends personalized PageRank to construct real sym-
metric Digraph Laplacian. Meanwhile, DiGCN uses first-order and
second-order neighbor proximity to further increase RF.

DiGCN-Appr [40]: DiGCN with fast personalized PageRank
approximation, without inception blocks, which can be viewed as
the generalization of GCN based on the digraph Laplacian.

DiGCN-IB [40]: DiGCN with inception blocks, without fast
personalized PageRank approximation, which can be viewed as an
optimized message-passing mechanism.

MagNet [51]: MagNet utilizes complex numbers to model di-
rected information, it proposes a spectral GNN for digraphs based
on a complex Hermitian matrix known as the magnetic Laplacian.
Meanwhile, MagNet uses additional trainable parameters to com-
bine the real and imaginary filter signals separately to achieve better
prediction performance.

MGC [47]: MGC introduces the magnetic Laplacian, a discrete
operator with the magnetic field, which preserves edge direction-
ality by encoding it into a complex phase with an electric charge
parameter. By adopting a truncated variant of PageRank named
Linear-Rank, it design and build a low-pass filter for homogeneous
graphs and a high-pass filter for heterogeneous graphs.

GCN [29]: GCN is guided by a localized first-order approxi-
mation of spectral graph convolutions. This model’s scalability is
directly proportional to the number of graph edges, and it learns
intermediate representations in hidden layers that capture both the
local graph arrangement and node-specific features.

GraphSAGE [20]: GraphSAGE is a scalable and flexible approach
for node embedding generation in large graphs, which leverages
a sampling-based neighborhood aggregation scheme and a multi-
layer perceptron to generate embeddings that capture both local
and global structural information.

UniMP [37]: UniMP adopts the Graph Transformer model as
the base model and then combines label embedding to feed node
features and part of node labels into the model in parallel, which
enables the propagation of node features and labels.

SGC [44]: SGC is a simple and efficient graph convolutional
network that applies a fixed graph filter to the input features. It
simplifies GCN by removing nonlinearities and collapsing weight
matrices between consecutive layers, which achieves competitive
performance on various graph-related tasks with significantly re-
duced computational cost compared to other GCN models.

SIGN [17]: SIGN is a scalable GNN that uses an inception mod-
ule to learn hierarchical representations of nodes in large-scale
graphs. It achieves state-of-the-art performance on various graph
classification tasks and is scalable to graphs with millions of nodes.

GBP [10]: GBP lies in its bidirectional propagation mechanism,
a process that computes a versatile Generalized PageRank matrix to
capture a wide spectrum of graph convolutions, thereby expanding
the horizon of expressive power within graph-based operations.

S2GC [53]: S2GC uses a modified Markov Diffusion Kernel to
generalize GCN, and it can be used as a trade-off of low and high-
pass filter which captures the global and local contexts of nodes.

GAMLP [50]: GAMLP introduces a duo of novel attention mech-
anisms: recursive attention and JK attention, revolutionizing the
way representations are learned over RF of varying sizes in a dy-
namic, node-specific fashion.

A.8 Message Aggregation Functions
In this section, we extend our analysis of LightDiC by conducting
experiments with different message aggregation functions. This
expansion serves to further validate the viewpoints presented in
Sec 3.1 of our main text: (1) Utilizing a weight-based method in-
spired by SIGN [17] to merge real and imaginary features could
negatively impact predictive performance. This is attributed to the
distinct physical meanings of the real and imaginary components.
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Table 8: Performance on different message aggregation functions.

Datasets Tasks Last Mean Sum Concat

CoraML

Node-C 84.2±0.7 83.6±0.5 84.0±0.6 83.9±0.5
Existence 78.9±0.2 79.6±0.1 80.3±0.2 80.1±0.2
Direction 90.3±0.2 90.5±0.3 90.7±0.3 90.6±0.2
Link-C 74.1±0.2 74.3±0.1 74.6±0.1 74.8±0.3

WikiCS

Node-C 79.8±0.4 79.2±0.2 79.6±0.3 79.5±0.2
Existence 87.8±0.0 85.6±0.1 85.5±0.0 85.3±0.1
Direction 88.4±0.1 88.7±0.1 89.2±0.1 89.0±0.1
Link-C 79.5±0.2 80.2±0.1 80.1±0.1 80.4±0.2

ogbn
papers100M

Node-C 65.2±0.2 64.6±0.1 64.8±0.1 65.4±0.2
Existence 90.7±0.0 91.3±0.0 91.6±0.1 91.2±0.1
Direction 93.0±0.0 93.2±0.1 93.8±0.1 93.4±0.0
Link-C 89.4±0.1 89.8±0.1 90.0±0.1 90.3±0.1

Employing a single learnable weight to combine them indiscrimi-
nately is ill-advised due to the lack of consideration for their indi-
vidual characteristics. Conversely, a weight-free approach, while
simple, can have a positive impact on prediction by intuitively
encoding deep structural information. (2) Building upon the afore-
mentioned point, in our proposed LightDiC, we opt for a weight-
free message aggregation function to maintain simplicity, avoiding
additional computational overhead caused by separately consider-
ing real and imaginary components, as well as the intricacies of a
model architecture that combines both. This choice facilitates the
handling of propagated features obtained from performing 𝐾-step
propagation based on the MGO. For the weight-free message ag-
gregation functions based on the 𝐾-step graph propagation, we
consider the following: (i) Last(·) directly selects the propagated
feature matrix obtained at the 𝐾-th step as the output. (ii) Mean(·)
computes the element-wise average of propagated features; (iii)
Sum(·) calculates the element-wise sum of propagated features;
(iiii) Concat(·) concatenates 𝐾 propagated feature matrices;

Building upon the experimental findings in Table 8, the following
conclusions can be drawn: (1) For node-level tasks, the choice of
optimal aggregation functions is contingent upon the dimensional
of node features provided by the original dataset. For instance, in
the case of feature-rich datasets such as CoraML and WikiCS, node
prediction performance relies on smoothed features. Consequently,
selecting Last(·) yields the best performance by attaining maximal
smoothing signals. Conversely, for ogbn-papers100M with only 128
dimensions for node features, Concat(·) is necessary to enhance
predictive performance through concatenating multi-scale node
smoothing representations. (2)For link-level tasks, the enhance-
ment of predictive performance necessitates capturing the intri-
cate topological structure of the digraph. Thus, operators such as
Mean(·), Sum(·), and Concat(·), which encode multi-dimensional
deep structural information, tend to outperform Last(·) signifi-
cantly. Additionally, because Mean(·) mitigates difference between
propagated features, which results in less distinguishable final node
representations, its effectiveness falls short compared to Sum(·). It
is worth noting that as Link-C demands more fine-grained classifi-
cation requirements, the enriched node representations generated
by Concat(·) offer substantial benefits for its performance.
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