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Abstract

Adding entropic regularization to Optimal Transport (OT) problems has become
a standard approach for designing efficient and scalable solvers. However, regu-
larization introduces a bias from the true solution. To mitigate this bias while still
benefiting from the acceleration provided by regularization, a natural solver would
adaptively decrease the regularization as it approaches the solution. Although some
algorithms heuristically implement this idea, their theoretical guarantees and the
extent of their acceleration compared to using a fixed regularization remain largely
open. In the setting of semi-discrete OT, where the source measure is continuous
and the target is discrete, we prove that decreasing the regularization can indeed
accelerate convergence. To this end, we introduce DRAG: Decreasing (entropic)
Regularization Averaged Gradient, a stochastic gradient descent algorithm where
the regularization decreases with the number of optimization steps. We provide a
theoretical analysis showing that DRAG benefits from decreasing regularization
compared to a fixed scheme, achieving an unbiased O(1/t) sample and iteration
complexity for both the OT cost and the potential estimation, and a O(1/+/1) rate
for the OT map. Our theoretical findings are supported by numerical experiments
that validate the effectiveness of DRAG and highlight its practical advantages.

1 Introduction

Optimal transport is now a widely used framework to compare probability distributions in different
areas of data science such as machine learning [14} 25| 6], computational biology [47], imaging
[21L[7]], even economics [22] or material sciences [9]. The computational and statistical efficiency of
OT solvers is the key to facilitating their use in practical applications. Therefore, both computational
methods and the statistical bottleneck in OT, often referred to as the curse of dimensionality, have
received significant attention over the past decade [42,157]]. Regularization such as Entropic OT (EOT)
[L6] is a popular method to mitigate these two issues. It consists of adding an entropic regularization
term to the objective function. OT and its entropic regularization apply to different contexts of interest.
The most general context is when the two distributions are accessed via samples and one wants to
estimate the OT distance and the corresponding plan or map. Another context of interest in some
applications, that has recently gained popularity in generative modeling [2, [10} 136], is the case of
semi-discrete OT. In this setting, one of the two distributions is discrete and the other continuous.
The OT problem, while being a natural proxy to the continuous case, is then slightly simpler since (i)
it reduces to the estimation of Laguerre cells and (ii) the curse of dimensionality is alleviated [45].
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Related works. The incorporation of entropic regularization for OT was pioneered in the discrete
setting by Cuturi [[16], showing that the Sinkhorn algorithm [S3]] can efficiently solve the EOT problem.
Sinkhorn leads to an e-accurate OT plan in O(n?/c?) time when both measures have n points [19].
However, the poor dependence on €, observed both theoretically and empirically, motivated annealing
strategies (also called e-scaling), which gradually decrease the regularization during optimization to
better approximate the true OT solution. Such schemes appear to significantly improve performance in
practice [34} 48, 20]], but their theoretical analysis remains largely open [52} 148} [12]. From a statistical
perspective, it has recently been shown that decreasing the regularization is not only computationally
beneficial but also statistically necessary: [45] demonstrate in the semi-discrete setting that with ¢
samples from the source and target measures, taking € < 1/+/¢ allows one to achieve a minimax-
optimal O(1/+/t) rate for OT map estimation, thereby escaping the curse of dimensionality without
assuming smoothness of the transport map. Their analysis leverages convergence results for entropic
potentials [1} [18] and builds upon the entropic map estimator developed in [51} 44].

In parallel, there has been increasing interest in solving semi-discrete OT problems, where the source
distribution is continuous while the target measure is known and discrete [[2} 54]. In low dimensions,
when the source density is fully known, Newton-type solvers [38| 35, [31]] have been proposed,
offering highly efficient methods for solving the semi-dual problem. In higher dimensions, or when
the source measure is only accessible via samples [24] propose solving the semi-dual formulation
of semi-discrete (E)OT using an SGD scheme. SGD solvers are a natural choice here since they
are well-suited for large-scale applications: they can operate in an online setting using one sample
at a time without storage requirements, and they avoid discretization bias. The study of SGD and
Averaged SGD (ASGD) for solving the semi-dual of EOT was further investigated in [5], revealing,
however, prohibitive constants in terms of 1/¢ and higher. This study shows that, as in the discrete
case, the use of entropic regularization introduces a computational trade-off.

Contributions. We introduce DRAG (Decreasing Regularization Averaged Gradient), an SGD-
based algorithm for solving the non-regularized semi-discrete OT. DRAG employs a decreasing
entropic regularization scheme decaying with the sample count, aiming to have the best regular-
ization/accuracy trade-off at any time. While matching the computational and memory efficiency
of vanilla SGD, DRAG attains superior convergence compared to fixed-regularization methods by
exploiting the enhanced properties of the entropic semi-dual without incurring adverse dependencies
on the vanishing regularization. Concretely, given ¢ iid samples from the source measure, DRAG
achieves rates up to O(1/t) for both the OT cost and the potential. A key technical result (Lemma
[2) underlying DRAG is that, within an e-ball around the optimum, the entropic semi-dual with
regularization ¢ satisfies a restricted strong-convexity property independent of e. DRAG is designed
to remain, with high probability, within this e-ball, even as ¢ decreases. Furthermore, by analyzing
the difference between the Laguerre cells induced by the true OT potential and our estimate, we
establish a O(1/+/t) convergence rate for the OT map. Both our theoretical analysis and numerical
experiments confirm the benefits of decreasing regularization incorporated in DRAG.

Notations. We note || - || the Euclidean norm, and for C C R%, D¢ := sup{||z — y|| : =,y € C}
denote its diameter. For a,b € R, a V b := max{a,b} and a A b := min{a,b}. Forv € R,
Umin = Mminj<;j<qvj. 14 and 04 denote the vectors (1,...,1) and (0,...,0) in R%. Aga is the
Lebesgue measure in RY. P(R?) is the set of probabilities in R, and for p € P(R?), Supp(p) is its
support. O(-) and o(+) are the usual approximation orders. We use f < g if there exists a constant
C > 0 such that f(-) < Cg(-). We write a < bifbotha S band b < a.

2 Behind Stochastic Approximation for Optimal Transport

2.1 Background on (Entropic) Optimal Transport

Given a source and target probability measures i, v € P(R%), a cost function ¢ : R? x RY — R
and a regularization parameter € > 0, the Entropic Optimal Transport (EOT) problem is

OT:(p,v) := min / c(z,y)dm(z,y) +6/
R x R4

m € (p,v) R

dm
i In <dudl/ (x,y)) dr(z,y), (1)

where TI(u, v) is the set of joints probability measures on R? x R with marginals z and v. Mild
conditions on y, v and the cost can be made so that this problem is well-posed, see [56]. When € = 0,



Problem (T recovers the Kantorovich formulation of OT. In this article, we focus on the quadratic
cost ¢(x,y) = 5 ||:1: — |2, although some of our results can be extended to other costs. Our analysis
relies on the semi-dual formulation of the convex problem (I)) given by

()'I‘E , 3 f ] C,E ] , 2
where for all AS Rd,

min, i elz,) ~ f(z) i <=0,
FZWi=1 —clog (fuwexp (L0 ap(a)) if e >0,

Under mild conditions on the cost or densities, a positive ¢ makes the semi-dual formulation 1/e-
smooth [[17]. The key property of this semi-dual formulation of (E)OT is to retain more convexity
than the standard dual of (T) (see [28][53]]).

Optimal map and Brenier’s theorem. We consider the quadratic cost, ¢ = 0 and p, v having
second-order moments. Under the additional assumption that the measure y is absolutely continuous,
the optimal potential f*, called Kantorovich potential, is (locally) Lipschitz and the map

T,u,l/(x) =T Vf*(x) 3
pushes forward y onto v (see [8]]). In addition, 7}, ,, is the gradient of a convex function. This optimal

map has more importance than the OT cost in subfields of machine learning such as generative
modeling [29, 36] or domain adaptation [15].

2.2 Semi-discrete OT

Semi-discrete (E)OT is when the source measure g is absolutely continuous and the target measure
v = ZM 1 W;dy, is a finite sum of M > 1 Dirac masses with weights w; > 0. In this case, the
semi-dual formulation reduces to a finite-dimensional convex optimization problem on R

M
def.
min H, = — S (x)dp(z) — w; 4
i, H.(g) <~ [ g a)duta) > o @

where for all x € RY, g®¢(z) is a (vectorial) (c,e)-transform with respect to a vector g
(91,---,90m) € RM, defined by

e minjeqag [l — y5% — 9] it =0,
g™ (v) = { —eln (Zjvil exp (;%”w*gjl\“ij) wj) if >0.
The vector g corresponds to the value of the potential function at the points y;. For notational
convenience, we write He(g) = [;4 he(x,g)dpu(z) with he(z,g) = —g“*(z) — Zﬁl gjw;. For
all g € RM and given X ~ i, an unbiased estimator of the gradient is given by
Vgha(Xag)j:_wj +X§(Xag)a ]-S]SM,

where for (z,g) € R? x RM, we have
bl P+,
exp (%) wj

. .
—sllz—yxll*+9gx
Zk 1 €Xp (72 - Wi

Fore =0, x;(%,8) = 11, (g) (x) is an indicator function and we have a partition R¥ = U;‘il L;(g).
where for all j € [1, M],

1
Lite) = {o € R (a) = Jlo— - 0}

X5z, 8) =

The convex sets LL;(g) are called power or Laguerre cells and 1 (LL;(g) NL;(g)) = 0 when ¢ # j. By
the first-order optimality condition, solving semi-discrete OT amounts to finding g such that for all
j € [1,M], n(ILj(g)) = w;. Semi-discrete OT is a case of application of Brenier’s theorem. Given
the optimal potential g*, the OT map is T}, ., (z) = = — V(g*)°(x) = = — y; for x inside L;(g*).



2.3 Solving semi-discrete (E)OT with the semi-dual formulation

Exploiting its finite-dimensional nature, solving semi-discrete OT by optimizing its semi-dual formu-
lation has become a popular approach. Notably, Newton methods are highly effective to solve H
in scenarios with low dimensions and known source densities, utilizing meshes to approximate the
source density [38, 35, 31]]. In scenarios involving arbitrary dimensions or when only sample-based
access to the source measure is available, EOT emerges as a favored strategy. Notably, to avoid
working with a discretized version of the source measure, such as with the Sinkhorn Algorithm, [24]]
recommend employing stochastic optimization to solve (@). Indeed, the semi-dual EOT problem has
a convex objective of the form

Ha(g) = EXN;L[hE(X7 g)]a

with X as a random variable under . As noted in [24]], the main advantage of stochastic optimization
algorithms is that they are suited for really large-scale problems, keeping in memory only the discrete
measure v. Moreover, avoiding discretization enables unbiased estimation of (E)OT quantities.
SGD-based solvers also naturally operate in an online fashion, progressively refining their solutions
as more samples become available.

For a given fixed regularization parameter € > 0, stochastic first-order methods are predominantly
employed to solve (). Starting with an initial value go € R, these algorithms consider at each
iteration one or many samples X; ~ p and rely on an update of the form

8t = 8t—1 — 'thghs(Xtagt—l) .

At time ¢, the Averaged Stochastic Gradient Descent (ASGD) returns the averaged estimate g, =
t% ZZZO g1, while Stochastic Gradient Descent (SGD) returns g;. ASGD, as an acceleration of
SGD, has been widely studied in the literature (see [43| 41} 4], and [3]] for the specific case of EOT).

Choosing the regularization parameter ¢ for EOT. Approximating the EOT problem rather than
the OT one benefits from an enhanced convergence rate, especially in the discrete setting. The
introduction of the Sinkhorn Algorithm for solving the EOT problem, as highlighted by [[16], has led
to a resurgence of interest in OT within the Machine Learning community.

The choice of the regularization parameter € then becomes a practical and/or statistical problem:

1. Selecting the regularization parameter is a practical issue that aims to strike an optimal
balance between convergence speed and accuracy [16,[19]]. To address this trade-off, some
heuristics, such as e-scaling [49]], which involves a decreasing regularization scheme, are
employed in the discrete setting, although they lack sharp theoretical guarantees.

2. In the semi-discrete and continuous settings, the initial statistical problem is to determine
the number of samples needed to accurately approximate the OT quantities. In this line of
work, the use of EOT to construct estimators has also been proven to be satisfactory. In this
case, studies show that regularization must decrease as the number of samples increases
[44] 145]. However, discrete solvers do not adjust to the number of drawn points, as the
solver is initiated once the points to approximate the measures have been sampled.

3 DRAG: Decreasing Regularization Averaged Gradient

3.1 The setting.

We focus here on the one-sample setting of semi-discrete OT. Specifically, we sample from the source
measure /. and leverage the full information of the discrete measure v. Furthermore, fixing R > 0
and « € (0, 1], we make the following mild assumption, already present in [18]43].

Assumption 1. We assume that ;i € P(R?) has support contained in the convex ball B(0, R) and
admits a density du that is a-Holder continuous and satisfies 0 < dy < oo on its support. We denote
by P, (B(0, R)) the set of such measures.

The target v is assumed to be discrete, of the form v = 2 Zj\il by, with (y1, ..., ynm) € B(0, R)M.



3.2 DRAG: A gradient-based algorithm adaptive to both the sample size and the
regularization parameter

To accurately estimate the non-regularized OT cost and map, it is crucial to use a regularization
parameter ¢ that decreases as the number of drawn samples increases. However, no existing algorithm
in the OT literature simultaneously adapts to both entropic regularization and sample size. Inspired
by e-annealing [49], a decreasing regularization scheme from the discrete OT setting, which is known
for accelerating the convergence of the Sinkhorn algorithm in practice, and considering that SGD
algorithms are inherently adaptive to the number of samples, we introduce the Decreasing entropic
Regularization projected Averaged stochastic Gradient descent (DRAG) to solve the semi-dual (2).
Our algorithm employs a decreasing regularization sequence (&;); and replaces the usual gradient
step in SGD with a projected step using adaptive regularization

gt = Proje (81—1 — % Vghe, . (Xt 8:-1)) ,

where for U C RM convex, we define the projector as Proj;;(g) := argmin{|lg — g’||,g’ € U}.
This method can be interpreted as a decreasing bias SGD scheme. For such a method, employing
a projection step can be highly effective in ensuring convergence [13}, 23]]. In the context of EOT
with bounded cost, it is well established that the (c, €)-transform enables the localization of a ||. ||oo-
ball, where a minimum of the semi-dual problem lies [40]. Specifically, since sup{c(z,y;);z €
Supp(p),j € [1, M]} < 2R? by Assumption|l} a preliminary projection set can be expressed as
Coo := [0,2R?M and we know that we can search for a minimum in this set. Nonetheless, leveraging
the regularity of the cost function, we can have a projection set with a unique optimizer, as described
in the following Lemma.

Lemma 1. (Proof in Appendix[B.6) Under Assumption[l] for all £ > 0, there exists a unique solution
gito@inC, :={g R ;g1 =0and|g;| < R|y1 -y, € [L. M]}.

Note that the choice g; = 0 is arbitrary. In what Algorithm 1 DRAG
follows, we refer to C = Co, or C = C,, as our Parameters: (1, a, b,C)
projection set. Note that for both sets, the projec- Initialize ) c Z,l 7 =1
tion’s computational complexity is only O(M), for k — 1gt((), ; d(; 8o = 80,0 = &
as it involves merely clipping each coordinate

_ —b
of our vector. Ve =71k
. : . Xy~ o
Fmglly, we consider the Decreasmg Regqlar- g1, =Proj, (gk—1 —kaghsk,l(xmgk—l))
ization projected Averaged stochastic Gradient B ) E o
descent (DRAG) defined by 8k = 5718k T 1518k—1
= kia
3 ! + b & enzkfor
g = g T ——8-1
b+l t+1" return g,

with g, = go. The pseudo-code of our algo-
rithm is given in Algorithm|l| A main advantage of DRAG is its O(dt M) computational complexity
and O(dM) spatial complexity, which make it well suited for large-scale problems.

3.3 Key properties of the semi-dual H. for the design of DRAG

The design and convergence analysis of DRAG rely on two fundamental properties of the semi-dual
objective H.. First, the fast convergence of entropic potentials ensures that the optimal solution does
not change abruptly as the regularization parameter varies. Second, the enhanced Restricted Strong
Convexity (RSC) of H, around its optimum. These two properties are crucial to the construction of
DRAG and are detailed below.

Convergence of the entropic potentials. The following result from [18]] establishes that the
convergence of entropic optimal potentials is faster than linear as ¢’ — .

Proposition 1. [Corollary 2.2 [[I8]] For 0 < ¢’ < ¢, under Assumption, there exists a constant
Ky, notably depending on the characteristics of v, such that for any ' € (0, a),

gz — g2l < Ko™ (e —€).



Note that, up to a transformation of the form g;‘t + alys, where ¢ € R*, the minimizer of the
semi-dual is unique. Consequently, our analysis on the orthogonal complement of the subspace
spanned by 1,7, denoted as Vect(1,,)*. For simplicity, for g, g’ € R, we denote for p € [1, ]

Hg - g/”P = Hg - g/”p Vect(1ar)L > <g7g/> = <ga g/>Vect(1M)i .

Global and local Restricted Strong Convexity. The convergence behavior of gradient-based
methods is a central topic in convex optimization. The Restricted Strong Convexity (RSC) condition
[S8] offers a strictly weaker alternative to strong convexity while still providing comparable guarantees
in many settings [58} 50]. The following lemma characterizes the RSC of H.. Notably, while the
global RSC constant on C scales linearly with e~1, the local RSC in a neighborhood of radius &/2
around the optimum becomes independent of . This motivates the decreasing regularization scheme
in DRAG: by gradually reducing €, we ensure that iterates remain within regions where the improved
convexity properties can be fully exploited.

Lemma 2 (Global and local RSC of H,, proof in Appendix [B.7). For any ¢ € (0,1], under
Assumption[I} there exists p,. independant of €, such that for all g € C,

g 2¢coo " . % g

g (= ) el le el > 5
(VHE(g),g*gJ Z b -1 * 12 ; * €
pe (1—e71) g — g2l ifllg -zl < 5-

Here, p, provides a lower bound on the strong convexity constant of H. restricted to the subspace
Vect(1%), and it holds uniformly over ¢ € (0, 1] (see Theorem 3.2 in [[I8] for further details).

3.4 Convergence rate of DRAG

Convergence rate before averaging. The following proposition provides a key high-probability
control, ensuring that the iterates g; remain uniformly close to the optimal potential g7, at all times .

Proposition 2. (Proof in Appendix|B.3)) Under Assumption[I|with . € Po(B(0, R)), taking the
parameters (y1,a,b) of DRAG such that v1 > 0,b € (%7 1), with constraints 2a < b,a + b <
1,1+ a+ aa > 2b, we have for any § > 0 and every q > 0,

P (”gt - g:t || > €t) < p—a(b—2a)+6

This result is key to leveraging the locally enhanced RSC of H., and guides how quickly the
regularization can decay. When b > 2a, it yields a convergence rate of o(t?) for all p. This
proposition leads to the convergence rate of the non-averaged DRAG iterates stated in Theorem T}

Dependence on a, b, and «. As we can see, the convergence rate depends on a, b from DRAG and
the Holder regularity. While the constraints may seem difficult to interpret, setting a arbitrarily close
to 3 (denoted @ = 1 ) and b = 2 ensures that the constraints are satisfied for any o € (1/2, 1].
Theorem 1. (Proof in Appendix[B.1) Under the same assumptions as in Proposition[2} we have for
any o' € (0, )

1 1

*12
Elle —& ] £ —5 + porawr - 121

Remarkably, we achieve a convergence rate without any undesirable dependence on regularization.
In contrast, [5] derived a convergence rate of the form O(s~“t~?) for a fixed regularization, with c at
least equal to 1. Note that having no adverse dependence on the regularization parameter is a key
necessary characteristic of DRAG, which aims to solve the non-regularized OT problem at fast rates.

Enhanced convergence rate with averaging. In convex stochastic optimization, it is known that
averaging SGD iterations can lead to acceleration. More precisely, ASGD can adapt to the possibly
unknown local strong convexity of the objective function at the optimizer [43} 3] and achieve optimal
O(1/t) converge rates. Despite the fact that our objective function changes at each time ¢, Theorem
[2shows that DRAG fully exploits the acceleration thanks to averaging.

Theorem 2. (Proof in Appendix|[B.2) Under the same assumptions as in Theorem([l} noting s =
min{1, 2a + 2aa’}, we have for all o/ € (0, @),

1
E (g - g7 S =



The rates again depend on a, b, and . The key message here is that by taking a =
recover the optimal O(1/t) rate for any o € (3, 1].

1-
3

4 Optimal Transport cost and map estimation with DRAG

In the previous section, we established the convergence rate of DRAG to the OT potential. While
this result was central to our theoretical analysis, our final objective is to estimate the OT cost and
transport map. Leveraging the convergence rate of the potential, we derive estimation guarantees for
these key OT quantities.

4.1 OT cost estimation

Corollary 1. (Proof in Appendix Taking the same assumptions as Theorem 2| with s =
min{1, 2a + 2ac’}, we have

. _ 1
E[Ho(g") — Ho(8)| < ; - ®)
Once again, when a > 1/2 and setting @ = & and b = 2, we achieve an O(1/t) convergence

rate, which is optimal for strongly convex objectives. This rate is obtained by leveraging the locally
enhanced RSC property and our adaptive decreasing regularization scheme. The fact that Hy is
locally smooth, as noted in Theorem 4.1 of [32]], also plays a crucial role in the proof of Corollary 2.

4.2 Brenier map estimation

When employing entropic regularization, a popular choice to approximate the OT map involves using
the estimator of the entropic Brenier map [44] T7; ,(g%)(x) = = — V(g?)“*. Indeed, for g € R,
T ,(&)(x) could serve as an estimator. The objective is then to find an accurate estimator, g, close
to g7, and to analyze its performance based on the bias-variance decomposition

||T,U«=V - Tﬁ,u(g)”%?(u,) ,S ||T€,u(g) - T;l/(g:)|‘%2(u) +¢,

using the fact that ||T},, — Tﬁvy(g:)H%%M) < e ([45], Theorem 3.4). However, the mapping

g T: (g)is e~ 1-Lipschitz, complicating the bias-variance trade-off given that &, = t~%. Instead,
we rely on the gradient computed thanks to the c-transform of the estimator g, of DRAG. In fact,
for any x € R, if there exists j € [1, M] such that  is in the interior of L;(g*) N L; (g, ), we have
T, (z) = 2 — V(8,)°(z). Indeed, no matter g, whenever z € R? is in the interior of L;(g), the
gradient of g€ is given by

. 1
Vi) (o) = g | 3lle — il - 05| =5 ©
By analyzing the differences of Laguerre cells partitions between IL(g,) and L(g*), we derive the

following theorem.

Theorem 3. (Proof in Appendix[B.3) Under the same assumptions as Theorem[l} defining for all
v € RYand timet > 0T(g,)(z) = — VgS, s = min{1,2a + 2aa’}, we have forall 1 < p < oo

B 1
E |:||TM’V — Tp,u(gt)”}zf’(p,)} 5 $s/2 7

When o > 1/2, setting a = &+ and b = 2, we recover an O(1/+/t) convergence rate. This
matches the rate obtained in [45]], but in our case it is achieved in the one-sample setting with an
algorithm that refines its estimate online, whereas their approach relies on the Sinkhorn algorithm in
a batched setting. Note that, unlike our method, theirs achieves the optimal rate for any « € (0,1).
However, the use of online algorithms is crucial in high-dimensional applications where data is
sampled sequentially, such as in generative modeling. In such settings, although the source measure
is not compact, it is often chosen to be the standard Gaussian, which has a Lipschitz density and

therefore corresponds to the case o = 1.



5 Numerical experiments

Convergence rates of DRAG on synthetic data. We numerically verify here our convergence rate
guarantees through various examples. For each example, we know the theoretical OT map, cost, and
discrete potential. The first two examples are similar to those in [45]. In all figures and experiments,
we set the parameters of DRAG to ¢, = 0.1/t*,a = 0.33,b = 2/3,v; = Diam(Supp(1)). Our
numerical investigation found that our parameter selection is robust without further hypertuning.

Examples settings: (1) 1 ~ U([0,1]'°), Supp(v) = {y; = (jj&[/z, L h e M), w=
a7 1ar, M =1000. (2) p ~ U([0,1]*°), M = 30 and y1, ..., yps randomly generated in [0, 1]'° . We
then also randomly generate g* € R3 and approximate w with Monte Carlo (MC), such that g* is
the discrete optimum potential. This setting led to non-uniform weights, with wy,;, = 0.0011. (3)

o~ U8, 1+6]),6 = 0.5, Supp(v) = { £k € [L, M]}, w = 3:1a, M = 1000.

Example 1 Example 2 Example 3

— x 1/V1
5 10- oc 1/t
£ ., v g - gt
107 * Tvvg | w0 0 T = T
* - |Ho(g") — Ho(g))|
107! *eo iy 1071
%

1000 10000 100000 1000 10000 100000 1000 10000 100000
Iterations Iterations Iterations

Figure 1: Convergence rate to the OT potential, cost and map for Examples 1,2 and 3.

In Figure |1} we show the convergence rates of the OT cost, map, and discrete potential. As we
can see, our theoretical rates are matched for all OT quantities. The higher variance in the OT cost
estimations in Example 3 is likely due to the use of 108 Monte Carlo samples to approximate H,
which introduces an additional approximation error beyond the one caused by DRAG alone.

DRAG compared to fixed regularization ASGD. In Figures [2]and[3] we compare the effectiveness
and robustness of decreasing vs. fixed regularization schemes. Figure[2|shows that DRAG consistently
outperforms projected ASGD with various fixed regularization values, achieving a better trade-off
between convergence speed and solution quality. Fixed schemes either converge to biased solutions
when regularization is large or fail to converge in time when it is too small (e.g., ¢ = 5 - 1073).
This highlights DRAG’s advantage during the entire optimization process and supports the idea that
starting with high regularization and gradually reducing it yields more stable and accurate solutions
in semi-discrete optimal transport. Figure [3| shows DRAG’s robustness to the decay parameter a:
both @ = 0.3 and a = 0.5 yield similar convergence, indicating low sensitivity. All decreasing
regularization variants also clearly outperform the non-regularized projected ASGD. While all
regularization schemes eventually converge with more iterations, DRAG remains one to two orders
of magnitude more accurate, due to its improved start visible in both figures (see Appendix[Al.

10%

10%
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51078
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in 10° =5-107! t\f ‘\‘ - u
= =1-107! 2 4
";I“‘ €=%5- 1052 g —— a=03
& g2 i =10 lom i:q -
103 ASGD, ¢ fixed o] = 1
—#*— DRAG, & =0.1/t'/* ASCD (non-reg) o
100 1000 10000 100000 100 1000 10000
Tterations Tterations
Figure 2: DRAG compared to ASGD with a Figure 3: DRAG, with different decreasing
fixed regularization on Example 1. regularization rate £, = 0.1/¢t* on Example 1.



Generative modeling task. We illustrate the practical benefits of our solver in the
context of generative modeling. In [2], semi-discrete OT is used to map a simple
prior onto encoded data points in latent space, with the goal of reducing mode collapse.
To generate new samples, they approximate a semi-discrete
OT map from a standard gaussian to the empirical distri-
bution of encoded data points in the latent space and then
apply a specific interpolation scheme to obtain a continu-
ous mapping from prior to latent space. We replicate their
pipeline on toy datasets from their repository [27], replac- — serms Gondmn - o
ing their ADAM-based solver with DRAG, using the same
number of samples. As we can see, while both solvers
yield good results on the "swissroll" target data, DRAG
outperforms the ADAM solver on the "spiralarms” data, be-
ing able to almost completely generate it, whereas ADAM  Fjgure 4: Comparison of DRAG and
shows poorer coverage. Since the Gaussian is not com- ADAM for a generative model task
pactly supported, this setup falls under Assumption [T} and

DRAG was run without projections. This further underscores its robustness in more general settings.

swissroll - Ground Truth DR

Monge-Kantorovich Quantiles. We visualize our OT map estimator on a concrete example of
Monge-Kantorovich (MK) quantiles [11]]. In this context, having a target measure v to investigate,
the source measure is set to be the uniform measure on the unit Euclidean ball p ~ U(B(0, 1)).
Given the OT map 7}, ,, (or its approximation), T}, ,, (B(0, k/10)) for k € [1,10] define MK quantile
regions. We used M = 10° points to approximate v, a discrete version of a boomerang-shaped
measure and benchmarked DRAG against two OT solvers that can solve semi-discrete OT: Online
Sinkhorn [37], using the EOT map estimator and Neural OT [33]]. DRAG and Online Sinkhorn used
107 source samples; for the latter, the entropic regularisation was tuned to ¢ = 1072, Both ran in
under one minute. Neural OT, following Appendix B of [33]], processed over 10% samples using a
three hidden layers MLP, was ten times slower, even on a A100 GPU. Figure[5]displays the estimated
MK quantile regions of the target measure v, color-coding each centered annulus region. As visible
in the figure, DRAG is the only method producing an unbiased estimate of the MK quantiles, fully
covering the support of v while keeping every MK region convex, as expected in theory.

(a) Source (b) Target (c) DRAG (d) Online Sinkhorn (e) Neural OT

Figure 5: Comparison of Monge-Kantorovich quantiles approximation with different solvers

Additional experiments. The appendix presents further experiments that, while not affecting our
theoretical results, may benefit practitioners. We show that mini-batching with GPU acceleration and
weighted averaging of iterates g; can significantly speed up the algorithm. We also compare DRAG
to Adam on synthetic data, highlighting its superior performance.

6 Conclusion

In EOT, a decreasing regularization parameter naturally appeals to practitioners who employ annealing
schemes to accelerate Sinkhorn-like algorithms. Similarly, in the statistical community, regularization
that decreases with the number of samples is preferred for more accurately approximating true
OT quantities. With our algorithm, DRAG, we show that these two motivations for decreasing
regularization can coexist successfully. We prove that DRAG achieves optimal convergence rates:
O(1/t) for both the OT potential and cost, and O(1/+/%) for the OT map. These rates are obtained by
leveraging decreasing regularization as a form of acceleration. To the best of our knowledge, this is
the first algorithm in the OT literature that adapts to both regularization strength and sample size. Our
results also motivate further investigation of decreasing regularization in (i) discrete OT, by adapting
our approach to demonstrate the acceleration benefits of annealing schemes, and in (ii) semi-discrete
OT, by developing new optimized versions of DRAG, such as those incorporating adaptive step sizes.
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A Additonnal Experiments

A.1 Mini-batch DRAG.

As for Vanilla SGD, we can take advantage of GPU parallelization and replace the gradient estimator
using one sample X ~ p

Veghe(X,g)

by a mini-batch estimator, using n;, > 11.i.d samples X1, ..., X,,, samples of the source measure at
once

1 &
o > Vghe (X, g). )
k=0

Of course, no matter the choice ny, defines an unbiased estimator of VH_(g).

Using a mini-batch of size n;, we suggest multiplying y; by /7, as is usual with mini-batch SGD.
The following figure shows the acceleration due to mini-batching on Example 1, 2 and 3, while
maintaining the same computational time when using a GPU. Indeed, each mini-batch estimator has
an error an order of magnitude lower than the non-batched ones, even with a small mini-batch size of
ny = 16.
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10 v.. .
° vy 10~ ° v. e v
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100 1000 10000 100 1000 10000 100 1000 10000
Iterations Iterations Iterations

Figure 6: Comparison of the non mini-batched and mini-batched estimators on Example 1, 2 and 3,
ny = 16.

A.2 Weighted Averaging: Maintaining a better trade-off between averaged and non-averaged
iterations.

I is well known that the averaged algorithm can suffer from bad initialization. One strategy to over-
come this is weighted averaging [39]. Namely, we replace the averaged estimator g, = H% ZZ:O gt
by

t

—(w) 1 w

g, = log(k + 1)“gy,
Z};:o log(k + 1)« ,;)

with a parameter w > 0. The parameter w balances the weights assigned to the estimators gy. As
w increases, greater importance is given to the more recent estimates, while we retrieve g, when w
goes to 0. As for the usual averaged estimators, we can perform the weighted average online, without
having to store all the iterates, with the recursion

(W) 1n(t + 1)"" (W) ln(t + 1)“’
1= (1—= ¢t =z
Y opon(k + 1)« D opon(k+ 1)«

8t+1-

It is important to note that ggw) will have the same asymptotic convergence guarantees as g,.
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Figure 7: Comparison between g, g, and g, ~ on Examples 1, 2 and 3, with w = 2

As illustrated in Figure[7] the weighted average estimator consistently outperforms g;, achieving
orders of magnitude better performance in Examples 2 and 3. Note that a mini-batch size of 16 was
used for all experiments, each repeated 10 times.

A.3 DRAG compared to Adam.

We compare here the performance of our algorithm DRAG to that of the Adam algorithm [30], on
Example 1, with M € 200, 2000. The experiment was repeated 10 times. For this comparison, we
fixed the parameters of DRAG to (v/M,1/3,2/3) and ran the algorithm for ¢t = 10° iterations. The
parameters for Adam were set to 31 = 0.9, B2 = 0.999, and A = 103 (learning rate/weight decay).
As shown in Figure [8) DRAG clearly outperforms Adam on this example, particularly in the early
iterations and as the number of points increases.

M =200

102 =

10! ~

100 < ~

llge — g*II?
.
/

107 10° 101 10% 10* 10t
Iterations Iterations

DRAG @ Adam g;

Figure 8: Comparison of DRAG with Adam on Example 1, for different values of M.

A.4 DRAG compared to non regularized ASGD

As discussed in the numerical section, we observed empirically that all methods, including the non-
regularized projected ASGD, eventually converge to the true solution given a sufficient number of
iterations. In Figure[9] we report additional experiments with a larger iteration budget to confirm this
behavior. Notably, even the non-regularized ASGD converges, albeit much more slowly. In contrast,
DRAG converges significantly faster and achieves higher accuracy earlier in the optimization process.

Among the DRAG variants, we observe that choices of a € 0.2, 0.4 yield the best performance, which

aligns with our theoretical analysis suggesting that a = %_ achieves the optimal convergence rate in
this setting, since b = % These results reinforce our claim from the main text that, while all schemes
converge given enough iterations, DRAG remains consistently one to two orders of magnitude more

accurate due to its improved early-stage performance (see Appendix [A).

Note also that the convergence of the non-regularized ASGD is encouraging, as it highlights that, with
a sufficiently large number of steps, the effect of vanishing regularization is not a deterrent. Indeed,
as t — oo, the regularized gradient becomes numerically indistinguishable from the non-regularized
one, essentially corresponding to the difference between a tempered softmax with temperature € and
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an argmax. This further supports the view that DRAG serves as an effective acceleration mechanism
in the early stages of optimization and that by decreasing the regularization, we will not hit a plateau.

1024
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Figure 9: Comparison of DRAG with different a and non-regularized ASGD

B Proofs

Additionnal notations.

For any ¢ > 0 we define the function ¢ — U.(¢) such that

T 1+In(T+1) ife=1,
YNt (T) =4 A if¢ > 1, ®)
t=1 1+ =T+ ife<l.

For a sequence (ug)sen, if £ ¢ N, u must be understood as urgl-
2

In all the sequel, we note

2
Ar =g — g%
Remark that the dependence in ¢ is both in the estimator g; and the optimizer g;,. We also recall that
wenote D¢ := sup ||g —g'|| < 0.
g,g’eC

B.1 Proof of Theorem|[I: Convergence rate of the non averaged iterates.
Proof. Using Lemma[3] for any ¢ > t, o, we have

Apr1 <A — 2741 <Vghe,, (&, Xi41), 8t — g:t> + 5’Yf,2+1-

Let F; denote the filtration generated by the samples X1, ..., X; S u, thatis F; = o (X1,..., X3)
and taking the conditional expectation, we have

E[Avp1|F) < Ay — 2741 (VH:, (80), 8 — 82, ) + 577 )
Using Lemma|2]on the restricted strong convexity of H.,, we have
(VHe,(g:),& — &%) = pe(l — e Dlige — 85,1 Lg, gz, f1<cr/2 -

Therefore, we have

E [At+1 ‘ ]:t] S [1 — 2p*(1 — 6_1)’7t+1:| At + |:2p*(1 — e_l)]ll‘gt,g;tuzst/g ’yt+1At + 577524»1'
(10)
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Using Proposition [2| for all p and 8 € (0, 1), there exists Cjz ;, such that for all ¢ > 0, E[A}] <

s
Cap ’Yfgptp < O pt~tr+a(1=A)P Therefore,

€%

ElLjg —gz, 12e./2] = ElLg, g2 2re2e20]

< Cg pt~tPFor(3-F) by Markov’s inequality

4
t_4b taklngp = ba(?l))ﬁ)’ with a(3 — 6) <b. (1 ])

Note that, since 2a < b, we can always choose 3 such that the inequality a(3 — ) < b holds. Using
the fact that A; < D2 and taking the expectation in (T0), we obtain

< Cp,

4b
b—a(3-5)

E [At+1] S [1 — 2p*(1 — 6_1)’7t+1:| ]E[At] + 5’Yt2+1 + C,B, 4b t_5bD(2j .

5—a(3—5)

Let ¢, := min {¢,2Ay;41 < 1} and to := max{tq,q,t,} , we apply Proposition[5|to obtain

t t
)
E[A] < exp (—2A > %) (D% +) 5%3) + oy V-1 + o) (12)

i=to+1 k=to
Applying Corollary 2] the exponential product converges exponentially fast to 0 and an asymptotic
comparison gives

5 Vi
EA] < —————7: < —.
[Ad < 2pr(1—e 1) 571 *olw) 5 p*

We conclude by using Proposition using the bound ||g?, — g*|| < glte’,

Proposition 3. Under the same assumptions as in Theorem[l|, we have for any o/ € (0, )

1 1

* 12
E[Hgt_g ” ] S Pz't% +t4a+4ao¢” t>1.

Remark: Note that this proposition directly proves Theorem [T} but we decided to split them, to have
a cleaner proof of Theorem 1.

Proof. We begin by squaring equation (T3) of Lemma[3} For t > t, o, where t, q is defined in (T5),
we have

. 2
A7y < (A = 2901 (Vghe, (86, Xev1), 8t — 85,) + 57741)
2
< A? + 497 (Vehe, (86 Xeg1), 81 — gl) + 25714

— AAe41 (Vghe, (8¢, Xiv1), 8t — 85, ) 108177 — 2007, (Vghe, (86 Xi41), 8t — &2,) -
—:A =:B

Taking the conditional and using Lemma[2] we have
E[A | F] > 4At2p*(1 - e_l)%+11|\gﬁgatHSEt/Q'
We also use the simple bound

E[B | 7] = 0.

These two inequalities lead to
E[A] [ Fi) < [1=4p(1 = ey ] A7 +4p.(1 = e Dy lyg, g, f<cr/2
.\ 2
+ 477 E {<Vhe,, (8¢, Xiv1) 80— 82,)" | ]'—t} + 25911 + 5AN7 L.
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Using that the gradient norm is bounded by two, we apply the Cauchy-Schwarz inequality to obtain
* \2 *
47711 (Vighe, (8, Xer1), 8 — 2,)" < 1697 [lge — &5, II° < 164077,

Applying Holder’s inequality yields

21A 1 < (At 2p.(1 —e™t) )21%+1> Y+

2[)*(1 — € 1
< A2 (1 - 1) 7212 3
Y+ P (& + .
= S 4/7*(1 & 1)7t+1

Summing up these inequalities, we obtain
E[A7 | Fi] < [1=3pa(l— e Dyiga] A7 +4p.(1 — e v l)ig,—g., 122, /2

212 3 4
+ m’}/ﬁ_l + 257t+1'
Similarly to the case p = 1, using that P[||g; — g7, || > &¢/2] < C5 _u__t~*" by (TT) and that

F=a(5=)
A? < D} for all ¢, taking the expectation yields

212 _
E[AZ, ] < (1 = 3\ye41)E[A]] + ﬂvfﬂ + 257, +4NCy . t7Dg

b—a(3—B)

Again, as in the case p = 1, applying Propositionand Corollaryand using that [|g?, —g*[| < a%*a/
concludes the proof.

O

Lemma 3. Under the assumptions of Theoremm there exists a finite time t, ., depending on a and
«, such that for all t > t, ., we have

A1 <A =294 <Vghst (86, Xi+1), 8t — g:t> + 5%52+1 . (13)

Proof. By definition of the gradient step at time ¢ 4+ 1 and since g7, | € C, we have
At+1 = ||gt+1 - g:t+1”2
= [[Projc (gt — Ve+1Vghe, (8t Xe41)) — 82,

< llgt — Ve+1Vghe, (81, Xev1) — &2, [

I?

Then, incorporating the change of optimum between time ¢ and ¢ 4 1, we get
Avpr <18t — Ve41Vghe, (81, Xi1) — gf, + 85, — &b, |I?
< llgt — ve+1Vghe, (8¢, Xeq1) — &, I +2 <gt — Ye41Vghe, (8, Xt41) — 82,85, — g;‘t+1>

+lgz, — &z, 117

Using Corollary 2.2 in [[18] (see Proposition|[)), there exists Ko > 0 such that for any o/ €]0, o

lgZ, — g2, < Koe® (g1 — £141) < Kot (" =@t+1)"") < aKot—(tataa’) gy

For clarity, we define ry := aKot~(1Tor9e) and R, := (2D¢ + 2741 + 7¢)7+.
Using that for all ¢, g; € C, and that for all z € R%, g € RM,

Vghe, (g, )| < 2, we obtain

Avir <18t — ve41Vghe, (81 Xi1) — g8, 17 + (2De + 240 llgl, — e, || + llgs, — &, |17
< llgt — ve+1Vghe, (8, Xe1) — 5,17 + Ry
< gt — 85117 — 2ve41 (Vghe, (8, Xe41), 8 — &2,) + Ver1 | Vehe, (8, Xeg1)|* + R
<Ay —2v41 (Vghe, (8, Xi11). 8 — &5, ) + 4771 + Re.
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Note that, since we have 1 + a 4+ aa > 2b, we can also take o’ €]0, o[ such that 1 + a + ac’ > 2b.
Consequently, the sequence R;/~7 is decreasing and tends to 0. For conciseness, we note

ta:=min{t >1: R, <~7}. (15)

For any t > ¢, ,, we then obtain the following upper bound of A, ; in terms of A, and the gradient
direction:

A1 <AL =2 <Vghst (81, Xt+1), 8t — g:) + 5%2+1-

B.2 Proof of Theorem [2: Convergence rate of DRAG

Proof. We start with a decomposition of the gradient step, similar to [26]. By abuse of notation, we
note

Vii=V?Ho(gl,)

and define the following differences:

pr = Proje (8k — Yrt+1Vghe, (8k: Xit1)) — (8% — Wh+1Vghe, (8 Xt1)),

£k+1 = VHEk (gk) - Vghek (gkvXkJrl)v

ok := VHo(gr) — VH, (gk)

8k = VHo (gr) — V3 (8 — £) -
The term py, represents the difference between the projected and non-projected steps. Note that
pr = 01f 8 — Yi41Vghe, (8, Xi+1) € C. The term &, is a martingale difference &, representing
the difference between the regularized gradient and its non-biased estimator. ¢ represents the
difference between the ¢j-regularized gradient and the non-regularized gradient.Finally, dj, represents

the difference between the gradient at g, and its linear approximation given by the Hessian at the
optimum.

Let I denote identity matrix of M ;(IR), observe that for any k¥ € N
grt1 — 8o = Proje (8r — Ye+1Vehe, (8, Xkr1)) — 85
=8k — VYit+1Vehe, (8, Xkt1) — 85 — P incorporating p
=gk — Vi+1VHe, (8) — 80 + Ye+18k+1 — Dk incorporating k11
=gk — Ye+1VHo(8k) + Vk+10k — 80 + Vk+18k+1 — Dk incorporating o,
= (Int = Ye4+1V2) (8% — 85) — Vet 10k + Vo410 + Vit1Ek+1 + D -
incorporating §

Thus, we have that

8k — 8k+1 Pk
7+_5k+0k+€k+1+ .
Ve+1 Ve+1

Vi(gr —gy) =

Observe that there is an orthogonal matrix U such that VE = Udiag (M\,...,Ap-1,0)U T. There-
fore, in the following, we denote
(V2) "' =Udiag (A7, .., A5, 0) U T
the inverse of V2, restricted to the subspace Vect(1 M)L. Note that we have [18, Theorem 3.2]
min _A; > p,, foralk >0.
je[1,M—1]

Taking all the equalities in Vect(1;7)", that is, considering all our vectors in the subspace
Vect (1), we have
t

= * 1 -1 8k — 8k+1 1< -1
(gt—go)=mZ(Vi) —ng(vi) O

Ve+1

k=0 k=0
1 < 1 < 1 1 < 1 pe
_t L 2\~ L 2y~1 Pk
+t+1k§”"+t+1,;(v*) gk+1+t+1]§(v*) Vi1
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We will now give the convergence rate for each sum. Note that thanks to the introduction of oy, we
will directly be able to use the local smoothness and strong convexity of Hy, proved in our setting in
[32]].

Bk "Bk+41
e Convergence rate for ; +1 S o

Ye+1

Z 8k — 8kl _ i (8r —8") — (8rt1 — &)

o TR+l =0 Ve+1
Z 8k — Z gk+1 —
o R+l o TkH1
g —g* gi+1— 8"
= gr—8")+ - :
Z (7k+1 ) ( ) Y1 Yt+1

Remark that v;,.', — v, ' < 297 'n®~L. By Theorem(non-averaged iterates), E [||lgn — g*[12] <
2+ 1)~°. Therefore

(t41)%2.

1 1
< =Wy _y(t+1) + Doyt +
s 1 b/2( ) 1 \/,m

o TR+l

Z 8k — Bk+1
v

We thus have the convergence rate

<1
~ p(t+ 1)1-b/2

Z 8r — 8k+1
v

k=0 TR+l

1 t
e Convergence rate for ;5 >, _, dx

By [32, Theorem 1.3], there exists a ball B(g*, dy) with d; > 0 where H is a-Holder. Therefore, by
applying a Taylor expansion of V H(g) around g*, if g, € B(g*, d1), we have

1611 < llgw — g1l -

Otherwise, since the Hessian H is uniformly bounded [32] Theorem 1.1], there exists a constant C's
such that forany g € C, ||VH (g) — V2H(g*) (g — g*) || < Cs.

Since P(gr ¢ B(g*,d1)) = P(||gr — g«|| > d1), we obtain by Markov’s inequality
Ell0kll5] = Elll6kll3 1ge e an] + Bkl g g ner an)]
* « 02 * oY
SE(llgr — 7117 + 35 Ellen — 87127
1

SE[lge — g2 .

Therefore, using Minkowski’s inequality, we have

1 t 2] 2 t
—F 1)
=0 v k_O
1
S — W ian
1)
< 1
~ 14+

p*T(t—i—l)H b
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1 t
o Convergence rate for = >, _ &t

We recall that {11 = VH (8r) — Vgh (8k, Xi+1) and thus E[§;1] = 0.

Observe that E [<ZZ;3 §k+1a£t+1>v} = sz 0§k+1, £t+1|}"t> ]

Thus, since E [||£;|?] < 4 for all k, we have the convergence rate

Z §k+1

1
27 2
2
<

IRV

t—|—1

o Convergence rate of t%l 22:0 Ok
Using PropositionEI, we have uniformly in g, € C that, for all o’ € (0, «),
okl = 1V Ho(gr) = VHe, (gr)]| < e+ S oo’

Therefore
t

< L
~ it

1
~ ta+aa’ :

‘Ija+aoz’ (t)

1 t Pk
o Convergence rate for 5757, 2

Take dj such that B(g*, do) C C. Defining Vj, := Vgh (g, Xi+1) for conciseness, we obtain
E [llpkl2) = B [IProje (gx — +1V4) = (&5 — w41 Vi)l

=E {HPFOJ'C (8 — M+1Ve) — (8k — 1 Vi)l lgk—7k+lvk¢ci|

Since forany y € C, one has ||z —Proj. (x)||, < ||x—y]l., taking y = g, and since gx, —Yx+1 Vi ¢ C
is satisfied only if ||gr — Vk+1VE — g*||v > do, we have

2
E [HpkH?)] < E |:||’yk+1kav 1Hgk7’Yk+1vk*g*”,u>dU:|

E Ngk — Vi1V — g*Hﬂ

< 4’71% 1
+ dé
’Vl%+1 4
- 9 4
< dn (251['3 [”gk - g*llv] + 237k+1)
1
<
~ 'Y
p2 F 1
We thus have
1 t 273 1 t
Pk Vk+1
oot NIEEES>
t+1 k=0 ¥ ||, t+1i= P
< 71
pi(t+1)°

e Conclusion.

Finally, summing up all the convergence rates, using Cauchy-Schwarz inequality and that (A + B)?
2(A% + B?) for any A, B € R we obtain

4
H] 1 U 1 1 ~

V2H(g -+ . + +
{” PREF 1270 kBt T BE G pprar EHL D pREH D
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Since b > 2a and b + cwa > 2a + 2a¢’ and so noting s = min{1, 2a + 2ac’}, and since the Hessian
norm is uniformly bounded, we finally obtain

_ X 1
E[lg, el <

tfs .

B.3 Proof of Theorem [3; Convergence of the OT map estimator

Proof. We show that the convergence rate of g, to g; implies a convergence rate a convergence rate
for the map estimation. The Brenier map is given by T}, , () = « — V(g{)°(x); see for instance
[46], Theorem 1.17. We thus focus on the convergence of Vg; to V(g )°.

For all j € [1, M], if z lies in the interior of L;(g), we have
Vg(z) =z —y;. (16)

Therefore, given g, g’ € R, if there exists a j € [1, M] such that x is the interior of L;(g) NL;(g’)
we have

Vg (z) = V(g') ().

We will now follow arguments from [46]], Section 6.4.2. Fix j, j' € [1, M] such that j # j’ and x is
in the interior of L;(g) N L;/(g’). By definition of the c-transform, we observe that IL;(g) is defined
by M — 1 linear inequalities of the form

. 1 1
(yy —95) < ag(3:3") == 95 = 9 + Sl llz = 5w l3
Similarly, interchanging the role of g, g’ and j, j' we have

/

o 1 1
(0,5~ up) < ag (§',3) = gy — 6} + 5 lusl3 = 3 3.
We obtain that
L;(g) NL;(g") C {z € R?: —ag (j',)) < (x,y5 — y;) < ag(j,5)}-
Moreover, noting h = (hq, ..., hps) = g — g, we see that
|a’g'(j/aj)+ag(jaj/)‘ < |hj' _hj|' a7
We have

n(A:={z e RY, Ve(e) # V(g)(2)})

=p| JLj(g) nLj(g)

< Z p(Lj(g) NLj(g'))
<3 n({r e R —ag (1) < (g — i) < agli. )

Under Assumption (I} x4 is a measure such that Supp(x) C B(0, R) and it admits a density du
bounded by dfiyax. Thus,

(A) < dpmax Y Awa({ € B0, R) : —ag (5, ) < (2,5 —y;) < ag(j,5)})

i<’
L o -
S d,u'lnax Z )\Rd ({.T S B(O,R) : —M S <.T, yj y] > S ag(jh] ) })
i< 157 = sl 57 = wslla /-~ Nlysr =yl
L -,
< deax Z )\Rd ({x c B(O,R) . _M <z < CLg(j,j)}) ,
i Y5 = will2 Y5 = will2
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by the rotational invariance of the Lebesgue measure. Combining this remark with yields

hjr — h;
HA) < A0S P
i< Yj Yjill2
Similarly, for the L? norm of the map difference, we obtain
170 = V& Ol Iy < X [ 1 (Ve“() — V(&) ()], du(a)

j<j /i (8)NLys (8")

< i = yjllan (Li(g) N Ly (g))
Jj<j’

< dptmmax B! Z ly5° — yjllalhy — hyl

=y =yl
< Aptmax M~ D+/2aRITION] |||

So, in particular, there exists a constant Ca > 0, independent of the location of the points y;, which
grows at least linearly in M such that

(Ve () = V(&) Oy 7 < Calg — &'l < CavM|lg — &

Plugging in the convergence rate of g, to g* concludes the proof. O

B.4 Proof of Corollary[I} OT cost estimation

Proof. For any vector g € R, we recall the definition of L(g) = Uj\il L;(g):

foratl & [1.M], Ly(g) 1= {i € Rg'e) = 11—yl — g5}
Note that L(g) defines a partition of R? up to p-null sets , i.e. u (L;(g) NL;(g)) = 0 when i # j,
and the convex sets IL;(g) are called power or Laguerre cells. We define the set
Oi={g:RM 5 R|Vie[1,M],u(Li(g)) >d}.
Using Theorem 4.1 in [32], under Assumptlonl Hy is uniformly C*® on KC°. That is, there exists a

constant L such that Hy is L-smooth on K°. Note that the constant L depends on piyin, 9, R. We
refer to [32]], Remark 4.1 for more details.

By the first order condition, as soon as § < wpyi,, we have g* € K°. Indeed, at the optimum, we
have for all i € [1, M], p (Li(g*)) = w;. We fix here § = 5 wmin.

Thanks to the L-smoothness, for any g € K%, we have
* L *
|[Ho(g) — Ho(g™)| < 5 llg — &"[1*

Note that, for any g € RM and i € [1, M], the difference of measure of the Laguerre cells L;(g)
and LL;(g*) is at most linear with respect to ||g — g*||oc. We refer to Theorem 3|or Section 6.4.2 in
[46] for more details.

Therefore, there exists a constant C'y, such that, as soon as * H2 < (7, we have that g e K¢,
This constant depends on 6, fimax, R and d as in Theorem Usmg Theoreml 2l El|lg, — g*||?] =
O(t~*) with s > 0. Then

E[|Ho(g;) — Ho(g")] = E [|Ho(g,) — Ho(g")|1g,exs]| + E [|[Ho(8;) — Ho(g")|1g,¢ x5 ]

< S Ellg. — ") + max| Ho(g) — Ho(g")|E[lg,¢ ]
L_.._ . .
< gE[Hgt —g* 1’1+ IggédHo(g) — Ho(g")|[E[1)g,—g|>>c. ]
=0 (Ellg, —&"II”]) .
where the Markov inequality of order 1 was used on E[1 g, —g+|>>c, ]- O
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B.5 Proof of Proposition High probability being in B(g? , ;).
Proof. The proof of this proposition relies heavily on the technical Lemma ] which we state and
prove immediately after this proof.

We start with a base case at § = ug = 0, which provides an initial convergence rate for E[A?]. Then,
by an inductive argument, we gradually increase u,, to improve this rate till the limit when n tends to
infinity, namely min{b — a, a}.

. . 40 .
Base case (ug = 0). Using Lemma with A = pu 1460700 grife =0, and Aoy = pi(l —
e e t¢if ¢ € (0,a), we have

E[A},,] < E[A}] (1 = Yer1rot + Crp %2+1) + Cop AP AP

By applying Proposition [5and Corollary 2] we obtain the following baseline convergence rate, for all
p > 0:

D

Vi
E[AY] < ;;
t

Inductive step (improving the rate). Suppose that for some u,, € [0, min{b — a,a}), we already

have
]E[Af] <P (b—atun)

Choose ¢ < b‘“% and set d = b — a + u,, — 2¢ > 0, which is positive by construction. By
Markov’s inequality, we then get for all ¢ > 0

P[At > t—2c] — ]P[Ag > t—2qc] 5 4 (b—atun—2¢c) _ t—dq )
We take g chosen large enough so that dg > p + 1.
Consequently, applying Lemma[4]
E[AY] < BIAP(1 =301 Aot + Cupiin) + Cop AFT ol + (o).

Therefore, if we pick any u,+1 € (0, &=%F4=), applying Propositionand Corollary we see that

P
E[Ap] < Nt 1P < pTPUntr
t ~ D ~ .
€t
As soon as b — a > uy,, we have (b — a + u,,)/2 > u, as a valid range upper range for w1, so we
can take u,+1 > U, and strictly improve our convergence rate.

Achievability for all 6 € [0, min{b — a,a}). Finally, note that the sequence defined by ug = 0
and u, 11 = % converges to (b — a), showing that every value J up to (b — a) can be reached
through successive improvements. Since ¢ = a is the upper bound in Lemma[d] we can continue the
limit min{b — a, a}, so forall § € [0, min{b — a, a}), we have
Pys
E[an) s 2l
&

Using Markov’s inequality concludes the proof.

O
Lemma 4. For any a,b > 0, such that 1 + a + ao. > 2b, there exists constants C ,, Ca , only
depending on 1 and p, such that defining

1—e 0=

Px €ty lfC = O?

At = 4C
ps(1—e Het, ifce(0,a].
we have for any ¢ € [0, a]

E[AY, )] SE[AP] (1 = yeq1der + Crp¥in) + 941 DEP (Ap > 17°) Lego + Copho P
(18)
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Proof. Letus fix ¢ € [0, a]. Starting from equation (T3)), raising to the power p gives

AP < (Ap = 2941 (Vghe, (81, Xer1) g — g5) + 5724,)" - (19)

We note (; H L) = #,'k, and apply the trinomial expansion to obtain

AV < ) (z ik ) P (=241 (Vehe, (8 Xern), 8 — g7)) 55478,
i,5,k ’
z+g—{-k:p

< Af - QpA;tD_lryt-‘rl <vgh’€t (gt7 Xt+1)a g — g:>
—2p(p — DAY y41 (Vghe, (81 Xes1), 8 — &) 5741

+ Z (Z ] k‘) A’L ( 2A/t+1 <vgh5t (gt, Xt+1)7gt >) 5k’yt+1

2Jok
T
(i,3,k)¢{(»,0, 0) (p 1,1,0),(p—2,1,1)}

We divide the set S := {(i,5, k) € N*, i+ j + k =p, (i,4,k) ¢ (p,0,0),(p—1,1,0),(p — 2,1,1)}
into the following partition

Py = (ivja k) € {(p_27270)a(p_3a3a0)7(p_17071)a(07p70)}7
Py = (S\Pa) N {i =0},
Pe:=(S\Pa) N{i # 0} N {j =24} n{k =0},
Pi:=(S\Po)N{i A0} N{0<j<4}tn{k #0},

Pe = (S\Pa)N{i # 0} N {j =0} n{k #0}.

In what follows, the constants C, may depend on the constant y; from the learning rate y; = 1/ 1o,
since we will often use the crude bound ~? ik < < kAP *1 for k € N. Note, however, that Aep <1
for all ¢, and therefore )\cf+k < A/ forall ¢,k € N, so the constants C}, will not depend on A ;.

We also introduce, for all p, the constant

_3p+1
Pop—17

Case where (i, j, k) € P,.
If (i,5,k) = (p — 2,2,0):

<p b )AfZ (=27e11 (Vghe, (8, Xe41) 8 — &7))°

~92,2.0
<8p(p— DAY A2, by Cauchy-Schwarz
<8 A;Dp CP/(P 1) 1 by Y 0
<8p(p—1) » +7es 1p Ye+1 by Young: g = E5.¢" =p, 1 >
1
Ve+1Aet 41l - Aeyt (=1)/p
< pAY r + ’yfﬂ taking ¢; = (m>
Ac _ . .
< pAY % + G Y H’yfj:ll defining C} readily.
P
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If (4,5, k) = (p — 3,3,0):
p - "
<p _ 3,370) AP (=2y141 (Vghe, (81, Xin1), & — &7))°
< 43Af_%%3+1
3 D 217/3
< 64 Afp—2 %)
o p

by Cauchy-Schwarz

p/(p—%) ap/3 3
c +Yr1 T3 | vt
2 t+1 2p03p/3

by Young: ¢ = 7p_’§/2,q’ = %
< pAP Vit1Act n ip+1 3 320, (p — (P =2)(,7) |
= PAy T, V41 % et

) 3t P
taking cy = (W)

A _ . _
< pﬁf% + Cg)\cfﬂvf:ll since 3p+1 > p+ 2 and % <p-1.

p
If (Zvjak) = (p - 17Oa 1)

p AP 1,2 < p pT?lAp 5 by Y O R
p—1,0,1 t Vi1 =P D C3 : + @%-&-1 Ve+1 y Young. ¢ = ;=5,4 =P
b

—1

Ac 5P, \ 7 . =
< pAY %Jrrl L ( 3 f) ey taking c3 = (AFC:)
P ,
A _ . .
< pAY % + O P defining Cj readily.
p

If (4, j, k) = (0,p, 0):

p *
( ) (—2’}&.;,.1 <Vgh5t (gtaXt-‘rl)vgt - gt>)p

0,p,0
&1 L 9y 2
< 4P EAi) + 2—2%_{1 Ver1 Cauchy-Schwarz and Young : ¢ = ¢/ = 2
=
Ae 1 /4%T 3
< ApTHZel | o ( p) e taking ¢4 = (3¢ )
= /2y Fp 9 4)\c,t rYt-&-l g4 4rT,

A
< AP % + 04/\;,517{’:11 since 2p — 1 > p + 1, and defining C, readily.

p

Case where (i, j, k) € Py.
We have j + k = p such that j + 2k > p + 1 since k # 0. Using the bound ||g; — g || < D¢, we

obtain:

p *\\J
S (L 7)) 2 (Tahe e X - 1) 5928

(imer, NIk
p . .
< Y (7 )apysr
(iimyer, N
< C5’Yff:11 defining C5 readily.

Case where (i, j, k) € P..
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Z (ipj> A} (2941 (Vghe, (86 Xe41), 8¢ — &7)) by Cauchy-Schwarz

(4,5,k)EPe
p 3 2
< Z (z »)A w/ 4j7t+1 ’Yt+1 by Young: ¢ = ﬁvq/ = ?
gmer. N7
p i+7/2 J 2p(i—2)/5\ 2
< AP+ L 2P0 J
- (i, jZP <17]) ( p et 2p%+1 T4
p . i
< Z (Z ) <At’7t+ 275-:11> 32450:w+22p+1
(4,5,k)EPe

1
< SPAf'yEH + SP’Yfil .

Case where (i, j, k) € Pg.

P\ Ai
Z (Z j) At (_27t+1 <vghst (gt, Xt+1) , 8t — >) 5kvt+1

(i,3,k)EPa
< Z ( pk> 5kA2+j/24j'yﬁrl% by Cauchy-Schwarz
(igkers NP
p A Litd)2 _ JCP
S ) Z (i,j, ]<J> 4 (Cg P A;f + Ce ! 2p 'thl
(4,4,k)EPa
L _ 2
by Young: ¢ = ﬁ,q’ = j+gk .
Taking cg = 'yf/q, it comes cg ? ¢ = =, ~2d'/a 7;2/({1_1). Since we are only considering cases with
1,7,k > 1 (which forces p > 3) and we are excluding the particular case (i,,k) = (p — 2,1,1), one
can show that the parameter ¢ = 2p_2§i_j = 2,3_’;_] satisfies
2p 2p
p—4-1=73
<q-1< 23
2p—4 3

Thus, since % < p — 2, it follows that

2
2p—q_7122p—(p—2)=p+22p+1~

Therefore, using the crude bound Z(i JB)EPy (Z ;’. k) < 3P and defining a constant Cg readily, we
obtain '

p 1 *
Z (z ) A} (=279441 (Vghe, (86, Xit1) .8t — 87)) 5k%+1 < 3P AT + 0675111 .
(4,5,k)EPa

Case where (i, j, k) € P..

Since j = 0,i+ k = p,and (p — 1,0,1) € P,, we have k > 2. We use Young’s inequality with
q=%,q" = % toobtain

P i p k p(2k=2)
Z (z’, k)A ngl5k Z (i, k:) (pAp + - (7t+152) ) ’YtQ+1

(4,4,k)EPe (i,4,k) EPe
p _p 2p—2249
> (z k) (A7 +57 kol )
(i,j,k)EPe N
< 2”Ap7t2+1 + Cﬂfj:ll since 2p — £ +2>p+2.
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Summing up the inequalities, we obtain
Afp < A7
= 2pA7 41 (Vighe, (86 Xer) 86 — 1)

—2p(p — DAY Myi41 (Vghe, (86 Xe1) 8 — 87) 5774

3p+1
+ APt ———— T Yt+1
p

+ A7 ’Yt+1(8p + 37 +27)
+EH ((01 +Co+ Ca)A P+ CuN; +C5 + 8 + C6 + C7> :
By convexity of H.,, taking the conditional expectation gives

E [*2;0(10 — DAY i1 (Vghe, (86, Xiv1), 8 — &) 57241 | ]'—t] <0,

Applying Lemma recalling that A\.; = p. 2f 5,5 ifc =0,and \.; = p. 2 f €tt if
€ (0, al], we have

&t )\C tAt ifc=0
VHi(g),g—8) > pr— Ay > ’ . (20)
< t(g) g gt> P \/§||g B ngoo t {/\c,tAtlAtgt—Qc ifce (07 a] :
Therefore,
E [—QPAf_lth (Vghe, (8, Xt41), 8t — 87) | ]:t}
= —2pAf71%+1E [(Vghe, (86, Xt41), 8t — 8F) | Fil
= —2pAY 'y, (VH,,(8:). 8 — &) by (20)
< _2p>\c,t’Yt+1A:f + 7t+1Dép1AtZt*2C]-c7$0 using that A? < Dgp .
We now just have to sum up the inequalities. Fixing I', = ;’ﬁ—f such that —2p + % = -1,

Cip=8+3"+2P,Cy ), =8 + ZZ 1 C, and taking the expectation, we have the desired form
E[A?, )] < E[AP] (1 = yq1der + Crprips) + %+1D PR [1a,54-2¢] Teso + C2,p)\c_7f+1'yf_t11 .

O

B.6 Proof of Lemmal(T} Projection step

Proof. According to [40]], any optimal pair of functions (f¢, g) solving the dual formulation of
entropic OT with regularization € > 0 satisfies the Schrodlnger equations. That is, we can take for
ally € R%, g.(y) = f&=(y). Moreover, £||z — y||? is R-Lipschitz on B(0, R). Therefore, since by
Assumption|[I] we have Supp(u) C B(0, R) and Supp(v) C B(0, R), we can exploit the Lipschitz
property of our cost function on B(0, R). Using that the (¢, €)-transform has the same modulus of

continuity as ¢ (see Lemma 3.1 in [40]]), we get, for all 3,3’ € R%:
[f&5(y) = FEE NI < Rlly = /I
That is, coming back to the function g, we have for all 5, j' € [[1, M] :
192 (y5) — 9= (i)l < Rlly; —yyell -
By writing back our dual potential as a vector, that is g* = (gi,...,g},), where for all j €
[1, M], g5 = g-(y;), we have
95 — 951 < Rlly; —yjrl-

Moreover, if g* optimizes the semi-dual H,, then for any 3 € R, the vector g* + 1), optimizes H..
In particular, g* — g-(y1)1as, which we rename g*, optimizes the semi-dual, with g7 = 0. Hence,
foralljel,.... M

95, — 95| = = yjll-
That is, there exists an optimizer in the desired closed convex set. O
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Remark: Note that for other costs such as ¢(z,y) = ||z — y|| which defines the 1-Wasserstein
distance, this projection set can be more relevant. Indeed, in this case, the cost is 1-Lipschitz and the
projection set depends only on the target measure v and no assumption of bounded cost is needed. In
this case, the practitioner could choose the index & such that gy = 0, minimizing for instance the
Euclidean diameter of the corresponding set.

B.7 Proof of Lemma 2} Global and local RSC condition of H.

Proof. For any g € C and s € [0,1], note g5 = g* + s(g — g*), where g* is the minimizer of H,
satisfying Zgl gi = Zf\il gz ; and define ¢ by

p:s€[0,1] — H.(gs) .
Applying Lemma 5] whose proof is postponed until after this one, we have that

1

" ()l < Z9"(s) max g; —gf —m (x| @1

where for all z € RY : m(x, g;) = Z;Vil X;(z,85)(8s — 82)-

Using Holder’s inequality with the Holder conjugates p = 1, ¢ = 400 for §y and Cauchy-Schwarz
inequality as in [3] for d;, we obtain

1

2 p—
~ max Zllg — gZlloo = d0 ,
€ 1<j<M

. (22)
Lg — g =6 .

lgj — gt —m(z,8) < {

Use § = dg or 67 = 1. Since Zﬁl gi = Zf\il gZ ;> is strictly convex, and therefore, we can divide
by ¢"'(s) to obtain for s € [0, 1]

"
o) o s
¢"(s) ~
Integrating between 0 and S and using that fOS i%((j))ds =In|¢"(S)| — In|e”(0)| gives
¢"(s) > exp(—389)¢"(0) . (23)

Since ¢"'(s) = (g — gs’;)T V2H. (gs) (g — &), recalling that p* is the second smallest eigenvalue
of V2H. (g?) gives the upper bound

"(0) = p*llg — g2l
Then, since ¢'(s) = (VH.(gs), g — g2), an integration of (23) between 0 and 1 gives

1
(VH.(g).g —g2), > p"5 (1= exp(=9)) | g l°. (24)

Note that the function § € (0,00) — § (1 — exp(—0)) is strictly decreasing and upper bounded by 1.
If ¢ = 1, take 0 = Jp = 2||g — 8| o and use the fact that ||g — g:||coc < 2C to obtain

* * 1 — *
(VHi(g).g —&l) > p" ;5 (1—e 102 |lg — g2

In the same way, fore < 1 and ||g — gZ|| < % taking § = 0; = v/2||g — g¥|| < 1 we obtain

(VH.(g).g —gl), > p" (1 —¢7") llg —&l*,
which concludes the proof.

O

Lemma 5 (Helping Lemma for the RSC condition of H.). For any g € C and t € [0, 1], define
gs = g> +s(g—gl), where g7 is the minimizer of H. satisfying Zi\il gi = Zf\il gz ;- The function
, defined by

p:s€0,1] — H.(gs),
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satisfies

m\>—~

" (s)] <

Where m(z,gs) = Zl 1 X6 (2,85)(9i — 9% ,)-

1
#'(s) max |g; = g7 —m (28] -

Proof. The proof is an adaptation of the proof of Lemma A.2 in [S]]. For completeness, we recall
all the steps of their proof that are needed for our results. Note that their recent erratum regarding
Lemma A.1 has no impact on Lemma A.2.

For any g € RM and s € [0, 1], define g; = g* + s(g — g*), where g* is the minimizer of H,
satisfying Z 19 = Zf\il gz ;- We also define the function ¢ by
p:s5€[0,1] — H.(gs) -
Its first to third-order derivatives are given by
(pl(s) = <VH€(gS)7g - g:> )
¢"(s) = (g —gl) 'V’ H.(g,)(g — &5) ,
M

0°H. (g
/// S _ *
Jzk:lc’)gzagﬁg g—g)i(g—8l);(g—8)

Since forallg € RM, VH.(g) = ~Ex~, [x*(X,g)] + W,
¢'(s) = (—Ex~p X (X, 86)] + W, g8 — &)
= *EXNM [m(Xa gs)] + <W7g - g:> 3

defining for all x € R% m(z,g,) = Zi\il X5 (#,86)(9i — 9%4) -

Using that Vg x©(z,8) = £ (diag(x°(z,8)) — x°(2,8)x"(z,8)"), we have

XX g0) = © (g (X,8) X (X8 (X)) (8~ 89)

Therefore, using the expression of m yields to
1 N . N
¢"(5) = =~ Exwp [(g— 82) " diag(x§(X, 8:))(g — 82) — m(X,g:)"]

1
- _E]EXNM [OQ(Xa gs)]

defining for all z € R?

* 2
(z,85) ZXZ (z,85)(9i ge,i)2 — (m(z,8s))

= Z X; (#,8s) (9i — 92 — m(x, g.))’
=1

A derivation of o2 leads to (see [5] eq. (A.19),) for more details)
d *
—e--0%(v,8,) sz (2,8:)(g: — g.)° — 3m(z, g)0? (2, 8:) — (m(, g))°
* 3
= Z X (2.84) (95 — 92 — m(z,84))
i=1
Since e2¢"(s) = Exn~p [2£0%(X, gs)], we conclude

1
\(p”'(s)| S ESDN(S) 121)5\/[|g] 79] 7m(17 gg)’ .
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B.8 Other Technical results
Proposition 4. Forall g € C and all &' € (0, a), we have
IVH.(g) — VHo(g)]l S e+ .

~

Proof. We adopt the decomposition of X from Appendix A.3 of [18]. See Figure 1 in [18] for an
illustration of this decomposition. Fix i € {1,..., M}, let ¥ C B(0, R) be the support of x, and
choose parameters

n=e’,  y=3n,  Be(0,1)
Define, for all ¢ € [1, M], the function
1
filz) = —e(z,y:) + 9i = —5 ||z — yill* + g,
and use these to define the following sets:

H;; = Li(g) NL;(g)

Xy = {x € Li(g)vj A1, &= 0@ n} ,

lyi — ysll
’ J llyx — vill
Hjy ={z € Hy; | Vk ¢ {i,j}, fi(z) = fi(z) = fulx) +ymax(llyi — yill, ly; — vel)},
Yi —Yj
Ainqy = U {o+tdij ;2 € HY, t € [=nllyi —y5ll,nllvi =y} dij = i — y]»||’
i#i Y

Biny = R¢ \ (Xi,nﬁr UXip,-U Ainm) .

We also recall the point-wise definitions of the regularized and non-regularized functions constituting
the gradients

S(x) = exp(fi(z)/¢) i(x) = 1{i = argmax fr(x)}.
W) = ot D ) = 1 = e ()

and define the constant

¢y =min |ly; —y;[ > 0.
i#]
Error decomposition.

IVH.(g) = VHo(g)|l,, = max

/ (X —xa) d#‘ <L+ I+ Iz + Iy,
x
with

I =/ x5 —xil dp, Iz=/ x5 x| dp, Is=/ x5 =Xl d, I4=/ X5 — x| dp.-
X'i-,n,Jr

i,m,— Ainy Bi,n~

1. Interior regions X; ,, . and &; , _.

Forx € A, 4 onehas f; — f; > 7

lyi — y;|| > ney for every j # i, hence

Ixi(z) = x5 (@) = 1= x5 (2)
. efile

fcw=1 e/

Zk;ﬁi efr/e
- ZkM:1 efk/e
<0 (6*77631/5)
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In a same way, we obtain the same bound if x € &} ,, _, therefore

Il + 12 =0 <€_ncy/€> .

2. Simple slabs A; ,, ..

Inside one slab Tj; = {x + td;; | = € H, t € [=nllyi — il nlly: — y;]]]}, and we have f;(z) —

fi(z) = tllyi — y;||. for a certain ¢ € [—n|ly; — y;ll, nlly:i — y;l]]. All other indices satisfy
fr(x) = fi(z) < —cyv, 50

Z elfe=fidle < (M — 2)e=cv7/e,
k¢{ij}
Hence

1

€ — =
Xi (@) = 7 T e Mwwllz 1y, o el@-hi@)/e

o) + 0 (¢,

. el -
withpz(t) = (14 e71¢) ", e=¢/|lyi — y5.-

Introduce coordinates x = z + tn;; with n;; = 7@":3] T and z € H;;; the Jacobian of this change

i~ Y
of coordinate is 1. Since f,, is a-Holder, there exists L > 0 such that we can write f,,(z + tn;;) =
fu(2) + ro(z,t) with [ro(2,t)| < L|t|~. Note that the function pz(t) — 1,50 is odd. Writing o the
Hausdorff measure of dimension d — 1, we obtain

/ (X§ — xa) dp
TW:’Y

nllyi—y;ll
/ / {pé(t) — 1m0+ O 8| (ful2) + Talz,t)) dt do(z)
H)NB(0,R)

nllyi—y;ll

nllyi—y;|
/ / [ps(t) — 1is0] ra(z, t) dt do(2)
HY.NB(0,R) J —nllyi—y;l

nllyi—y;ll
+ / / [ps(t) — Lis0] fu(z) dtdo(2)
H},NB(0,R) Y —nllys—y;

nllyi—y;ll
-/
[ o / O(e™%) (£u(2) + ra(21)) dtdo(2)

—nllyi—y;ll

nllyi—y;l
< vold_l(ng N B(O,R)) /

—nllyi—y;ll

— () +0 (el

[t|*dt + O (77 67751’/5)

Summing over j # i yields
Iy = O(n'**) + O(ne™ /%) .

3. Corner set B, ,, ..

As shown in [18]], denoting by 6 the maximum angle that can be formed by three non-aligned points
of the target measure, each corner that constitutes B; , 4 is included in a cylinder of volume at
most %72. Moreover, there are at most M? such corners. Therefore, j(B; ) =
O(y?) = O(n?), and so

Iy=00).

4. Choice of the exponent £.
Let o/ € (0, «) and pick

Be (111‘3/, 1).
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Then nite = Bf1+e) < glto gnd g2 = £26 < g1+’ Exponential terms are even smaller, hence

IVH-(g) ~ VHo(g)ll-o = O ().
O
Proposition 5. Let (v;):>0 and (v¢)1>0 be some positive and decreasing sequences and let (§;)>o0,
satisfying the following:
 The sequence 0y follows the recursive relation:
41 < (1= 2wyiq1 +m72g1) Ot + Ves1vi41,

(25)
with 6o > 0 and w,n > 0.
* Let v, converge to 0.
o Letto =inf{t > 1 :wyt1 < 1; ny <wl.
Then, for all t > ty, we have the upper bound:

t t
1 1
0 < exp <—W Z %‘) (Z VeV +5t0> + ;l/fﬂ—l < ;Vfﬂ—l +o(v) .

i=to+1 k=to

Proof. Forall t > to, since 1 — 2wy,41 4+ 177741 < 1 — w41, one has

e < (1 —wyrer +m701) 6 + Ve ven

t t t
< H (1 —wyi) 0, + Z H (1 — wyi) Yeve
i=to+1 k=to+1i=k+1

=:U1,s =:Uz ¢

One can consider two cases: [t/2] — 1 < tg and [¢/2] — 1 > to.

Case where [t/2] — 1 < ¢y < ¢: Since vy, is decreasing,

¢ ¢
Usi Svigr . [ @ =wri)w

k=to+1i=k+1
t

k=to+1i=k+1 i=k
1 t
= ~Vig 41 (1 - 1T a- w%‘))
w 1=to+1
< 1
—V,
S Yo+t
Since vy, is decreasing, it comes Uz ; < %I/l’t/Q'l.
Case where [t/2] — 1 > to: Asin [3]], forall m =ty + 1, ...,¢, one has

t m
1
Usy < — § E —Up,
2,t S €xp ( w ’Yk> YeVk + wV

k=m+1 k=to+1

Then, taking m = [t/2] — 1, it comes
t [t/2]1-1

1
Usy <exp | —w Z Yk Z VrVk + SUre/21-1
k=[t/2] k=to+1
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Corollary 2. Let (7;)i>0 and (v;)¢>0 be some positive and decreasing sequences and let (6¢)>o be
a sequence satisfying the following:

* The sequence 0; follows the recursive relation:
i1 < (1= 2wyeq1 + M841) Ot + Vi1 Yest, (26)
with §g > 0 and w,n > 0.
* Let v, = cyt~* witha € (0,1).
o Letto=inf{t > 1 : wyy1 <1; ny <w}.

Then, for allt € N, we have the upper bound:

1
(515 S —Vt_4 +0(Vt).

2

S

Proof. Applying Proposition[5] for all ¢ > ¢,, we have the upper bound:
t t 1
0y < exp (—w Z 'yi> <Z YeVi + 51&0) + SV[E]-1
1=to+1 k=to

Approximating the sum Zizto vs via a Riemann sum lower bound for the function z — x%, and
applying the logarithmic inequality log(1 — z) < —z, one can now bound szto 41 (L= wyi) by, as

t
c —a o
H (1 —wy;) 0y, < exp (—wl A’a ((t + ) — (tg + 1)1 )) VioVto

i=to+1 B
wce —
<exp (— 2 (1) = (o +1)'™") ) vuuto-
In a same way, since

t
exp | —w Z Vi Sexp(—%(t—&—l)l_a),
k=[t/2]

we obtain

t
1 1 Y 1
0y < exp <—2wcwt1_") exp (2wc7 (to + 1)1 > ( E Vel + 5t0> + ;V%_ .

k=to

Since the product involving exponential terms converges exponentially fast, we finally obtain the
desired convergence rate

1
(St § —Vi_4 +0(Vt).

2

S
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