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Abstract

Deep Neural Networks (DNNs) have demonstrated remarkable performance across
various domains, including computer vision and natural language processing.
However, they often struggle to accurately quantify the uncertainty of their
predictions, limiting their broader adoption in critical real-world applications.
Uncertainty Quantification (UQ) for Deep Learning seeks to address this challenge
by providing methods to improve the reliability of uncertainty estimates. Although
numerous techniques have been proposed, a unified tool offering a seamless work-
flow to evaluate and integrate these methods remains lacking. To bridge this gap,
we introduce Torch-Uncertainty, a PyTorch and Lightning-based framework
designed to streamline DNN training and evaluation with UQ techniques and
metrics. In this paper, we outline the foundational principles of our library and
present comprehensive experimental results that benchmark a diverse set of UQ
methods across classification, segmentation, and regression tasks. Our library is
available at https://github. com/ENSTA-U2IS-AI/Torch-Uncertainty.

1 Introduction

With the rapid advancement of artificial intelligence, deep learning models have become integral
to high-stakes applications such as healthcare [22], autonomous driving [30], and finance [35],
where predictions with reliable confidence scores are critical. These domains require accurate
predictions and a clear understanding of their uncertainty, especially when decisions must be made
under ambiguous or incomplete information. As a result, quantifying uncertainty has emerged as a
fundamental requirement for deploying Al systems in real-world, safety-critical environments [2, 65].

Uncertainty Quantification (UQ) offers tools to evaluate the reliability of model outputs, enabling
actions such as triggering human intervention, deferring uncertain decisions, or flagging risky
predictions. Despite their success in predictive performance, Deep Neural Networks (DNNs) are
often poorly calibrated [31, 47], making them ill-suited for deployment in high-stakes environments.
For example, overconfident but incorrect predictions could lead to inappropriate treatment in medical
imaging and result in unsafe driving decisions in autonomous vehicles.

To help address these challenges, we introduce Torch-Uncertainty, an open-source library
facilitating the development, training, and evaluation of deep learning models with principled
uncertainty estimation. Built on top of PyTorch [66] and Lightning [23], Torch-Uncertainty
offers a unified and extensible architecture that significantly reduces the engineering overhead
typically associated with implementing uncertainty-aware models and evaluating their performance
on the many dimensions of robustness [80], such as out-of-distribution detection, distribution shift,
and selective classification. Torch-Uncertainty supports a broad spectrum of learning tasks,
including classification, regression, semantic segmentation, and pixel-wise regression. This makes
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Figure 1: A suggestion of overview of the many dimensions of robustness and uncertainty
quantification in deep learning. In Torch-Uncertainty, we focus on the “rational” in-distribution
predictions, distribution-shift robustness and the capacity to detect out-of-distribution samples.

the library a valuable resource for academic research and industrial applications requiring robustness
and reliability under distributional shift and noise.

In contrast to existing UQ toolkits [40, 17,75, 12, 21, 49, 55], Torch-Uncertainty distinguishes
itself through three key characteristics: (1) Domain generality: The library is designed to be highly
flexible and applicable to a wide range of data modalities, from mono-modal vision tasks to temporal
sequences. (2) Modular UQ design: Each uncertainty estimation technique — whether Bayesian,
ensemble-based, or deterministic — is implemented modularly, making combining multiple techniques
and rapidly prototyping new methods straightforward. We believe this is an essential aspect missing
from other libraries, since it involves significant implementation difficulties and requires very high
code quality standards. (3) Evaluation-centric: Evaluating the robustness of models is key to
developing more reliable models: we implement an extensive range of metrics for all tasks, evaluate
multiple metrics during validation, and develop advanced, easy-to-use checkpointing methods.

Beyond its core architecture, the library includes several auxiliary components designed to streamline
research and development:

* Uncertainty-aware training routines based on Lightning for efficient experimentation;
 Standardized evaluation criteria for comparing UQ methods across tasks and settings;

» Datasets on Zenodo, whether official such as MUAD [26] or corrupted for evaluation shift;
* Pretrained benchmarked model zoo, hosted on Hugging Face, for plug-and-play testing;

* Educational resources, including interactive tutorials, documentation, and use cases aimed
at democratizing access to UQ research.

In summary, the main contributions of this paper are as follows:

1. We introduce Torch-Uncertainty, the first unified, extensible, domain-general and
evaluation-centric PyTorch-based library for uncertainty quantification in deep learning.

2. We provide a modular implementation of a wide range of state-of-the-art UQ methods
across multiple data modalities and tasks.

3. We benchmark these methods on standard datasets and tasks, offering a reproducible and
extensible evaluation framework.

4. We release pretrained models and detailed tutorials to foster adoption by both researchers
and practitioners.



2 Related Works

Uncertainty quantification in deep learning Deep learning models are affected by multiple
sources of uncertainty, which are generally categorized into two main types: aleatoric uncertainty,
caused by inherent randomness or noise in the data, and epistemic uncertainty, arising from limited
knowledge about the model parameters or structure [41]. These uncertainties translate into different
tasks presented in Figure 1, such as calibration, prediction with rejection (also called selective
classification), the detection of out-of-distribution samples using confidence scores or other scores
derived from the model predictions, and performance and calibration under distribution shift.

A wide range of techniques has been developed to quantify these uncertainties. While several
taxonomies exist, we follow the classification proposed in [29], which organizes uncertainty
quantification (UQ) methods into seven broad families: (1) Ensemble-based approaches [51, 34]
estimate uncertainty by aggregating predictions from multiple DNNs. (2) Bayesian approaches [5]
explicitly model weight uncertainty using variational inference, stochastic-gradient Markov Chain
Monte Carlo, or posterior refinement techniques such as SWAG [59] and TRADI [24]. (3) Post-hoc
calibration techniques [31, 74] add uncertainty estimation capabilities to pretrained models using
lightweight modifications such as temperature scaling, MC Dropout, or Laplace approximation,
making them ideal when retraining is costly or infeasible. (4) Data augmentation techniques [74]
use input perturbations at test time (e.g., test-time augmentation) to derive uncertainty estimates by
measuring prediction variability under plausible input transformations. (5) Deterministic models for
uncertainty estimation [84] produce analytic (closed-form) predictive distributions, such as evidential
networks or mean-variance output heads, without requiring sampling or ensembling. (6) Interval
and conformal prediction methods (CP) [70, 3] wrap around base regressors or classifiers to produce
prediction intervals or sets with formal coverage guarantees, without modifying the underlying
model. They are particularly effective for finite-sample calibration. (7) Gaussian-process-based
approaches [84] incorporate Gaussian process (GP) priors into deep models, either through deep
kernel learning (DKL) [93], or feature-based surrogates (e.g., SNGP [57]), enabling calibrated
non-parametric uncertainty estimates. These families provide complementary tools that allow users
to quantify and manage model uncertainty depending on the task and deployment constraints.

UQ deep learning libraries Several libraries have been proposed to support UQ in deep learning.
Table I compares our library and existing toolkits. Many existing libraries focus on a limited subset of
the UQ families. For example, TorchCP [40] is a powerful library focused on conformal prediction,
making it primarily suited for interval-based methods. Similarly, Fortuna [17] supports conformal
and Bayesian approaches, emphasizing safety and calibration. Similarly, TorchUQ [75] is a library for
UQ based on PyTorch, which focuses mainly on interval-based methods. MAPIE [12] is a dedicated
library for conformal prediction, but unlike others mentioned previously, it is not based on PyTorch.

On the Bayesian front, BLiTZ [21] and Bayesian-Torch [49] provide implementations of Bayesian
neural networks and variational inference techniques. BLiTZ focuses on integrating variational layers
into PyTorch models with minimal overhead, while Bayesian-Torch includes support for techniques
such as Monte Carlo dropout and Bayes by Backprop.

A library relatively close to ours is Lightning-UQ-Box [55], which integrates UQ components
within the Lightning framework. However, its architecture is more rigid, limiting the flexibility
to combine multiple uncertainty techniques or to extend to different modalities.

Uncertainty Toolbox [9] primarily targets regression tasks and emphasizes deterministic models
with uncertainty estimation; however, it is also not built on the PyTorch ecosystem. GPyTorch [28]
is a specialized library designed for scalable Gaussian process models, focusing strongly on Bayesian
techniques. Uncertainty Baselines [62] offers a broader selection of UQ methods within the
TensorFlow framework, but currently supports fewer techniques compared to our library, which —
moreover — are not integrated. Similarly, NeuralUQ [96] is a recent general-purpose UQ library built
on TensorFlow, yet it still includes fewer techniques and less modularity than Torch-Uncertainty.

In contrast, our library Torch-Uncertainty is designed to be comprehensive and modular. It
supports all six prominent UQ families, enabling users to combine and benchmark different methods.
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Figure 2: Overview of Torch-Uncertainty’s usage for model training and evaluation. Post-hoc
methods are optional but can improve performance when practitioners can access enough data. UQ
and TU stand for uncertainty quantification and Torch-Uncertainty, respectively.

3 Design and implementation of Torch-Uncertainty

TorchUncertainty is an open-source framework for uncertainty quantification in deep learning
models using PyTorch. Torch-Uncertainty streamlines the integration of uncertainty-aware
methodologies into deep learning pipelines. It offers classification, regression, segmentation,
and pixel regression tools, while including pre-implemented uncertainty methods, metrics, and
post-processing techniques.

3.1 Architecture overview

Project vision Torch-Uncertainty is designed to be easily extended by external collaborators.
We hope the community will take ownership of the library and contribute new methods and appli-
cations. To support contributions from a broad range of users, we have established clear contribution
guidelines and created a dedicated Discord server (see Appendix H for details). The source code is re-
leased under the Apache-2.0 license to encourage widespread use and sharing. To maintain high code
quality, Torch-Uncertainty uses ruff for compliance with Python coding standards and includes unit
tests powered by pytest to minimize bugs. As of release v0.7.0, the library achieves nearly complete
unit test coverage (around 98%) and integrates automatic tutorials as part of its testing process.

Global design Our package benefits from Lightning for automated training and evaluation of
PyTorch models. We define task-specific routines that bridge the gap between PyTorch models
and Lightning’s trainer. These routines define metrics relevant for the task and consider different
performance dimensions, i.e., metrics for assessing prediction accuracy, uncertainty estimate quality,
out-of-distribution detection, etc. We strictly limit the number of routines to the number of supported
tasks to minimize the maintenance burden. Moreover, Torch-Uncertainty provides utilities to help
implement specific methods, i.e., for instance, torch_uncertainty.models.wrappers gives ac-
cess to model wrappers for smooth ensembling or MC-Dropout and torch_uncertainty.layers
defines layers for Packed-Ensembles and Bayesian Neural Networks. Figure 2 illustrates the general
architecture of our framework.

TU Routines Routines in Torch-Uncertainty serve as the core building blocks for training and
evaluating models with uncertainty quantification in mind. They define standardized frameworks
for processing models across the following tasks: classification, regression, pixel-wise regression,
and segmentation. Specifically, the routines handle:



» Task-specific Configurations: Each type of routine (e.g., ClassificationRoutine,
RegressionRoutine) includes task-adapted functionalities. Specifically, the
RegressionRoutine can handle models producing distribution parameters, while
the SegmentationRoutine subsamples pixels to compute metrics efficiently.

* Training and Evaluation Processes: They streamline the setup of training loops with
integrated uncertainty-aware metrics during validation, enabling UQ-aware training
as it saves the best checkpoints according to validation metrics. For instance, the
ClassificationRoutine includes the Accuracy, the Expected Calibration Error, the Neg-
ative Log-Likelihood, and the Brier-score. These metrics are tracked and logged throughout
the training to provide uncertainty quantification quality insights about the model.

* Uncertainty Metric Computation: Routines provide built-in mechanisms to compute
different categories of metrics at test time, such as calibration and out-of-distribution
detection metrics.

* Post-processing and Augmentations: They incorporate post-processing methods like
temperature scaling and mixup augmentations, enhancing model performance and reliability.

* Automated Visualization: The routines have a parameter to control the generation of plots
related to the task at hand (e.g., comparison between predicted and target segmentation
masks) or uncertainty quantification (e.g., reliability diagrams). We detail them in
Appendix F.

This modular and extensible design enables users to leverage uncertainty quantification
techniques effortlessly in deep learning workflows. The following code illustrates how to
leverage the ClassificationRoutine given a classification model, and some dataloaders
(train_dataloader, val_dataloader, test_dataloader).

trainer = Trainer() # lightning.pytorch.Trainer

cls_routine = ClassificationRoutine(
model=model, # torch.nn.Module
loss=torch.nn.CrossEntropyLoss (),
optim_recipe=torch.optim.SGD(model.parameters()),

)

# Train and validate the model

trainer.fit(cls_routine, train_dataloader, val_dataloader)

# Evaluate the model

trainer.test(cls_routine, test_dataloader)

Composability of uncertainty quantification techniques A key design principle of our library
is its unified training and inference routine, which enables seamless integration and combination of
different UQ techniques. Since all methods are implemented within a common task-specific routine,
users can effortlessly compose multiple techniques to create novel hybrid approaches. For example, it
is straightforward to construct an ensemble of Laplace approximations, or even an ensemble of Monte
Carlo dropout models. These combinations are made possible by simply choosing the appropriate
layers for a model, and applying the relevant set of model transformations, or post-processing on
the model (See Appendix G for some examples).

3.2 Supported uncertainty quantification methods

Among the previously defined seven distinct families, Torch-Uncertainty has support for six
categories as depicted in Table 1. We chose not to focus on Gaussian Processes as they are challenging
to scale to larger models [44]. Most of our implemented techniques are ensembles, Bayesian
neural networks, and post-hoc methods, representing the main UQ techniques applied to DNNs. A
specificity of Torch-Uncertainty is the possibility to choose easily an out-of-distribution (OOD)
detection criterion among various choices, such as: maximum class probability, maximum class
logit, or entropy. We invite the reader to refer to the documentation of Torch-Uncertainty to have
a comprehensive list of these criteria.



Table 1: Uncertainty quantification methods as implemented in the relevant libraries (v/:
implemented): Torch-Uncertainty implements and infegrates a large number of classic methods.

Category Method Torch-Uncertainty Lightning-UQ-Box BLiTZ GPyTorch TorchCP Bayesian-Torch
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3.3 Supported metrics

Torch-Uncertainty offers by far the widest native metric coverage among the surveyed PyTorch-based
uncertainty-focused libraries. It implements 26 distinct metrics spanning over seven task categories:
classification, out-of-distribution detection, selective classification, calibration, diversity, regres-
sion/depth prediction, and segmentation, so no external code is needed to obtain comprehensive quan-
titative insights. Additionnally, we provide efficiency-related metrics: the number of parameters and
the number of floating point operations. In contrast, Lightning-UQ-Bozx, provides only nine metrics
divided into four categories. In comparison, all remaining libraries expose three metrics or fewer and
touch at most a single category. More details on supported metrics can be found in the Appendix C.

3.4 Supported datasets and applications

Torch-Uncertainty supports multiple applications (classification, regression, segmentation, pixel-level
regression) and includes a variety of popular, ready-to-use datasets. As summarized in the Appendix
D, Torch-Uncertainty is the only uncertainty-quantification library that ships with a comprehensive,
multidomain benchmark suite right out of the box:

* Corrupted vision datasets: Torch-Uncertainty includes 12 variants ranging from
MNIST-C and CIFAR10/100-C,H,N to large-scale ImageNet-A/C/O/R and TinyImageNet-C.
We fix, generate, and release corrupted versions of datasets on Torch-Uncertainty’s
Hugging Face.

* OOD vision: We include six popular out-of-distribution sets: Places365, Textures, SVHN,
iNaturalist, NINCO, SSB-hard, and Openlmages-O.

* Dense prediction: Our framework leverages three semantic-segmentation sets: CamVid,
Cityscapes, MUAD; and four depth/texture or synthetic image collections: Fractals, Frost,
KITTI-Depth, and NYUv2.

» UCI tabular data: The library includes five classical classification sets: BankMarketing,
Dota2, HTRU2, OnlineShoppers, SpamBase, and a unified UCI-Regression loader that
transparently cycles through 9 regression datasets.
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Figure 3: Best checkpoint positions according to validation metrics. The model is a UNet
optimized on MUAD’s semantic segmentation dataset.

All these datamodules use the same PyTorch/Lightning API for automatic download, on-the-fly
corruptions, balanced splits, and standard normalization. Splits for the corrupted vision, shifted vision,
tabular, and dense-prediction sets are handled entirely by Torch-Uncertainty. For the OOD-vision
datasets, we follow the exact val/test splits defined in the OpenOOD library — no extra setup is needed

In contrast, Lightning-UQ-Box only includes synthetic toy generators, useful for didactic
purposes, but insufficient for large-scale comparative analysis. BLiTZ, GPyTorch, TorchCP, and
Bayesian-Torch do not provide any datasets, leaving data preparation to non-UQ centered libraries.

By tying together a wide range of UQ methods with 27 plug-and-play datasets from image
classification and segmentation to depth regression, and tabular tasks — Torch-Uncertainty offers the
most complete all-in-one environment for reproducible, cross-domain experiments. This lowers entry
barriers and allows researchers to focus on methodological advances rather than dataset plumbing.

3.5 Uncertainty-aware training of deep neural networks

An important feature of Torch-Uncertainty’s routines is using several callbacks to save the best
model for multiple validation metrics. This functionality mitigates the issue that the best model on
a given metric might be suboptimal for others. In Figure 3, we report an example showcasing at
what epoch the model reaches its best performance on a specific validation metric. By including
UQ metrics in the validation procedure, we allow users to more comprehensively track the quality
of their models throughout training and automatically store their respective best checkpoint. We also
provide a Python object CompoundCheckpoint to efficiently save the best checkpoint according
to a combination of validation metrics, which would help explore the tradeoff between metrics.

4 Benchmarking and experimental evaluation

In this section, we demonstrate the capability of Torch-Uncertainty for benchmarking UQ meth-
ods on specific tasks. We invite the reader to refer to Appendix A for both experiments’ implemen-
tation and training details. We report two benchmarks: one on image classification and the other on
semantic segmentation. In addition to the task-specific metrics, we evaluate the calibration of the mod-
els and their performance in selective classification and out-of-distribution detection. In Appendix E
and Appendix I, we reports benchmarks on regression and time-series classification respectively.

The model’s calibration is evaluated using the Expected Calibration Error (ECE) and the Adaptive
Calibration Error (aECE). For the selective classification, we consider the Area Under the Risk-
Coverage curve (AURC), the Area Under the Generalized Risk-Coverage curve (AUGRC), the
Coverage at 5 Risk (Cov@5Risk), and the Risk at 80 Coverage (Risk@80Cov). The quality of OOD
detection is assessed using the Area Under the Receiver Operating Characteristic Curve (AUROC), the
Area Under the Precision-Recall curve (AUPR), and the False Positive Rate at 95% Recall (FPRg5).



Table 2: ViT-B-16 benchmark: Classification, Calibration, and Selective Classification.

Method Classification Calibration Selective Classification
Acc (%) Brier NLL ECE (%) aECE (%) AUGRC (%) AURC (%) Cov@5Risk (%) Risk@80Cov (%)
Single Model 80.67 027 071 0.01 0.01 3.89 5 64.15 9.81
+ Temperature Scaling 80.67 027 0.71 0.01 0.01 3.88 4.99 64.2 9.79
+TTA 75.12 0.49 - 0.24 0.24 11.81 21.89 - 25.41
Deep Ensemble 82.19 025  0.65 0.03 0.03 3.46 4.44 67.58 8.54
+ Temperature Scaling 82.19 025  0.65 0.01 0.01 344 4.41 67.92 8.49
Packed Ensemble 79.23 029 078 0.01 0.01 4.26 5.48 62.01 10.88
MiMo 80.59 027 072 0.02 0.02 3.8 4.84 65.67 9.63
Table 3: ViT-B-16 benchmark: NearOOD and FarOOD performance.
Method FarOOD Average NearOOD Average
AUROC (%) 1T FPRg5 (%) AUPR(%)1T AUROC (%)1T FPRy5(%)] AUPR (%)t
Single Model 90.75 37.92 70.33 77.96 63.08 55.29
+ Temperature Scaling 90.44 38.62 69.59 77.72 63.45 54.93
Deep Ensemble 92.05 33.05 72.9 78.76 61.69 56.14
+ Temperature scaling 91.18 35.71 70.57 77.99 62.87 54.98
Packed ensemble 89.84 38.6 66.99 76.38 65.59 52.64
MiMo 89.13 42.34 66.65 78.05 62.84 55.67

4.1 Classification benchmarks

We benchmark the ViT-B/16 architecture across various uncertainty quantification methods,
evaluation metrics, and datasets available within Torch-Uncertainty. To enhance robustness and
support ensemble-based UQ methods, we repeat the entire training pipeline three times with different
random seeds, thereby producing a deep ensemble of ViT-B/16 models. All trained weights are made
publicly available via the Torch-Uncertainty’s Hugging Face repository.

The training process follows a two-stage procedure inspired by the original ViT framework [19]:
we first pre-train the model on the large-scale ImageNet-21k dataset [68], and subsequently fine-tune
it on the standard ImageNet-1k benchmark [16].

Benchmarked uncertainty quantification techniques. In our study, we benchmark a standard ViT-
B/16 model with and without Temperature scaling as baselines and ensembles including Deep Ensem-
bles and Packed Ensembles, which aggregate predictions from multiple independently trained models.

Results Analysis. Tables 2 and 3 summarize the performance of different ViT-B-16 variants. The
Deep Ensemble [51] achieves the best overall accuracy (82.19% vs. 80.67% for the single model)
and lowest Brier/NLL (0.25/0.65). After temperature scaling, its calibration further improves
(ECE=0.01%) with a slight gain in selective classification (AURC=4.41%, Cov@ 5Risk=67.9%,
Risk@80Cov=8.49%). Compact ensemble variants, such as Packed Ensemble [52] and MiMo [34],
reach comparable accuracies (79.2-80.59%) but with weaker performance on other metrics
(Risk@80Cov=10.9% and 9.6%, respectively). In OOD detection, the Deep Ensemble [51] again
leads with the highest FarOOD AUROC (92.05%) and lowest FPRys (33.05%), outperforming
the single model by +1.3 AUROC and —4.9 FPR. On NearOOD, it attains 78.8% AUROC and
61.7% FPR, while MiMo [34] remains competitive (78.1% / 62.8%). Overall, ensembles trained
independently provide the best accuracy, calibration, and OOD robustness, while compact variants
trade some of these gains for efficiency.

4.2 Segmentation benchmarks

To demonstrate the capabilities of Torch-Uncertainty for benchmarking deep learning approaches,
we conduct segmentation experiments using the SegmentationRoutine. Based on a UNet
architecture [71], we evaluate ensemble approaches on the MUAD dataset [26], whose official
implementation is hosted directly in Torch-Uncertainty. MUAD contains 3420 image samples
for training, 492 for validation, 551 for in-distribution, and 1668 for out-of-distribution test data.

We report the performance of a vanilla UNet model without additional tweaking as baseline, a Monte
Carlo (MC) Dropout [27] UNet, one of the simplest UQ baselines, and ensembles including Deep



Table 4: Semantic segmentation and calibration quality comparison (averaged over three runs)
on MUAD using UNet backbones. All ensembles have 4 subnetworks. We highlight the best
performance in bold. Deep Ensembles performs best except for calibration due to augmentations [52].

Method Segmentation Calibration (%) |,
mloU (%) 1T mAcc (%)T pixAcc(%)1 Brier| NLL | | ECE aECE
Baseline 71.55 87.65 93.59 0.10 0.18 0.51 0.42
+ MC Dropout 68.80 85.99 92.62 0.11 0.21 1.52 2.04
% MIMO (p = 0.5) 70.95 87.32 93.15 0.10 0.20 0.44 1.04
= BatchEnsemble 64.88 80.78 92.06 0.12 0.24 2.73 3.18
g Masksemble 67.62 83.14 92.87 0.11 0.21 2.08 2.61
Z Packed-Ensembles 71.87 86.77 93.65 0.10 0.19 1.91 2.54
= Deep Ensembles 74.93 88.86 94.29 0.09 0.17 1.58 2.14

Table 5: Selective classification and out-of-distribution detection performance comparison
(averaged over three runs) on MUAD using UNet backbones. All ensembles have 4 subnetworks.
‘We highlight the best performance in bold. For most metrics, Deep Ensembles performs best.

Method Selective Classification (%) Out-of-Distribution Detection (%)
AURC | AUGRC| Cov@5Risk1T Risk@80Cov,] | AUPRT AUROC?T FPRy; |

Baseline 0.79 0.69 96.84 1.20 18.87 81.34 57.20

+ MC Dropout 1.01 0.88 94.32 1.72 19.92 83.16 49.32
2 MIMO (p = 0.5) 0.87 0.76 95.82 1.37 18.07 80.09 59.28
= BatchEnsemble 1.18 1.01 92.78 2.12 19.93 83.36 48.00
g Masksemble 0.94 0.83 94.99 1.59 20.09 83.28 48.42
£ Packed-Ensembles 0.77 0.68 97.02 1.19 20.40 82.56 52.97
= Deep Ensembles 0.63 0.56 98.53 0.93 22.45 84.03 51.40

Ensembles (DE) [51] to lighter methods such as MIMO [34], BatchEnsemble [90], Masksemble
[20], and Packed-Ensembles (PE) [52]. We consider an ensemble size of 4 for all ensembles, while
MC Dropout leverages 10 forward passes.

The methods are evaluated using the built-in metrics of the SegmentationRoutine. It includes
segmentation-specific metrics: mean Intersection over Union (mloU), the average of the accuracy on
each class (mAcc), and the accuracy over all pixels (pixAcc). Additionally, we report the Brier-score
(Brier) and the Negative Log-Likelihood (NLL) of the target over the categorical distributions
predicted by the segmentation model.

In Table 4, we can see that DE, which outperforms other methods on segmentation metrics, is not well
calibrated compared to the baseline model. We argue that this result comes from data augmentations
at training time, and we emphasize the need for automated calibration quality assessment to detect
such behaviors. Concerning selective classification and out-of-distribution detection in Table 5, DE
outperforms its counterparts, while PE achieves interesting results with only 25% of the parameters
of DE. The performance of PE compared to DE hints that there might not be enough parameters in the
subnetworks. Thus, a higher « value (e.g., @« = 3) would be beneficial. Indeed, o = 4 corresponds
to PE having the same number of parameters as DE, when the ensemble size is 4. BatchEnsemble
has the best FPRgs, but it is also the method with the lowest segmentation capability.

5 Conclusion

Torch-Uncertainty is a unified, modular, and evaluation-centric library for uncertainty quan-
tification in deep learning. Built on top of PyTorch and Lightning, it provides a wide range of
state-of-the-art UQ techniques implemented across six major methodological families. Our library
supports tasks including classification, segmentation, and regression, and comes with pre-trained
models, standardized benchmarks, and extensive educational material. As our library is still under
development, we invite the community to contribute to this open-source project to create a new
standard in UQ for DNNs. Through comprehensive experiments, we demonstrate the utility and
extensibility of our framework, paving the way for more robust and uncertainty-aware deep learning
models in both academic and industrial contexts.



Limitations and future directions. Torch-Uncertainty, as opposed to a list of independent
methods and scripts, is designed to integrate implemented uncertainty-quantification methods
and ease their use and evaluation on sets of tasks and robustness dimensions. This integration
significantly increases maintenance and development costs, thereby limiting the library’s current
comprehensiveness. The authors will strive to continue implementing methods and improving the
assessment of their robustness. These difficulties also entail the limitation to the four main tasks
presented in the paper and Torch-Uncertainty’s specialization on computer vision. The modular
structure of the library also makes it more prone to bugs due to compatibility issues between bricks,
which we mitigate as much as possible with high code quality standards, unit, and integration tests.

Societal impact. Creating an open-source library for uncertainty quantification in Deep Learning
can significantly advance research and real-world applications by fostering transparency, repro-
ducibility, and collaboration. It empowers a broader community, including academic researchers,
industry practitioners, and developers, to more rigorously assess model confidence and reliability,
which is crucial in high-stakes fields like healthcare, and autonomous systems. By democratizing
access to state-of-the-art tools, such a library can accelerate innovation, improve model safety, and
promote ethical Al deployment across diverse sectors.
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A Implementation details

All the hyperparameters used in this paper are available in the configuration files available in the
experiments folder of the library.

A.1 Classification benchmark

Concerning the classification benchmark, we adopted a two-stage training procedure for ViT,
following a similar approach to that of [19]. The training procedure for the two stages is detailed
in the following paragraphs.

Stage 1: Pre-training on ImageNet-21k. We train ViT-B/16 from scratch on the ImageNet-21k
[68] Winter 2021 version, which contains 13,153,500 images across 19,167 classes. Each input
image is processed by a transformation pipeline consisting of:

* arandom resized crop to 224 x 224 with a scale sampled uniformly from [0.08, 1.0],

* a horizontal flip with probability 0.5,

e conversion to tensor,

¢ channel-wise normalization.

The model is optimized using the AdamW optimizer with the following hyperparameters:
Nmax = 1073, dropout = 0.1, A =0.03, betas = (0.9,0.999).

The learning rate follows a linear warm-up for the first 10,000 steps, followed by a linear decay
schedule. We pre-train for 90 epochs using this configuration.

Stage 2: Fine-tuning on ImageNet-1k. To adapt the model to the ImageNet-1k [16] distribution,
we load the pretrained weights, and reinitialize the classification head to accommodate N = 1000
target classes.

For the training split, we reuse the pre-training data augmentation pipeline. For validation, images are
resized to 256 x 256, center-cropped to 224 x 224, and normalized. We further split the official val-
idation set into a small validation subset (1%) and a larger test subset (99%) to monitor convergence.

Fine-tuning utilizes stochastic gradient descent (SGD) with a momentum of 0.9, no weight decay,
and no dropout. The learning rate is selected from the grid {0.003,0.01,0.03,0.06}, with a linear
warm-up over 500 steps, followed by a cosine decay over 20,000 steps. Training continues until
convergence on the validation subset or until reaching the total number of training steps

A.2 Segmentation benchmark

Concerning the benchmark on the MUAD segmentation dataset containing 15 in-distribution classes
and 6 out-of-distribution classes, all models were trained according to the hyperparameters reported
in Table 6. During the training stage, we apply the following transformations to the input images:
Resizing to evaluation size (512, 1024);

Random rescaling with min_scale = 0.5 and max_scale = 2.0;

Random cropping to crop size (256, 256);

Random color jitter with brightness = 0.5, contrast = 0.5 and saturation = 0.5;

Random horizontal flip with probability = 0.5;

A T A

Channel-wise normalization.
All ensembles use 4 estimators, and MC Dropout leverages 10 forward passes. Packed-Ensembles

parameters are « = 2 and v = 1. We use MIMO with p = 0.5 and Masksemble with scale = 2.0.
Concerning BatchEnsemble and Masksemble, the inputs are repeated (x4) during training.

17



Epochs Batchsize Cropsize Evalsize Optimizer LR  Weight decay LR decay Milestones Precision
100 32 (256, 256) (512, 1024) Adam le-2 le-4 0.5 [20,40,60,80] bf16-mixed

Table 6: Segmentation benchmark hyperparameters

B Tutorial details

We provide multiple tutorials accessible in the web documentation of our library, showcasing
multiple implemented UQ methods in Torch-Uncertainty. We list below some of the currently
available tutorials :

1. Training a LeNet with Monte-Carlo Dropout
In this tutorial, we train a LeNet classifier on the MNIST[54] dataset while keeping
Dropout active at test time[27]. Multiple stochastic passes yield an empirical posterior,
from which both the expected class and predictive variance are extracted.

2. Improve Top-label Calibration with Temperature Scaling
In this tutorial, we use Torch-Uncertainty to post-process a pre-trained ResNet-18
(CIFAR-100[50]) with a single learned temperature parameter that rescales logits[31]. The
notebook shows how to fit the temperature on a held-out set and achieve a lower Expected
Calibration Error (ECE), together with reliability diagrams.

3. Training a LeNet with Monte-Carlo Batch Normalization
This tutorial will apply Monte-Carlo Batch Normalization[79], a post-hoc Bayesian
approximation method, to a LeNet with batch normalization layers. Multiple stochastic
passes yield an ensemble of logits; TorchUncertainty computes classification, calibration,
and selective prediction metrics.

4. Train a Bayesian Neural Network in Three Minutes
In this tutorial, we use Torch-Uncertainty to easily train a variational Bayes[5] LeNet
with the ELBO loss and to visualize ensemble variance, illustrating epistemic uncertainty.

5. Deep Evidential Classification on a Toy Example
Based on Torch-Uncertainty, this tutorial offers an introductory overview of Deep
Evidential Classification[!] using a practical example. It tackles the toy problem of
classifying MNIST[54] with an MLP whose output is modeled as a Dirichlet distribution.
Training minimizes the DEC loss, which combines a Bayesian risk squared-error term with
a KL-divergence-based regularizer.

6. Deep Evidential Regression
In this tutorial, we present Torch-Uncertainty for Deep Evidential Regression[!] and
provide a practical example. We apply DER by tackling the toy problem of fitting iy = 23
using a Multi-Layer Perceptron (MLP) neural network model. The output layer of the
MLP provides a Normal-Inverse-Gamma distribution, which is used to optimize the model
through its negative log-likelihood.

7. Corrupting Images to Benchmark Robustness
This tutorial shows the impact of the different corruption transforms available in the
Torch-Uncertainty library. Various corruption transforms (noise, blur, weather, JPEG
artifacts, ...) inspired by ImageNet-C[14] are available. In the tutorial, five severity levels
are previewed side by side, allowing users to visualize how data shift tests model robustness.

8. From a Standard Classifier to a Packed-Ensemble
In this tutorial, we demonstrate how to create a Packed-Ensemble[52] starting from the
classic CIFAR-10[50] CNN; every Conv2d and Linear layer is swapped for its Packed
version, forming four subnetworks that share computation via grouped convolutions. Better
accuracy and uncertainty metrics are achieved with only a modest increase in memory.

9. Improved Ensemble Parameter-Efficiency with Packed-Ensembles
In this tutorial, we train a Packed Ensemble[52] on MNIST[54] and compare it with a
deep ensemble[51]. The reported accuracy, Brier score, calibration error, and negative
log-likelihood illustrate the efficiency claims made in the Packed-Ensemble paper.
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10. Simple Out-of-Distribution Evaluation
This tutorial sets up a CIFAR-100[50] datamodule that automatically provides in-
distribution, near-OOD, and far-OOD splits, then runs the ClassificationRoutine to
collect standard accuracy and OOD metrics: AUROC, AUPR, and FPR9S5. It also explains
how TorchUncertainty integrates the OpenOOD[94] datasets splits by default and how you
can plug in your own datasets for custom OOD benchmarking.

11. Conformal Prediction on CIFAR-10
This tutorial introduces Conformal Prediction as a post-hoc method for classification. Using
a held-out calibration set, a pretrained ResNet-18 on CIFAR-10[50] is calibrated with three
conformal methods (THR, APS, and RAPS)[70, 3]. The notebook measures coverage and
set size before and after calibration, visualizes the resulting prediction sets, and even checks
their behavior on an OOD dataset (SVHN[63]) to highlight how conformal prediction
interacts with distribution shift.

C Built-in metrics details

Table 7 compares the metrics supported by six popular PyTorch-based UQ libraries. The metrics
are grouped into eight semantic categories, reflecting the most common evaluation axes across
classification, regression, and dense-prediction tasks.

Torch-Uncertainty stands out by offering the most extensive and diverse support across these
categories. It implements a broader set of UQ metrics than existing libraries, addressing various tasks
and evaluation dimensions. These metrics encompass performance and uncertainty quantification,
all of which are supported natively within the library.

Table 7: Metrics available in the relevant libraries grouped by category (v': implemented)

Category Metric Torch-Uncertainty Lightning-UQ-Box BLiTZ GPyTorch TorchCP Bayesian-Torch
4 4 4 4 4

Accuracy
Classification BrierScore
CategoricalNLL

AURC
OOD Detection FPR x
FPR95

AUGRC
RiskAtx Cov
RiskAt80Cov
CovAtxRisk
CovAt5SRisk

aECE

ECE v
RMSCE v
Miscal. Area v

Disagreement
Entropy
Mutuallnformation
VariationRatio

DistributionNLL
Logl0
MAE-Inverse
MAE
MSE
RMSE
MSE-Inverse
MSLE
SILog
ThresholdAccuracy
R2 -
SMSE v
MSLL v
QCE v
Accuracy
Segmentation mloU
F1Score

Coverage
Set Size

Selective Classification
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D Datasets details

Appendix D lists the 37 datasets that are built-in Torch-Uncertainty. They are grouped by
experimental purpose; most modules implement a Lightning-style interface with reproducible splits,
standard normalization, and task-specific data augmentations. So, swapping a dataset entails zero
code changes in the training loop. All competing libraries considered ship no datasets.

Vision: Core image classification benchmarks spanning low-to-high resolution:

* MNISTI[54]: 70 000 handwritten digit images ((28 x 28) px), grayscale, 10 classes.
CIFAR-10[50]: 60 000 color images ((32 x 32) px) in 10 common object categories.
CIFAR-100[50]: same images as CIFAR-10 but organized into 100 fine-grained classes.

* TinyImageNet[53]: 100 000 downsampled ((64 x 64) px) images across 200 ImageNet
classes.

ImageNet[16]: ~1.2 million high-resolution images in 1000 classes for large-scale training.

Vision - corrupted/shifted: Robustness stress tests via synthetic corruptions and natural
distribution shifts:
* MNIST-C[61]: MNIST digits with 15 algorithmic corruptions (e.g., noise, blur).
* NotMNIST[7]: Font-based A-J glyphs, mimicking MNIST but with a different style.
* CIFAR-10/100-C[14]: CIFAR images under 19 corruption types at five severity levels.
* CIFAR-10-H[67]: human annotated "hard" subset of CIFAR-10 for label uncertainty.
¢ CIFAR-10/100-N[89]: CIFAR with naturally noisy labels from real annotators.
* ImageNet-A[37]: Adversarial ImageNet examples.
* ImageNet-C[14]: ImageNet with the 15 corruption types at five strengths.
* TinyImageNet-C[14]: TinyImageNet under the same ImageNet-C[ 14] corruption types.
* ImageNet-O[37]: Out-of-distribution images (100 000 examples) not in ImageNet-1K.
» ImageNet-R[36]: Rendition images (art, sketches) of ImageNet classes for style shift.
* Openlmage-O[388]: OOD subset drawn from Openlmages.

Segmentation: Standard semantic segmentation benchmarks for urban and aerial scenes:

» CamVid[6]: Road scene frames ((360 x 480) px) with 11 semantic classes.
* Cityscapes[13]: 5 000 finely annotated street view images in 30 classes.

* MUADI26]: A synthetic dataset for autonomous driving with multiple uncertainty types
and tasks.

Tabular (UCI): Five classical binary classification tasks with built-in preprocessing:

» BankMarketing[60]: customer "yes/no" subscription to a term deposit.

DOTA2Games[31]: match outcome (win/lose) from in-game statistics.

HTRU2[58]: pulsar detection in radio frequency observations.
* OnlineShoppers[72]: purchase behavior ("buy" vs. "no buy") from web session logs.

* SpamBase[38]: email spam detection (spam vs. non-spam) based on word frequencies.

Regression: Ten continuous-target UCI datasets with uniform splits: Boston[33]: housing price
regression, Energy[52]: heating and cooling load prediction for buildings , Naval[ | |]: submarine
propulsion plant state estimation, etc ..
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OOD Eval: Out-of-distribution image classification datasets with default OpenOOD[94] splits:

Misc.

* Places365[95]: A large-scale scene-recognition dataset with 365 indoor/outdoor classes.
» Textures[10]: 5640 texture images organized into 47 perceptual classes

» SVHNI[63]: Over 600 000 real-world (32 x 32) px RGB digit images cropped from Google
Street View.

* iNaturalist[85]: A large, fine-grained species-classification dataset with hundreds of
thousands of wildlife images (plants, animals, fungi)..

* NINCOI[4]: Consists of 5879 OOD images across 64 classes, explicitly excluding
any ImageNet-1K categories. Designed for rigorous OOD detection evaluation on
ImageNet-trained models.

* SSB-hard[36]: An out-of-distribution (OOD) dataset for ImageNet-1K classifiers. It defines
OOD classes by mining the large ImageNet-21K hierarchy for the 1 000 categories that
sit farthest semantically from the original 1 000 training classes, as measured by WordNet
similarity.

vision: Auxiliary and multi-modal datasets:

* Fractals[45]: procedurally generated fractal images for self supervised pretraining.

* FrostImages[14]: synthetically fogged/frosted scenes to study visibility degradation.

e KITTI-Depth[83]: stereo and LiDAR-based depth estimation images captured on roads.
* NYUv2[76]: aligned RGB and Kinect-derived depth maps of indoor scenes.

Table 8: Datasets / datamodules shipped with each library (v'= available, - = not supported)

Category Dataset / Datamodule Torch-Unc. Lightning-UQ-Box BLiTZ GPyTorch TorchCP Bayesian-Torch

Vision

Cifar10 4
Cifar100
Mnist
TinyImageNet
ImageNet

Vision (corrupted) CIFAR100N

MNISTC
NotMNIST
CIFAR10C
CIFAR100C
CIFAR10H
CIFARION

ImageNetA
ImageNetC
ImageNetO
ImageNetR
TinyImageNetC

Vision (shift) OpenlmageO

Tabular (UCI) HTRU2

BankMarketing
DOTA2Games

OnlineShoppers
SpamBase

Regression UCIRegression

Segmentation Cityscapes

CamVid

MUAD

00D

Places365
Textures
SVHN
iNaturalist
NINCO
SSB-hard

Misc. vision

Fractals
FrostImages
KITTIDepth
NYUv2

SASN N SNSNANSNYN SN SISARRNSNYN N SSSANSNSANNSNASNNSSAN
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Table 9: Regression benchmark (averaged over five runs) on UCI Boston & Concrete datasets
using an MLP backbone. All ensembles have 5 subnetworks. We highlight the best performance
in bold.

Method Boston housing Concrete

MAE RMSE QCE NLL | MAE RMSE QCE NLL
Baseline 1.737  2.225 - - 3919 5.279 - -
+ Normal 1.563 2.322  0.051 -0.134 | 4180 5.693 0.022 0.134
+ Laplace 1.598 2.322  0.036 -0.113 | 4.154 5906 0.036 0.180
+ Cauchy 1.688 2.485 0.037 0.022 | 4367 6257 0.041 0.310
+ Student’s T 1.669 2417 0.037 -0.056 | 4.029 5.740 0.028 0.139

Bayesian NNs

Variational BNN (VI ELBO) 1.687 2.242 | 0.035 -0.047 | 4.131 5.687 0.022 0.122
Post-Hoc Methods

MC Dropout 1.706 2262 0.079 -0.074 | 4459 5948 0.048 0.251
Ensembles

MIMO (p = 0.5) 1.766 2309 0.080 0.052 | 4.327 5.853 0.027 0.186

BatchEnsemble 1.799 2358 0.080 0.038 | 4312 5.881 0.032 0.200

Packed-Ensembles (o = 3) 1.682 2230 0.052 -0.059 | 4242 5743 0.025 0.153
Packed-Ensembles (o = 4) 1.632 2.154 0.052 -0.082 | 4.167 5700 0.023 0.130
Deep Ensembles 1.509 2.040 0.071 | -0.139 | 4.110 5.672 | 0.018 0.093

E Regression benchmarks

Torch-Uncertainty supports regression tasks, which we showcase with the following benchmark
on UCI Regression datasets. We reproduced a simple regression experiment that trains a Multi-Layer
Perceptron (MLP). Our benchmark considers the following methods:

* Baseline A MLP with 50 hidden neurons and RELU non-linearity, which is the backbone
for all our models. It returns a point-wise estimate with no uncertainty estimate whatsoever.

* Density Network Torch-Uncertainty provides layers (torch.nn.Module) to easily
estimate distribution parameters. We replace the last layer of our MLP with such layers
to estimate Normal, Laplace, Cauchy, and Student’s T distributions.

* Variational BNN A BNN trained with the ELBO loss, outputting the parameters of a
Normal distribution. It uses 10 samples.

* MC Dropout At test time, executes 10 forward passes of a Normal Density Network with
a dropout rate of 0.1.

* Ensembles All ensembles have 5 subnetworks, and produce the parameters of a Normal
distribution.

These methods are evaluated on the Mean Absolute Error (MAE), the Root Mean Squared Error
(RMSE), the Quantile Calibration Error (QCE), and the Negative Log-Likelihood rescaled (NLL).

Table 9 reports the performance of the studied methods for the Boston Housing and Concrete
datasets. Torch-Uncertainty enables the efficient comparison of different distribution families.
For instance, in the Boston housing dataset, the Normal distribution appears to be the best, while
in the Concrete dataset, it is less clear, as the Student’s T distribution has the best MAE. Moreover,
the Baseline outperforms all other methods that estimate distribution parameters in this dataset. It
highlights that simultaneously optimizing the mean and variance might degrade the mean estimation
depending on the dataset.

Regarding the ensembles, Deep Ensembles achieve the highest performance, while Packed Ensembles
showcase how the number of parameters in the subnetworks affects the results.

F Torch-Uncertainty visualization toolbox

One of the core objectives of Torch-Uncertainty is to help practitioners improve the performance
of their models while also understanding the limitations of predictive uncertainties. To this end, we
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Prediction Ground Truth

Figure 4: Example of a prediction visualization available in Torch-Uncertainty. The model
is a DeepLabV3+ trained on MUAD-Small for 20 epochs.

provide built-in visualizations for the different tasks at hand, ranging from prediction visualization to
advanced metric graphs. Notably, for segmentation and image regression, we log prediction images
during the training and at test time, as shown in Figure 4. Moreover, we provide detailed plots for
calibration and selective classification, available simply with the corresponding .plot () methods.

G Example of codes

As explained in the main paper, Torch-Uncertainty provides routines to simplify the training and
the benchmarking of methods on classification, segmentation, and regression tasks (pixel regression is
still under heavy development as of v0.5.0). Specifically, we focus on designing simple parameters
to enable the computation of specific metrics or even apply some post-hoc methods.

OOD detection in ClassificationRoutine and SegmentationRoutine: The eval_ood
parameter indicates that the second dataloader passed to Torch-Uncertainty’s TUTrainer
corresponds to out-of-distribution data. In the code snippet below, we consider an already trained
network model:

trainer = TUTrainer ()
cls_routine = ClassificationRoutine (model=model, eval_ood=True)
trainer.test (

cls_routine, dataloaders=[id_dataloader, ood_dataloader]

)

With eval_ood=True, the evaluation metrics include the OOD detection metrics: AUROC, AUPR,
and FPR9S.

Add a post-hoc method in ClassificationRoutine: In this example, we fit a Temperature
Scaler for a model trained on CIFAR-10. Torch-Uncertainty provides a CIFAR10DataModule
class that has a method postprocess_dataloader () which is required to fit the post-hoc method:

trainer = TUTrainer ()
datamodule = CIFAR10DataModule ()
cls_routine = ClassificationRoutine(

model=model, post_processing=TemperatureScaler ()
)

trainer.test(cls_routine, datamodule=datamodule)

Doing so computes additional metrics evaluating the performance of the post-hoc method on the
model.

H Contribution protocol

To ease contributing to Torch-Uncertainty, we have defined standard guidelines to help with code
quality and formatting. Using a specific software development environment, we help any contributor
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ensure continuous integration does not break while they implement new features or solve bugs. These
guidelines are as follows:

1. Check that PyTorch is already installed on your development environment (e.g., conda
or venv environments).

2. Clone your personal fork of the Torch-Uncertainty repository.

3. Install Torch-Uncertainty in editable mode with the development packages.

4. Install pre-commit hooks to guarantee code format and quality when committing, thanks

to ruff.

We recommend executing the tests locally before pushing on a Pull Request (PR) to avoid multiplying
the number of featureless commits. A PR is expected to respect the following conditions:

¢ The name of the branch is not main nor dev.

» The PR does not reduce the code coverage of the project.

* The code is documented: the function signatures are typed, and the main functions have
clear docstrings.

* The code is mostly original, and the parts coming from licensed sources are explicitly stated
as such.

* When implementing a method, a reference to the corresponding paper in the references
page should be added.

I Time-series Classification Benchmark

Although the focus of Torch-Uncertainty has been on computer vision data, our library can
be used for other application domains on the supported tasks. In this section, we leverage the
ClassificationRoutine for Time-series classification with InceptionTime [42]. Specifically, we
compare the following approaches on some of the UCR/UEA datasets [15]:

* Baseline a classic InceptionModel, the backbone for all other models.
* Variational BNN A BNN trained with the ELBO loss, sampling 16 models for evaluation.

* MC Dropout At test time, executes 10 forward passes of an InceptionTime model with
a dropout rate of 0.2.

¢ Ensembles All ensembles have 4 subnetworks.

For evaluation, we consider the accuracy (Acc), the expected calibration error (ECE), the false
positive rate at 95% (FPRgs (%)), and additionally report the number of giga floating point
operations (FLOPS (G)).

Table 10 summarizes the results obtainable in Torch-Uncertainty on this task.

J Text Classification Benchmark

The use of the library can be also be extended to tasks like Natural Language Understanding (NLP).
In this section we fine-tune a bert-base-uncased [ 8] classifier initialized from the HuggingFace
checkpoint on SST-2 [77] a sentiment analysis dataset and benchmark different baselines. Since
there is no official test set, we use the validation set for testing, while setting aside part of the training
set for validation.

Tokenization We use the bert-base-uncased tokenizer with max_length=128, truncation, and
padding to max length. A deterministic split is applied: the first 3,000 rows of the GLUE [87] train
split serve as validation; the remainder forms the training set. Evaluation is reported on the official
GLUE validation split (872 labeled examples).

Optimizer and schedule. We use AdamW as optimizer with decoupled weight decay
(weight_decay = 0.01) and exclude bias and LayerNorm weights from decay. The learning rate
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Table 10: Time-series classification benchmark (averaged over three runs) on UCR/UEA
datasets using an InceptionTime backbone. All ensembles have 4 subnetworks. We highlight
the best performance in bold.

Method Adiac Beef
Acc (%) ECE (%) FPRy; (%) FLOPS (G) | Acc(%) ECE (%) FPRy;(%) FLOPS (G)
Baseline 76.34 5.84 34.39 217 | 75.00 21.08 70.83 5.81
Bayesian NNs
Variational BNN (VI ELBO) 78.01 6.94 29.82 34.81 71.78 20.86 70.83 92.96
Post-Hoc Methods
MC Dropout 100.00 6.03 53.51 15.82 70.83 18.70 63.89 58.10
Ensembles
MIMO (p = 0.5) 72.12 12.09 39.05 222 65.28 18.64 77.78 591
BatchEnsemble 73.27 11.99 47.49 8.70 65.28 15.80 76.39 23.24
Packed-Ensembles (o = 2) 75.81 9.93 36.41 2.19 73.61 17.73 70.84 5.84
Deep Ensembles 78.28 6.71 41.34 8.70 66.67 16.80 81.94 23.24
Method CricketY CricketZ
Acc (%) ECE (%) FPRy; (%) FLOPS (G) | Acc(%) ECE (%) FPRy;(%) FLOPS (G)
Baseline 87.28 4.15 83.10 3.71 | 88.18 3.64 56.51 3.71
Bayesian NNs
Variational BNN (VI ELBO) 87.00 7.15 81.62 59.34 88.09 5.65 60.39 59.34
Post-Hoc Methods
MC Dropout 87.56 5.50 85.61 37.09 88.37 7.80 53.19 37.09
Ensembles
MIMO (p = 0.5) 84.96 6.14 97.21 3.78 86.61 8.14 64.82 3.78
BatchEnsemble 85.79 7.70 69.73 14.83 87.17 9.21 49.58 14.83
Packed-Ensembles (« = 2) 87.00 9.30 77.53 3.73 88.55 10.62 49.49 3.73
Deep Ensembles 85.24 3.82 80.22 14.83 87.26 7.95 54.20 14.83
Method Inline Skate Lightning7
Acc (%) ECE (%) FPRg; (%) FLOPS (G) | Acc(%) ECE (%) FPRy;(%) FLOPS (G)
Baseline 40.41 4.95 83.44 23.26 | 86.89 20.76 87.43 3.94
Bayesian NNs
Variational BNN (VI ELBO) 40.88 6.39 84.63 372.24 83.06 16.55 89.07 63.09
Post-Hoc Methods
MC Dropout 38.01 6.66 76.62 232.65 85.79 20.44 80.33 39.43
Ensembles
MIMO (p = 0.5) 26.18 3.68 89.18 23.68 83.61 17.35 86.88 4.01
BatchEnsemble 41.82 6.91 84.70 93.06 84.70 18.65 97.81 15.77
Packed-Ensembles (a = 2) 43.02 7.57 79.16 23.40 85.25 23.64 80.87 3.97
Deep Ensembles 40.28 4.66 87.04 93.06 85.80 14.57 92.35 15.77
Method Olive Oil Two Patterns
Acc (%) ECE (%) FPRy;(%) FLOPS(G) | Acc(%) ECE (%) FPRy;(%) FLOPS (G)
Baseline 77.78 29.00 83.33 7.05 | 100.00 0.41 51.84 1.58
Bayesian NNs
Variational BNN (VI ELBO) 85.18 22.63 81.48 112.74 100.00 0.25 63.23 25.32
Post-Hoc Methods
MC Dropout 81.48 18.82 88.89 70.46 100.00 0.16 70.69 15.82
Ensembles
MIMO (p = 0.5) 74.07 25.06 88.89 7.17 100.00 1.26 9.72 1.61
BatchEnsemble 70.37 18.61 88.89 28.18 100.00 2.15 78.05 6.33
Packed-Ensembles (« = 2) 79.63 25.46 88.89 7.09 100.00 0.14 40.54 1.59
Deep Ensembles 72.22 25.35 88.89 28.18 100.00 2.15 78.05 6.33

is 7 = 8 x 1075, The schedule is per step: linear warm-up over 10% of the total training steps
followed by linear decay to zero. Gradient clipping is applied with 5 = 1.0.

Early stopping and checkpoints. Training runs for up to 7 epochs with early stopping on validation
accuracy (patience = 2, A = 5 x 10~*). We checkpoint every epoch and select the model with the
best validation accuracy; final numbers are reported on the held-out test split.

OOD evaluation. We consider two out-of-distribution (OOD) settings: (i) Near-OOD, where
the task is still sentiment analysis but the data comes from domains other than movie reviews. (ii)
Far-OOD, where the task is different from sentiment analysis, following recent NLP OOD protocols
[56][46].

All the splits are already defined in the library, a datamodule for the dataset SST2 is present,
it automatically downloads train, test and OOD evaluation datasets. Evaluation is also pretty
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Table 11: Results on text classification. Metrics evaluate accuracy, calibration performance and
OOD detection. We highlight the best performance in bold

Method Heads Acc] Brier] NLL| ECE| aECE| OOD Average
AUROCT FPRY95, AUPR?t
SINGLE 12 9255 012 027 005 004 70.16 7062 8193
DEEP ENSEMBLES (D) 12 93 0.11 024 0.04 0.04 74.81 62.69 84.9
MC DROPOUT 12 9255 013 031 005 004 7223 6736 8196

straightforward thanks to the classification routine and the different baseline codes already
present also in the library.

Results. Table 11 reports ID accuracy, calibration, and OOD detection performance for different
uncertainty methods. Deep Ensembles achieves the best overall performance and classical lightweight
approaches such as MC Dropout improves only OOD detection.

Note on Baselines: for the Deep Ensembles baseline, we avoid training three completely independent
BERT [18] models from scratch to reduce computational cost. Instead, we fine-tune a shared
pre-trained BERT backbone and train three separate classifiers with different random seeds on top
of it (we denote it as DEEP ENSEMBLES (D)).

26



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our paper introduces a new PyTorch-based library for Uncertainty
Quantification in Deep Learning, which we make clear in our abstract and contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The last section in the main paper outlines limitations of our work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The
authors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions
and a complete (and correct) proof?

Answer: [NA]
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Justification: Our contributions do not involve theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and
cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our paper’s supplementary contains all the information to reproduce our
experiments, and we plan on releasing our model checkpoints.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of

whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps

taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture

fully might suffice, or if the contribution is a specific model and empirical evaluation,

it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided

via detailed instructions for how to replicate the results, access to a hosted model (e.g.,

in the case of a large language model), releasing of a model checkpoint, or other means

that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all

submissions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there
should either be a way to access this model for reproducing the results or a way
to reproduce the model (e.g., with an open-source dataset or instructions for how
to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
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Answer: [Yes]

Justification: Our library’s GitHub repository will include the configuration files to launch
the experiments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

e Please see the NeurI[PS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so AAIJN0AAI is an acceptable answer. Papers cannot be rejected simply for
not including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to
run to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: They are provided in the appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]
Justification: All the information can be found in the appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [TODO]
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require
a deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The main paper includes a paragraph on this subject.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact
specific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used
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to generate deepfakes for disinformation. On the other hand, it is not needed to point
out that a generic algorithm for optimizing neural networks could enable people to
train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology
is being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include
a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license
of the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [TODO]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and
the guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: [TODO]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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