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Abstract

A key challenge for data analysis in the federated setting is that user data is
heterogeneous, i.e., it cannot be assumed to be sampled from the same distribution.
Further, in practice, different users may possess vastly different number of samples.
In this work we propose a simple model of heterogeneous user data that differs
in both distribution and quantity of data, and we provide a method for estimating
the population-level mean while preserving user-level differential privacy. We
demonstrate near asymptotic optimality of our estimator among nearly unbiased
estimators. In particular, while the optimal non-private estimator can be shown to
be linear, we show that privacy constrains us to use a non-linear estimator.

Large parts of machine learning deal with the problem of building one model that works for all users,
based on multiple independent samples from some underlying distribution. In federated learning
settings, this i.i.d. assumption is often violated. Users may differ in the distribution from which they
sampling, as well as the number of samples they have. This has led to considerable renewed interest
in various approaches to personalized models, many of which are compatible with privacy.

Our main contribution is a differentially private algorithm that estimates p? and σp in this setting. We
first study this question in an idealized setting with known σp and no privacy constraints. Here the
optimal estimator for pi is simple and linear: it is a weighted linear combination of the individual
user means with weights that depend on the ki’s and on σp. The variance of this estimate is
σ2
ideal ≈ (

∑
i min(ki, σ

−2
p ))−1. This expression has a natural interpretation: this is the variance

from using min(ki, σ
2
p) samples from user i and averaging all the Bernoulli samples thus obtained.

The restriction on using at most σ−2
p samples from any fixed users ensures that the estimator is not

too affected by their personal mean pi.

We provide a differentially private estimator for p? with variance O(σ2
ideal). Interestingly, the

estimator achieving this bound in the private setting is non-linear. Further, we show that σ2
ideal is

near-optimal, under some mild technical conditions.

1 Model and Preliminaries

Let D be a distribution on [0, 1] with (unknown) mean p and variance σ2
p. We assume a population

of n ∈ N users, where each user i ∈ [n] has a hidden variable pi ∼ D and ki ∈ N samples
x1
i , . . . , x

ki
i ∼i.i.d. Ber(pi). That is, the samples of user i are i.i.d. from a Bernoulli distribution with

parameter pi, which we will denote Di =Ber(pi). Assume without loss and for ease of notation that
individuals are sorted by their ki, so that k1 ≥ · · · ≥ kn. The samples xji and hidden variables pi of
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each user are unknown to the analyst. For simplicity, we will concentrate on the case where the ki’s
are public. We defer to the full version the general case where the ki’s are also private.

The analyst’s goal is to estimate the population mean p with an estimator of minimum variance in a
manner that is differentially private with respect to user data (pi and {xji}). Each user provides their
own estimate of their pi to the analyst based on their data xi: p̂i = 1

ki

∑ki
j=1 x

j
i . The analyst can

then aggregate these (possibly along with other information) into her estimate of p. Let DBer,k be
the distribution that first samples pi ∼ D, then samples x1, · · · , xk ∼ Ber(pi) and finally outputs
p̂i = 1

k

∑k
i=1 xi.

Differential privacy (DP) [1] informally limits the inferences that can be made about an individual
as a result of computations on a large dataset containing their data. In our setting where users have
heterogeneous quantities of data, we distinguish between user-level and example-level DP. The former
considers changing all data points associated with a single user, whereas the latter considers changing
only a single data point, regardless of the number of data points contributed by that user. In this work,
we provide user-level DP guarantees.

Formally, let Di = {x1
i , · · · , x

ki
i } be the data of user i for each i ∈ [n]. We say that two datasets

D = {Di}i∈[n] and D′ = {D′i}i∈[n] are neighboring if |Di| = |D′i| for all i ∈ [n], and there exists
an index i such that for all j ∈ [n]\{i}, Dj = D′j . That is, the entire local dataset of a single user is
changed.

Definition 1.1 (User-level (ε, δ)-Differential Privacy [1]). Given ε ≥ 0, δ ∈ [0, 1] a randomized
mechanismM : X k1×· · ·×X kn → Y is (ε, δ)-differentially private if for all neighboring datasets
D ∼ D′ ∈ X k1 × · · · × X kn , and all events E ⊆ Y , Pr[M(D) ∈ E] ≤ eε · Pr[M(D′) ∈ E] + δ,
where the probabilities are taken over the random coins ofM.

2 A Non-Private Estimator

We begin by illustrating the procedure for computing an optimal estimator p̂ in the non-private setting.
The analyst will compute the population-level mean estimate p̂ as a weighted linear combination of
the user-level estimates p̂i.2 Let σ2

i be the variance of p̂i. In an idealized setting where the σ2
i are all

known, the following is an optimal and unbiased estimator [2]:

p̂ideal =
∑n
i=1 w

∗
i p̂i where w∗i =

1/σ2
i∑n

j=1 1/σ2
j
. (1)

In practice, the σis are unknown, so the analyst must rely on estimates to assign weights. Fortunately,
the user-level variance σ2

i can be expressed as a function of ki and the population statistics p and
σ2
p: σ2

i = 1
ki

(p− p2) + (1− 1
ki

)σ2
p. Now, p and σ2

p are also unknown but since they are population
statistics, we can use simple estimators to obtain initial estimates. These initial statistics can then be
used to define the weights, resulting in a refined estimate of the mean p. Under some mild conditions
on D, and provided that n is large enough, the error incurred by var(p̂realistic) ≤ C · var(p̂ideal) for
some constant C.3

3 A Framework for Private Estimators

We now turn to our main result, which is a framework for designing differentially private estimators
of the mean p. As in Section 2 we will need an initial estimate of p and σ2

p in order to decide how
to weight the contributions of the users. In the non-private setting, there are canonical, and optimal,
choices of these estimators, the empirical mean and empirical variance. In the private setting, these
choices are not canonical and the optimal estimators are setting dependent. There is a considerable
literature exploring the performance of various mean and variance estimators for the homogeneous,
single data point per user setting. As such, we leave the choice of the specific initial mean and

2In the non-private setting, this restriction is without loss since the optimal estimator takes this form. In the
private setting this is still near-optimal; see Section 4 for more details.

3This can be observed by viewing the non-private setting as a simplified version of the setting studied in
Section 4, which proves near-optimality of (truncated) linear estimators for this problem.
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variance estimators as parameters of the framework. This allows us to focus on the nuances of the
heterogeneous setting, not addressed in prior work.

We begin with a discussion of the ideal estimator p̂ideal
ε if the σi were known, which has two key

differences to p̂ideal. The first main distinction is that Laplacian noise is added to achieve differential
privacy. A natural solution would be to add noise directly to the non-private estimator p̂ideal, but the
sensitivity of this statistic is too high. Thus, the first change we make is to limit the weight on any
individual’s contribution. We do this with simple truncation parameter T that trades-off the variance
of the weighted sum of individual estimates (which is minimized by assigning high weight to low
variance estimators) and variance of the noise added for privacy (which is minimized by assigning
roughly equal weight to all users).

The second main modification is to lower the sensitivity of the weighted statistic. Inspired by the
Gaussian mean estimator of [3], we truncate the individual contributions p̂i. The truncation intervals
[ai, bi] are chosen to be as small as possible (to reduce noise added for privacy), while simultaneously
ensuring that p̂i ∈ [ai, bi] with high probability (to avoid truncating relevant information for the
estimation). In order to achieve this, we need a tail bound on the distributionD. To maintain generality,
we assume there exists a known function fkD(n, ·, β) that describes high-probability concentration

guarantees of p̂i around p, and is defined in the following way: Pr
(
∀i, |p̂i − p| ≤ fkiD (n, σ2

p, β)
)
≥

1− β. We can now describe the ideal estimator p̂ideal
ε :

p̂ideal
ε =

∑n
i=1 wi[p̂i]

bi
ai + Lap(maxi wi|bi−ai|

ε ), (2)

where [p̂i]
bi
ai denotes the projection of p̂i onto the interval [ai, bi] and

ai = p− fkiD (n, σ2
p, β), bi = p+ fkiD (n, σ2

p, β), and w̃i
∗ =

min{1/σ2
i ,T
∗/σi}∑n

j=1 min{1/σ2
j ,T
∗/σj} . (3)

The weight truncation parameter T is then chosen to minimise the variance. Since all the parameters
are known, this is a simple optimisation problem.

Algorithm 1 Private Heterogeneous Mean Estimation p̂realistic
ε

Input: (ε, δ)-DP mean estimator meanε,δ , (ε, δ)-DP variance estimator varianceε,δ , num. of users
n, num. of samples from each user (k1, . . . , kn) (ki ≥ ki+1), user-level ests (p̂1, · · · , p̂n), α > 0.

1: Initial Estimates
2: p̂initial = meanε,δ(x1

9n/10, · · · , x
1
n) . Initial mean estimate

3: σ̂2
p = varianceε,δ(p̂1, · · · , p̂logn) . Initial variance estimate

4: Defining weights and truncation
5: for i = log n to 9n/10 do
6: Compute σ̂2

i = 1
ki

(p̂initial − (p̂initial)2) + (1− 1
ki

)σ̂2
p. . Estimate individual variances

7: âi = p̂initial
ε − α− fD(n, σ̂2

p, β/2)− fBin(ki, p̂+ α+ fD(n, σ̂p, β/2), β/n)

8: b̂i = p̂initial
ε + α+ fD(n, σ̂2

p, β/2) + fBin(ki, p̂+ α+ fD(n, σ̂2
p, β/2), β/n).

9: . Estimate truncation parameters

10: Compute T̂ ∗ = arg minT

∑9n/10
i=logn+1 min{ 1

σ̂i
2 ,T

2}+maxlogn+1≤i≤9n/10
min{1/σ̂i

4,T2/σ̂2i }|b̂i−âi|
2

ε2

(
∑9n/10
i=logn+1 min{1/σ̂2

j ,T/σ̂i})2

11: . Compute weight truncation
12: for i = log n to 9n/10 do

13: ŵi
∗ =

min{1/σ̂2
i ,T̂
∗/σ̂i}∑9n/10

j=logn+1 min
{

1/σ̂2
j ,T̂
∗/σ̂i

} . Compute weights

14: Final Estimate
15: Λ = maxi∈[logn,9n/10]

min{1/σ̂2
i ,T̂
∗/σ̂i}|b̂i−âi|∑9n/10

j=logn+1 min
{

1/σ̂2
j ,T̂
∗/σ̂i

} . Compute sensitivity

16: Sample Y ∼ Lap
(

Λ
ε

)
. Sample noise added for privacy

17: return p̂realistic
ε =

∑9n/10
i=logn+1 ŵi

∗[p̂i]
b̂i
âi

+ Y . Final estimate
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As in the non-private setting, in order to translate p̂ideal
ε into a realisable estimator we need to obtain

estimates of p and σ2
p. We will divide the individuals into three groups. The first group, consisting

of the n/10 individuals with the lowest ki will be used to compute the initial mean estimate p̂initial
ε .

The log n individuals with the largest ki will be used to compute an the initial variance estimate σ̂2
p.

These initial estimates will be plugged into expressions to compute σ̂2
i , âi, and b̂i for the remaining

individuals log n+1 ≤ i ≤ 9n/10. Let meanε,δ and varianceε,δ be the (ε, δ)-DP mean and variance
estimators used to give the initial estimates.

The following theorem gives the properties of the estimators meanε,δ and varianceε,δ necessary to
ensure that the error of p̂realistic

ε is within a constant factor of the error of p̂ideal
ε .

Theorem 3.1. For any ε > 0, δ ∈ [0, 1], Algorithm 1 is (ε, δ)-DP. If with probability 1− β,

• meanε,δ is such that given n/10 samples fromD, |p−p̂| ≤ α ≤ fkiD (n, σ2
p, β) and p̂initial

ε (1−
p̂initial
ε ) ∈

[
1
2p(1− p),

3
2p(1− p)

]
,

• varianceε,δ is such that given log n samples from DBer,kk,
σ̂2
p ∈ [var(DBer,k) , 8 · var(DBer,k)],

• D is s.t. fkiD (n, σ2
p, β) ≥ Ω(fD(n, σ2

p, β) + fBin(ki,min{1/2, p+ fD(n, σp, β/2)}, β/n))

• the distribution of the ki is such that k1
kn/2

≤ n/2−logn
logn

then with probability 1− 2β, var(p̂realistic
ε ) ≤ C · var(p̂ideal

ε ) for some absolute constant C.

In the full version of this paper we give an example instantiation of Algorithm 1 with particular
meanε,δ and varianceε,δ, and we show that provided D and DBer,kk are sufficiently well-behaved,
this instantiation meets the requirements of Theorem 3.1.

4 Optimality of p̂realisticε

In this section we show that the estimator p̂realistic
ε discussed in Section 3 is minimax optimal up to

logarithmic factors. Under the assumptions of Theorem 3.1, it is sufficient to show that the estimator
p̂ideal
ε , defined by Eqns (2) and (3) is minimax optimal up to logarithmic factors. The following class

will act as an intermediary in our proof that the estimator p̂ideal
ε is optimal up to logarithmic factors:

NLE = {MNL(x1, · · · , xn;w) =
∑n
i=1 wixi+Lap

(
maxi wiσi

ε

)
| w1, · · · , wn ∈ [0, 1],

∑n
i=1 wi = 1}.

Similar to p̂ideal
ε , this class of estimators is not realizable since we only have access to an estimate of

σi = var(Dp(ki)). The estimators in NLE are also not ε-DP (unless σi = 1 for all i ∈ [n]). Firstly,
we will argue that the variance of p̂ideal

ε is only a polylog factor larger than the variance of the optimal
estimator in NLE. Finally, we’ll show that under some mild conditions, the optimal unbiased estimator
lies in NLE.
Lemma 4.1. var(p̂ideal

ε ) = Θ̃(infM∈NLE var(M)).

The main component of this proof is showing that the weights given in Eqn 3 are optimal for NLE.
Let us turn to final component of our optimality proof.
Lemma 4.2. Let P be a parameterized family of distributions p 7→ Dp and sup-
pose that M : [0, 1]n → [0, 1] is an estimator such that for all p ∈ [0, 1], (1)
M is almost unbiased, E∀i∈[n],xi∼Dp(ki),M [M(x1, · · · , xn)] ∈ [p − α, p + α], and (2)
the Fisher information of φp,ki is inversely proportional to the variance var(Dp(ki)),∫ (

∂
∂p log φp,ki(xi)

)2

φp,ki(xi)dxi = O
(

1
var(Dp(ki))

)
, then there exists an estimator in the class

NLE such that maxp∈[1/3,2/3][varDp(MNL)] ≤ O
(
maxp∈[1/3,2/3][varDp(M)]

)
where the constant

depends on α.

Finally, combining Theorem 3.1, Lemma 4.1, and Lemma 4.2 we can conclude that under some
mild conditions, and assuming the existence of sufficiently nice estimators meanε,δ and varianceε,δ ,
p̂realistic
ε is an optimal nearly unbiased estimator up to logarithmic factors.
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