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Abstract

Adding entropic regularization to Optimal Transport (OT) problems has become
a standard approach for designing efficient and scalable solvers. However, regu-
larization introduces a bias from the true solution. To mitigate this bias while still
benefiting from the acceleration provided by regularization, a natural solver would
adaptively decrease the regularization as it approaches the solution. Although some
algorithms heuristically implement this idea, their theoretical guarantees and the
extent of their acceleration compared to using a fixed regularization remain largely
open. In the setting of semi-discrete OT, where the source measure is continuous
and the target is discrete, we prove that decreasing the regularization can indeed
accelerate convergence. To this end, we introduce DRAG: Decreasing (entropic)
Regularization Averaged Gradient, a stochastic gradient descent algorithm where
the regularization decreases with the number of optimization steps. We provide a
theoretical analysis showing that DRAG benefits from decreasing regularization
compared to a fixed scheme, achieving an unbiased O(1/t) sample and iteration
complexity for both the OT cost and the potential estimation, and a O(1/

√
t) rate

for the OT map. Our theoretical findings are supported by numerical experiments
that validate the effectiveness of DRAG and highlight its practical advantages.

1 Introduction

Optimal transport is now a widely used framework to compare probability distributions in different
areas of data science such as machine learning [14, 25, 6], computational biology [47], imaging
[21, 7], even economics [22] or material sciences [9]. The computational and statistical efficiency of
OT solvers is the key to facilitating their use in practical applications. Therefore, both computational
methods and the statistical bottleneck in OT, often referred to as the curse of dimensionality, have
received significant attention over the past decade [42, 57]. Regularization such as Entropic OT (EOT)
[16] is a popular method to mitigate these two issues. It consists of adding an entropic regularization
term to the objective function. OT and its entropic regularization apply to different contexts of interest.
The most general context is when the two distributions are accessed via samples and one wants to
estimate the OT distance and the corresponding plan or map. Another context of interest in some
applications, that has recently gained popularity in generative modeling [2, 10, 36], is the case of
semi-discrete OT. In this setting, one of the two distributions is discrete and the other continuous.
The OT problem, while being a natural proxy to the continuous case, is then slightly simpler since (i)
it reduces to the estimation of Laguerre cells and (ii) the curse of dimensionality is alleviated [45].
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Related works. The incorporation of entropic regularization for OT was pioneered in the discrete
setting by Cuturi [16], showing that the Sinkhorn algorithm [53] can efficiently solve the EOT problem.
Sinkhorn leads to an ε-accurate OT plan in O(n2/ε2) time when both measures have n points [19].
However, the poor dependence on ε, observed both theoretically and empirically, motivated annealing
strategies (also called ε-scaling), which gradually decrease the regularization during optimization to
better approximate the true OT solution. Such schemes appear to significantly improve performance in
practice [34, 48, 20], but their theoretical analysis remains largely open [52, 48, 12]. From a statistical
perspective, it has recently been shown that decreasing the regularization is not only computationally
beneficial but also statistically necessary: [45] demonstrate in the semi-discrete setting that with t
samples from the source and target measures, taking ε ≍ 1/

√
t allows one to achieve a minimax-

optimal O(1/
√
t) rate for OT map estimation, thereby escaping the curse of dimensionality without

assuming smoothness of the transport map. Their analysis leverages convergence results for entropic
potentials [1, 18] and builds upon the entropic map estimator developed in [51, 44].

In parallel, there has been increasing interest in solving semi-discrete OT problems, where the source
distribution is continuous while the target measure is known and discrete [2, 54]. In low dimensions,
when the source density is fully known, Newton-type solvers [38, 35, 31] have been proposed,
offering highly efficient methods for solving the semi-dual problem. In higher dimensions, or when
the source measure is only accessible via samples [24] propose solving the semi-dual formulation
of semi-discrete (E)OT using an SGD scheme. SGD solvers are a natural choice here since they
are well-suited for large-scale applications: they can operate in an online setting using one sample
at a time without storage requirements, and they avoid discretization bias. The study of SGD and
Averaged SGD (ASGD) for solving the semi-dual of EOT was further investigated in [5], revealing,
however, prohibitive constants in terms of 1/ε and higher. This study shows that, as in the discrete
case, the use of entropic regularization introduces a computational trade-off.

Contributions. We introduce DRAG (Decreasing Regularization Averaged Gradient), an SGD-
based algorithm for solving the non-regularized semi-discrete OT. DRAG employs a decreasing
entropic regularization scheme decaying with the sample count, aiming to have the best regular-
ization/accuracy trade-off at any time. While matching the computational and memory efficiency
of vanilla SGD, DRAG attains superior convergence compared to fixed-regularization methods by
exploiting the enhanced properties of the entropic semi-dual without incurring adverse dependencies
on the vanishing regularization. Concretely, given t iid samples from the source measure, DRAG
achieves rates up to O(1/t) for both the OT cost and the potential. A key technical result (Lemma
2) underlying DRAG is that, within an ε-ball around the optimum, the entropic semi-dual with
regularization ε satisfies a restricted strong-convexity property independent of ε. DRAG is designed
to remain, with high probability, within this ε-ball, even as ε decreases. Furthermore, by analyzing
the difference between the Laguerre cells induced by the true OT potential and our estimate, we
establish a O(1/

√
t) convergence rate for the OT map. Both our theoretical analysis and numerical

experiments confirm the benefits of decreasing regularization incorporated in DRAG.

Notations. We note ∥ · ∥ the Euclidean norm, and for C ⊂ Rd, DC := sup{∥x − y∥ : x, y ∈ C}
denote its diameter. For a, b ∈ R, a ∨ b := max{a, b} and a ∧ b := min{a, b}. For v ∈ Rd,
vmin := min1≤j≤d vj . 1d and 0d denote the vectors (1, . . . , 1) and (0, . . . , 0) in Rd. λRd is the
Lebesgue measure in Rd. P(Rd) is the set of probabilities in Rd, and for ρ ∈ P(Rd), Supp(ρ) is its
support. O(·) and o(·) are the usual approximation orders. We use f ≲ g if there exists a constant
C > 0 such that f(·) ≤ Cg(·). We write a ≍ b if both a ≲ b and b ≲ a.

2 Behind Stochastic Approximation for Optimal Transport

2.1 Background on (Entropic) Optimal Transport

Given a source and target probability measures µ, ν ∈ P(Rd), a cost function c : Rd × Rd → R+

and a regularization parameter ε ≥ 0, the Entropic Optimal Transport (EOT) problem is

OTε
c(µ, ν) := min

π∈Π(µ,ν)

∫
Rd×Rd

c(x, y)dπ(x, y) + ε

∫
Rd×Rd

ln

(
dπ

dµdν
(x, y)

)
dπ(x, y), (1)

where Π(µ, ν) is the set of joints probability measures on Rd × Rd with marginals µ and ν. Mild
conditions on µ, ν and the cost can be made so that this problem is well-posed, see [56]. When ε = 0,
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Problem (1) recovers the Kantorovich formulation of OT. In this article, we focus on the quadratic
cost c(x, y) = 1

2∥x− y∥2, although some of our results can be extended to other costs. Our analysis
relies on the semi-dual formulation of the convex problem (1) given by

OTε
c(µ, ν) = min

f∈C(Rd)
−
∫
Rd

f(x)dµ(x)−
∫

f c,ε(y)dν(y), (2)

where for all y ∈ Rd,

f c,ε(y) : =

{
minx∈Rd c(x, y)− f(x) if ε = 0,

−ε log
(∫

Rd exp
(

f(x)−c(x,y)
ε

)
dµ(x)

)
if ε > 0.

Under mild conditions on the cost or densities, a positive ε makes the semi-dual formulation 1/ε-
smooth [17]. The key property of this semi-dual formulation of (E)OT is to retain more convexity
than the standard dual of (1) (see [28, 55]).

Optimal map and Brenier’s theorem. We consider the quadratic cost, ε = 0 and µ, ν having
second-order moments. Under the additional assumption that the measure µ is absolutely continuous,
the optimal potential f∗, called Kantorovich potential, is (locally) Lipschitz and the map

Tµ,ν(x) := x−∇f∗(x) (3)

pushes forward µ onto ν (see [8]). In addition, Tµ,ν is the gradient of a convex function. This optimal
map has more importance than the OT cost in subfields of machine learning such as generative
modeling [29, 36] or domain adaptation [15].

2.2 Semi-discrete OT

Semi-discrete (E)OT is when the source measure µ is absolutely continuous and the target measure
ν =

∑M
j=1 wjδyj

is a finite sum of M ≥ 1 Dirac masses with weights wj > 0. In this case, the
semi-dual formulation reduces to a finite-dimensional convex optimization problem on RM

min
g∈RM

Hε(g)
def.
= −

∫
Rd

gc,ε(x)dµ(x)−
M∑
j=1

gjwj , (4)

where for all x ∈ Rd, gc,ε(x) is a (vectorial) (c, ε)-transform with respect to a vector g =
(g1, . . . , gM ) ∈ RM , defined by

gc,ε(x) =

{
minj∈J1,MK

[
1
2∥x− yj∥2 − gj

]
if ε = 0,

−ε ln
(∑M

j=1 exp
(

− 1
2∥x−yj∥2+gj

ε

)
wj

)
if ε > 0.

The vector g corresponds to the value of the potential function at the points yj . For notational
convenience, we write Hε(g) =

∫
Rd hε(x,g)dµ(x) with hε(x,g) = −gc,ε(x) −∑M

j=1 gjwj . For
all g ∈ RM and given X ∼ µ, an unbiased estimator of the gradient is given by

∇ghε(X,g)j = −wj + χε
j(X,g), 1 ≤ j ≤ M ,

where for (x,g) ∈ Rd × RM , we have

χε
j(x,g) =

exp
(

− 1
2∥x−yj∥2+gj

ε

)
wj∑M

k=1 exp
(

− 1
2∥x−yk∥2+gk

ε

)
wk

·

For ε = 0, χj(x,g) = 1Lj(g)(x) is an indicator function and we have a partition Rd =
⋃M

j=1 Lj(g),
where for all j ∈ J1,MK,

Lj(g) :=

{
x ∈ Rd;gc(x) =

1

2
∥x− yj∥2 − gj

}
.

The convex sets Lj(g) are called power or Laguerre cells and µ(Li(g)∩Lj(g)) = 0 when i ̸= j. By
the first-order optimality condition, solving semi-discrete OT amounts to finding g such that for all
j ∈ J1,MK, µ(Lj(g)) = wj . Semi-discrete OT is a case of application of Brenier’s theorem. Given
the optimal potential g∗, the OT map is Tµ,ν(x) = x−∇(g∗)c(x) = x− yj for x inside Lj(g

∗).
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2.3 Solving semi-discrete (E)OT with the semi-dual formulation

Exploiting its finite-dimensional nature, solving semi-discrete OT by optimizing its semi-dual formu-
lation has become a popular approach. Notably, Newton methods are highly effective to solve H0

in scenarios with low dimensions and known source densities, utilizing meshes to approximate the
source density [38, 35, 31]. In scenarios involving arbitrary dimensions or when only sample-based
access to the source measure is available, EOT emerges as a favored strategy. Notably, to avoid
working with a discretized version of the source measure, such as with the Sinkhorn Algorithm, [24]
recommend employing stochastic optimization to solve (4). Indeed, the semi-dual EOT problem has
a convex objective of the form

Hε(g) = EX∼µ[hε(X,g)],

with X as a random variable under µ. As noted in [24], the main advantage of stochastic optimization
algorithms is that they are suited for really large-scale problems, keeping in memory only the discrete
measure ν. Moreover, avoiding discretization enables unbiased estimation of (E)OT quantities.
SGD-based solvers also naturally operate in an online fashion, progressively refining their solutions
as more samples become available.

For a given fixed regularization parameter ε > 0, stochastic first-order methods are predominantly
employed to solve (4). Starting with an initial value g0 ∈ RM , these algorithms consider at each
iteration one or many samples Xt ∼ µ and rely on an update of the form

gt = gt−1 − γt∇ghε(Xt,gt−1) .

At time t, the Averaged Stochastic Gradient Descent (ASGD) returns the averaged estimate gt =
1

t+1

∑t
k=0 gk, while Stochastic Gradient Descent (SGD) returns gt. ASGD, as an acceleration of

SGD, has been widely studied in the literature (see [43, 41, 4], and [5] for the specific case of EOT).

Choosing the regularization parameter ε for EOT. Approximating the EOT problem rather than
the OT one benefits from an enhanced convergence rate, especially in the discrete setting. The
introduction of the Sinkhorn Algorithm for solving the EOT problem, as highlighted by [16], has led
to a resurgence of interest in OT within the Machine Learning community.

The choice of the regularization parameter ε then becomes a practical and/or statistical problem:

1. Selecting the regularization parameter is a practical issue that aims to strike an optimal
balance between convergence speed and accuracy [16, 19]. To address this trade-off, some
heuristics, such as ε-scaling [49], which involves a decreasing regularization scheme, are
employed in the discrete setting, although they lack sharp theoretical guarantees.

2. In the semi-discrete and continuous settings, the initial statistical problem is to determine
the number of samples needed to accurately approximate the OT quantities. In this line of
work, the use of EOT to construct estimators has also been proven to be satisfactory. In this
case, studies show that regularization must decrease as the number of samples increases
[44, 45]. However, discrete solvers do not adjust to the number of drawn points, as the
solver is initiated once the points to approximate the measures have been sampled.

3 DRAG: Decreasing Regularization Averaged Gradient

3.1 The setting.

We focus here on the one-sample setting of semi-discrete OT. Specifically, we sample from the source
measure µ and leverage the full information of the discrete measure ν. Furthermore, fixing R > 0
and α ∈ (0, 1], we make the following mild assumption, already present in [18, 45].

Assumption 1. We assume that µ ∈ P(Rd) has support contained in the convex ball B(0, R) and
admits a density dµ that is α-Hölder continuous and satisfies 0 < dµ < ∞ on its support. We denote
by Pα(B(0, R)) the set of such measures.
The target ν is assumed to be discrete, of the form ν = 1

M

∑M
j=1 δyj

, with (y1, . . . , yM ) ∈ B(0, R)M .
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3.2 DRAG: A gradient-based algorithm adaptive to both the sample size and the
regularization parameter

To accurately estimate the non-regularized OT cost and map, it is crucial to use a regularization
parameter ε that decreases as the number of drawn samples increases. However, no existing algorithm
in the OT literature simultaneously adapts to both entropic regularization and sample size. Inspired
by ε-annealing [49], a decreasing regularization scheme from the discrete OT setting, which is known
for accelerating the convergence of the Sinkhorn algorithm in practice, and considering that SGD
algorithms are inherently adaptive to the number of samples, we introduce the Decreasing entropic
Regularization projected Averaged stochastic Gradient descent (DRAG) to solve the semi-dual (2).
Our algorithm employs a decreasing regularization sequence (εt)t and replaces the usual gradient
step in SGD with a projected step using adaptive regularization

gt = ProjC
(
gt−1 − γt∇ghεt−1

(Xt,gt−1)
)
,

where for U ⊂ RM convex, we define the projector as ProjU (g) := argmin{∥g − g′∥,g′ ∈ U}.
This method can be interpreted as a decreasing bias SGD scheme. For such a method, employing
a projection step can be highly effective in ensuring convergence [13, 23]. In the context of EOT
with bounded cost, it is well established that the (c, ε)-transform enables the localization of a ∥.∥∞-
ball, where a minimum of the semi-dual problem lies [40]. Specifically, since sup{c(x, yj);x ∈
Supp(µ), j ∈ J1,MK} < 2R2 by Assumption 1, a preliminary projection set can be expressed as
C∞ := [0, 2R2]M and we know that we can search for a minimum in this set. Nonetheless, leveraging
the regularity of the cost function, we can have a projection set with a unique optimizer, as described
in the following Lemma.

Lemma 1. (Proof in Appendix B.6) Under Assumption 1, for all ε ≥ 0, there exists a unique solution
g∗
ε to (4) in Cu := {g ∈ RM ; g1 = 0 and |gj | ≤ R∥y1 − yj∥, j ∈ J1,MK}.

Algorithm 1 DRAG

Parameters: (γ1, a, b, C)
Initialize g0 ∈ C, g0 = g0, ε0 = 1.
for k = 1 to t do
γk = γ1k

−b

Xk ∼ µ
gk=ProjC

(
gk−1 −γk∇ghεk−1

(Xk,gk−1)
)

gk = 1
k+1gk + k

k+1gk−1

εk = k−a

end for
return gt

Note that the choice g1 = 0 is arbitrary. In what
follows, we refer to C = C∞ or C = Cu as our
projection set. Note that for both sets, the projec-
tion’s computational complexity is only O(M),
as it involves merely clipping each coordinate
of our vector.

Finally, we consider the Decreasing Regular-
ization projected Averaged stochastic Gradient
descent (DRAG) defined by

gt =
1

t+ 1
gt +

t

t+ 1
gt−1,

with g0 = g0. The pseudo-code of our algo-
rithm is given in Algorithm 1. A main advantage of DRAG is its O(dtM) computational complexity
and O(dM) spatial complexity, which make it well suited for large-scale problems.

3.3 Key properties of the semi-dual Hε for the design of DRAG

The design and convergence analysis of DRAG rely on two fundamental properties of the semi-dual
objective Hε. First, the fast convergence of entropic potentials ensures that the optimal solution does
not change abruptly as the regularization parameter varies. Second, the enhanced Restricted Strong
Convexity (RSC) of Hε around its optimum. These two properties are crucial to the construction of
DRAG and are detailed below.

Convergence of the entropic potentials. The following result from [18] establishes that the
convergence of entropic optimal potentials is faster than linear as ε′ → ε.

Proposition 1. [Corollary 2.2 [18]] For 0 ≤ ε′ ≤ ε, under Assumption 1 , there exists a constant
K0, notably depending on the characteristics of ν, such that for any α′ ∈ (0, α),

∥g∗
ε − g∗

ε′∥ ≤ K0ε
α′

(ε− ε′) .
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Note that, up to a transformation of the form g∗
εt + a1M , where a ∈ R∗, the minimizer of the

semi-dual is unique. Consequently, our analysis on the orthogonal complement of the subspace
spanned by 1M , denoted as Vect(1M )⊥. For simplicity, for g,g′ ∈ RM , we denote for p ∈ [1,∞]

∥g − g′∥p := ∥g − g′∥p Vect(1M )⊥ , ⟨g,g′⟩ := ⟨g,g′⟩Vect(1M )⊥ .

Global and local Restricted Strong Convexity. The convergence behavior of gradient-based
methods is a central topic in convex optimization. The Restricted Strong Convexity (RSC) condition
[58] offers a strictly weaker alternative to strong convexity while still providing comparable guarantees
in many settings [58, 50]. The following lemma characterizes the RSC of Hε. Notably, while the
global RSC constant on C scales linearly with ε−1, the local RSC in a neighborhood of radius ε/2
around the optimum becomes independent of ε. This motivates the decreasing regularization scheme
in DRAG: by gradually reducing ε, we ensure that iterates remain within regions where the improved
convexity properties can be fully exploited.
Lemma 2 (Global and local RSC of Hε, proof in Appendix B.7). For any ε ∈ (0, 1], under
Assumption 1, there exists ρ∗ independant of ε, such that for all g ∈ C,

⟨∇Hε(g),g − g∗
ε⟩ ≥

ρ∗
ε

2c∞

(
1− e−

2c∞
ε

)
∥g − g∗

ε∥2 if ∥g − g∗
ε∥ >

ε

2
,

ρ∗
(
1− e−1

)
∥g − g∗

ε∥2 if ∥g − g∗
ε∥ ≤ ε

2
.

Here, ρ∗ provides a lower bound on the strong convexity constant of Hε restricted to the subspace
Vect(1⊥), and it holds uniformly over ε ∈ (0, 1] (see Theorem 3.2 in [18] for further details).

3.4 Convergence rate of DRAG

Convergence rate before averaging. The following proposition provides a key high-probability
control, ensuring that the iterates gt remain uniformly close to the optimal potential g∗

εt at all times t.
Proposition 2. (Proof in Appendix B.5) Under Assumption 1 with µ ∈ Pα(B(0, R)), taking the
parameters (γ1, a, b) of DRAG such that γ1 > 0, b ∈

(
1
2 , 1
)
, with constraints 2a < b, a + b <

1, 1 + a+ aα > 2b, we have for any δ > 0 and every q > 0,

P
(
∥gt − g∗

εt∥ ≥ εt
)
≲ t−q(b−2a)+δ .

This result is key to leveraging the locally enhanced RSC of Hεt and guides how quickly the
regularization can decay. When b > 2a, it yields a convergence rate of o(tp) for all p. This
proposition leads to the convergence rate of the non-averaged DRAG iterates stated in Theorem 1.

Dependence on a, b, and α. As we can see, the convergence rate depends on a, b from DRAG and
the Hölder regularity. While the constraints may seem difficult to interpret, setting a arbitrarily close
to 1

3 (denoted a = 1
3

−) and b = 2
3 ensures that the constraints are satisfied for any α ∈ (1/2, 1].

Theorem 1. (Proof in Appendix B.1) Under the same assumptions as in Proposition 2, we have for
any α′ ∈ (0, α)

E
[
∥gt − g∗∥2

]
≲

1

ρ∗ · tb
+

1

t2a+2aα′ , t ≥ 1 .

Remarkably, we achieve a convergence rate without any undesirable dependence on regularization.
In contrast, [5] derived a convergence rate of the form O(ε−ct−b) for a fixed regularization, with c at
least equal to 1. Note that having no adverse dependence on the regularization parameter is a key
necessary characteristic of DRAG, which aims to solve the non-regularized OT problem at fast rates.

Enhanced convergence rate with averaging. In convex stochastic optimization, it is known that
averaging SGD iterations can lead to acceleration. More precisely, ASGD can adapt to the possibly
unknown local strong convexity of the objective function at the optimizer [43, 3] and achieve optimal
O(1/t) converge rates. Despite the fact that our objective function changes at each time t, Theorem
2 shows that DRAG fully exploits the acceleration thanks to averaging.
Theorem 2. (Proof in Appendix B.2) Under the same assumptions as in Theorem 1, noting s =
min{1, 2a+ 2aα′}, we have for all α′ ∈ (0, α),

E
[
∥gt − g∗∥2

]
≲

1

ts
.
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The rates again depend on a, b, and α. The key message here is that by taking a = 1
3

− and b = 2
3 , we

recover the optimal O(1/t) rate for any α ∈ ( 12 , 1].

4 Optimal Transport cost and map estimation with DRAG

In the previous section, we established the convergence rate of DRAG to the OT potential. While
this result was central to our theoretical analysis, our final objective is to estimate the OT cost and
transport map. Leveraging the convergence rate of the potential, we derive estimation guarantees for
these key OT quantities.

4.1 OT cost estimation

Corollary 1. (Proof in Appendix B.4) Taking the same assumptions as Theorem 2, with s =
min{1, 2a+ 2aα′}, we have

E |H0(g
∗)−H0(gt)| ≲

1

ts
. (5)

Once again, when α > 1/2 and setting a = 1
3

− and b = 2
3 , we achieve an O(1/t) convergence

rate, which is optimal for strongly convex objectives. This rate is obtained by leveraging the locally
enhanced RSC property and our adaptive decreasing regularization scheme. The fact that H0 is
locally smooth, as noted in Theorem 4.1 of [32], also plays a crucial role in the proof of Corollary 2 .

4.2 Brenier map estimation

When employing entropic regularization, a popular choice to approximate the OT map involves using
the estimator of the entropic Brenier map [44] T ε

µ,ν(g
∗
ε)(x) = x−∇(g∗

ε)
c,ε. Indeed, for ĝ ∈ RM ,

T ε
µ,ν(ĝ)(x) could serve as an estimator. The objective is then to find an accurate estimator, ĝ, close

to g∗
ε , and to analyze its performance based on the bias-variance decomposition

∥Tµ,ν − T ε
µ,ν(ĝ)∥2L2(µ) ≲ ∥T ε

µ,ν(ĝ)− T ε
µ,ν(g

∗
ε)∥2L2(µ) + ε,

using the fact that ∥Tµ,ν − T ε
µ,ν(g

∗
ε)∥2L2(µ) ≲ ε ([45], Theorem 3.4). However, the mapping

g 7→ T ε
µ,ν(g) is ε−1-Lipschitz, complicating the bias-variance trade-off given that εt = t−a. Instead,

we rely on the gradient computed thanks to the c-transform of the estimator gt of DRAG. In fact,
for any x ∈ Rd, if there exists j ∈ J1,MK such that x is in the interior of Lj(g

∗) ∩ Lj(gt), we have
Tµ,ν(x) = x − ∇(gt)

c(x). Indeed, no matter g, whenever x ∈ Rd is in the interior of Lj(g), the
gradient of gc is given by

∇(g)c(x) = argmax
k

[
1

2
∥x− yk∥2 − gj

]
= yj . (6)

By analyzing the differences of Laguerre cells partitions between L(gt) and L(g∗), we derive the
following theorem.

Theorem 3. (Proof in Appendix B.3) Under the same assumptions as Theorem 1, defining for all
x ∈ Rd and time t ≥ 0 T (gt)(x) = x−∇gc

t , s = min{1, 2a+ 2aα′}, we have for all 1 ≤ p < ∞

E
[
∥Tµ,ν − Tµ,ν(gt)∥pLp(µ)

]
≲

1

ts/2
.

When α > 1/2, setting a = 1
3

− and b = 2
3 , we recover an O(1/

√
t) convergence rate. This

matches the rate obtained in [45], but in our case it is achieved in the one-sample setting with an
algorithm that refines its estimate online, whereas their approach relies on the Sinkhorn algorithm in
a batched setting. Note that, unlike our method, theirs achieves the optimal rate for any α ∈ (0, 1).
However, the use of online algorithms is crucial in high-dimensional applications where data is
sampled sequentially, such as in generative modeling. In such settings, although the source measure
is not compact, it is often chosen to be the standard Gaussian, which has a Lipschitz density and
therefore corresponds to the case α = 1.
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5 Numerical experiments

Convergence rates of DRAG on synthetic data. We numerically verify here our convergence rate
guarantees through various examples. For each example, we know the theoretical OT map, cost, and
discrete potential. The first two examples are similar to those in [45]. In all figures and experiments,
we set the parameters of DRAG to εt = 0.1/ta, a = 0.33, b = 2/3, γ1 = Diam(Supp(µ)). Our
numerical investigation found that our parameter selection is robust without further hypertuning.

Examples settings: (1) µ ∼ U([0, 1]10), Supp(ν) = {yj = ( j−1/2
M , 1

2 , ...,
1
2 ), j ∈ J1,MK}, w =

1
M 1M ,M = 1000. (2) µ ∼ U([0, 1]10), M = 30 and y1, ..., yM randomly generated in [0, 1]10 . We
then also randomly generate g∗ ∈ R30 and approximate w with Monte Carlo (MC), such that g∗ is
the discrete optimum potential. This setting led to non-uniform weights, with wmin = 0.0011. (3)
µ ∼ U([δ, 1 + δ]), δ = 0.5, Supp(ν) =

{
k
M ; k ∈ J1,MK

}
, w = 1

M 1M ,M = 1000.
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Figure 1: Convergence rate to the OT potential, cost and map for Examples 1,2 and 3.

In Figure 1, we show the convergence rates of the OT cost, map, and discrete potential. As we
can see, our theoretical rates are matched for all OT quantities. The higher variance in the OT cost
estimations in Example 3 is likely due to the use of 108 Monte Carlo samples to approximate H ,
which introduces an additional approximation error beyond the one caused by DRAG alone.

DRAG compared to fixed regularization ASGD. In Figures 2 and 3, we compare the effectiveness
and robustness of decreasing vs. fixed regularization schemes. Figure 2 shows that DRAG consistently
outperforms projected ASGD with various fixed regularization values, achieving a better trade-off
between convergence speed and solution quality. Fixed schemes either converge to biased solutions
when regularization is large or fail to converge in time when it is too small (e.g., ε = 5 · 10−3).
This highlights DRAG’s advantage during the entire optimization process and supports the idea that
starting with high regularization and gradually reducing it yields more stable and accurate solutions
in semi-discrete optimal transport. Figure 3 shows DRAG’s robustness to the decay parameter a:
both a = 0.3 and a = 0.5 yield similar convergence, indicating low sensitivity. All decreasing
regularization variants also clearly outperform the non-regularized projected ASGD. While all
regularization schemes eventually converge with more iterations, DRAG remains one to two orders
of magnitude more accurate, due to its improved start visible in both figures (see Appendix A).

100 1000 10000 100000
Iterations

10−3

10−2

10−1

100

101

102

103

E
rr

or
:
‖ḡ
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Figure 2: DRAG compared to ASGD with a
fixed regularization on Example 1.
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Figure 3: DRAG, with different decreasing
regularization rate εt = 0.1/ta on Example 1.
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Generative modeling task. We illustrate the practical benefits of our solver in the
context of generative modeling. In [2], semi-discrete OT is used to map a simple
prior onto encoded data points in latent space, with the goal of reducing mode collapse.

swissroll - Ground Truth DRAG-generated Adam-generated

spiralarms - Ground Truth DRAG-generated Adam-generated

Figure 4: Comparison of DRAG and
ADAM for a generative model task

To generate new samples, they approximate a semi-discrete
OT map from a standard gaussian to the empirical distri-
bution of encoded data points in the latent space and then
apply a specific interpolation scheme to obtain a continu-
ous mapping from prior to latent space. We replicate their
pipeline on toy datasets from their repository [27], replac-
ing their ADAM-based solver with DRAG, using the same
number of samples. As we can see, while both solvers
yield good results on the "swissroll" target data, DRAG
outperforms the ADAM solver on the "spiralarms" data, be-
ing able to almost completely generate it, whereas ADAM
shows poorer coverage. Since the Gaussian is not com-
pactly supported, this setup falls under Assumption 1, and
DRAG was run without projections. This further underscores its robustness in more general settings.

Monge-Kantorovich Quantiles. We visualize our OT map estimator on a concrete example of
Monge-Kantorovich (MK) quantiles [11]. In this context, having a target measure ν to investigate,
the source measure is set to be the uniform measure on the unit Euclidean ball µ ∼ U(B(0, 1)).
Given the OT map Tµ,ν (or its approximation), Tµ,ν

(
B(0, k/10)

)
for k ∈ J1, 10K define MK quantile

regions. We used M = 105 points to approximate ν, a discrete version of a boomerang-shaped
measure and benchmarked DRAG against two OT solvers that can solve semi-discrete OT: Online
Sinkhorn [37], using the EOT map estimator and Neural OT [33]. DRAG and Online Sinkhorn used
107 source samples; for the latter, the entropic regularisation was tuned to ε = 10−3. Both ran in
under one minute. Neural OT, following Appendix B of [33], processed over 108 samples using a
three hidden layers MLP, was ten times slower, even on a A100 GPU. Figure 5 displays the estimated
MK quantile regions of the target measure ν, color-coding each centered annulus region. As visible
in the figure, DRAG is the only method producing an unbiased estimate of the MK quantiles, fully
covering the support of ν while keeping every MK region convex, as expected in theory.

(a) Source (b) Target (c) DRAG (d) Online Sinkhorn (e) Neural OT

Figure 5: Comparison of Monge-Kantorovich quantiles approximation with different solvers

Additional experiments. The appendix presents further experiments that, while not affecting our
theoretical results, may benefit practitioners. We show that mini-batching with GPU acceleration and
weighted averaging of iterates gt can significantly speed up the algorithm. We also compare DRAG
to Adam on synthetic data, highlighting its superior performance.

6 Conclusion

In EOT, a decreasing regularization parameter naturally appeals to practitioners who employ annealing
schemes to accelerate Sinkhorn-like algorithms. Similarly, in the statistical community, regularization
that decreases with the number of samples is preferred for more accurately approximating true
OT quantities. With our algorithm, DRAG, we show that these two motivations for decreasing
regularization can coexist successfully. We prove that DRAG achieves optimal convergence rates:
O(1/t) for both the OT potential and cost, and O(1/

√
t) for the OT map. These rates are obtained by

leveraging decreasing regularization as a form of acceleration. To the best of our knowledge, this is
the first algorithm in the OT literature that adapts to both regularization strength and sample size. Our
results also motivate further investigation of decreasing regularization in (i) discrete OT, by adapting
our approach to demonstrate the acceleration benefits of annealing schemes, and in (ii) semi-discrete
OT, by developing new optimized versions of DRAG, such as those incorporating adaptive step sizes.
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A Additonnal Experiments

A.1 Mini-batch DRAG.

As for Vanilla SGD, we can take advantage of GPU parallelization and replace the gradient estimator
using one sample X ∼ µ

∇ghε(X,g)

by a mini-batch estimator, using nb ≥ 1 i.i.d samples X1, ..., Xnb
samples of the source measure at

once

1

nb

nb∑
k=0

∇ghε(Xk,g). (7)

Of course, no matter the choice nb, (7) defines an unbiased estimator of ∇Hε(g).

Using a mini-batch of size nb, we suggest multiplying γ1 by
√
nb, as is usual with mini-batch SGD.

The following figure shows the acceleration due to mini-batching on Example 1, 2 and 3, while
maintaining the same computational time when using a GPU. Indeed, each mini-batch estimator has
an error an order of magnitude lower than the non-batched ones, even with a small mini-batch size of
nb = 16.
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‖gt − g∗‖2 (mini-batch)

Figure 6: Comparison of the non mini-batched and mini-batched estimators on Example 1, 2 and 3,
nb = 16.

A.2 Weighted Averaging: Maintaining a better trade-off between averaged and non-averaged
iterations.

I is well known that the averaged algorithm can suffer from bad initialization. One strategy to over-
come this is weighted averaging [39]. Namely, we replace the averaged estimator gt =

1
t+1

∑t
k=0 gt,

by

g
(ω)
t :=

1∑t
k=0 log(k + 1)ω

t∑
k=0

log(k + 1)ωgk,

with a parameter ω > 0. The parameter ω balances the weights assigned to the estimators gk. As
ω increases, greater importance is given to the more recent estimates, while we retrieve gt when ω
goes to 0. As for the usual averaged estimators, we can perform the weighted average online, without
having to store all the iterates, with the recursion

g
(ω)
t+1 =

(
1− ln(t+ 1)ω∑t

k=0 ln(k + 1)ω

)
g
(ω)
t +

ln(t+ 1)ω∑t
k=0 ln(k + 1)ω

gt+1.

It is important to note that g(ω)
t will have the same asymptotic convergence guarantees as gt.
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Figure 7: Comparison between gt,gt and g
(ω)
t on Examples 1, 2 and 3, with ω = 2

As illustrated in Figure 7, the weighted average estimator consistently outperforms gt, achieving
orders of magnitude better performance in Examples 2 and 3. Note that a mini-batch size of 16 was
used for all experiments, each repeated 10 times.

A.3 DRAG compared to Adam.

We compare here the performance of our algorithm DRAG to that of the Adam algorithm [30], on
Example 1, with M ∈ 200, 2000. The experiment was repeated 10 times. For this comparison, we
fixed the parameters of DRAG to (

√
M, 1/3, 2/3) and ran the algorithm for t = 105 iterations. The

parameters for Adam were set to β1 = 0.9, β2 = 0.999, and λ = 10−3 (learning rate/weight decay).
As shown in Figure 8, DRAG clearly outperforms Adam on this example, particularly in the early
iterations and as the number of points increases.
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Figure 8: Comparison of DRAG with Adam on Example 1, for different values of M .

A.4 DRAG compared to non regularized ASGD

As discussed in the numerical section, we observed empirically that all methods, including the non-
regularized projected ASGD, eventually converge to the true solution given a sufficient number of
iterations. In Figure 9, we report additional experiments with a larger iteration budget to confirm this
behavior. Notably, even the non-regularized ASGD converges, albeit much more slowly. In contrast,
DRAG converges significantly faster and achieves higher accuracy earlier in the optimization process.
Among the DRAG variants, we observe that choices of a ∈ 0.2, 0.4 yield the best performance, which
aligns with our theoretical analysis suggesting that a = 1

3

− achieves the optimal convergence rate in
this setting, since b = 2

3 . These results reinforce our claim from the main text that, while all schemes
converge given enough iterations, DRAG remains consistently one to two orders of magnitude more
accurate due to its improved early-stage performance (see Appendix A).

Note also that the convergence of the non-regularized ASGD is encouraging, as it highlights that, with
a sufficiently large number of steps, the effect of vanishing regularization is not a deterrent. Indeed,
as t → ∞, the regularized gradient becomes numerically indistinguishable from the non-regularized
one, essentially corresponding to the difference between a tempered softmax with temperature ε and
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an argmax. This further supports the view that DRAG serves as an effective acceleration mechanism
in the early stages of optimization and that by decreasing the regularization, we will not hit a plateau.
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Figure 9: Comparison of DRAG with different a and non-regularized ASGD

B Proofs

Additionnal notations.

For any c > 0 we define the function t 7→ Ψc(t) such that

T∑
t=1

t−c ≤ Ψc(T ) :=


1 + ln(T + 1) if c = 1,
2c−1
c−1 if c > 1,

1 + 1
1−c (T + 1)1−c if c < 1.

(8)

For a sequence (ut)t∈N, if t
2 /∈ N, u t

2
must be understood as u⌈ t

2⌉.

In all the sequel, we note

∆t = ∥gt − g∗
εt∥2.

Remark that the dependence in t is both in the estimator gt and the optimizer g∗
εt . We also recall that

we note DC := sup
g,g′∈C

∥g − g′∥ < ∞ .

B.1 Proof of Theorem 1: Convergence rate of the non averaged iterates.

Proof. Using Lemma 3, for any t ≥ ta,α, we have

∆t+1 ≤ ∆t − 2γt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉
+ 5γ2

t+1.

Let Ft denote the filtration generated by the samples X1, . . . , Xt
iid∼ µ, that is Ft = σ (X1, . . . , Xt)

and taking the conditional expectation, we have

E [∆t+1|Ft] ≤ ∆t − 2γt+1

〈
∇Hεt(gt),gt − g∗

εt

〉
+ 5γ2

t . (9)

Using Lemma 2 on the restricted strong convexity of Hεt , we have〈
∇Hεt(gt),gt − g∗

εt

〉
≥ ρ∗(1− e−1)∥gt − g∗

εt∥21∥gt−g∗
εt

∥≤εt/2 .

Therefore, we have

E [∆t+1 | Ft] ≤
[
1− 2ρ∗(1− e−1)γt+1

]
∆t +

[
2ρ∗(1− e−1)1∥gt−g∗

εt
∥≥εt/2

]
γt+1∆t + 5γ2

t+1.

(10)
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Using Proposition 2, for all p and β ∈ (0, 1), there exists Cβ,p such that for all t ≥ 0,E[∆p
t ] ≤

Cβ,p
γp
t ε

βp
t

εpt
≤ Cβ,pt

−bp+a(1−β)p. Therefore,

E[1∥gt−g∗
εt

∥≥εt/2] = E[1∥gt−g∗
εt

∥2p≥ε2pt /2p ]

≤ Cβ,pt
−bp+ap(3−β) by Markov’s inequality

≤ Cβ, 4b
b−a(3−β)

t−4b taking p =
4b

b− a(3− β)
, with a(3− β) < b . (11)

Note that, since 2a < b, we can always choose β such that the inequality a(3− β) < b holds. Using
the fact that ∆t ≤ D2

C and taking the expectation in (10), we obtain

E [∆t+1] ≤
[
1− 2ρ∗(1− e−1)γt+1

]
E[∆t] + 5γ2

t+1 + Cβ, 4b
b−a(3−β)

t−5bD2
C .

Let tγ := min {t, 2λγt+1 ≤ 1} and t0 := max{ta,α, tγ} , we apply Proposition 5 to obtain

E [∆t] ≤ exp

(
−2λ

t∑
i=t0+1

γi

)(
D2

C +

t∑
k=t0

5γ2
k

)
+

5

2λ
γ t

2−1 + o(γt) . (12)

Applying Corollary 2, the exponential product converges exponentially fast to 0 and an asymptotic
comparison gives

E[∆t] ≤
5

2ρ∗(1− e−1)
γ t

2−1 + o(γt) ≲
γt
ρ∗

.

We conclude by using Proposition 1, using the bound ∥g∗
εt − g∗∥ ≲ ε1+α′

t .

Proposition 3. Under the same assumptions as in Theorem 1 , we have for any α′ ∈ (0, α)

E
[
∥gt − g∗∥2

]
≲

1

ρ2∗ · t2b
+

1

t4a+4aα′ , t ≥ 1 .

Remark: Note that this proposition directly proves Theorem 1, but we decided to split them, to have
a cleaner proof of Theorem 1.

Proof. We begin by squaring equation (13) of Lemma 3. For t ≥ ta,α, where ta,α is defined in (15),
we have

∆2
t+1 ≤

(
∆t − 2γt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉
+ 5γ2

t+1

)2
≤ ∆2

t + 4γ2
t+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉2
+ 25γ4

t+1

− 4∆tγt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉︸ ︷︷ ︸
=:A

+10∆tγ
2
t+1 − 20γ3

t+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉︸ ︷︷ ︸
=:B

.

Taking the conditional and using Lemma 2, we have

E[A | Ft] ≥ 4∆2
tρ∗(1− e−1)γt+11∥gt−gεt∥≤εt/2.

We also use the simple bound

E[B | Ft] ≥ 0.

These two inequalities lead to

E[∆2
t | Ft] ≤

[
1− 4ρ∗(1− e−1)γt+1

]
∆2

t + 4ρ∗(1− e−1)γt+11∥gt−gεt∥≤εt/2

+ 4γ2
t+1E

[〈
∇hεt (gt, Xt+1) ,gt − g∗

εt

〉2 | Ft

]
+ 25γ4

t+1 + 5∆tγ
2
t+1.

17



Using that the gradient norm is bounded by two, we apply the Cauchy-Schwarz inequality to obtain

4γ2
t+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉2 ≤ 16γ2
t+1∥gt − g∗

εt∥2 ≤ 16∆tγ
2
t+1.

Applying Hölder’s inequality yields

21∆tγ
2
t+1 ≤

(
∆t

√
2ρ∗(1− e−1)

1√
2ρ∗(1− e−1)

21γt+1

)
γt+1

≤ γt+1∆
2
tρ∗(1− e−1) +

212

4ρ∗(1− e−1)
γ3
t+1.

Summing up these inequalities, we obtain

E[∆2
t+1 | Ft] ≤

[
1− 3ρ∗(1− e−1)γt+1

]
∆2

t + 4ρ∗(1− e−1)γt+11∥gt−gεt∥≥εt/2

+
212

4ρ∗(1− e−1)
γ3
t+1 + 25γ4

t+1.

Similarly to the case p = 1, using that P[∥gt − g∗
εt∥ ≥ εt/2] ≤ Cβ, 4b

b−a(3−β)
t−4b by (11) and that

∆2
t ≤ D4

C for all t, taking the expectation yields

E[∆2
t+1] ≤ (1− 3λγt+1)E[∆2

t ] +
212

4λ
γ3
t+1 + 25γ4

t+1 + 4λCβ, 4b
b−a(3−β)

t−5bD4
C .

Again, as in the case p = 1, applying Proposition 5 and Corollary 2 and using that ∥g∗
εt−g∗∥ ≲ ε1+α′

t
concludes the proof.

Lemma 3. Under the assumptions of Theorem 1, there exists a finite time ta,α, depending on a and
α, such that for all t ≥ ta,α, we have

∆t+1 ≤ ∆t − 2γt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉
+ 5γ2

t+1 . (13)

Proof. By definition of the gradient step at time t+ 1 and since g∗
εt+1

∈ C, we have

∆t+1 = ∥gt+1 − g∗
εt+1

∥2

= ∥ProjC(gt − γt+1∇ghεt(gt, Xt+1))− g∗
εt+1

∥2

≤ ∥gt − γt+1∇ghεt(gt, Xt+1)− g∗
εt+1

∥2.

Then, incorporating the change of optimum between time t and t+ 1, we get

∆t+1 ≤ ∥gt − γt+1∇ghεt(gt, Xt+1)− g∗
εt + g∗

εt − g∗
εt+1

∥2

≤ ∥gt − γt+1∇ghεt(gt, Xt+1)− g∗
εt∥2 + 2

〈
gt − γt+1∇ghεt(gt, Xt+1)− g∗

εt ,g
∗
εt − g∗

εt+1

〉
+ ∥g∗

εt − g∗
εt+1

∥2.

Using Corollary 2.2 in [18] (see Proposition 1), there exists K0 > 0 such that for any α′ ∈]0, α[
∥g∗

εt − g∗
εt+1

∥ ≤ K0ε
α′

t (εt − εt+1) ≤ K0t
−aα′ (

t−a − (t+ 1)−a
)
≤ aK0t

−(1+a+aα′). (14)

For clarity, we define rt := aK0t
−(1+a+aα′) and Rt := (2DC + 2γt+1 + rt)rt.

Using that for all t, gt ∈ C, and that for all x ∈ Rd,g ∈ RM , ∥∇ghεt(g, x)∥ ≤ 2, we obtain

∆t+1 ≤ ∥gt − γt+1∇ghεt(gt, Xt+1)− g∗
εt∥2 + (2DC + 2γt+1)∥g∗

εt − g∗
εt+1

∥+ ∥g∗
εt − g∗

εt+1
∥2

≤ ∥gt − γt+1∇ghεt(gt, Xt+1)− g∗
εt∥2 +Rt

≤ ∥gt − g∗
εt∥2 − 2γt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉
+ γ2

t+1∥∇ghεt(gt, Xt+1)∥2 +Rt

≤ ∆t − 2γt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉
+ 4γ2

t+1 +Rt.

18



Note that, since we have 1 + a+ aα > 2b, we can also take α′ ∈]0, α[ such that 1 + a+ aα′ > 2b.
Consequently, the sequence Rt/γ

2
t is decreasing and tends to 0. For conciseness, we note

ta,α := min
{
t ≥ 1 : Rt ≤ γ2

t

}
. (15)

For any t ≥ ta,α, we then obtain the following upper bound of ∆t+1 in terms of ∆t and the gradient
direction:

∆t+1 ≤ ∆t − 2γt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉
+ 5γ2

t+1.

B.2 Proof of Theorem 2: Convergence rate of DRAG

Proof. We start with a decomposition of the gradient step, similar to [26]. By abuse of notation, we
note

∇2
∗ := ∇2H0(g

∗
εk
)

and define the following differences:
pk := ProjC (gk − γk+1∇ghεk (gk, Xk+1))− (gk − γk+1∇ghεk (gk, Xk+1)) ,

ξk+1 := ∇Hεk (gk)−∇ghεk (gk, Xk+1) ,

σk := ∇H0(gk)−∇Hεk(gk)

δk := ∇H0 (gk)−∇2
∗ (gk − g∗

0) .

The term pk represents the difference between the projected and non-projected steps. Note that
pk = 0 if gk − γk+1∇ghεk (gk, Xk+1) ∈ C. The term ξk is a martingale difference ξk representing
the difference between the regularized gradient and its non-biased estimator. σk represents the
difference between the εk-regularized gradient and the non-regularized gradient.Finally, δk represents
the difference between the gradient at gk and its linear approximation given by the Hessian at the
optimum.

Let IM denote identity matrix of MM (R), observe that for any k ∈ N
gk+1 − g∗

0 = ProjC (gk − γk+1∇ghεk(gk, Xk+1))− g∗
0

= gk − γk+1∇ghεk(gk, Xk+1)− g∗
0 − pk incorporating pk

= gk − γk+1∇Hεk(gk)− g∗
0 + γk+1ξk+1 − pk incorporating ξk+1

= gk − γk+1∇H0(gk) + γk+1σk − g∗
0 + γk+1ξk+1 − pk incorporating σk

=
(
IM − γk+1∇2

k

)
(gk − g∗

0)− γk+1δk + γk+1σk + γk+1ξk+1 + pk .
incorporating δk

Thus, we have that

∇2
∗ (gk − g∗

0) =
gk − gk+1

γk+1
− δk + σk + ξk+1 +

pk
γk+1

.

Observe that there is an orthogonal matrix U such that ∇2
∗ = U diag (λ1, . . . , λM−1, 0)U

⊤. There-
fore, in the following, we denote(

∇2
)−1

= U diag
(
λ−1
1 , . . . , λ−1

M−1, 0
)
U⊤

the inverse of ∇2
∗, restricted to the subspace Vect(1M )⊥. Note that we have [18, Theorem 3.2]

min
j∈J1,M−1K

λj ≥ ρ∗ , for all k ≥ 0.

Taking all the equalities in Vect(1M )⊥, that is, considering all our vectors in the subspace
Vect(1M )⊥, we have

(gt − g∗
0) =

1

t+ 1

t∑
k=0

(
∇2

∗
)−1 gk − gk+1

γk+1
− 1

t+ 1

t∑
k=0

(
∇2

∗
)−1

δk

+
1

t+ 1

t∑
k=0

σk +
1

t+ 1

t∑
k=0

(
∇2

∗
)−1

ξk+1 +
1

t+ 1

t∑
k=0

(
∇2

∗
)−1 pk

γk+1
.

19



We will now give the convergence rate for each sum. Note that thanks to the introduction of σk, we
will directly be able to use the local smoothness and strong convexity of H0, proved in our setting in
[32].

• Convergence rate for 1
t+1

∑t
k=0

gk−gk+1

γk+1
.

t∑
k=0

gk − gk+1

γk+1
=

t∑
k=0

(gk − g∗)− (gk+1 − g∗)
γk+1

=

t∑
k=0

gk − g∗

γk+1
−

t∑
k=0

gk+1 − g∗

γk+1

=

t∑
k=1

(
1

γk+1
− 1

γk

)
(gk − g∗) +

g0 − g∗

γ1
− gt+1 − g∗

γt+1
.

Remark that γ−1
t+1 − γ−1

t ≤ 2γ−1
1 nb−1. By Theorem 1 (non-averaged iterates), E

[
∥gn − g∗∥2v

]
≲

γ1

ρ∗
(t+ 1)−b. Therefore

E

∥∥∥∥∥
t∑

k=0

gk − gk+1

γk+1

∥∥∥∥∥
2

v

 1
2

≲
1

ρ∗
Ψ1−b/2(t+ 1) +DCγ

−1
1 +

1√
γ1ρ∗

(t+ 1)b/2 .

We thus have the convergence rate

1

t+ 1
E

∥∥∥∥∥
t∑

k=0

gk − gk+1

γk+1

∥∥∥∥∥
2

v

 1
2

≲
1

ρ∗(t+ 1)1−b/2
.

• Convergence rate for 1
t+1

∑t
k=0 δk.

By [32, Theorem 1.3], there exists a ball B(g∗, d1) with d1 > 0 where H is α-Hölder. Therefore, by
applying a Taylor expansion of ∇H0(g) around g∗, if gk ∈ B(g∗, d1), we have

∥δk∥ ≲ ∥gk − g∗∥1+α
v .

Otherwise, since the Hessian H0 is uniformly bounded [32, Theorem 1.1], there exists a constant Cδ

such that for any g ∈ C, ∥∇H (g)−∇2H(g∗) (g − g∗) ∥ ≤ Cδ .

Since P(gk /∈ B(g∗, d1)) = P(∥gk − g∗∥ > d1), we obtain by Markov’s inequality

E[∥δk∥2v] = E[∥δk∥2v1gk∈B(g∗,d1)] + E[∥δk∥2v1gk /∈B(g∗,d1)]

≲ E
[
∥gk − g∗∥2+2α

v

]
+

C2
δ

d2+2α
1

E[∥gn − g∗∥2+2α
v ]

≲ E[∥gk − g∗∥2+2α
v ] .

Therefore, using Minkowski’s inequality, we have

1

t+ 1
E

∥∥∥∥∥
t∑

k=0

δk

∥∥∥∥∥
2

v

 1
2

≲
1

t+ 1

t∑
k=0

1

ρ
1+α
2∗

γ
1+α
2

k+1

≤ 1

ρ
1+α
2∗ (t+ 1)

Ψ b+αb
2

≲
1

ρ
1+α
2∗ (t+ 1)

b+αb
2

.
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• Convergence rate for 1
t+1

∑t
k=0 ξk+1.

We recall that ξk+1 = ∇H (gk)−∇gh (gk, Xk+1) and thus E[ξk+1] = 0.

Observe that E
[〈∑n−1

k=0 ξk+1, ξt+1

〉
v

]
= E

[〈∑n−1
k=0 ξk+1,E [ξt+1|Ft]

〉
v

]
= 0.

Thus, since E
[
∥ξk∥2

]
≤ 4 for all k, we have the convergence rate

1

t+ 1
E

∥∥∥∥∥
t∑

k=0

ξk+1

∥∥∥∥∥
2

v

 1
2

≤ 2√
t+ 1

.

• Convergence rate of 1
t+1

∑t
k=0 σk.

Using Proposition 4, we have uniformly in gk ∈ C that, for all α′ ∈ (0, α),

∥σk∥ = ∥∇H0(gk)−∇Hεk(gk)∥ ≲ ε1+α′
≲ ta+aα′

.

Therefore

1

t+ 1

∥∥∥∥∥
t∑

k=0

σk

∥∥∥∥∥ ≲
1

t+ 1
Ψa+aα′(t)

≲
1

ta+aα′ .

• Convergence rate for 1
t+1

∑t
k=0

pk

γk
.

Take d0 such that B(g∗, d0) ⊂ C. Defining ∇k := ∇gh (gk, Xk+1) for conciseness, we obtain

E
[
∥pk∥2v

]
= E

[
∥ProjC (gk − γk+1∇k)− (gk − γk+1∇k)∥2v

]
= E

[
∥ProjC (gk − γk+1∇k)− (gk − γk+1∇k)∥2v 1gk−γk+1∇k /∈C

]
Since for any y ∈ C, one has ∥x−ProjC(x)∥v ≤ ∥x−y∥v , taking y = gk, and since gk−γk+1∇k /∈ C
is satisfied only if ∥gk − γk+1∇k − g∗∥v > d0, we have

E
[
∥pk∥2v

]
≤ E

[
∥γk+1∇k∥2v 1∥gk−γk+1∇k−g∗∥v>d0

]
≤ 4γ2

k+1

E
[
∥gk − γk+1∇k − g∗∥4v

]
d40

≤ γ2
k+1

d40

(
25E

[
∥gk − g∗∥4v

]
+ 29γ4

k+1

)
≲

1

ρ2∗
γ4
k+1

We thus have

1

t+ 1
E

∥∥∥∥∥
t∑

k=0

pk
γk

∥∥∥∥∥
2

v

 1
2

≲
1

t+ 1

t∑
k=0

γk+1

ρ∗

≲
γ1

ρ∗(t+ 1)b
.

• Conclusion.

Finally, summing up all the convergence rates, using Cauchy-Schwarz inequality and that (A+B)2 ≤
2(A2 +B2) for any A,B ∈ R we obtain

E
[∥∥∇2H(g∗) (gn − g∗)

∥∥2
v

]
≲

1

ρ2∗(t+ 1)2−b
+

1

t2a+2aα′ +
1

ρ
1+α
α∗ (t+ 1)b+αb

+
1

t+ 1
+

γ4
1

ρ2∗(t+ 1)2b
.
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Since b > 2a and b+ αa > 2a+ 2aα′ and so noting s = min{1, 2a+ 2aα′}, and since the Hessian
norm is uniformly bounded, we finally obtain

E
[
∥gn − g∗∥2v

]
≲

1

ts
.

B.3 Proof of Theorem 3: Convergence of the OT map estimator

Proof. We show that the convergence rate of gt to g∗
0 implies a convergence rate a convergence rate

for the map estimation. The Brenier map is given by Tµ,ν(x) = x − ∇(g∗
0)

c(x); see for instance
[46], Theorem 1.17. We thus focus on the convergence of ∇gc

t to ∇(g∗
0)

c.

For all j ∈ J1,MK, if x lies in the interior of Lj(g), we have

∇gc(x) = x− yj . (16)

Therefore, given g,g′ ∈ RM , if there exists a j ∈ J1,MK such that x is the interior of Lj(g)∩Lj(g
′)

we have

∇gc(x) = ∇(g′)c(x).

We will now follow arguments from [46], Section 6.4.2. Fix j, j′ ∈ J1,MK such that j ̸= j′ and x is
in the interior of Lj(g) ∩ Lj′(g

′). By definition of the c-transform, we observe that Lj(g) is defined
by M − 1 linear inequalities of the form

⟨x, yj′ − yj⟩ ≤ ag(j, j
′) := gj − gj′ +

1

2
∥yj′∥22 −

1

2
∥yj∥22 .

Similarly, interchanging the role of g, g′ and j, j′ we have

⟨x, yj − yj′⟩ ≤ ag′(j′, j) := g′j′ − g′j +
1

2
∥yj∥22 −

1

2
∥yj′∥22 .

We obtain that

Lj(g) ∩ Lj′(g
′) ⊂ {x ∈ Rd : −ag′(j′, j) ≤ ⟨x, yj′ − yj⟩ ≤ ag(j, j

′)} .
Moreover, noting h = (h1, ..., hM ) = g − g′, we see that

|ag′(j′, j) + ag(j, j
′)| ≤ |hj′ − hj | . (17)

We have

µ
(
A :=

{
x ∈ Rd,∇gc(x) ̸= ∇(g′)c(x)

})
= µ

⋃
j<j′

Lj(g) ∩ Lj′(g
′)


≤
∑
j<j′

µ (Lj(g) ∩ Lj′(g
′))

≤
∑
j<j′

µ
(
{x ∈ Rd : −ag′(j′, j) ≤ ⟨x, yj′ − yj⟩ ≤ ag(j, j

′)}
)
.

Under Assumption 1, µ is a measure such that Supp(µ) ⊂ B(0, R) and it admits a density dµ
bounded by dµmax. Thus,

µ(A) ≤ dµmax

∑
j<j′

λRd({x ∈ B(0, R) : −ag′(j′, j) ≤ ⟨x, yj′ − yj⟩ ≤ ag(j, j
′)})

≤ dµmax

∑
j<j′

λRd

({
x ∈ B(0, R) : − ag′(j′, j)

∥yj′ − yj∥2
≤
〈
x,

yj′ − yj
∥yj′ − yj∥2

〉
≤ ag(j, j

′)
∥yj′ − yj∥2

})

≤ dµmax

∑
j<j′

λRd

({
x ∈ B(0, R) : − ag′(j′, j)

∥yj′ − yj∥2
≤ x1 ≤ ag(j, j

′)
∥yj′ − yj∥2

})
,

22



by the rotational invariance of the Lebesgue measure. Combining this remark with (17) yields

µ(A) ≤ dµmaxR
d−1

∑
j<j′

|hj′ − hj |
∥yj′ − yj∥2

.

Similarly, for the Lp norm of the map difference, we obtain

∥∥ (∇gc(·)−∇(g′)c(·)∥q ∥
p
Lp(µ) ≤

∑
j<j′

∫
Lj(g)∩Lj′ (g

′)

∥ (∇gc(·)−∇(g′)c(·)∥q dµ(x)

≤
∑
j<j′

∥yj′ − yj∥qµ (Lj(g) ∩ Lj′(g
′))

≤ dµmaxR
d−1

∑
j<j′

∥yj′ − yj∥q|hj′ − hj |
∥yj′ − yj∥2

≤ dµmaxM
(2−q)+/2qRd−12M∥h∥1 .

So, in particular, there exists a constant C∆ > 0, independent of the location of the points yj , which
grows at least linearly in M such that

∥∥ (∇gc(·)−∇(g′)c(·)∥q ∥
p
Lp(µ) ≤ C∆∥g − g′∥1 ≤ C∆

√
M∥g − g′∥.

Plugging in the convergence rate of gt to g∗ concludes the proof.

B.4 Proof of Corollary 1: OT cost estimation

Proof. For any vector g ∈ RM , we recall the definition of L(g) =
⋃M

j=1 Lj(g) :

for all j ∈ J1,MK, Lj(g) :=

{
x ∈ Rd;gc(x) =

1

2
∥x− yj∥22 − gj

}
.

Note that L(g) defines a partition of Rd up to µ-null sets , i.e. µ (Li(g) ∩ Lj(g)) = 0 when i ̸= j,
and the convex sets Lj(g) are called power or Laguerre cells. We define the set

Kδ :=
{
g : RM → R | ∀i ∈ J1,MK, µ (Li(g)) > δ

}
.

Using Theorem 4.1 in [32], under Assumption 1, H0 is uniformly C2,α on Kδ . That is, there exists a
constant L such that H0 is L-smooth on Kδ. Note that the constant L depends on µmin, δ, R. We
refer to [32], Remark 4.1 for more details.

By the first order condition, as soon as δ ≤ wmin, we have g∗ ∈ Kδ. Indeed, at the optimum, we
have for all i ∈ J1,MK, µ (Li(g

∗)) = wi. We fix here δ = 1
10wmin.

Thanks to the L-smoothness, for any g ∈ Kδ , we have

|H0(g)−H0(g
∗)| ≤ L

2
∥g − g∗∥2.

Note that, for any g ∈ RM and i ∈ J1,MK, the difference of measure of the Laguerre cells Li(g)
and Li(g

∗) is at most linear with respect to ∥g − g∗∥∞. We refer to Theorem 3 or Section 6.4.2 in
[46] for more details.

Therefore, there exists a constant CL such that, as soon as ∥g − g∗∥2 ≤ CL, we have that g ∈ Kδ.
This constant depends on δ, µmax, R and d as in Theorem 3. Using Theorem 2, E[∥gt − g∗∥2] =
O(t−s) with s > 0. Then

E [|H0(gt)−H0(g
∗)|] = E

[
|H0(gt)−H0(g

∗)|1gt∈Kδ

]
+ E

[
|H0(gt)−H0(g

∗)|1gt /∈Kδ

]
≤ L

2
E[∥gt − g∗∥2] + max

g∈C
|H0(g)−H0(g

∗)|E[1gt /∈Kδ ]

≤ L

2
E[∥gt − g∗∥2] + max

g∈C
|H0(g)−H0(g

∗)|E[1∥gt−g∗∥2>CL
]

= O
(
E[∥gt − g∗∥2]

)
,

where the Markov inequality of order 1 was used on E[1∥gt−g∗∥2>CL
].
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B.5 Proof of Proposition 2: High probability being in B(g∗
εt , εt).

Proof. The proof of this proposition relies heavily on the technical Lemma 4, which we state and
prove immediately after this proof.

We start with a base case at δ = u0 = 0, which provides an initial convergence rate for E[∆p
t ]. Then,

by an inductive argument, we gradually increase un to improve this rate till the limit when n tends to
infinity, namely min{b− a, a}.

Base case (u0 = 0). Using Lemma 4, with λc,t = ρ∗ 1−e−4C∞

4C∞
εt if c = 0, and λc,t = ρ∗(1 −

e−1)εt t
c if c ∈ (0, a], we have

E[∆p
t+1] ≤ E[∆p

t ]
(
1− γt+1λ0,t + C1,p γ

2
t+1

)
+ C2,p λ

−p+1
c,t γp+1

t+1 .

By applying Proposition 5 and Corollary 2, we obtain the following baseline convergence rate, for all
p > 0:

E[∆p
t ] ≲

γp
t

εpt
.

Inductive step (improving the rate). Suppose that for some un ∈ [0,min{b− a, a}), we already
have

E[∆p
t ] ≲ t−p (b−a+un).

Choose c < b−a+un

2 and set d = b − a + un − 2c > 0, which is positive by construction. By
Markov’s inequality, we then get for all q > 0

P
[
∆t ≥ t−2c] = P

[
∆q

t ≥ t−2qc] ≲ t−q (b−a+un−2c) = t−dq .

We take q chosen large enough so that dq > p+ 1.

Consequently, applying Lemma 4,

E[∆p
t ] ≤ E[∆p

t ]
(
1− γt+1 λc,t + C1,p γ

2
t+1

)
+ C2,p λ

−p+1
c,t γp+1

t+1 + o
(
γp+1
t+1

)
.

Therefore, if we pick any un+1 ∈
(
0, b−a+un

2

)
, applying Proposition 5 and Corollary 2, we see that

E[∆p
t ] ≲

γp
t

εpt
t−cp ≲ t−pun+1 .

As soon as b− a > un, we have (b− a+ un)/2 > un as a valid range upper range for un+1, so we
can take un+1 > un and strictly improve our convergence rate.

Achievability for all δ ∈ [0,min{b − a, a}). Finally, note that the sequence defined by u0 = 0
and un+1 = b−a+un

2 converges to (b− a), showing that every value δ up to (b− a) can be reached
through successive improvements. Since c = a is the upper bound in Lemma 4, we can continue the
limit min{b− a, a}, so for all δ ∈ [0,min{b− a, a}), we have

E [∆p
t ] ≲

γp
t t

δ

εpt
.

Using Markov’s inequality concludes the proof.

Lemma 4. For any a, b > 0, such that 1 + a + aα > 2b, there exists constants C1,p, C2,p, only
depending on γ1 and p, such that defining

λc,t =

ρ∗
1− e−4C∞

4C∞
εt, if c = 0,

ρ∗(1− e−1) εt t
c, if c ∈ (0, a].

we have for any c ∈ [0, a]

E[∆p
t+1] ≤ E[∆p

t ]
(
1− γt+1λc,t + C1,pγ

2
t+1

)
+ γt+1D

2p
C P

(
∆t ≥ t−2c

)
1c̸=0 + C2,pλ

−p+1
c,t γp+1

t+1 .
(18)
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Proof. Let us fix c ∈ [0, a]. Starting from equation (13), raising to the power p gives

∆p
t+1 ≤

(
∆t − 2γt+1 ⟨∇ghεt(gt, Xt+1),gt − g∗

t ⟩+ 5γ2
t+1

)p
. (19)

We note
(

p
i,j,k

)
= p!

i!j!k! and apply the trinomial expansion to obtain

∆p
t+1 ≤

∑
i,j,k

i+j+k=p

(
p

i, j, k

)
∆i

t (−2γt+1 ⟨∇ghεt(gt, Xt+1),gt − g∗
t ⟩)j 5kγ2k

t+1

≤ ∆p
t − 2p∆p−1

t γt+1 ⟨∇ghεt(gt, Xt+1),gt − g∗
t ⟩

− 2p(p− 1)∆p−2
t γt+1 ⟨∇ghεt(gt, Xt+1),gt − g∗

t ⟩ 5γ2
t+1

+
∑
i,j,k

i+j+k=p
(i,j,k)/∈{(p,0,0),(p−1,1,0),(p−2,1,1)}

(
p

i, j, k

)
∆i

t (−2γt+1 ⟨∇ghεt(gt, Xt+1),gt − g∗
t ⟩)j 5kγ2k

t+1.

We divide the set S :=
{
(i, j, k) ∈ N3, i+ j + k = p, (i, j, k) /∈ (p, 0, 0), (p− 1, 1, 0), (p− 2, 1, 1)

}
into the following partition

Pa := (i, j, k) ∈ {(p− 2, 2, 0), (p− 3, 3, 0), (p− 1, 0, 1), (0, p, 0)} ,
Pb := (S \ Pa) ∩ {i = 0} ,
Pc := (S \ Pa) ∩ {i ̸= 0} ∩ {j ≥ 4} ∩ {k = 0} ,
Pd := (S \ Pa) ∩ {i ̸= 0} ∩ {0 < j < 4} ∩ {k ̸= 0} ,
Pe := (S \ Pa) ∩ {i ̸= 0} ∩ {j = 0} ∩ {k ̸= 0} .

In what follows, the constants Ck may depend on the constant γ1 from the learning rate γt = γ1/t
b,

since we will often use the crude bound γp+1+k
t ≤ γk

1γ
p+1
t for k ∈ N. Note, however, that λc,t ≤ 1

for all t, and therefore λ−q+k
c,t ≤ λ−q

c,t for all q, k ∈ N, so the constants Ck will not depend on λc,t.

We also introduce, for all p, the constant

Γp =
3p+ 1

2p− 1
.

Case where (i, j, k) ∈ Pa.

If (i, j, k) = (p− 2, 2, 0):(
p

p− 2, 2, 0

)
∆p−2

t (−2γt+1 ⟨∇ghεt(gt, Xt+1),gt − g∗
t ⟩)2

≤ 8p(p− 1)∆p−1
t γ2

t+1 by Cauchy-Schwarz

≤ 8p(p− 1)

(
∆p

t

p− 1

p
c
p/(p−1)
1 + γp

t+1

1

pcp1

)
γt+1 by Young: q = p

p−1 , q
′ = p, c1 > 0

≤ p∆p
t

γt+1λc,t

Γp
+ γp+1

t+1

1

p

(
8Γp(p− 1)

λc,t

)p−1

taking c1 =
(

λc,t

8Γp(p−1)

)(p−1)/p

≤ p∆p
t

γt+1λc,t

Γp
+ C1λ

−p+1
c,t γp+1

t+1 defining C1 readily.
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If (i, j, k) = (p− 3, 3, 0):(
p

p− 3, 3, 0

)
∆p−3

t (−2γt+1 ⟨∇ghεt(gt, Xt+1),gt − g∗
t ⟩)3

≤ 43∆
p− 3

2
t γ3

t+1 by Cauchy-Schwarz

≤ 64

∆p
t

p− 3
2

(
p

p−3

)2p/3
p

c
p/(p− 3

2 )
2 + γ

4p/3
t+1

3

2pc
2p/3
2

 γt+1

by Young: q = p
p−3/2 , q

′ = 2p
3

≤ p∆p
t

γt+1λc,t

Γp
+ γ

4
3p+1
t+1

3

2p

(
32Γp(p− 1)(p− 2)

(
p

p−3

)
3λc,t

) 2p−3
3

taking c2 =
(

3λc,t

32Γp(p−1)(p−2)

) p− 3
2

p

≤ p∆p
t

γt+1λc,t

Γp
+ C2λ

−p+1
c,t γp+1

t+1 since 4
3p+ 1 ≥ p+ 2 and 2p−3

3 ≤ p− 1 .

If (i, j, k) = (p− 1, 0, 1):(
p

p− 1, 0, 1

)
∆p−1

t γ2
t+1 ≤ p

(
p− 1

p
c

p−1
p

3 ∆p
t +

5p

pcp3
γp
t+1

)
γt+1 by Young: q = p

p−1 , q
′ = p

≤ p∆p
t

γt+1λc,t

Γp
+

(
5pΓp

λc,t

)p

γp+1
t+1 taking c3 =

(
λc,t

Γp

) p−1
p

≤ p∆p
t

γt+1λc,t

Γp
+ C3λ

−p+1
c,t γp+1

t+1 defining C3 readily.

If (i, j, k) = (0, p, 0):(
p

0, p, 0

)
(−2γt+1 ⟨∇ghεt(gt, Xt+1),gt − g∗

t ⟩)p

≤ 4p
(
c24
2
∆p

t +
1

2c24
γ2p−2
t+1

)
γt+1 Cauchy-Schwarz and Young : q = q′ = 2

≤ ∆p
t

γt+1λc,t

Γp
+

1

2

(
42pΓp

4λc,t

)
γ2p−1
t+1 taking c4 =

(
2λc,t

4pΓp

) 1
2

≤ ∆p
t

γt+1λc,t

Γp
+ C4λ

−1
c,t γ

p+1
t+1 since 2p− 1 ≥ p+ 1, and defining C4 readily.

Case where (i, j, k) ∈ Pb.

We have j + k = p such that j + 2k ≥ p+ 1 since k ̸= 0. Using the bound ∥gt − g∗
εt∥ ≤ DC , we

obtain: ∑
(i,j,k)∈Pb

(
p

i, j, k

)
(−2γt+1 ⟨∇ghεt(gt, Xt+1),gt − g∗

t ⟩)j 5kγ2k
t+1

≤
∑

(i,j,k)∈Pb

(
p

i, j, k

)
(4D)j5kγj+2k

t+1

≤ C5γ
p+1
t+1 defining C5 readily.

Case where (i, j, k) ∈ Pc.
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∑
(i,j,k)∈Pc

(
p

i, j

)
∆i

t (−2γt+1 ⟨∇ghεt(gt, Xt+1),gt − g∗
t ⟩)j by Cauchy-Schwarz

≤
∑

(i,j,k)∈Pc

(
p

i, j

)
∆

i+j/2
t 4jγj−2

t+1 γ
2
t+1 by Young: q = p

i+j/2 , q
′ = 2p

j

≤
∑

(i,j,k)∈Pc

(
p

i, j

)(
i+ j/2

p
∆p

t +
j

2p
γ
2p(j−2)/j
t+1

)
γ2
t+1

≤
∑

(i,j,k)∈Pc

(
p

i, j

)
4j
(
∆p

t γ
2
t+1 +

1

2
γp+1
t+1

)
j ≥ 4 so : 2p(j−2)

j + 2 ≥ p+ 1

≤ 8p∆p
t γ

2
t+1 + 8pγp+1

t+1 .

Case where (i, j, k) ∈ Pd.∑
(i,j,k)∈Pd

(
p

i, j

)
∆i

t (−2γt+1 ⟨∇ghεt (gt, Xt+1) ,gt − g∗
t ⟩)j 5kγ2k

t+1

≤
∑

(i,j,k)∈Pd

(
p

i, j, k

)
5k∆

i+j/2
t 4jγj+2k

t+1 by Cauchy-Schwarz

≤
∑

(i,j,k)∈Pd

(
p

i, j, k

)
4j

(
cq6

i+ j/2

p
∆p

t + c−q′

6

jC2p
γ

2p
γ2p
t+1

)
by Young: q = p

i+j/2 , q
′ = 2p

j+2k .

Taking c6 = γ
2/q
t , it comes c−q′

6 = γ
−2q′/q
t = γ

−2/(q−1)
t . Since we are only considering cases with

i, j, k ≥ 1 (which forces p ≥ 3) and we are excluding the particular case (i, j, k) = (p− 2, 1, 1), one
can show that the parameter q = 2p

2p−2i−j = 2p
2k+j satisfies

2p

2p− 4
≤ q ≤ 2p

3
4

2p− 4
≤ q − 1 ≤ 2p− 3

3
.

Thus, since 2
q−1 ≤ p− 2, it follows that

2p− 2

q − 1
≥ 2p− (p− 2) = p+ 2 ≥ p+ 1 .

Therefore, using the crude bound
∑

(i,j,k)∈Pd

(
p

i,j,k

)
≤ 3p and defining a constant C6 readily, we

obtain∑
(i,j,k)∈Pd

(
p

i, j

)
∆i

t (−2γt+1 ⟨∇ghεt (gt, Xt+1) ,gt − g∗
t ⟩)j 5kγ2k

t+1 ≤ 3pγ2
t+1∆

p
t + C6γ

p+1
t+1 .

Case where (i, j, k) ∈ Pe.

Since j = 0, i + k = p, and (p − 1, 0, 1) ∈ Pa, we have k ≥ 2. We use Young’s inequality with
q = p

i , q
′ = p

k to obtain∑
(i,j,k)∈Pe

(
p

i, k

)
∆iγ2k

t+15
k ≤

∑
(i,j,k)∈Pe

(
p

i, k

)(
i

p
∆p +

k

p
(γt+15

1
2 )

p(2k−2)
k

)
γ2
t+1

≤
∑

(i,j,k)∈Pe

(
p

i, k

)(
∆pγ2

t+1 + 5p−
p
k γ

2p− 2p
k +2

t+1

)
≤ 2p∆pγ2

t+1 + C7γ
p+1
t+1 since 2p− 2p

k + 2 ≥ p+ 2 .

27



Summing up the inequalities, we obtain
∆p

t+1 ≤ ∆p
t

− 2p∆p−1
t γt+1 ⟨∇ghεt(gt, Xt+1),gt − g∗

t ⟩
− 2p(p− 1)∆p−1

t γt+1 ⟨∇ghεt(gt, Xt+1),gt − g∗
t ⟩ 5γ2

t+1

+∆p
tλc,t

3p+ 1

Γp
γt+1

+∆p
t γ

2
t+1(8

p + 3p + 2p)

+ γp+1
t+1

(
(C1 + C2 + C3)λ

−p+1
c,t + C4λ

−1
c,t + C5 + 8p + C6 + C7

)
.

By convexity of Hεt , taking the conditional expectation gives

E
[
−2p(p− 1)∆p−1

t γt+1 ⟨∇ghεt(gt, Xt+1),gt − g∗
t ⟩ 5γ2

t+1 | Ft

]
≤ 0 ,

Applying Lemma 2, recalling that λc,t = ρ∗ 1−e−1

2
√
2c∞

εt if c = 0, and λc,t = ρ∗ 1−e−1
√
2

εt t
c if

c ∈ (0, a], we have

⟨∇Ht(g),g − g∗
t ⟩ ≥ ρ∗

εt√
2∥g − g∗

t ∥∞
∆t ≥

{
λc,t∆t if c = 0

λc,t∆t1∆t≤t−2c if c ∈ (0, a] .
(20)

Therefore,

E
[
−2p∆p−1

t γt+1 ⟨∇ghεt(gt, Xt+1),gt − g∗
t ⟩ | Ft

]
= −2p∆p−1

t γt+1E [⟨∇ghεt(gt, Xt+1),gt − g∗
t ⟩ | Ft]

= −2p∆p−1
t γt+1 ⟨∇Hεt(gt),gt − g∗

t ⟩ by (20)

≤ −2pλc,tγt+1∆
p
t + γt+1D

2p
C 1∆t≥t−2c1c̸=0 using that ∆p

t ≤ D2p
C .

We now just have to sum up the inequalities. Fixing Γp = 3p+1
2p−1 such that −2p + 3p+1

Γp
= −1,

C1,p = 8p + 3p + 2p, C2,p = 8p +
∑7

k=1 Ck, and taking the expectation, we have the desired form

E[∆p
t+1] ≤ E[∆p

t ]
(
1− γt+1λc,t + C1,pγ

2
t+1

)
+ γt+1D

2p
C E

[
1∆t≥t−2c

]
1c̸=0 + C2,pλ

−p+1
c,t γp+1

t+1 .

B.6 Proof of Lemma 1: Projection step

Proof. According to [40], any optimal pair of functions (fε, gε) solving the dual formulation of
entropic OT with regularization ε ≥ 0 satisfies the Schrödinger equations. That is, we can take for
all y ∈ Rd, gε(y) = f c,ε

ε (y). Moreover, 1
2∥x− y∥2 is R-Lipschitz on B(0, R). Therefore, since by

Assumption 1, we have Supp(µ) ⊂ B(0, R) and Supp(ν) ⊂ B(0, R), we can exploit the Lipschitz
property of our cost function on B(0, R). Using that the (c, ε)-transform has the same modulus of
continuity as c (see Lemma 3.1 in [40]), we get, for all y, y′ ∈ Rd:

|f c,ε
ε (y)− f c,ε

ε (y′)| ≤ R∥y − y′∥.
That is, coming back to the function g, we have for all j, j′ ∈ J1,MK :

|gε(yj)− gε(yj′)| ≤ R ∥yj − yj′∥ .
By writing back our dual potential as a vector, that is g∗ = (g∗1 , . . . , g

∗
M ), where for all j ∈

J1,MK, g∗j = gε(yj), we have

|g∗j − g∗j′ | ≤ R∥yj − yj′∥.

Moreover, if g∗ optimizes the semi-dual Hε, then for any β ∈ R, the vector g∗ + β1M optimizes Hε.
In particular, g∗ − gε(y1)1M , which we rename g∗, optimizes the semi-dual, with g∗1 = 0. Hence,
for all j ∈ 1, ...,M ∣∣g∗y1

− g∗yj

∣∣ = ∣∣g∗yj

∣∣ ≤ R∥y1 − yj∥.
That is, there exists an optimizer in the desired closed convex set.
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Remark: Note that for other costs such as c(x, y) = ∥x − y∥ which defines the 1-Wasserstein
distance, this projection set can be more relevant. Indeed, in this case, the cost is 1-Lipschitz and the
projection set depends only on the target measure ν and no assumption of bounded cost is needed. In
this case, the practitioner could choose the index k such that gk = 0, minimizing for instance the
Euclidean diameter of the corresponding set.

B.7 Proof of Lemma 2: Global and local RSC condition of Hε

Proof. For any g ∈ C and s ∈ [0, 1], note gs = g∗
ε + s(g − g∗

ε), where g∗
ε is the minimizer of Hε

satisfying
∑M

i=1 gi =
∑M

i=1 g
∗
ε,i and define φ by

φ : s ∈ [0, 1] 7→ Hε(gs) .

Applying Lemma 5, whose proof is postponed until after this one, we have that

|φ′′′(s)| ≤ 1

ε
φ′′(s) max

1≤j≤M

∣∣gj − g∗j −m (x,gs)
∣∣ , (21)

where for all x ∈ Rd : m(x,gs) :=
∑M

j=1 χ
ε
j(x,gs)(gs − g∗

ε).

Using Hölder’s inequality with the Hölder conjugates p = 1, q = +∞ for δ0 and Cauchy-Schwarz
inequality as in [5] for δ1, we obtain

1

ε
max

1≤j≤M

∣∣gj − g∗ε,j −m (x,gs)
∣∣ ≤ { 2

ε∥g − g∗
ε∥∞ =: δ0 ,√

2
ε ∥g − g∗

ε∥ =: δ1 .
(22)

Use δ = δ0 or δ1 = 1. Since
∑M

i=1 gi =
∑M

i=1 g
∗
ε,i, φ is strictly convex, and therefore, we can divide

by φ′′(s) to obtain for s ∈ [0, 1]

φ′′′(s)
φ′′(s)

≥ −δ .

Integrating between 0 and S and using that
∫ S

0
φ′′′(s)
φ′′(s) ds = ln |φ′′(S)| − ln |φ′′(0)| gives

φ′′(s) ≥ exp(−δS)φ′′(0) . (23)

Since φ′′(s) = (g − g∗
ε)

⊤ ∇2Hε (gs) (g − g∗
ε), recalling that ρ∗ is the second smallest eigenvalue

of ∇2Hε (g
∗
ε) gives the upper bound

φ′′(0) ≥ ρ∗∥g − g∗
ε∥2 .

Then, since φ′(s) = ⟨∇Hε(gs),g − g∗
ε⟩, an integration of (23) between 0 and 1 gives

⟨∇Hε(g),g − g∗
ε⟩v ≥ ρ∗

1

δ
(1− exp(−δ)) ∥g − g∗

ε∥2. (24)

Note that the function δ ∈ (0,∞) 7→ 1
δ (1− exp(−δ)) is strictly decreasing and upper bounded by 1.

If ε = 1, take δ = δ0 = 2∥g − gε∥∞ and use the fact that ∥g − gε∥∞ ≤ 2C∞ to obtain

⟨∇H1(g),g − g∗
1⟩ ≥ ρ∗

1

4C∞

(
1− e−4C∞

)
∥g − g∗

ε∥2 .

In the same way, for ε < 1 and ∥g − g∗
ε∥ ≤ ε√

2
, taking δ = δ1 =

√
2∥g − g∗

ε∥ ≤ 1 we obtain

⟨∇Hε(g),g − g∗
ε⟩v ≥ ρ∗

(
1− e−1

)
∥g − g∗

ε∥2 ,
which concludes the proof.

Lemma 5 (Helping Lemma for the RSC condition of Hε). For any g ∈ C and t ∈ [0, 1], define
gs = g∗

ε +s(g−g∗
ε), where g∗

ε is the minimizer of Hε satisfying
∑M

i=1 gi =
∑M

i=1 g
∗
ε,i. The function

φ, defined by

φ : s ∈ [0, 1] 7→ Hε(gs) ,
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satisfies

|φ′′′(s)| ≤ 1

ε
φ′′(s) max

1≤j≤M

∣∣gj − g∗j −m (x,gs)
∣∣ .

Where m(x,gs) =
∑M

i=1 χ
ε
i (x,gs)(gi − g∗ε,i).

Proof. The proof is an adaptation of the proof of Lemma A.2 in [5]. For completeness, we recall
all the steps of their proof that are needed for our results. Note that their recent erratum regarding
Lemma A.1 has no impact on Lemma A.2.

For any g ∈ RM and s ∈ [0, 1], define gs = g∗
ε + s(g − g∗

ε), where g∗
ε is the minimizer of Hε

satisfying
∑M

i=1 gi =
∑M

i=1 g
∗
ε,i. We also define the function φ by

φ : s ∈ [0, 1] 7→ Hε(gs) .

Its first to third-order derivatives are given by

φ′(s) = ⟨∇Hε(gs),g − g∗
ε⟩ ,

φ′′(s) = (g − g∗
ε)

⊤∇2Hε(gs)(g − g∗
ε) ,

φ′′′(s) =
M∑

i,j,k=1

∂3Hε(gs)

∂gi∂gj∂gk
(g − g∗

ε)i (g − g∗
ε)j (g − g∗

ε)k .

Since for all g ∈ RM , ∇Hε(g) = −EX∼µ [χ
ε(X,g)] +w,

φ′(s) = ⟨−EX∼µ [χ
ε(X,gs)] +w,g − g∗

ε⟩
= −EX∼µ [m(X,gs)] + ⟨w,g − g∗

ε⟩ ,
defining for all x ∈ Rd,m(x,gs) =

∑M
i=1 χ

ε
i (x,gs)(gi − g∗ε,i) .

Using that ∇gχ
ε(x,g) = 1

ε

(
diag(χε(x,g))− χε(x,g)χε(x,g)⊥

)
, we have

d

ds
χε(X,gs) =

1

ε

(
diag(χε(X,gs))− χε(X,gs)χ

ε(X,gs)
⊤) (g − g∗

ε).

Therefore, using the expression of m yields to

φ′′(s) = −1

ε
EX∼µ

[
(g − g∗

ε)
⊤ diag(χε

i (X,gs))(g − g∗
ε)−m(X,gs)

2
]

= −1

ε
EX∼µ

[
σ2(X,gs)

]
defining for all x ∈ Rd

σ2(x,gs) =

M∑
i=1

χε
i (x,gs)(gi − g∗ε,i)

2 − (m(x,gs))
2

=

M∑
i=1

χε
i (x,gs)

(
gi − g∗ε,i −m(x,gs)

)2
.

A derivation of σ2 leads to (see [5] eq. (A.19),) for more details)

−ε
d

ds
σ2(x,gs) =

M∑
i=1

χi(x,gs)(gi − g∗ε,i)
3 − 3m(x,gs)σ

2(x,gs)− (m(x,gs))
3

=

M∑
i=1

χε
i (x,gs)

(
gi − g∗ε,i −m(x,gs)

)3
.

Since ε2φ′′′(s) = EX∼µ

[
d
dsσ

2(X,gs)
]
, we conclude

|φ′′′(s)| ≤ 1

ε
φ′′(s) max

1≤j≤M

∣∣gj − g∗j −m (x,gs)
∣∣ .
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B.8 Other Technical results

Proposition 4. For all g ∈ C and all α′ ∈ (0, α), we have

∥∇Hε(g)−∇H0(g)∥∞ ≲ ε1+α′
.

Proof. We adopt the decomposition of X from Appendix A.3 of [18]. See Figure 1 in [18] for an
illustration of this decomposition. Fix i ∈ {1, . . . ,M}, let X ⊂ B(0, R) be the support of µ, and
choose parameters

η = εβ , γ = 1
2η, β ∈ (0, 1).

Define, for all i ∈ J1,MK, the function

fi(x) := −c(x, yi) + gi = −1

2
∥x− yi∥2 + gi,

and use these to define the following sets:

Hij = Li(g) ∩ Lj(g)

Xi,η,+ =

{
x ∈ Li(g); ∀j ̸= i,

fi(x)− fj(x)

∥yi − yj∥
≥ η

}
,

Xi,η,− =

{
x ∈ Rd; argmax

j
fj(x) = k,

fk(x)− fi(x)

∥yk − yi∥
≥ η

}
,

Hγ
ij = {x ∈ Hij | ∀k /∈ {i, j}, fi(x) = fj(x) ≥ fk(x) + γmax(∥yi − yk∥, ∥yj − yk∥)} ,

Ai,η,γ =
⋃
j ̸=i

{
x+ t dij ;x ∈ Hγ

ij , t ∈ [−η∥yi − yj∥, η∥yi − yj∥]
}
, dij =

yi − yj
∥yi − yj∥

,

Bi,η,γ = Rd \ (Xi,η,+ ∪ Xi,η,− ∪Ai,η,γ) .

We also recall the point-wise definitions of the regularized and non-regularized functions constituting
the gradients

χε
i (x) =

exp(fi(x)/ε)∑M
k=1 exp(fk(x)/ε)

, χi(x) = 1{ i = argmax
k

fk(x)}.

and define the constant
cy = min

i̸=j
∥yi − yj∥ > 0 .

Error decomposition.

∥∇Hε(g)−∇H0(g)∥∞ = max
i

∣∣∣∣∫
X
(χε

i − χi) dµ

∣∣∣∣ ≤ I1 + I2 + I3 + I4,

with

I1 =

∫
Xi,η,+

|χε
i−χi| dµ, I2 =

∫
Xi,η,−

|χε
i−χi| dµ, I3 =

∫
Ai,η,γ

|χε
i−χi| dµ, I4 =

∫
Bi,η,γ

|χε
i−χi| dµ.

1. Interior regions Xi,η,+ and Xi,η,−.

For x ∈ Xi,η,+ one has fi − fj ≥ η∥yi − yj∥ ≥ ηcy for every j ̸= i, hence

|χi(x)− χε
i (x)| = 1− χε

i (x)

= 1− efi/ε∑M
k=1 e

fk/ε

=

∑
k ̸=i e

fk/ε∑M
k=1 e

fk/ε

≤ O
(
e−ηcy/ε

)
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In a same way, we obtain the same bound if x ∈ Xi,η,−, therefore

I1 + I2 = O
(
e−ηcy/ε

)
.

2. Simple slabs Ai,η,γ .

Inside one slab Tij =
{
x+ t dij

∣∣ x ∈ Hγ
ij , t ∈ [−η∥yi − yj∥, η∥yi − yj∥]

}
, and we have fi(x)−

fj(x) = t∥yi − yj∥. for a certain t ∈ [−η∥yi − yj∥, η∥yi − yj∥]. All other indices satisfy
fk(x)− fi(x) ≤ −cyγ, so ∑

k/∈{i,j}
e(fk−fi)/ε ≤ (M − 2)e−cyγ/ε.

Hence

χε
i (x) =

1

1 + e−t∥yi−yj∥/ε +
∑

k/∈{i,j} e
(fk(x)−fi(x))/ε

= pε̃(t) +O
(
e−γcy/ε

)
,

with pε̃(t) =
(
1 + e−t/ε̃

)−1
, ε̃ = ε/∥yi − yj∥.

Introduce coordinates x = z + tnij with nij =
yi−yj

∥yi−yj∥ and z ∈ Hij ; the Jacobian of this change
of coordinate is 1. Since fµ is α-Hölder, there exists L > 0 such that we can write fµ(z + tnij) =
fµ(z) + rα(z, t) with |rα(z, t)| ≤ L|t|α. Note that the function pε̃(t)− 1t>0 is odd. Writing σ the
Hausdorff measure of dimension d− 1, we obtain∣∣∣∣∣
∫
Tη,γ
ij

(χε
i − χi) dµ

∣∣∣∣∣ =
∣∣∣∣∣
∫
Hγ

ij∩B(0,R)

∫ η∥yi−yj∥

−η∥yi−yj∥

[
pε̃(t)− 1t>0 +O(e−γ/ε)

]
(fµ(z) + rα(z, t)) dt dσ(z)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Hγ

ij∩B(0,R)

∫ η∥yi−yj∥

−η∥yi−yj∥
[pε̃(t)− 1t>0] rα(z, t) dt dσ(z)

+

∫
Hγ

ij∩B(0,R)

∫ η∥yi−yj∥

−η∥yi−yj∥
[pε̃(t)− 1t>0] fµ(z) dt dσ(z)

+

∫
Hγ

ij∩B(0,R)

∫ η∥yi−yj∥

−η∥yi−yj∥
O(e−γ/ε) (fµ(z) + rα(z, t)) dt dσ(z)

∣∣∣∣∣
≲ vold−1

(
Hγ

ij ∩B(0, R)
) ∫ η∥yi−yj∥

−η∥yi−yj∥
|t|α dt+O

(
η e−γcy/ε

)
= O

(
η1+α

)
+O

(
η e−γcy/ε

)
.

Summing over j ̸= i yields
I3 = O(η1+α) +O(η e−γcy/ε) .

3. Corner set Bi,η,γ .

As shown in [18], denoting by θ the maximum angle that can be formed by three non-aligned points
of the target measure, each corner that constitutes Bi,η,γ is included in a cylinder of volume at

most 4π diam(B(0,R))d−2

cos(θ/2)2 γ2. Moreover, there are at most M2 such corners. Therefore, µ(Bi,η,γ) =

O(γ2) = O(η2), and so
I4 = O(η2) .

4. Choice of the exponent β.

Let α′ ∈ (0, α) and pick

β ∈
(

1+α′

1+α , 1
)
.
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Then η1+α = εβ(1+α) ≤ ε1+α′
and η2 = ε2β ≤ ε1+α′

. Exponential terms are even smaller, hence

∥∇Hε(g)−∇H0(g)∥∞ = O
(
ε1+α′

)
.

Proposition 5. Let (γt)t≥0 and (νt)t≥0 be some positive and decreasing sequences and let (δt)t≥0,
satisfying the following:

• The sequence δt follows the recursive relation:

δt+1 ≤
(
1− 2ωγt+1 + ηγ2

t+1

)
δt + νt+1γt+1, (25)

with δ0 ≥ 0 and ω, η > 0.

• Let γt converge to 0.

• Let t0 = inf {t ≥ 1 : ωγt+1 ≤ 1; ηγt ≤ ω}.

Then, for all t ≥ t0, we have the upper bound:

δt ≤ exp

(
−ω

t∑
i=t0+1

γi

)(
t∑

k=t0

γkνk + δt0

)
+

1

ω
ν⌈ t

2⌉−1 ≤ 1

ω
ν⌈ t

2⌉−1 + o(νt) .

Proof. For all t ≥ t0, since 1− 2ωγt+1 + ηγ2
t+1 ≤ 1− ωγt+1, one has

δt ≤
(
1− ωγt+1 + ηγ2

t+1

)
δt + νt+1γt+1

≤
t∏

i=t0+1

(1− ωγi) δt0︸ ︷︷ ︸
=:U1,t

+

t∑
k=t0+1

t∏
i=k+1

(1− ωγi) γkνk︸ ︷︷ ︸
=:U2,t

One can consider two cases: ⌈t/2⌉ − 1 ≤ t0 and ⌈t/2⌉ − 1 > t0.

Case where ⌈t/2⌉ − 1 ≤ t0 < t: Since νk is decreasing,

U2,t ≤ νt0+1

t∑
k=t0+1

t∏
i=k+1

(1− ωγi) γk

=
1

ω
νt0+1

t∑
k=t0+1

t∏
i=k+1

(1− ωγi)−
t∏

i=k

(1− ωγi)

=
1

ω
νt0+1

(
1−

t∏
i=t0+1

(1− ωγi)

)

≤ 1

ω
νt0+1

Since νk is decreasing, it comes U2,t ≤ 1
ων⌈t/2⌉.

Case where ⌈t/2⌉ − 1 > t0: As in [3], for all m = t0 + 1, . . . , t, one has

U2,t ≤ exp

(
−ω

t∑
k=m+1

γk

)
m∑

k=t0+1

γkνk +
1

ω
νm

Then, taking m = ⌈t/2⌉ − 1, it comes

U2,t ≤ exp

−ω

t∑
k=⌈t/2⌉

γk

 ⌈t/2⌉−1∑
k=t0+1

γkνk +
1

ω
ν⌈t/2⌉−1
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Corollary 2. Let (γt)t≥0 and (νt)t≥0 be some positive and decreasing sequences and let (δt)t≥0 be
a sequence satisfying the following:

• The sequence δt follows the recursive relation:

δt+1 ≤
(
1− 2ωγt+1 + ηγ2

t+1

)
δt + νt+1γt+1, (26)

with δ0 ≥ 0 and ω, η > 0.

• Let γt = cγt
−α with α ∈ (0, 1).

• Let t0 = inf {t ≥ 1 : ωγt+1 ≤ 1; ηγt ≤ ω}.

Then, for all t ∈ N, we have the upper bound:

δt ≤
1

ω
ν t

2−1 + o(νt).

Proof. Applying Proposition 5, for all t ≥ t0, we have the upper bound:

δt ≤ exp

(
−ω

t∑
i=t0+1

γi

)(
t∑

k=t0

γkνk + δt0

)
+

1

ω
ν⌈ t

2⌉−1 .

Approximating the sum
∑t

s=t0
γs via a Riemann sum lower bound for the function x 7→ 1

xα , and
applying the logarithmic inequality log(1− x) ≤ −x, one can now bound

∏t
i=t0+1 (1− ωγi) δt0 as

t∏
i=t0+1

(1− ωγi) δt0 ≤ exp

(
−ω

cγ
1− α

(
(t+ 1)1−α − (t0 + 1)

1−α
))

γt0νt0

≤ exp
(
−ωcγ

2

(
(t+ 1)1−α − (t0 + 1)

1−α
))

γt0νt0 .

In a same way, since

exp

−ω

t∑
k=⌈t/2⌉

γk

 ≤ exp
(
−ωcγ

2
(t+ 1)1−α

)
,

we obtain

δt ≤ exp

(
−1

2
ωcγt

1−α

)
exp

(
1

2
ωcγ (t0 + 1)

1−α

)( t∑
k=t0

γkνk + δt0

)
+

1

ω
ν t

2−1.

Since the product involving exponential terms converges exponentially fast, we finally obtain the
desired convergence rate

δt ≤
1

ω
ν t

2−1 + o(νt).
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