Published as a conference paper at ICLR 2025

LEARNING GRAPH QUANTIZED TOKENIZERS

Limei Wang; Kaveh Hassani*, Si Zhang, Dongqi Fu, Baichuan Yuan, Weilin Cong,
Zhigang Hua, Hao Wu, Ning Yao, Bo Long

Meta Al

ABSTRACT

Transformers serve as the backbone architectures of Foundational Models, where
domain-specific tokenizers allow them to adapt to various domains. Graph Trans-
formers (GTs) have recently emerged as leading models in geometric deep learning,
outperforming Graph Neural Networks (GNN5s) in various graph learning tasks.
However, the development of tokenizers for graphs has lagged behind other modal-
ities, with existing approaches relying on heuristics or GNNs co-trained with
Transformers. To address this, we introduce GQT (Graph Quantized Tokenizer),
which decouples tokenizer training from Transformer training by leveraging multi-
task graph self-supervised learning, yielding robust and generalizable graph tokens.
Furthermore, the GQT utilizes Residual Vector Quantization (RVQ) to learn hierar-
chical discrete tokens, resulting in significantly reduced memory requirements and
improved generalization capabilities. By combining the GQT with token modu-
lation, a Transformer encoder achieves state-of-the-art performance on 20 out of
22 benchmarks, including large-scale homophilic and heterophilic datasets. The
implementation is publicly available at https://github.com/limei0307/GQT,

1 INTRODUCTION

Following the success of Transformers (Vaswani et al.l|2017) in Natural Language Processing (Devlin
et al.| 2019} Brown et al.| 2020) and Computer Vision (Dosovitskiy et al.,[2021), Graph Transformers
(GTs) (Dwivedi & Bresson, 20205 Ying et al., 2021 Rampasek et al., 2022} Shirzad et al.,|2023}; |Chen
et al.| 2023; Wu et al.,|2022)) have emerged as strong models in geometric deep learning. In contrast
to message-passing Graph Neural Networks (GNNs), which are inherently constrained by strong
locality inductive biases (Battaglia et al.,[2018} | Velickovic et al.,|2018; Hou et al., [2020; Hamilton
et al.|[2017; Kipf & Welling| |2017; Zheng et al.||2024), GTs exhibit greater expressivity due to their
capacity to capture long-range interactions between nodes (Ma et al.} 2023 Kim et al.| 2022} Zopf,
2022). This is particularly beneficial in heterophilic settings where local alignment does not hold
(Fu et al.| [2024). This dichotomy highlights a fundamental trade-off between GNNs, which focus on
local neighborhood aggregation, and GTs, which employ pairwise attention to model global graph
structures. A natural question arises: can we synergistically integrate the strengths of both approaches
to leverage the complementary benefits of local and global representations? Specifically, is it possible
to harness the locality-aware representations learned by GNNs to construct discrete tokens, thereby
enabling GTs to operate efficiently while still capturing salient graph properties?

GTs require consideration of both graph structure and features, as nodes with identical features
will otherwise be projected into the same representation regardless of their surrounding structures
(Hoang et al.| |2024). There are three general approaches to address this limitation (Hoang et al.|
2024): (1) node feature modulation, which involves injecting structural information into the node
features; (2) context node sampling, where a sampling strategy is used to construct a sequence over
the neighbor nodes; and (3) modifying the architecture of a vanilla Transformer to directly incorporate
structural biases. Given that Transformers are universal approximators of sequence-to-sequence
functions (Yun et al.,|2020) and considering the rapid developments in efficient implementation of
Multi-Head Attention (MHA) module (Dao et al.l 2022} [Liu et al.l 2024}, which enables longer
context sizes (Reid et al.,[2024), we argue that a well-designed graph tokenizer can allow a vanilla

*Equal Contributions

https://github.com/limei0307/GQT

Published as a conference paper at ICLR 2025

Transformer to efficiently process even large-scale graphs. Recent studies on applying Large Language
Models (LLMs) to Text-Attributed Graphs (TAGs) have shown surprisingly strong performance gains
surpassing those of GNNs, suggesting that vanilla Transformers are indeed capable of effectively
learning graph structures (Ye et al., 2024; Xu et al.| 2025)). Nonetheless, LLMs are not efficient at
inference time. Our goal is to devise a lightweight and efficient graph tokenizater that allows vanilla
Transformer encoders to learn graph structures effectively.

Tokenizers typically employ self-supervised objectives to abstract data into a sequence of discrete
tokens, allowing Transformers to learn representations across various modalities as a unified stream
of data. The discretization is usually achieved through vector quantization techniques (Van Den Oord
et al 2017; [Lee et al) 2022), which offer several benefits, including: (1) significantly reduced
memory requirements, (2) improved inference efficiency, (3) allowing Transformers to focus on
long-range dependencies rather than local information, and (4) the capacity to learn more high-level
representations due to a compact latent space (Yuan et al., 2021} |Yu et al.,[2022a)). These advantages
are particularly important in auto-regressive generative modeling, where quantized tokens allow
Transformers to generate high-quality outputs in multiple modalities (Dubey et al.,|2024; [Lee et al.,
2022; |Dhariwal et al.l |2020; Ramesh et al., 2021 |[Team, |2024). Despite its importance in other
domains, tokenization remains under-explored for graph-structured data. To address this limitation,
we propose the Graph Quantized Tokenizer (GQT), a novel approach that learns a hierarchical
sequence of tokens over graphs using self-supervised objectives tailored to graph-structured data.
More specifically, our contributions are as follows:

* We propose a graph tokenizer that uses multi-task graph self-supervised learning to train a
graph encoder, enabling it to fully capture local interactions and allowing the Transformer
to focus on long-range dependencies.

* Our approach adapts Residual Vector Quantization (RVQ) within the graph tokenizer to
learn hierarchical discrete tokens, resulting in significantly reduced memory requirements
and improved generalization capabilities.

* We introduce a novel combination of semantic edges and random walks to facilitate access
to long-range interactions, and employ hierarchical encoding and gating mechanisms to
modulate the tokens and provide informative representations to the Transformer.

* Through extensive experiments on both homophilic and heterophilic datasets, including
large-scale and long-range benchmarks, we demonstrate that our tokenizer enables Trans-
former encoders to achieve state-of-the-art performance on 20 out of 22 benchmarks while
substantially reducing the memory footprint of the embeddings.

2 RELATED WORKS

Graph Transformers (GTs) have shown promising performance on various graph learning tasks,
surpassing GNNs on many benchmarks. Designing GTs can be broadly categorized into two directions
(Hoang et al.| [2024} Miiller et al. 2024): (1) modifying the vanilla Transformer architecture to
incorporate structural inductive biases, or (2) encoding the input graph to make it compatible with the
vanilla Transformer. Early examples of the first approach include Graph Attention Network (GAT)
(Velickovi¢ et al.| 2018), which uses an attention module to compute pairwise node attention and
masks the attention matrix based on connectivity information. Subsequent works have replaced
the scaled-dot attention module with various structure-aware sparse attention modules (Rampasek
et al.,[2022; |Bo et al., 2023 Ying et al., |2021; Deng et al., 2024; Wu et al., |2023b; |Liu et al., 2023a;
Chen et al.| [2022; Dwivedi & Bresson, [2020; |Shirzad et al.,|2023; Ma et al., [2023). Graph Memory
Network (GMN) (Khasahmadi et al.l 2020) is an example of the second approach, which passes non-
linear projections of node features and structural encoding to a Transformer-like model. Structural
encodings such as Laplacian eigenvectors or Random walk-based encoding (Dwivedi et al.,2022aj;
Ma et al.| [2023}; |Cantiirk et al.,|2024)), allow injecting structural information directly into the node
features. Some works use GNNs to encode local structure along with node features into embeddings
that are passed to vanilla Transformers to capture long-range dependencies (Rong et al., 2020; [Wu
et al.,[2021};|Chen et al., 2023} 2022)). Recent studies leverage LLMs, where graphs are represented
through natural language, and an LLM performs graph-related tasks through in-context learning,
instruction-tuning, or soft-prompting (Fatemi et al., 2024; |Ye et al, 2024; He et al.,[2024). For a
detailed survey on GTs, see (Miiller et al.,2024; Hoang et al., [2024)).

Published as a conference paper at ICLR 2025

Graph Tokenization provides GTs with rich node tokens that encapsulate both structural and
semantic information. TokenGT (Kim et al., 2022)) treats nodes and edges as independent tokens
defined by their features, type identifiers, and structural encodings. NAGphormer (Chen et al.|
2023) represents each node as a set of L tokens, where the I*" token is the representation of the
node from the /** hop aggregation. In contrast, GraphiT (Mialon et al., 2021)) defines a node token
as the concatenation of its feature and representation from a graph convolutional kernel network
(GCKN). VCR-Graphormer (Fu et al.,|2024)) expands the notion of node tokens to include sequences
comprising the node feature and features of semantically and community-related neighboring nodes.
SGT (Liu et al.| 2023c)) is a non-parametric tokenizer designed for molecular tasks, which unlike
motif-based tokenizers (Zhang et al.||2021} Jin et al.,2018)) or GNN pre-training methods (Xia et al.|
2023)), simplifies the tokenization process to a non-parametric graph operator without non-linearity.
NodePiece (Galkin et al. 2022) is a knowledge-graph tokenizer that represents a target node as a
hash of its top-k closest anchors, their distances, and relational context. While Vector Quantization
(VQ) has been explored in other modalities (Van Den Oord et al., 2017; |Lee et al., 2022} |Yu et al.,
2022bj |[Van Kempen et al.,2024; [Li et al., 2024), its application in graph learning is limited. Notable
exceptions include VQ-GNN (Ding et al.|[2021)), which uses quantized representations combined with
a low-rank version of the graph convolution matrix to avoid neighbor explosion problem, VQGraph
(Yang et al., [2024)), which employs VQ for distilling a GNN into an MLP, and NID (Luo et al.,[2024a)),
which uses VQ to learn discrete node IDs for downstream prediction tasks.

3 PRELIMINARIES

Messag-Passing GNNs. Let G denote the space of graphs. A graph g € G is defined as (V, £, X, E)
where V is the set of nodes and £ C V x V is the set of edges. X € RIVI*4= represents the node
features of dimension d,, and E € RIVIX[VIxde represents the edge features of dimension d.. A
message-passing GNN takes g as input and learns representations k!, for v € V (h0 = z,,) in each
layer [as follows (Gilmer et al., 2017):

hy = Fo (g6 ({(B7) [u € N) M
where fp and g, are known as combine and aggregate functions, respectively. V,, denotes the set of
immediate neighbors of the node v. Once the node representations are computed, we can perform
various tasks including node classification as MLP (h,,), edge prediction as MLP (h,, ® h,), or graph
classification as MLP (R ({h,|u € V})), where R is a pooling (readout) function.

Graph Transformers use a tokenizer 7, = 7y, (A (v)) to map each node v € V into a sequence of
tokens 7T}, by considering a notion of neighborhood . The simplest design is when N is zero-hop
neighborhood (i.e., the node itself) and 7, is a node feature lookup function. The neighborhood
N can be extended to include the node’s ego network (Zhao et al.l 2027)) or top-k Random Walk
based neighbors (Fu et al.,[2024])), and 7, can be enhanced to representations from a GNN (Chen
et al., 2023)). Node tokens along with positional encodings (PE) are passed to the Transformer as
hY = [T, ||PE (v)]. The representations in the [*" layer of a Transformer encoder are computed as:

hl = LN (MHA (LN (h571)) + hb1) @
hl, = bl +MLP () ©)

where LN and MHA are LayerNorm and multi-head attention, respectively. Similar to Transformer
encoders in other modalities (Devlin et al., 2019; Dosovitskiy et al., [2021)), we can append a special
classification token ([CLS]) to the input and use its representation to perform various classification
tasks on the graph: MLP (hcrs)).

Vector Quantization projects embeddings X € R"*% into a more compact space of codebooks
C € RF¥de where k < n. The codebooks can be learned by minimizing various objectives such as
K-means clustering. The new representation of z; is then computed as (Van Den Oord et al.l 2017):
z(z;) = ¢ where k= argmin||z; — ;|3)]
J
Building upon this concept, Residual-VQ (RVQ) (Lee et al., 2022) extends VQ to a sequence of
codebooks, where each consecutive codebook quantizes the residual error from the previous codebook,
i.e., 7; = z; — c,. This hierarchical approach constructs a multi-level quantized representation,
enhancing the overall quantization quality. More details of RVQ are included in Appendix

Published as a conference paper at ICLR 2025

4 SELF-SUPERVISED GRAPH TOKENIZATION

4.1 TOKENIZER PROPERTIES

Our goal is to design a graph tokenizer that learns node tokens that exhibit three key characteristics:

Modeling Local Interactions. The tokens should encapsulate local interactions, allowing the
Transformer to focus on long-range dependencies. This is analogous to Vision Transformers (ViTs),
where the Transformer attends to image patches instead of pixels (Dosovitskiy et al.,[2021; [Liu et al.|
2021)). To achieve this, we leverage GNNss as the tokenizer encoder to model local interactions in the
representation space (Battaglia et al.,[2018)). Our design accommodates various GNN layer choices
without constraints; for simplicity, we opt for a GAT encoder (Velickovic et al., 2018).

Memory Efficiency. The tokens also should be compact to facilitate efficient memory usage. To
achieve this, we introduce a Residual-VQ (RVQ) (Lee et al.l 2022) layer to quantize the GNN
representations into a sequence of discrete tokens. Quantization not only helps with generalization
due to its regularization effect but also significantly reduces memory usage. Using an RVQ with ¢
codebooks (typically ¢ = {2,--- ,8}), a graph with feature matrix X € R4+ can be represented
as Xg € NV*¢ and codebook representation of C € R¢* K *de where c is the number of codebooks
(i.e., levels of quantization), K is the codebook size, and d. is the code dimension. To illustrate
the benefits of this approach, consider a graph with 10 nodes and a feature dimension of 1024

(X € R10°x1024) Uging an RVQ with 3 codebooks and a codebook size of 256, this graph can be
represented as Xy € N10°%3 plus C € R3*256x1024 requlting in a 270-fold reduction in memory.

Robustness and Generalization. The tokens should be robust and generalizable. To achieve this,
we rely on graph self-supervised learning. Self-supervised representations have been shown to be
more robust to class imbalance (Liu et al., [2022)) and distribution shift (Shi et al., 2023)), while also
capturing better semantic information (Assran et al., 2023) compared to representations learned
through supervised objectives. Moreover, self-supervised graph representations have demonstrated
superior performance on downstream tasks compared to representations learned in a fully supervised
manner, indicating better generalization capabilities (Hu et al., 2020b; Sun et al., |2020; [You et al.,
20205 [Fu et al., [2020; |You et al., 202 1; |[Hassani & Khasahmadil, [2020; |Velickovic et al., [2019; [Zhu
et al., 2020b). Additionally, multi-task learning with self-supervised objectives has been shown to
achieve better performance on downstream tasks (Doersch & Zisserman), 20175 Ghiasi et al., 202 1)).
To leverage these benefits, we propose training the GNN encoder with three self-supervised objectives.
Unlike RQ-VAE (Lee et al.,[2022), which uses reconstruction as its primary objective, we employ
graph-specific objectives to capture the nuances of both structure and features.

4.2 TRAINING

To capture different aspects of information, we employ a multi-task learning framework that leverages
three distinct families of graph self-supervised objectives: student-teacher distillation (Thakoor et al.|
2022), masked autoencoding (Hou et al.l |2022), and Infomax (Velickovi¢ et al., [2019). We also
introduce a commitment loss (Van Den Oord et al.,|2017) to enforce alignment between learned node
representations and the codebook representations. Specifically, the GNN encoder is trained through
gradient descent to minimize a loss function comprising of three terms, where 5 is the loss weight:

L= Ldgi + Egman + 6£C0mmit (5)

The first term is the Deep Graph Infomax (DGI) (Velickovi€ et al.l|2019) objective, which maximizes
mutual information (MI) between node representations and graph (sub-graph) representations, based
on the Jensen-Shannon divergence between the joint and product of marginals as follows:

Ly =E Zlog (D (h, hg)) + Zlog(l — D (hy, hy)) (©)

vEg ueg

where h,, is the representation of node u. hy is the global (sub-graph/graph) representation, computed
as the mean of node representations. g is the corrupted version of the original graph, with the
same structure but randomly shuffled features, providing negative examples for contrastive learning.
D (hy,hg) =0 (hZWhg) is the discriminator that scores whether a node belongs to the graph, and
is defined as a bilinear classifier.

Published as a conference paper at ICLR 2025

Tokenizer

Dlstallatlon

GNN

|SSL Heads| | SSL Loss |
(Embedding)

N —>QOOOOO<~OOO;T

| Original Graph | | Semantic Edges & PPR |

Figure 1: Overview of our proposed Graph Quantization Transformer (GQT) consisting of three main com-
ponents: (1) a GNN to encode local interactions, (2) vector quantization for compact representation, and (3)
generative and contrastive heads for robust representation learning. We also utilize a Transformers encoder to
model long-range interactions. We augment the graph with semantic edges (dashed lines) and generate a se-
quence for each node based on Personalized PageRank scores. We then modulate the tokens through hierarchical
encoding and structural gating, and feed them into the Transformer and aggregate the learned representations
through an attention module before passing it to the classification head.

A 4 ®—>€9 Positional &
Token Hierarchical
Lookup ®._)€9 Encodings

A

y.
>

Attention

i Structural | Gating

Transformer

The second term is the GraphMAE2 objective (Hou et al.,2023), which combines the generative loss
of GraphMAE (Hou et al.| 2022 with the teacher-(noisy)student distillation loss of BGRL (Thakoor
et al., [2022). This combination enables the model to avoid overfitting and learn more semantic
representations. The GraphMAE?2 loss is computed as follows:

2T h ! hT h !
Lomaer = (1 - Ui)) + A <1 - vi)) N
Z 23 [I- [l 2 ANl

vEG veg

where ¢ is the masked graph, h,, is the node representation of a masked node learned by the noisy
student, h,, is the corresponding node representation learned by the teacher over the original graph,
and v > 1 is a scaling factor. The teacher’s parameters are updated using an Exponential Moving
Average (EMA) of the noisy student’s parameters.

The third term is the commitment loss, which encourages the representations to get close to their
corresponding codebook embeddings within the RVQ layer. This loss is computed as:

Leommit = |V| Z ||h Ck} H2 ®)
vegyg
where sg is the stop-gradient operator, and cy, is the representation of the codebook that h,, is assigned
to (i.e., the centroid or prototype vector). Note that this loss only affects the node representations and
does not update the codebooks.

To initialize and update the codebooks, we employ K-Means clustering and EMA with weight decay
7 € [0, 1], respectively. Specifically, the codebooks are updated as follows:

ch = 7'cf~c Y ‘Vk Z By 9)
vEVy

where Vy, is the set of nodes assigned to codebook cy,. This update rule allows the codebooks to adapt
to the changing node representations while maintaining stability.

Published as a conference paper at ICLR 2025

5 GRAPH TRANSFORMER

5.1 GRAPH SERIALIZATION

Once the tokenizer is trained, each node v € V is mapped to ¢ discrete tokens: T, = [tV,--- ,t7] € N°
(i.e., T, = Xg[v]), encoding local interactions of that node. We then need to serialize the graph in
order to input it to the Transformer.

Semantic Edges. To enable the Transformer to capture long-range interactions, the input should
consist of a sequence of tokens from nodes that are likely to have long-range dependencies. To
facilitate this, we first augment the graph with semantic edges denoted as £,, which are computed as
follows:

& = {euﬂ, | arg topk sim (f (x,,), f (z,)) Vv € V} (10)

uey
where sim(-, -) denotes the similarity function, z,, is the feature vector of node u, and f is a projection
function. We use cosine similarity as the similarity function and Principal Component Analysis
(PCA) as the projection function. The semantic edge augmentation effectively creates sparse edges
between each node and its k-nearest neighbors in the feature space, enhancing the model’s ability to
recognize and utilize long-range dependencies.

Structural Serialization. We combine the semantic edges with the original edges and use Per-
sonalized PageRank (PPR) to generate a sequence per target node. This enriches the sequence
with information beyond local interactions, allowing the Transformer to access potential long-range
dependencies. We construct the sequence S, for each node v as follows:

Sv = [TUHTu||ueargtokaPR(v,SU€s)} (11)

where S, = [t - Y | ¢1* - ¢22 | - | #]% - - t%] is a sequence of length ¢ x (k + 1), comprising
discrete tokens that represent the target node v, followed by discrete tokens of the top-k relevant nodes
to node v. These relevant nodes are determined based on PPR scores. Note that the computation of
semantic edges and PPR sequences is performed only once as a pre-processing step, thereby reducing
the computational overhead during training.

5.2 TOKEN MODULATION

Token Embeddings. There are ¢ x K possible discrete tokens, where c is the number of codebooks
and K is the codebook size. We randomly initialize an embedding matrix X7 € R®*%*d= which
is trained end-to-end alongside the Transformer. To further enrich the token representations, we
introduce an additional token for each node that aggregating the embeddings of its assigned codebooks
from the pretrained tokenizer:

he = C[i,t] (12)
=1

where C[i, j] is the embedding corresponding to index j in the ith codebook. We found that adding

this explicit aggregated token from the codebook leads to better performance compared to initializing
X directly with C. The input representation of the sequence for node v is then defined as:

C

Sy = XT[ia t;}] ”

(& c
he (1 X[, 87) 1] Bt |- X i 5] 1| Rg (13)
i=1 i=1 i=1
where [X||Y] denotes concatenation of sequences X and Y. This representation combines the individ-
ual token embeddings with the aggregated codebook embeddings, providing a more comprehensive

and nuanced input to the Transformer.

Structural Gating. In order to provide the Transformer with the global structural importance scores
of the nodes within the sequence with respect to the target node, we introduce a gating mechanism
over the input token embeddings as follows:

Sy = S, ® Softmax (topk PPR (v, & U &y)) (14)

where we first apply a softmax function with temperature 7 = 1 to normalize the PPR scores, and
then multiply each node token’s representation by its corresponding normalized score.

Published as a conference paper at ICLR 2025

Positional Encoding. We also introduce two trainable positional encodings to the input tokens.
The first positional encoding enables the Transformer to distinguish between tokens from different
nodes, while the second encoding, referred to as hierarchical encoding, allows the Transformer
to recognize the hierarchy level of each token within the codebooks. We randomly initialize the
positional encodings PE € R(*+1)*dx and HE € R°*% and sum them with the encoding of their
corresponding token. For example, the final encoding of the token j of the node ¢ within the sequence
is computed as: = Xr[j, ;] + PE[i] + HE[j]. Note that we did not use any structural encoding,
such as Laplacian eigenvectors, as we did not observe any significant gains from them.

5.3 TRANSFORMER ENCODER

We use [layers of standard Transformer encoder with flash attention (Dao et al.,[2022) to generate

contextual representations per token in the sequence: H ¢ R(etD)x(k+1)xdn We then aggregate
the token representations for j-th node in the sequence by summing along the token dimension:

c+1
H, = Y B[, j] € RO (1s)

i=1

To obtain a single representation for the entire sequence, We further aggregate the representation
using a linear attention layer:

k+1
exp(Wh;)
h = a;h; where o = ————— (16)
; ! ! > exp(Why)

We feed the resulting representation into a fully-connected classifier and train the model end-to-end
using cross-entropy loss. Note that during inference, only the Transformer and classifier are utilized,
as the tokenizer is pretrained and the sequences are pre-computed. Furthermore, since we only require
discrete tokens and codebook embeddings, our approach enables efficient memory usage, regardless
of graph size, allowing for efficient training and inference on large-scale graphs.

6 EXPERIMENTS

We evaluate GQT on both medium- and large-scale graph learning tasks, encompassing 22 ho-
mophilic, heterophilic, and long-range benchmarks. We follow the established experimental protocols
from previous works to ensure fair comparisons. Details of the datasets, experimental setup, and
hyperparameters are provided in Appendices[C|and D] respectively.

6.1 COMPARISON WITH STATE-OF-THE-ART

Long-Range Benchmarks. We use four datasets from the Long-Range Graph Benchmark
(LRGB) (Dwivedi et al., [2022b), including the Peptides-Func dataset for graph classification with
Average Precision (AP) metric, the Peptides-Struct dataset for graph regression with Mean Absolute
Error (MAE) metric, the COCO-SP dataset for inductive node classification with macro F1 metric,
and the PCQM-Contact for link prediction with Mean Reciprocal Rank (MRR) metric. We compare
our results to baselines reported in (Wang et al.| [2024). The results shown in Table[T] suggest that
GQT is able to capture long-range dependencies and performs well on various graph prediction tasks.

Homophilic Node Classification. We use eight medium-scale homophilic datasets including: Cora-
Full (Bojchevski & Gilinnemann, 2017), CiteSeer, PubMed (Yang et al., 2016), Amazon Computers,
Amazon Photos, Co-author CS, Co-author Physics (Shchur et al.| 2018)), and WikiCS (Mernyei &
Cangea, [2020). We compare our results with eight GNNs including: GCN (Kipf & Welling| [2017)),
GAT, APPNP (Gasteiger et al., [2018), GPRGNN (Chien et al., 2020), GraphSAINT (Zeng et al.,
2020), GraphSAGE (Hamilton et al.||2017), PPRGo (Bojchevski et al.,|2020), and GTAND+ (Feng
et al.}[2022). We also compare against ten GTs including GT (Dwivedi & Bressonl [2020), Graphormer
(Ying et al., 2021), SAN (Kreuzer et al.;,2021)), GraphGPS (Rampasek et al., |2022), GOAT (Kong
et al., 2023)), NodeFormer (Wu et al., [2022), DiffFormer (Wu et al., [2023a)), NAGphormer (Chen
et al.} 2023)), Exphormer (Shirzad et al.,[2023), and VCR-Graphormer (Fu et al.,|2024). The baseline
performance is reported from (Wu et al., [2023bj |Luo et al.,|2024a). GQT outperforms the baseline

Published as a conference paper at ICLR 2025

Table 1: Mean performance on inductive long-range benchmarks over five runs.

Task Graph Classification Graph Regression Node Classification Link Prediction
Dataset Peptides-Func Peptides-Struct COCO-SP PCQM-Contact
#Graphs 15,535 15,535 123,286 529,434
Avg. #Nodes 150.94 150.94 476.88 30.14
Avg. #Edges 307.30 307.30 2,693.67 61.09
Metric AP MAE | Fl1 1 MRR 7
GCN 0.5930-+0.0023 0.3496£0.0013 0.0841£0.0010 0.3234-£0.0006
Exphormer 0.6258+0.0092 0.251240.0025 0.3430+£0.0108 0.3587+0.0025
GPS 0.6535+0.0041 0.2500+0.0005 0.3412+£0.0044 0.3337+0.0006
Graph-Mamba 0.6739=+0.0087 0.2478+0.0016 0.3960£0.0175 0.3395+0.0013
GQT (Ours) 0.6903-£0.0085 0.2452+0.0018 0.4007+£0.0125 0.3427+0.0012

Table 2: Mean node classification accuracy on medium-scale homophilic datasets over five runs.

CoraFull CiteSeer PubMed Computer Photo CS Physics WikiCS
- #Nodes 19,793 3,327 19,717 13,752 7,650 18,333 34,493 11,701
2 #Edges 126,842 4,522 88,651 491,722 238,163 163,788 495,924 216,123
g #Features 8,710 3,703 500 767 745 6,805 8,415 300
#Classes 70 6 3 10 8 15 5 10
GCN 61.76+0.14 76.50+1.36 86.54+0.12 89.65+0.52 92.70+£0.20 92.92+0.12 96.18+0.07 77.47+0.85
GAT 64.47+0.18 76.55+1.23 86.32+0.16 90.78+0.13 93.874+0.11 93.61+0.14 96.17+0.08 76.91+0.82
APPNP 65.16+£0.28 76.53+1.16 88.43+0.15 90.18+0.17 94.324+0.14 94.49+0.07 96.54+0.07 78.87+0.11
% GPRGNN 67.12+0.31 77.13+1.67 89.344+0.25 89.32+£0.29 94.49+0.14 95.13£0.09 96.85+0.08 78.12+0.23
© GraphSAINT 67.85+0.21 - 88.96+0.16 90.22+0.15 91.724+0.13 94.41+0.09 96.43+0.05 —
GraphSAGE — 75.58+1.33 87.48+0.38 91.20+0.29 94.59+0.14 93.91+0.13 96.49+0.06 74.77+0.95
PPRGo 63.54+0.25 — 87.38+0.11 88.69+0.21 93.61+0.12 92.52+0.15 95.51+0.08 78.12+0.23
GRAND+ 71.371+0.11 — 88.64+0.09 88.74+0.11 94.754+0.12 93.92+0.08 96.47+0.04 —
GT 61.05+0.38 — 88.79+0.12 91.18+0.17 94.7440.13 94.64+0.13 97.05+0.05 —
Graphormer OOM - OOM OOM 92.744+0.14 94.64+0.13 OOM -
SAN 59.01+0.34 — 88.224+0.15 89.93+0.16 94.86+0.10 94.51+0.15 OOM —
GraphGPS 55.76+0.23 76.99+1.12 88.94+0.16 OOM 95.06+0.13 93.93+0.15 OOM 78.66£0.49
GOAT - 76.89+1.19 86.874+0.24 90.96+0.90 92.96+1.48 94.21+0.38 96.24+0.24 77.00+0.77
5 NodeFormer — 76.33+£0.59 89.324+0.25 86.98+0.62 93.46+0.35 95.64+0.22 96.45+0.28 74.73+0.94
DIFFormer - 76.72+0.68 89.514+0.67 91.994+0.76 95.10+£0.47 94.78+0.20 96.60+0.18 73.46+0.56
NAGphormer 71.51£0.13 77.42+1.41 89.70+0.19 91.22+0.14 95.494+0.11 95.75+0.09 97.34+0.03 77.16+0.72
Exphormer 69.09+0.72 76.83+1.24 89.52+0.54 91.59+0.31 95.274+0.42 95.77+0.15 97.16+0.13 78.54+0.49
VCR-Graphormer 71.67+0.10 — 89.774£0.15 91.75+£0.15 95.53+0.14 95.37+0.04 97.34+0.04 —
GQT (ours) 71.81+0.21 77.84+0.94 90.14+0.16 93.37+£0.44 95.73+0.18 96.11+£0.09 97.53+0.06 80.14+0.57

GNN and GT models on 7 out of 8 benchmarks (Table @ Notably, this achievement comes with a
significant memory reduction. For example, on the Physics dataset with 34,493 nodes, we only use
256 x 6 tokens, i.e., a 23-fold memory reduction.

Heterophilic Node Classification. We also evaluate GQT on six medium-scale heterophilic datasets:
Squirrel, Chameleon (Rozemberczki et al., [2021), Questions, Roman-Empire, Amazon-Ratings,
and Minesweeper (Platonov et al |2023). We compare the performance with seven GNNs: GCN,
GraphSAGE, GAT, GPRGNN, H2GCN (Zhu et al,[2020a)), CPGNN (Zhu et al.| [2021)), and GloGNN
(L1 et al. [2022), and six GTs: GraphGPS, GOAT, NodeFormer, SGFormer, NAGphormer, and
Exphormer. The baseline performance is reported from (Wu et al.l 2023b; [Luo et al., [2024b; [Platonov
et al., 2023 Behrouz & Hashemi, |2024)). As shown in TableE], GQT outperforms the baselines on
five out of six datasets. We observe that introducing semantic edges and structural gating specifically
benefits the heterophilic setting (Appendix [E.T), as they enable the Transformer to capture long-range
dependencies that are not easily accessible through the original graph structure.

Large-scale Node Classification We also use four large-scale datasets: ogbn-proteins, ogbn-arxiv,
ogbn-products (Hu et al.,2020a), and pokec (heterogeneous) (Leskovec & Krevl,2014). We compare
the performance against six GNN: LINKX (Lim et al.| |2021), SIGN (Frasca et al., |2020), GCN,
GAT, GraphSAGE, and GPRGNN; and six GTs: GraphGPS, GOAT, NodeFormer, NAGphormer,
Exphormer, and SGFormer (Wu et al.l 2023b). We report the baseline performance from (Wu et al.|
2023b; |Luo et al.,[2024a). The results (Table [4) show that GQT outperforms the baseline models on
all large-scale benchmarks. This achievement comes with a significant reduction in required memory.
For instance, on the ogbn-products dataset with 2,449,029 nodes and 100-dimensional node features,
GQT requires only 3 codebooks of size 4096, resulting in a 30-fold memory reduction.

Published as a conference paper at ICLR 2025

Table 3: Mean node classification performance on heterophilic graphs over five runs.

Squirrel Chameleon Amazon-Ratings Roman-Empire Minesweeper Questions

= #Nodes 5,201 2,277 22,662 24,492 10,000 48,921
2 #Edges 216,933 36,101 32,927 93,050 39,402 153,540
g #Features 2,089 2,325 300 300 7 301
#Classes 5 5 18 5 2 2
Measure Accuracy? Accuracy?t Accuracy?t Accuracy? ROC-AUCtT ROC-AUCT
GCN 38.67+1.84 41.31+3.05 48.70+0.63 73.69+0.74 89.754+0.52 76.09+1.27
GraphSAGE 36.09+1.99 37.77+4.14 53.63£0.39 85.74+0.67 93.51+£0.57 76.4440.62
7 GAT 35.62+£2.06 39.2143.08 52.70+0.62 88.75+0.41 93.91£0.35 76.7940.71
Z H2GCN 35.10£1.15 26.754+3.64 36.47+0.23 60.114+0.52 89.71+0.31 63.59+1.46
© CPGNN 30.04£2.03 33.0043.15 39.79+0.77 63.96+0.62 52.03£5.46 65.96+1.95
GPRGNN 38.95+£1.99 39.93+3.30 44.88+0.34 64.85+0.27 86.244+0.61 55.484+0.91
GloGNN 35.11£1.24 25.9043.58 36.89+0.14 59.63+0.69 51.08£1.23 65.74+1.19
GraphGPS 39.67+2.84 40.79+4.03 53.10+0.42 82.00+0.61 90.63+0.67 71.73+1.47
NodeFormer 38.52+1.57 34.73+4.14 43.8640.35 64.4940.73 86.71+0.88 74.27+1.46
= SGFormer 41.804+2.27 44.93+3.91 48.014+0.49 79.10£0.32 90.89+£0.58 72.154+1.31
© NAGphormer 35.80+1.33 - 51.26£0.72 74.3440.77 84.19+0.66 —
Exphormer 36.04+1.45 - 53.51£0.46 89.03+0.37 90.74+0.53 —
GQT(ours) 42.72+1.69 44.23+3.05 54.324+0.41 90.98+0.24 97.36+0.35 78.94+0.86

Table 4: Mean node classification performance on large-scale datasets over five runs.

ogbn-proteins ogbn-arxiv ogbn-products pokec
- #Nodes 132,534 169,343 2,449,029 1,632,803
< #Edges 39,561,252 1,166,243 61,859,140 30,622,564
g #Features 128 8 100 65
#Classes 40 2 47 2
Measure ROC-AUCT Accuracy 1 Accuracy 1 Accuracy 1
GCN 72.51+£0.35 71.744+0.29 75.64+0.21 75.45+0.17
GAT 72.02+£0.44 71.95+0.36 79.45+0.59 72.23£0.18
z. GPRGNN 75.68+£0.49 71.10£0.12 79.76+0.59 72.23£0.18
Z LINKX 71.3740.58 66.18+0.33 71.59+0.71 82.04+0.07
C GraphSAGE 77.684+0.20 71.494+0.27 78.29+0.16 75.63£0.38
SIGN — 71.95+0.11 80.52+0.16 —
GraphGPS 76.83+£0.26 70.97+£0.41 OOM OOM
GOAT 74.1840.37 72414040 82.00+£0.43 66.37+0.94
NodeFormer 77.45+1.15 59.90+042 72.93+0.13 71.00£1.30
=~ SGFormer 79.53+£0.38 72.63+0.13 74.16+£0.31 73.76+0.24
S NAGphormer 73.61+0.33 70.13+0.55 73.55£0.21 76.59+0.25
Exphormer 74.58+0.26 72.44+0.28 OOM OOM

GQT(ours) 82.13+0.34 73.14+£0.16 82.46+0.17 83.76+0.24

6.2 ABLATION STUDY

Effect of Tokenization. We examine the performance of the tokenizer by training a linear model
on the representations of the learned tokens without modulation, augmentation, or Transformer (1).
As shown in Table[6] within the linear evaluation protocol, the tokenizer shows strong performance,
surpassing that of GTs such as GraphGPS and NAGphormer, as well as GNNs like GAT and SIGN
(Table[d). This implies that the tokenizer is capable of learning effective token representations. To
further investigate the importance of the tokenizer, we exclude it and train the Transformer directly
on the original node features (2). As expected, this results in significant degradation in performance,
highlighting the crucial role of the tokenizer. Additionally, to study the effects of vector quantization,
GraphMAE?2, and DGI objectives, we train the model by excluding each component (3-5). The results
suggest that the SSL objectives contribute more significantly to the performance compared to vector
quantization. This is because the primary purpose of vector quantization is to compress information
into discrete tokens, reducing memory requirements. Between GraphMAE?2 and DGI, the former

Published as a conference paper at ICLR 2025

Table 6: Ablation study on effect of proposed components on the ogbn-arxiv dataset.

Graph Tokenizer Token Modulation Augmentation Model Performance

RVQ GMAE2 DGI Codebook Positional Structural Semantic = PPR Accuracy?
Embeddings Encoding Gating Edges Sequence

@G v v v v Linear 71.914+0.13
2) Transformer 70.68+0.17

3) Transformer 72.8440.23
4) Transformer 71.834+0.19
5) Transformer 72.714+0.24

(6) Transformer 71.3440.16
(7) Transformer 72.694+0.21
®) Transformer 73.08+0.14

) Transformer 72.5940.25
(10) Transformer 73.14+0.16

ANRN
ANANAN

SNSKS
SSNSASSN

<

AN N NS N NN
NISISSYN IS S
NSNS
NISNISS

NSNS NSNS
\

AN
SNISISSKNSNNS

yields the highest gain. This is due to its composition of two objectives: masked reconstruction and
teacher-(noisy)student distillation. Both of these objectives have been shown to outperform InfoMax
objectives on downstream tasks (Hou et al., |2022} Thakoor et al.| [2022)).

Effect of Modulation. We also investigate the impact of codebook embeddings, positional encoding,
and structural gating on the model’s performance (6-8). As shown in Table[6] introducing aggre-
gated codebook embeddings leads to improved downstream performance because it provides the
Transformer with richer representations of each token. Positional encoding, as observed in other
domains, contributes moderately to downstream performance. We also note that introducing structural
gating yields moderate improvements in homophilic settings, whereas the gains are significant in
heterophilic benchmarks (E.T). This disparity can be attributed to the ability of structural gating to
provide the Transformer with importance scores computed over the global graph structure, which is
particularly beneficial in heterophilic scenarios.

Effect of Augmentation. We study the effect of semantic edges on downstream performance (9).
The results suggest that augmenting the graph structure with semantic edges yields significant gains.
This is because introducing semantic edges allows the Transformer to access semantic information
that may not be captured by the original graph structure. Furthermore, when combined with random
walks, this also enables the Transformer to attend to long-range dependencies which is particularly
important in heterophilic benchmarks, where semantic relationships between nodes are more nuanced.

Robustness Analysis. To measure robustness,
we use Greedy Randomized Block Coordinate
Descent (GRBCD) and Projected Randomized
Block Coordinate Descent (PR-BCD) (Geisler
et al.| [2021]) adversarial attacks to measure the
accuracy degradation. We compare the GQT RQ-VAE 20.40% 14.80% 23.30% 17.20%
with an RQ-VAE (Lee et al| [2022). The results ~ GQT (ours) 15.80% 10.40% 18.10% 11.30%
(Table[5) suggest that our tokenizer is more ro-

bust to attacks. This is because GQT is trained with multi-task self-supervised objectives while
RQ-VAE is trained with autoencoding objective. More details are provided in Appendix [E]

Table 5: Accuracy drop under adversarial attack.

Attack GR-BCD PR-BCD
PubMed ogbn-arxiv PubMed ogbn-arxiv

7 CONCLUSION

We introduced the Graph Quantized Tokenizer (GQT) to provide standard Transformer encoders to
acces discrete graph tokens that encapsulate local interactions and allow Transformers to attend to
long-range dependencies within the graph structure. This allows us to seamlessly take advantage of
the rapid advances in scaling Transformers. We achieved state-of-the-art performance on 20 out of
22 datasets, including large-scale and long-range homophilic and heterophilic datasets. As future
directions, we plan to explore the potential of GQT in generative graph learning. Additionally, we aim
to couple GQT with LLMs to provide a shared feature space across various graph datasets, paving
the way for true Graph Foundational Models (GFMs) (Liu et al., 2023b; [Mao et al., [2024)).

10

Published as a conference paper at ICLR 2025

REFERENCES

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Siisstrunk.
Slic superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern
analysis and machine intelligence, 34(11):2274-2282, 2012.

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15619-15629, 2023.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space
models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 119130, 2024.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks meet
transformers. In The Eleventh International Conference on Learning Representations, 2023.

Aleksandar Bojchevski and Stephan Giinnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek
Rézemberczki, Michal Lukasik, and Stephan Giinnemann. Scaling graph neural networks with
approximate pagerank. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 2464-2473, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, pp. 1877-1901, 2020.

Semih Cantiirk, Renming Liu, Olivier Lapointe-Gagné, Vincent Létourneau, Guy Wolf, Dominique
Beaini, and Ladislav Rampasek. Graph positional and structural encoder. In Proceedings of the
41st International Conference on Machine Learning, pp. 5533-5566, 2024.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In Proceedings of the 39th International Conference on Machine Learning,
pp- 3469-3489, 2022.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. NAGphormer: A tokenized graph transformer
for node classification in large graphs. In The Eleventh International Conference on Learning
Representations, 2023.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,

35:16344-16359, 2022.

Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph transformer
in linear time. In The Twelfth International Conference on Learning Representations, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 4171-4186, June 2019.

11

Published as a conference paper at ICLR 2025

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever.
Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341, 2020.

Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John P Dickerson, Furong Huang, and Tom
Goldstein. VQ-GNN: A universal framework to scale up graph neural networks using vector
quantization. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, 2021.

Carl Doersch and Andrew Zisserman. Multi-task self-supervised visual learning. In Proceedings of
the IEEFE international conference on computer vision, pp. 2051-2060, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022a.

Vijay Prakash Dwivedi, Ladislav Rampasek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, 35:22326-22340, 2022b.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. In The Twelfth International Conference on Learning Representations, 2024.

Wenzheng Feng, Yuxiao Dong, Tinglin Huang, Ziqi Yin, Xu Cheng, Evgeny Kharlamov, and Jie Tang.
Grand+: Scalable graph random neural networks. In Proceedings of the ACM Web Conference
2022, pp. 3248-3258, 2022.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

Dongqi Fu, Zhe Xu, Bo Li, Hanghang Tong, and Jingrui He. A view-adversarial framework for
multi-view network embedding. In CIKM, 2020.

Donggqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu, Andrey Malevich, Jin-
grui He, and Bo Long. VCR-graphormer: A mini-batch graph transformer via virtual connections.
In The Twelfth International Conference on Learning Representations, 2024.

Mikhail Galkin, Etienne Denis, Jiapeng Wu, and William L. Hamilton. Nodepiece: Compositional
and parameter-efficient representations of large knowledge graphs. In International Conference on
Learning Representations, 2022.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Simon Geisler, Tobias Schmidt, Hakan Sirin, Daniel Ziigner, Aleksandar Bojchevski, and Stephan
Giinnemann. Robustness of graph neural networks at scale. Advances in Neural Information
Processing Systems, 34:7637-7649, 2021.

Golnaz Ghiasi, Barret Zoph, Ekin D Cubuk, Quoc V Le, and Tsung-Yi Lin. Multi-task self-training
for learning general representations. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 8856-8865, 2021.

12

Published as a conference paper at ICLR 2025

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263-1272, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International Conference on Machine Learning, pp. 4116-4126, 2020.

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi. Har-
nessing explanations: LLM-to-LM interpreter for enhanced text-attributed graph representation
learning. In The Twelfth International Conference on Learning Representations, 2024.

Van Thuy Hoang, O Lee, et al. A survey on structure-preserving graph transformers. arXiv preprint
arXiv:2401.16176, 2024.

Yifan Hou, Jian Zhang, James Cheng, Kaili Ma, Richard T. B. Ma, Hongzhi Chen, and Ming-Chang
Yang. Measuring and improving the use of graph information in graph neural networks. In
International Conference on Learning Representations, 2020.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 594-604, 2022.

Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang.
Graphmae2: A decoding-enhanced masked self-supervised graph learner. In Proceedings of the
ACM web conference 2023, pp. 737-746, 2023.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118-22133, 2020a.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning
Representations, 2020b.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323-2332,
2018.

Amir Hosein Khasahmadi, Kaveh Hassani, Parsa Moradi, Leo Lee, and Quaid Morris. Memory-based
graph networks. In International Conference on Learning Representations, 2020.

Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon
Hong. Pure transformers are powerful graph learners. Advances in Neural Information Processing
Systems, pp. 14582-14595, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat:
A global transformer on large-scale graphs. In International Conference on Machine Learning, pp.
17375-17390, 2023.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618-21629, 2021.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image

generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11523-11532, 2022.

13

Published as a conference paper at ICLR 2025

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Sigiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In International
Conference on Machine Learning, pp. 13242—-13256, 2022.

Xiner Li, Limei Wang, Youzhi Luo, Carl Edwards, Shurui Gui, Yuchao Lin, Heng Ji, and Shuiwang
Ji. Geometry informed tokenization of molecules for language model generation. arXiv preprint
arXiv:2408.10120, 2024.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887-20902, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollér, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer vision—
ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings,
partv 13, pp. 740-755. Springer, 2014.

Chuang Liu, Yibing Zhan, Xueqi Ma, Liang Ding, Dapeng Tao, Jia Wu, and Wenbin Hu. Gapformer:
graph transformer with graph pooling for node classification. In Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, 2023a.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ringattention with blockwise transformers for near-
infinite context. In The Twelfth International Conference on Learning Representations, 2024.

Hong Liu, Jeff Z. HaoChen, Adrien Gaidon, and Tengyu Ma. Self-supervised learning is more robust
to dataset imbalance. In International Conference on Learning Representations, 2022.

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang,
Lichao Sun, Philip S Yu, et al. Towards graph foundation models: A survey and beyond. arXiv
preprint arXiv:2310.11829, 2023b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012-10022, 2021.

Zhiyuan Liu, Yaorui Shi, An Zhang, Enzhi Zhang, Kenji Kawaguchi, Xiang Wang, and Tat-Seng Chua.
Rethinking tokenizer and decoder in masked graph modeling for molecules. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023c.

Yuankai Luo, Qijiong Liu, Lei Shi, and Xiao-Ming Wu. Structure-aware semantic node identifiers
for learning on graphs. arXiv preprint arXiv:2405.16435, 2024a.

Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic GNNSs are strong baselines: Reassessing GNNs
for node classification. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024b.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates, Philip
Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In
Proceedings of the 40th International Conference on Machine Learning, pp. 23321-23337, 2023.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Position: Graph foundation models are already here. In Forty-first
International Conference on Machine Learning, 2024.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pp. 43-52, 2015.

Péter Mernyei and Citdlina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901, 2020.

14

http://snap.stanford.edu/data
http://snap.stanford.edu/data

Published as a conference paper at ICLR 2025

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

Luis Miiller, Mikhail Galkin, Christopher Morris, and Ladislav Rampasek. Attending to graph
transformers. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

Maho Nakata and Tomomi Shimazaki. Pubchemqc project: a large-scale first-principles electronic
structure database for data-driven chemistry. Journal of chemical information and modeling, 57(6):
1300-1308, 2017.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying
for collective classification. In 10th international workshop on mining and learning with graphs,
volume 8§, pp. 1, 2012.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of GNNs under heterophily: Are we really making progress? In The
Eleventh International Conference on Learning Representations, 2023.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In Proceedings of the 38th International
Conference on Machine Learning, pp. 8821-8831, 2021.

Ladislav Rampések, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501-14515, 2022.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in neural information
processing systems, pp. 12559-12571, 2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Gilinnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Yuge Shi, Imant Daunhawer, Julia E Vogt, Philip Torr, and Amartya Sanyal. How robust is unsuper-
vised representation learning to distribution shift? In The Eleventh International Conference on
Learning Representations, 2023.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse transformers for graphs. In Proceedings of the 40th International Conference
on Machine Learning, pp. 31613-31632, 2023.

Sandeep Singh, Kumardeep Chaudhary, Sandeep Kumar Dhanda, Sherry Bhalla, Salman Sadullah
Usmani, Ankur Gautam, Abhishek Tuknait, Piyush Agrawal, Deepika Mathur, and Gajendra PS
Raghava. Satpdb: a database of structurally annotated therapeutic peptides. Nucleic acids research,
44(D1):D1119-D1126, 2016.

Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised graph-level
representation learning via mutual information maximization. In International Conference on
Learning Representations, 2020.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818, 2024.

15

Published as a conference paper at ICLR 2025

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer, Remi
Munos, Petar Veli¢kovié, and Michal Valko. Large-scale representation learning on graphs via
bootstrapping. In International Conference on Learning Representations, 2022.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Michel Van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee,
Cameron LM Gilchrist, Johannes Soding, and Martin Steinegger. Fast and accurate protein
structure search with foldseek. Nature biotechnology, 42(2):243-246, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Petar Velickovi¢, William Fedus, William L. Hamilton, Pietro Lio, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2019.

Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
sequence modeling with selective state spaces. arXiv preprint arXiv:2402.00789, 2024.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
Microsoft academic graph: When experts are not enough. Quantitative Science Studies, 1(1):
396413, 2020.

Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. DIFFormer: Scal-
able (graph) transformers induced by energy constrained diffusion. In The Eleventh International
Conference on Learning Representations, 2023a.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian,
and Junchi Yan. Simplifying and empowering transformers for large-graph representations. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023b.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
Neural Information Processing Systems, pp. 13266—13279, 2021.

Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and Stan Z.
Li. Mole-BERT: Rethinking pre-training graph neural networks for molecules. In The Eleventh
International Conference on Learning Representations, 2023.

Zhe Xu, Kaveh Hassani, Si Zhang, Hanqing Zeng, Michihiro Yasunaga, Limei Wang, Dongqi Fu,
Ning Yao, Bo Long, and Hanghang Tong. How to make llms strong node classifiers? arXiv
preprint arXiv:2410.02296, 2025.

Ling Yang, Ye Tian, Minkai Xu, Zhongyi Liu, Shenda Hong, Wei Qu, Wentao Zhang, Bin CUI,
Muhan Zhang, and Jure Leskovec. VQGraph: Rethinking graph representation space for bridging
GNNs and MLPs. In The Twelfth International Conference on Learning Representations, 2024.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40—48. PMLR, 2016.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Language is all a graph
needs. In Findings of the Association for Computational Linguistics: EACL 2024, pp. 1955-1973,
2024.

16

Published as a conference paper at ICLR 2025

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877-28888, 2021.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems,
2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning automated.
In International Conference on Machine Learning, pp. 12121-12132, 2021.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved VQGAN.
In International Conference on Learning Representations, 2022a.

Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert: Pre-
training 3d point cloud transformers with masked point modeling. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 19313-19322, 2022b.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis E.H. Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 558-567, 2021.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are trans-
formers universal approximators of sequence-to-sequence functions? In International Conference
on Learning Representations, 2020.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020.

Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph self-
supervised learning for molecular property prediction. Advances in Neural Information Processing
Systems, 34:15870-15882, 2021.

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and Yanfang
Ye. Gophormer: Ego-graph transformer for node classification. arXiv preprint arXiv:2110.13094,
2021.

Lecheng Zheng, Dongqi Fu, Ross Maciejewski, and Jingrui He. Drgnn: Deep residual graph neural
network with contrastive learning. In TMLR, 2024.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793-7804, 2020a.

Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai Koutra.
Graph neural networks with heterophily. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 11168-11176, 2021.

Yangiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020b.

Markus Zopf. 1-wl expressiveness is (almost) all you need. In 2022 International Joint Conference
on Neural Networks (IJCNN), pp. 1-8, 2022.

17

Published as a conference paper at ICLR 2025

Appendix

A PRELIMINARIES

Graph Attention Networks (GAT). The representation of node i in layer [is computed as:

l = exp (o (Wa [Wanl' VjwiV1]))
hi =0 Z CkijWhj .y =

o o)

where ¢ is a non-linearity, and «;; is the normalized attention score between two connected nodes ¢
and j.

a7

Personalized PageRank (PPR). A PPR vector for a node u captures the relative importance of other
nodes with respect to node u by exploring the graph structure through iterative random walks:

r=aPr+ (1 —a)q (18)

where P =D 2AD" = ¢ R™*™ ¢ is a stochastic personalized vector, r is the stationary distribution
of random walks, and « is a damping factor.

B MODEL DETAILS

Algorithm 1 Graph Tokenizer
1: Input: Graph g = (V, &, X), Graph Encoder GNNy, Residual Quantizer RQg, BGRL Loss RQg

2: Hy = GNNy(g) {Node Representations }
3: C,Z, T, Lcommit = RQgp(Hy) {codebooks, quantized representation, discrete tokens }
4: L44; = DGI(Z) {Compute DGI Loss}
5: Lypgr; = BGRL(Z) {Compute BGRL Loss}
6: Lae = MAE(Z) {Compute MAE Loss}
7 L= Lagi + Logri + Lomae + B X Leommit {Compute Multi-Task Loss}
8 return Z, T, L

Algorithm 2 Residual Vector Quantization

1: Imput: Data X, Number of codebooks IV, Size of codebook K, Dimension of codebooks d
2: Leommit = 0

3: C = Random(NV, K, d)
4: Z = Zeros(|X]|, d)

5: T = Zeros(|X|, N)
6
7
8

: for i in |X]| do
o or=X]g
: forj=1to N do
9: k = argminy, ||r — C[j, k]||3
10: r = |r—Cl5, k]|l
11: T[i|[j] = k
12: Z[i] = Z[i) + C[j][k]
13: ‘Ccommil = £commit + ||7‘ - Sg[C[L k]] H%
14: end for
15: end for

16: return Z, T, £/|X|

C DATASETS

We provide a detailed description of the datasets used in this study. All datasets are publicly available.

18

Published as a conference paper at ICLR 2025

* CoraFull (Bojchevski & Giinnemann, |[2017), CiteSeer, and Pubmed (Namata et al.|[2012)
are citation datasets, where nodes represent documents and edges represent citation links.
Labels indicate the paper category.

* Computer and Photo (Shchur et all 2018) are from the Amazon co-purchase
graph (McAuley et al., 2015), where nodes represent goods and edges indicate that two
goods are frequently bought together. Node features are bag-of-words encoded product
reviews, and class labels are given by the product category.

* CS and Physics (Shchur et al., 2018)) are co-authorship graphs based on the Microsoft
Academic Graph from the KDD Cup 2016 challenges. Here, nodes are authors connected
by an edge if they co-authored a paper; node features represent paper keywords for each
author’s papers, and class labels indicate the most active fields of study for each author.

* WikiCS (Mernyei & Cangea, 2020) is derived from Wikipedia, where nodes represent
Computer Science articles, and edges are based on hyperlinks. The nodes are classified into
10 classes representing different branches of the field.

* Squirrel and Chameleon (Rozemberczki et al.,|2021} |Pei et al., [2020) are Wikipedia page-
page networks, where nodes represent articles from the English Wikipedia, and edges reflect
mutual links between them. The nodes were classified into five classes based on their
average monthly traffic.

* Amazon-Ratings (Platonov et al.,2023)) is based on Amazon product co-purchasing data.
Nodes represent products (books, music CDs, DVDs, VHS video tapes), and edges connect
products that are frequently bought together. The task is to predict the average rating given
to a product by reviewers.

* Roman-Empire (Platonov et al., |2023)) is based on the Roman Empire article from the
English Wikipedia. Each node in the graph corresponds to one word (not necessarily unique)
in the text, so the number of nodes equals the length of the article. Two words are connected
if they follow each other in the text or are linked in the sentence’s dependency tree. A node’s
class represents its syntactic role.

* Minesweeper (Platonov et al., |2023) is inspired by the Minesweeper game. The graph
consists of regular 100x100 grid, where each node (cell) is connected to eight neighboring
nodes (except for nodes at the edge of the grid, which have fewer neighbors). 20% of the
nodes are randomly selected as mines. The task is to predict which nodes are mines. Node
features are one-hot-encoded numbers of neighboring mines, however, for 50% of the nodes,
these features are unknown, indicated by a separate binary feature.

* Questions (Platonov et al.,|2023) is based on data from the question-answering website
Yandex Q, where nodes represent users, and edges connect two nodes if one user answered
another user’s question during a one-year time interval. The task is to predict which users
remained active on the website, forming a binary classification task.

* ogbn-proteins (Hu et al.| 2020a) is a protein-protein association network, where nodes
represent proteins, and edges indicate biologically meaningful associations between proteins,
such as physical interactions, co-expression, or homology. The task is to predict the presence
of protein functions in a multi-label binary classification setup.

* ogbn-arxiv (Hu et al.l [2020al) is a citation network between all Computer Science (CS)
arXiv papers indexed by MAG (Wang et al., 2020). Each node presents an arXiv paper, and
directed edges indicate that one paper cites another. The task is to predict the 40 subject
areas of arXiv CS papers, such as cs.Al, cs.LG, and ¢s.OS.

* ogbn-products (Hu et al.||2020a) is an Amazon product co-purchasing networkﬂ of 2 million
products. Edges indicate that products are purchased together. The task is to predict the
product category.

* pokec (Leskovec & Krevl,|2014; Lim et al., 2021)) is a social network, where nodes represent
users, and edges represent friendships. The task is to predict the gender of users.

* Peptides-Func is a peptide dataset retrieved from SATPdb (Singh et al., 2016) with over
15K peptides. Each node corresponds to a heavy atom, and edges are chemical bonds. The
task is to predict 10 peptide functions, forming a multi-label graph classification task.

'http://manikvarma.org/downloads/XC/XMLRepository.html

19

http://manikvarma.org/downloads/XC/XMLRepository.html

Published as a conference paper at ICLR 2025

* Peptides-Struct consists the same graphs as Peptides-Struct, but with different task. Here
the task is to predict aggregated 3D properties (i.e., mass, valence) of the peptides at the
graph level.

* COCO-SP is a node classification dataset based on the MC COCO image dataset (Lin et al.,
2014). Each node corresponds to a region of the image belonging to a particular class. These
superpixels nodes are extracted with the SLIC algorithm (Achanta et al., [2012)), and two
nodes are connected with an edge if the node regions share a common boundary. The task is
to predict the semantic segmentation label for each superpixel node out of 81 classes.

e PCQM-Contact is a molecule dataset with over 529K molecules (Nakata & Shimazakil,
2017). Atoms are nodes, and chemical bonds are edges. The task is to predict pairs of nodes
that will be contacting with each other in the 3D space.

For CoraFull, Pubmed, PubMed, Computer, Photo, CS, and Physics, we follow previous work and use
60%/20%/20% train/valid/test split. For WiKiCS, we follow the official split in Mernyei & Cangea
(2020). For Squirrel, Chameleon, Amazon-Ratings, Roman-Empire, Minesweeper, and Questions,
we follow the splits in [Platonov et al.| (2023)). For ogbn-proteins, ogbn-arxiv, and ogbn-products,
we follow the splits in [Hu et al.| (2020a). For pokec, we follow the split used in|Lim et al.| (2021)).
For Peptides-Func, Peptides-Struct, COCO-SP, and PCQM-Contact, we follow the split provided in
Dwivedi et al.| (2022b).

D EXPERIMENTAL SETUP

Software & Hardware. GQT is implemented using PyTorc}ﬂ quﬂ DGIﬂ and the vector-quantize-
pytorch packageﬂ Most datasets can be accessed through PyG and DGL. All experiments are
conducted on a single Nvidia A100 GPU.

Hyperparameters & Experimental Details. As illustrated in Figure[I} our method consists of two
parts: the tokenizer and the Transformer encoder. We provide the hyperparameters and experimental
details for each part below.

During the training of the graph tokenizer, we use full-graph training for small- and medium-scale
datasets, and apply sampling for large-scale graphs. We consider different sampling methods,
including random partitioning, which randomly samples nodes within a graph and returns their
induced subgraph; neighbor sampling (Hamilton et al.,[2017), GraphSAINT (Zeng et al.,|2020), and
local clustering Hou et al.| (2023)). For the GNN encoder and decoder, we use GCN or GAT as our
backbone and tune the number of layers from {1, 2, 3,4, 5, 6,7, 8,9, 10} and hidden dimensions
from {128, 256, 512, 1024}. For the quantizer, we use residual-VQ (RVQ) (Lee et al.,|2022) and
tune the number of codebooks from {1, 2, 3, 6, 9} and the codebook size from {128, 256, 512, 1024,
2048, 4096}. We set the code dimension to be equal to the hidden dimension of the GNN encoder.

During the training of the Transformer, we use KNN to add semantic edges and tune the number
of semantic neighbors from {0, 5, 10, 15, 20}. Then, we use PPR to generate a sequence of nodes
for each target node. We tune the number of PPR neighbors from {0, 5, 10, 20, 30, 50}. For the
Transformer model, we use the TransformerEncoder module in PyTorch as our backbone, and tune
the number of layers from{1, 2, 3, 4, 5, 6}, the number of heads from {4, 8}, and the feedforward
dimension from {512, 1024, 2048}. Note that for some small- and medium-scale datasets, we do not
need PPR to generate sequences, instead, we can directly take all nodes from one graph as a sequence
as in Rampasek et al.| (2022)).

Zhttps://pytorch.org/

*https://pyg.org/

*nttps://www.dgl.ai/
Shttps://github.com/lucidrains/vector-quantize-pytorch

20

https://pytorch.org/
https://pyg.org/
https://www.dgl.ai/
https://github.com/lucidrains/vector-quantize-pytorch

Published as a conference paper at ICLR 2025

Table 7: Selected hyperparameters for each dataset.

GNN Encoder Quantizer Transformer
#layers # Hidden dim # Codebooks Codebook size KNN PPR # Layers # Heads # FFN dim
CoraFull 2 256 3 128 0 15 2 4 512
CiteSeer 2 256 3 128 5 15 2 4 512
PubMed 2 256 3 256 0 15 2 4 512
Computer 2 256 3 128 5 30 2 4 512
Photo 3 512 3 128 5 30 2 4 1024
CS 2 512 3 128 5 20 2 4 1024
Physics 2 256 3 256 5 30 2 4 512
WikiCS 2 256 3 128 5 30 2 4 512
Squirrel 3 256 3 128 5 30 2 4 512
Chameleon 3 256 3 128 5 30 2 4 512
Amazon-Ratings 4 512 3 128 5 20 2 4 1024
Roman-Empire 6 256 3 256 10 15 3 4 512
Minesweeper 6 128 3 128 10 15 2 4 512
Questions 3 256 3 512 10 15 2 4 512
ogbn-proteins 6 256 3 512 0 50 3 4 512
ogbn-arxiv 4 512 3 512 5 30 2 4 1024
ogbn-products 4 1024 3 4096 5 30 2 8 2048
pokec 6 256 3 512 0 50 3 4 512
Peptides-Func 4 128 3 128 0 0 2 4 512
Peptides-Struct 4 128 3 128 0 0 2 4 512
COCO-SpP 4 128 3 128 0 0 2 4 512
PCQM-Contact 4 128 3 128 0 0 2 4 512

E ADDITIONAL RESULTS

E.1 FURTHER ABLATION STUDY

We also provide an ablation study on one of the heterophilic datasets. The results shown in Table|§]
suggest that introducing semantic edges and structural gating mechanisms specifically benefits the
heterophilic setting.

Table 8: Ablation study on effect of proposed components on the Minesweeper dataset.

Graph Tokenizer Token Modulation Augmentation Model Performance
RVQ GMAE2 DGI Codebook Positional Structural —Semantic PPR ROC-AUCT
Embeddings Encoding Gating Edges Sequence

1 v v v v Linear 90.24+0.49
2) v v Transformer 90.52+0.39
3) v v v v v v v Transformer 95.27+0.46
(@) v v v v v v v Transformer 92.91+0.55
5) v v v v v v v Transformer 93.82+0.46
(6) v v v v v v 4 Transformer 93.24+0.36
@) v v v v v v v Transformer — 94.82+0.41
) v v v v v "4 4 Transformer 93.97+0.58
©) v v v v v v v Transformer 92.83+0.35
(10) v v v v v v v v Transformer 95.28+0.44

E.2 GENERALIZATION ANALYSIS

To measure improved generalization, we follow the com- Taple 9: Comparison between mean
mon practice of treating downstream predictive perfor- GQT and RQ-VAE performance over
mance as a proxy for generalization. As shown in Table[f] five runs.

and Table [8] every component of the tokenizer, includ-
ing both SSL objectives and the quantization layer, con-
tributes to the downstream predictive performance, thereby
improving the model’s generalizability. Furthermore, to ~ RQ-VAE 66.05+0.48 89.69+0.35
evaluate the contribution of multi-task SSL objectives to ~_GQT (ours) 73.1420.16 95.282:0.44
downstream performance, we compare our results with

ogbn-arxiv Minesweeper

21

Published as a conference paper at ICLR 2025

those of a tokenizer trained using the RQ-VAE (Lee et al.l |2022) design, which employs a re-
construction objective. The results presented below indicate that using multi-task SSL objectives
significantly improves downstream predictive performance, which is strongly correlated with the
method’s generalization.

E.3 EFFICIENCY ANALYSIS

As mentioned in Section [6.1} using Table 10: Memory and run time during inference.
discrete tokens instead of node fea-
tures results in significant memory re- Attack GPU Memory Full Inference Time

duction. For instance, on the ogbn-
products dataset with 2,449,029 nodes
and 100-dimensional node features, GAT 2715MB 2108M Ss Is
GQT requires only 3 codebooks of ~ GQT (ours) 1324MB 1037MB 4s Is

size 4096, resulting in a remarkable

30-fold reduction in memory usage.

This memory reduction occurs after training the tokenizer. Since the encoder of the tokenizer is a
GNN that processes the graph with original node features, its memory footprint is comparable to that
of any arbitrary GNN. However, because the Transformer encoder only consumes discrete tokens,
which are significantly fewer than the total number of nodes, we achieve a substantial reduction in
memory footprint. As an additional experiment, we compare the inference time and memory usage
between our Transformer encoder and a Graph Attention Network (GAT) when performing inference
on all graph nodes. The results shown in Table [I0]show that while our Transformer is on par with a
sparse implementation of GAT in terms of inference time, it requires half the GPU memory.

ogbn-arxiv Minesweeper ogbn-arxiv Minesweeper

22

	Introduction
	Related Works
	Preliminaries
	Self-Supervised Graph Tokenization
	Tokenizer Properties
	Training

	Graph Transformer
	Graph Serialization
	Token Modulation
	Transformer Encoder

	Experiments
	Comparison with State-of-the-Art
	Ablation Study

	Conclusion
	Preliminaries
	Model Details
	Datasets
	Experimental Setup
	Additional Results
	Further Ablation Study
	Generalization Analysis
	Efficiency Analysis

