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ABSTRACT

A machine learning model is calibrated if its predicted probability for an out-
come matches the observed frequency for that outcome conditional on the model
prediction. This property has become increasingly important as the impact of
machine learning models has continued to spread to various domains. As a result,
there are now a dizzying number of recent papers on measuring and improving
the calibration of (specifically deep learning) models. In this work, we reassess
the reporting of calibration metrics in the recent literature. We show that there
exist trivial recalibration approaches that can appear seemingly state-of-the-art
unless calibration and prediction metrics (i.e. test accuracy) are accompanied by
additional generalization metrics such as negative log-likelihood. We then use a
calibration-based decomposition of Bregman divergences to develop a new exten-
sion to reliability diagrams that jointly visualizes calibration and generalization
error, and show how our visualization can be used to detect trade-offs between
calibration and generalization. Along the way, we prove novel results regarding
the relationship between full calibration error and confidence calibration error for
Bregman divergences. We also establish the consistency of the kernel regression
estimator for calibration error used in our visualization approach, which generalizes
existing consistency results in the literature.

1 INTRODUCTION

Standard machine learning models are trained to predict probability distributions over a set of
possible actions or outcomes. Model-based decision-making is then typically done by using the
action or outcome associated with the highest probability, and ideally one would like to interpret the
model-predicted probability as a notion of confidence in the predicted action/outcome.

In order for this confidence interpretation to be valid, it is crucial that the predicted probabilities are
calibrated (Lichtenstein et al., 1982; Dawid, 1982; DeGroot & Fienberg, 1983), or accurately reflect
the true frequencies of the outcome conditional on the prediction. As an informal (classic) example, a
calibrated weather prediction model would satisfy the property that we observe rain 80% of the time
on days for which our model predicted a 0.8 probability of rain.

As the applications of machine learning models - particularly deep learning models - continue
to expand to include high-stakes areas such as medical image diagnoses (Mehrtash et al., 2019;
Elmarakeby et al., 2021; Nogales et al., 2021) and self-driving cars (Hu et al., 2023), so too does
the importance of having calibrated model probabilities. Unfortunately, the seminal empirical
investigation of Guo et al. (2017) demonstrated that deep learning models can be poorly calibrated,
largely due to overconfidence.

This observation has led to a number of follow-up works intended to improve model calibration using
both training-time (Thulasidasan et al., 2019; Müller et al., 2020; Wang et al., 2021) and post-training
methods (Joy et al., 2022; Gupta & Ramdas, 2022). Comparing these proposed improvements,
however, is non-trivial due to the fact that the measurement of calibration in practice is itself an active
area of research (Nixon et al., 2019; Kumar et al., 2019; Błasiok et al., 2023), and improvements with
respect to one calibration measure do not necessarily indicate improvements with respect to another.

Even if we fix a choice of calibration measure, the matter is further complicated by the existence
of trivially calibrated models, such as models whose confidence is always their test accuracy (see
Section 3). Most works on improving calibration have approached these issues by choosing to report a
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number of different calibration metrics along with generalization metrics (e.g. negative log-likelihood
or mean-squared error), but these choices vary greatly across works and are always non-exhaustive.

Motivated by this variance in calibration reporting, our work aims to answer the following questions:

• Do there exist any systematic issues in the reporting of calibration in the recent literature?

• Is there a theoretically motivated choice of which calibration and generalization measures to
report, as well as an efficient means of estimating and visualizing them jointly?

1.1 SUMMARY OF MAIN CONTRIBUTIONS AND TAKEAWAYS

In answering these questions, we make the following contributions.

1. We identify multiple issues (identified in Sections 3, 4.1, and 4.2) in how calibration
performance is reported in the context of multi-class classification, with the core issue being
that many (even very recent) papers report only some notion(s) of calibration error along
with test accuracy. With respect to these metrics, the trivial recalibration strategy of always
predicting with the mean confidence obtained from a calibration set outperforms the most
popular post-training recalibration methods.

2. Based on this observation, we revisit the use of proper scoring rules for measuring calibration.
We apply decomposition results for these scoring rules to show how we can motivate a
calibration metric based on our choice of generalization metric, and in special cases how
we can do the converse as well. Furthermore, we focus on proper scoring rules that are
Bregman divergences and leverage the structure of these divergences to also prove new
results regarding the relationship between full calibration and confidence calibration, with
our main result being Lemma 4.6 (confidence calibration error is a lower bound for full
calibration error).

3. Finally, we propose an extension to reliability diagrams based on our theoretical results on
confidence calibration that can be used to jointly visualize calibration and generalization.
We also prove the consistency of the estimation approach we use in our new visualization in
Theorem 4.9, thereby extending existing estimation results in the literature. In Section 5, we
show how our calibration-sharpness diagrams can provide a much more granular comparison
of recalibration methods when compared to traditional reliability diagrams (Figure 2).

The main takeaway of our results is that the choice of calibration metric should be motivated by
the choice of generalization metric or loss function and that both should be reported together in
order to ensure that improvements in model calibration are not at the cost of model sharpness.

1.2 RELATED WORK

Measuring calibration. Expected calibration error (ECE) is almost certainly the most used cali-
bration metric in the literature, and it is typically estimated using histogram binning (Naeini et al.,
2014). Although originally estimated using uniformly spaced bins (Guo et al., 2017), different
binning schemes (such as equal mass/quantile-based binning) and debiasing procedures have been
proposed to improve estimation of ECE (Nixon et al., 2019; Kumar et al., 2019; Roelofs et al., 2022).
As ECE is known to have a number of undesirable properties (e.g. discontinuous in the space of
predictors), recent work has focused on modifying ECE to fix these issues (Błasiok & Nakkiran,
2023; Chidambaram et al., 2024).

Alternatives to ECE include proper scoring rules (Gneiting & Raftery, 2007), smooth calibration
error (Kakade & Foster, 2008), maximum mean calibration error (Kumar et al., 2018), cumulative
plots comparing labels and predicted probabilities (Arrieta-Ibarra et al., 2022), and hypothesis tests
for miscalibration (Lee et al., 2022). Several of these approaches are analyzed under the recent
theoretical framework of Błasiok et al. (2023), which puts forth a general desiderata for calibration
measures.

In practice, most true calibration measures are only efficient for binary classification, and measuring
calibration in the multi-class classification setting requires making concessions on the definition
of calibration considered. Towards this end, a number of different calibration notions intended to
efficiently work in the multi-class setting have been proposed in the literature (Vaicenavicius et al.,
2019; Kull et al., 2019; Widmann et al., 2020; Zhao et al., 2021; Gupta & Ramdas, 2022; Gopalan
et al., 2024). We elaborate more on binary vs. multi-class calibration in Section 2.
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Improving calibration. Approaches for improving calibration can largely be categorized into
post-training and training-time modifications. In the former category, standard approaches include
histogram binning (Mincer & Zarnowitz, 1969; Zadrozny & Elkan, 2001), isotonic regression
(Zadrozny & Elkan, 2002), Platt scaling (Platt, 1999), temperature scaling (Guo et al., 2017),
and adaptive variants of temperature scaling (Joy et al., 2022). For the latter, data augmentation
(Thulasidasan et al., 2019; Müller et al., 2020) and modified versions of the cross-entropy loss (Wang
et al., 2021) have been shown to lead to better calibrated models.

Calibration and proper scoring rules. Divergences obtained from strictly proper scores such as
negative log-likelihood (NLL) and mean-squared error (MSE) often serve as metrics for quantifying
generalization. A predictor that is optimal with respect to a strictly proper scoring rule has recovered
the ground-truth conditional distribution, and is therefore necessarily calibrated. However, requiring
optimality with respect to a proper scoring rule is a stronger condition than requiring calibration, and
several works have thus explored how to decompose proper scoring rules into a calibration term and a
sharpness/resolution term (Murphy, 1973; Gneiting et al., 2007; Bröcker, 2008; Kull & Flach, 2015;
Pohle, 2020). The most related such work to ours is that of Perez-Lebel et al. (2023), which also puts
forth the perspective that reporting calibration and accuracy is insufficient; however, they focus on a
decomposition involving a grouping loss term whereas we focus on a sharpness term which leads to
different visualizations and different takeaways. We provide a more detailed comparison to this work
in Appendix E.

2 PRELIMINARIES

Notation. We use R to denote the extended real line. We use ei to denote the standard basis vector in
Rd with non-zero i coordinate. Given n ∈ N, we use [n] to denote the set {1, 2, ..., n}. For a function
g : Rn → Rm we use gi(x) to denote the ith coordinate function of g. We use ∆k−1 to denote the
(k − 1)-dimensional probability simplex in Rk. For a probability distribution π we use supp(π) to
denote its support. Additionally, if π corresponds to the joint distribution of two random variables X
and Y (e.g. data and label), we use πX and πY to denote the respective marginals and πY |X to denote
the regular conditional distribution of Y given X . When Y takes values over a finite set, we will
identify πY and πY |X=x with vectors in ∆k−1, and similarly identify πY |X with the corresponding
function from Rd to ∆k−1. For a random variable X that has a density with respect to the Lebesgue
measure, we use pX(x) to denote its density. We use σ(X) to denote the sigma-algebra generated by
the random variable X .

Calibration. We restrict our attention to the classification setting, in which there exists a ground-truth
distribution π on Rd × [k] and our goal is to recover the conditional distribution πY |X . We say a
predictor g : Rd → ∆k−1 is fully calibrated if it satisfies the condition

P(Y | g(X) = v) = v, (2.1)

where P(Y | g(X) = v) is the regular conditional distribution of Y given g(X) at g(X) = v.
Informally, the conditional distribution of the label given our prediction matches our prediction.

In the case where k = 2 (binary classification), we can identify g(X) with a single scalar and
the condition (2.1) is easy to (approximately) verify as it amounts to estimating a 1-D conditional
expectation E[Y | g(X)]. On the other hand, when k is large and g(X) has a density with respect to
the Lebesgue measure on Rk, the estimation problem becomes significantly more difficult due to the
curse of dimensionality.

For such cases, the typical approach taken in practice is to weaken (2.1) to a lower dimensional
condition that is easier to work with. To describe such approaches, we adopt the general framework
of Gupta & Ramdas (2022). Namely, given a predictor g as before, we consider a classification
function c : ∆k−1 → [k] and a confidence function h : ∆k−1 → [0, 1] that are used to post-process
g. For such c and h, we can define the weaker notion of confidence calibration (Kull et al., 2019)
(also sometimes referred to as top-class or top-label calibration):

P(Y = c(g(X)) | h(g(X)) = p) = p. (2.2)

We refer to the specific case of c(z) = argmaxi zi (assuming arbitrary tie-breaking) and h(z) =
maxi zi as standard confidence calibration, since this is usually how confidence calibration appears
in the literature. Additionally, to keep notation uncluttered, we will simply use c(X) and h(X)
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to denote c(g(X)) and h(g(X)) when g is understood from context in the remainder of the paper.
Confidence calibration is by far the most used notion of calibration for multi-class classification in
the literature, and we will thus mostly focus our attention on the condition (2.2) moving forward.
Alternative notions are discussed in detail in Kull et al. (2019); Gupta & Ramdas (2022); Gopalan
et al. (2024).

To evaluate how close a tuple (c, h, g) is to satisfying (2.2), we need a notion of calibration error. As
mentioned earlier, the most common choice of calibration error is the Expected Calibration Error
(ECE), which is simply the absolute deviation between the left and right-hand sides of (2.2):

ECEπ(c, h, g) = E [|P(Y = c(X) | h(X) = p)− p|] . (2.3)

This version of ECE is also referred to as the L1 ECE; raising the term inside the expectation to q > 1
yields the Lq ECE raised to the power q. Intuitively, ECE measures how much our classification
accuracy conditioned on our confidence differs from our confidence. In order to estimate the ECE, it
is necessary to estimate the conditional probability P(Y = c(X) | h(X) = p). This is done using
binning estimators (Naeini et al., 2014; Nixon et al., 2019) and more recently using kernel regression
estimators (Popordanoska et al., 2022; Błasiok & Nakkiran, 2023; Chidambaram et al., 2024).

Proper scoring rules. Alternatives to ECE for measuring calibration error include divergences
obtained from proper scoring rules, which are described in full detail in Gneiting & Raftery (2007).
For our purposes, it suffices to consider only the case of scoring rules S : ∆k−1 ×∆k−1 → R, in
which case S is called proper if S(u, u) ≥ S(u, v) for u ̸= v and strictly proper if equality is only
achieved when v = u. The divergence dS associated with the scoring rule is then defined to be
dS(u, v) = S(u, u)− S(u, v) and is guaranteed to be nonnegative so long as S is proper.

Perhaps the most popular divergences obtained from (strictly) proper scoring rules in machine learning
are the mean squared error (MSE, also referred to as Brier score) and the KL divergence (or just NLL);
minimizing either one empirically ensures that g recovers the ground-truth conditional distribution
πY |X given sufficiently many samples and appropriate regularity conditions. As mentioned, this is
stronger than necessary for achieving (2.2), which is partly why calibration errors such as ECE are
appealing as they directly target the condition (2.2).

3 PITFALLS IN CALIBRATION REPORTING

We begin by first pointing out the well-known fact that even the full calibration condition of (2.2) can
be achieved by trivial choices of g. Indeed, the choice g(X) = πY satisfies (2.2) despite the fact that
g is a constant predictor.

A similar construction is possible for confidence calibration. We can define the confidence function
h to be such that h(z) = P(Y = argmaxi g

i(X)), i.e. h is a constant equal to the test accuracy of
g. Taking c(z) = argmaxi zi as in the standard case, we once again have that ECEπ(c, h, g) = 0,
since:

P(Y = c(X) | h(X)) = P(Y = c(X)) = h(X) (3.1)

by construction. Of course in practice, we do not actually know P(Y = argmaxi g
i(X)), but we

can estimate it on a held-out calibration set and set h to be this estimate. We refer to this approach
as mean replacement recalibarion (MRR), and it can be viewed as a special case of the modified
histogram binning procedure of Gupta & Ramdas (2022). Since MRR is defined purely through a
modified h, there is no clear way for getting a vector in ∆k−1 for computing metrics such as NLL or
MSE; for such cases, we simply set the non-predicted class probabilities to be (1− h(x))/(k − 1).

The ramifications of the MRR strategy seem to be under-appreciated in the literature - we have
minimized calibration error without affecting the prediction of g by using a constant confidence
function h. By separating the confidence function from the classification function, we have made
it so that the test accuracy remains unchanged, so that this kind of trivial confidence behavior is
undetectable by just reporting calibration error and accuracy. Even though MRR may seem extreme,
one can imagine modifications where we effectively perform the procedure of replacing the predicted
confidence with the calibration accuracy while doing something slightly more clever with the other
predicted probabilities.

To what extent is this a problem in the literature? Although many papers do report multiple
calibration and generalization metrics, ECE and accuracy are often the main (or even only) reported
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metrics in the main body of these papers. For example, even the influential empirical analysis of Guo
et al. (2017) focuses entirely on ECE results in the main paper (NLL results are, however, available
in the appendix). This is also largely true of the follow-up re-assessment of deep learning model
calibration of Minderer et al. (2021), which focuses on the relationships between test accuracy and
ECE for different model families.

For works regarding the improvement of calibration, the work of Thulasidasan et al. (2019) (which
motivated the study of Mixup for calibration) reports only test accuracy, ECE, and a related overconfi-
dence measure throughout the whole paper. Similarly, the works of Zhang et al. (2020) and Wen
et al. (2021) analyzing how ensembling strategies can affect calibration also only report test accuracy,
ECE, and some ECE variants throughout their whole papers. Calibration has also been an important
topic in the context of large language models (LLMs), and initial investigations into the calibration
of LLMs for question-answering (Jiang et al., 2020; Desai & Durrett, 2020) also only reported test
accuracy and ECE.

The above listing of papers is of course non-exhaustive; we have focused on a handful of influential
papers (all have at least 100 citations) to merely point out that reporting (or at least focusing on)
only ECE/similar and test accuracy is common practice. That being said, we are not at all calling
into question the advances made by the above papers - many of their findings have been repeatedly
corroborated by follow-up work. On the other hand, for new work on calibration we strongly advocate
for always reporting errors derived from proper scoring rules (i.e. NLL or MSE) alongside pure
calibration metrics such as ECE (we put forth a methodology for doing so in Sections 4.1 and 4.2).

Experiments. To drive home the point, we revisit the experiments of Guo et al. (2017), but focus
on one of the more modern architectural choices of Minderer et al. (2021). Namely, we evaluate the
most downloaded pretrained vision transformer (ViT) model1 (Dosovitskiy et al., 2021; Steiner et al.,
2021) available through the timm library (Wightman, 2019) with respect to binned ECE, binned ACE
(Nixon et al., 2019), SmoothECE (Błasiok & Nakkiran, 2023), negative log-likelihood, and MSE on
ImageNet-1K-Val (Russakovsky et al., 2015). We split the data into 10,000 calibration samples (20%
split) and 40,000 test samples, and compare the unmodified test performance to temperature scaling
(TS), histogram binning (HB), isotonic regression (IR), and our proposed MRR. We follow the same
TS implementation as Guo et al. (2017) and also use 15 bins for the binning estimators (ECE, ACE,
HB) to be comparable to the results in their work. The results shown in Table 1 are not sensitive to
the choice of model; we show similar results for several other popular timm models in Appendix F.

Model Test Accuracy ECE ACE SmoothECE NLL MSE/Brier Score
ViT (Baseline) 85.14 9.42 9.44 9.44 65.35 22.73

ViT + TS 85.14 2.59 5.46 2.60 56.83 21.95
ViT + HB 82.03 5.06 11.97 4.03 ∞ 27.17
ViT + IR 83.82 4.53 8.13 4.48 ∞ 24.13

ViT + MRR 85.14 0.18 0.18 0.18 144.66 27.51

Table 1: Comparison of different recalibration methods applied to pretrained ViT model on ImageNet-
1K-Val. All metrics are scaled by a factor of 100 for readability. Histogram binning and isotonic
regression have unbounded NLL as they can predict zero probability values for some classes.

Remark 3.1. It is possible to detect the specific instances of trivial calibration discussed above using
alternatives to proper scoring rules, such as ROC-AUC applied to the confidence calibration problem.
However, the confidence calibration problem can behave very differently than the overall multi-class
classification problem (illustrated in Section 4.1), and typically it is very efficient to compute the
proper scoring rules applied to the multi-class problem directly.

4 MAIN THEORETICAL RESULTS

As can be seen in Table 1, the MRR strategy dominates in terms of all of the pure calibration metrics,
but leads to large jumps in NLL and MSE. Clearly either NLL or MSE alone would have been
sufficient to detect the trivial behavior of MRR. We now address the more general question: which

1The model card is available at: https://huggingface.co/timm/vit_base_patch16_224.
augreg2_in21k_ft_in1k.
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generalization metrics should we report to prevent misleading calibration results? Our answer relies
on the fact that such metrics are usually Bregman divergences. Our focus on Bregman divergences
is due to their convenient theoretical properties; in particular, they are defined in terms of convex
functions and we can thus bring to bear the machinery of convex analysis.

We first review the definitions. Let us use ϕ : ∆k−1 → R to denote a continuously differentiable
(C1), strictly convex function. We recall that the Bregman divergence dϕ associated with ϕ is defined
to be:

dϕ(x, y) = ϕ(x)− ϕ(y)−∇ϕ(y)⊤(x− y). (4.1)
In many machine learning tasks the goal is to minimize the expectation of a conditional Bregman
divergence; for example, in multi-class classification we take ϕ(x) =

∑
i xi log xi to obtain the KL

divergence and then attempt to minimize E[dϕ(πY |X , g(X))] from samples. Bregman divergences
are closely related with strictly proper scoring rules, and we can leverage the fact that such rules can
be decomposed into a calibration error and a “sharpness” term to obtain a similar decomposition for
Bregman divergences.

Lemma 4.1. [Bregman Divergence Decomposition] For dϕ defined as in (4.1) and two integrable
random variables Z and X defined on the same probability space, it follows that:

E[dϕ(Z,X)] = E[ϕ(Z)]− E[ϕ(E[Z | X])]︸ ︷︷ ︸
Sharpness Gap

+E[dϕ(E[Z | X], X)]︸ ︷︷ ︸
Calibration Error

. (4.2)

More general versions of Lemma 4.1 have appeared in Bröcker (2009); Kull & Flach (2015); Pohle
(2020); Gruber & Buettner (2024), but we present a version for Bregman divergences as we will
leverage the structure of (4.1) to prove our new results in the subsequent sections. We provide a
self-contained proof of Lemma 4.1 in Appendix A.

Some intuition for the sharpness gap term is provided in the next two propositions, the first of which
appeared in Pohle (2020) in a different form. The second follows easily from the first and Lemma 4.1,
but has not appeared elsewhere to our knowledge. Intuitively, the propositions show that a smaller
sharpness gap corresponds to a predictor that is more “fine-grained”, and in that sense the constant
calibrated predictor that we introduced in the previous subsection is the worst possible fully calibrated
predictor. The proofs of both propositions can once again be found in Appendix A.

Proposition 4.2. For g1, g2 : Rd → ∆k−1 and π the joint distribution of data and label (X,Y ) on
Rd × [k], if σ(g1(X)) ⊆ σ(g2(X)), then:

E[ϕ(E[πY |X | g1(X)])] ≤ E[ϕ(E[πY |X | g2(X)])]. (4.3)

Proposition 4.3. Let π correspond to the joint distribution of data and label (X,Y ) on Rd × [k].
Then every predictor g that is calibrated in the sense of (2.1) satisfies:

E[dϕ(πY |X , g(X))] ≤ E[dϕ(πY |X , πY )]. (4.4)

The main takeaway from Lemma 4.1 is that when we choose to optimize a Bregman divergence, we
implicitly also have a notion of calibration error that we are minimizing via (4.2). This provides a
practical workflow to answer our motivating question of which metrics to report together: we first
fix a Bregman divergence for our notion of generalization, and then report the same divergence but
applied to the expected label conditioned on the predicted probabilities. We can also ask about the
other direction – if we choose a calibration error, is there a natural Bregman divergence associated
with it?

The answer is: not always. In fact, in considering this question, we can motivate a choice of Lq ECE.
The next result shows that in the framework of Bregman divergences the “right” choice of ECE is the
L2 ECE, since it is the conditional expectation of the Brier score.

Proposition 4.4. Let π correspond to the joint distribution of data and label (X,Y ) on Rd ×
[k], and define the Lq (for integers q ≥ 1) ECE of a function g : Rd → ∆k−1 to be

E
[
∥E[Y | g(X)]− g(X)∥qq

]
. Then only the L2 ECE is induced by a Bregman divergence in the

sense of Lemma 4.1.

The proof is a simple consequence of characterizations provided in Boissonnat et al. (2010) (which
we recall in Appendix A).
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4.1 CONFIDENCE CALIBRATION WITH BREGMAN DIVERGENCES

So far, we have leveraged existing ideas in the literature on proper scoring rules to motivate a joint
choice of generalization and calibration error. However, as we alluded to earlier, when considering
high-dimensional classification problems it is not feasible to efficiently estimate the conditional
expectation required for calibration error. The main result of this section is to show that we can
replace the full calibration error in (4.2) with confidence calibration error and still obtain a valid
lower bound, which provides justification for the reporting of confidence calibration at least in the
context of Bregman divergences.

In order to discuss confidence calibration, we need a 1-D counterpart φ : [0, 1] → R to ϕ. For
our cases of interest, the choice of φ is obvious; for example, when ϕ(x) = ∥x∥2 (i.e. dϕ is
Brier score), φ(x) = x2. Recalling that in standard confidence calibration we have c(g(X)) =
argmaxi g

i(X) and h(g(X)) = maxi g
i(X), our goal is then to investigate the relationship between

E[dφ(E[1Y=c(X) | h(X)], h(X))] and E[dϕ(E[πY |X | g(X)], g(X))].

Prior to doing so, let us pause to stress the fact that the confidence calibration framework should be
applied only to the calibration error and not to the entire loss. In other words, we should report the full
Bregman divergence E[dϕ(πY |X , g(X))] in addition to the calibration error, not the 1-D Bregman
divergence E[dφ(1Y=c(X), h(X))]. Reporting of the latter is another pitfall and has appeared in the
recent literature on surveying confidence elicitation strategies for LLMs (Tian et al., 2023). We show
in the next proposition that the 1-D loss can have very different behavior when compared to the full
loss for the specific case of MSE/Brier score.

Proposition 4.5. Suppose π satisfies the property that there exists y∗ : ∆k−1 → [k] such that
πY |X=x(y

∗(x)) = 1 for πX -a.e. x. Now consider any function ỹ : ∆k−1 → [k] satisfying
ỹ(x) ̸= y∗(x) for πX -a.e. x. Then the “always wrong” predictor defined as gỹ(x)(x) = 1/k + ϵ and
gy(x) = 1/k − ϵ/(k − 1) for all y ̸= ỹ(x) with ϵ = O(1/k) satisfies

E
[(
1Y=c(X) − h(X)

)2]
= O(1/k) but E

[∥∥πY |X − g(X)
∥∥2] = Ω(1) (4.5)

for the standard confidence calibration choices c(z) = argmaxi zi and h(z) = maxi zi.

The proof follows from directly evaluating (4.5), and can be found in Appendix B. Proposition
4.5 shows that the loss dφ incurred on the confidence calibration problem can be arbitrarily small
for a predictor that is always wrong despite such a predictor having true loss on the multi-class
classification problem bounded below by a constant. We now return to our original goal, which was
showing that E[dφ(E[1Y=c(X) | h(X)], h(X))] is a lower bound for E[dϕ(E[πY |X | g(X)], g(X))]
under the condition that ϕ dominates φ applied to any individual coordinate pair (for example, this is
easily seen to be the case for Brier score).

Lemma 4.6. For any C1, convex functions ϕ : ∆k−1 → R and φ : [0, 1] → R such that their
Bregman divergences satisfy dϕ(x, y) ≥ dφ(xi, yi) for all i ∈ [k], it follows (with probability 1) that:

E[dϕ(E[πY |X | g(X)], g(X)) | h(X)] ≥ dφ(E[1Y=c(X) | h(X)], h(X)). (4.6)

Corollary 4.7. The inequality (4.6) holds for the choices ϕ(x) =
∑

i xi log xi (KL divergence) and
φ(x) = x log x+ (1− x) log(1− x) (logistic loss).

The proof of Lemma 4.6 relies on a careful analysis of the conditional expectation terms, and can
also be found in Appendix B. Corollary 4.7 follows from the data processing inequality.

4.2 CALIBRATION-SHARPNESS DIAGRAMS

To summarize our observations thus far, we have recommended that calibration should be compared
using the calibration metric associated with the Bregman divergence for which the models were
optimized, and that both should be reported together. It remains to address how to similarly modify
the visualization of (confidence) calibration, which is typically done via reliability diagrams that plot
E[1Y=c(X) | h(X)] for different values of h(X). Our goals are three-fold: we want a visualization
that is efficient to compute, makes it obvious whether one model is better calibrated and/or has
better overall divergence than another model, and allows one to pinpoint the regions of the predicted
probability space where model performance is weak. While there are a few recent works that try to
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make progress on these goals, we are not aware of a solution presented as a single diagram satisfying
our desiderata (Dimitriadis et al., 2023; Gneiting & Resin, 2023).

The approach we take is to augment the plot of E[1Y=c(X) | h(X)] with a surrounding band whose
length ρ(h(X)) corresponds to the sharpness gap from Lemma 4.1 at h(X), which we refer to as
calibration-sharpness diagrams. For convenience, we will use ρ(X) in place of ρ(h(X)) when h is
understood. The function ρ : [0, 1] → R is the pointwise sharpness gap, and is formally defined as:

ρ(p) = E
[
dϕ(πY |X , g(X)) | h(X) = p

]
− dφ

(
E[1Y=c(X) | h(X) = p], p

)
, (4.7)

where as in the previous subsection dϕ is the full Bregman divergence and dφ is its 1-D counterpart.
Note that in (4.7) we are conditioning dϕ(πY |X , g(X)) on h(X), since we want a value for the
divergence at different confidence levels h(X). The key property of ρ which allows it to be used as a
visualization aid is the following.

Proposition 4.8. Suppose that ϕ and φ satisfy the conditions of Lemma 4.6. Then the function ρ as
defined in (4.7) is nonnegative.

The proof of Proposition 4.8 (which can be found in Appendix 4.2) follows from applying Lemmas
4.1 and Lemma 4.6. The function ρ shows how we trade off calibration with generalization at any
confidence level p, and we can compute ρ efficiently as it only requires estimating 1-D conditional
expectations.

Our estimation of ρ relies on Nadaraya-Watson kernel regression (Nadaraya, 1964; Watson, 1964)
with a kernel K and bandwidth hyperparameter σ following the estimation approaches of Błasiok &
Nakkiran (2023) and Chidambaram et al. (2024). We recall that given n data points (xi, yi) ∈ R×R
the kernel regression estimator of E[Y | X = x] is defined as:

m̂σ(x) =

∑n
i=1

1
σK

(
x−xi

σ

)∑n
i=1

1
σK

(
x−xi

σ

) =

∑n
i=1 Kσ(x− xi)∑n
i=1 Kσ(x− xi)

. (4.8)

Previous work (Zhang et al., 2020; Popordanoska et al., 2022; Chidambaram et al., 2024) has shown
that we can obtain consistent estimators of Lp ECE using (4.8). We extend these results to calibration
errors derived from Bregman divergences. Due to the technical nature of some of the assumptions
necessary on Kσ for this result, we defer a proper presentation to Section 4.2 and present only an
informal version of the result below. The proof relies on uniform convergence results for kernel
regression applied to the individual terms in (4.1).

Theorem 4.9. Under suitable conditions on K and the sequence of bandwidths σn, the plugin
estimate using m̂σn

(h(x)) of the confidence calibration error with respect to dφ is consistent so long
as h(X) has a density bounded away from 0 and E[1Y=c(X) | h(X)] is continuous.

Constructing and reading calibration-sharpness diagrams. Using the above, we construct a
diagram with three components: the calibration curve, the pointwise sharpness gap ρ(h(X)), and
the density plot p̂h(X). Example diagrams are shown in Figures 1 and 2 and interpreted in detail
in Section 5. The calibration curve corresponds to E[1Y=c(x) | h(x)] plotted at uniformly spaced
values of h(x) ∈ [0, 1], and shows the conditional model accuracy vs. its confidence. A perfectly
confidence-calibrated model satisfying E[1Y=c(x) | h(x)] = h(x) is visualized as a dashed line, and
any deviations from this dashed line can be interpreted as weaknesses in model calibration.

The sharpness gap is plotted as a band around the calibration curve, and the size of the band
corresponds to (4.7) evaluated at each h(x). A larger band is worse, as it means a bigger sharpness
gap at a predicted confidence h(x), which implies a worse generalization error at that particular
confidence level. We also plot a kernel density estimate p̂h(X) of the predicted confidences – this
is intended to show where the model confidences concentrate. A density peak at h(x) ≈ 0.8, for
example, indicates that the model typically predicts around 80% confidence for its predicted class.

We point out that another common pitfall in several prior works is to omit this kind of density plot
when discussing calibration, since it does not matter if a model is perfectly calibrated in a region
of its confidence space that it rarely predicts. Lastly, we also overlay the estimated values of the
confidence calibration error (dφ,CAL) and the full divergence (dϕ,TOT) on all plots, so as to give a
sense of the full generalization error of the model as well as the part attributable to calibration. More
precise estimation details for each component of the diagram are provided in Appendix D.
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5 EXPERIMENTS

To illustrate the benefits of calibration-sharpness diagrams, we first use them to revisit the experiments
of Section 3 and then provide a direct comparison to the standard approach of reliability diagrams. For
all of the experiments in this section, we focus on the ViT model of Section 3 for consistency and use
Brier score/MSE since we will be comparing to ECE-based visualization methods in Section 5.2. We
provide visualizations for other models and datasets in Appendix F. The kernel regressions estimates
for the visualized components are computed using a Gaussian kernel with bandwidth σ = 0.05; we
discuss different choices of kernel and bandwidth in Appendix H. All of our experiments were done
in PyTorch (Paszke et al., 2019) on a single A5000 GPU.

5.1 REVISITING MRR EXPERIMENTS

(a) ViT (Baseline) (b) ViT + TS (c) ViT + HB

(d) ViT + IR (e) ViT + MRR

Figure 1: Proposed calibration-sharpness diagrams using MSE/Brier score for the experiments of
Section 3. Y-axes are not aligned here due to the large sharpness gap of MRR.

Figure 1 shows the calibration-sharpness diagrams (using dϕ(x, y) = ∥x− y∥2) for the ViT recal-
ibration approaches in Table 1. The first thing to notice is that the calibration-sharpness diagram
immediately reveals the weaknesses of both MRR and histogram binning - these methods using a
small fixed set of predicted confidences (a single confidence in the case of MRR), and as a result
incur large sharpness gaps as shown by the red shaded regions.

Additionally, when comparing the better recalibration approaches of temperature scaling and isotonic
regression to the baseline model, we see that these algorithms have actually (perhaps counterintu-
itively) skewed the predicted confidence distributions towards even higher probabilities (as shown
by the overlayed density plots of p̂h(X)(h(x))). Moreover, we see from the pointwise sharpness
gap visualizations that the calibration improvements from isotonic regression (and to a lesser extent,
temperature scaling) have come at the cost of some increased sharpness gaps. This can be expected
from the fact that both methods led to larger predicted confidences, so mistakes incur larger errors.

5.2 COMPARISON TO RELIABILITY DIAGRAMS

The standard approach taken by many empirical papers analyzing confidence calibration is to report
reliability diagrams. These diagrams correspond to histogram binning estimators of the calibration
error – namely, we sort the predicted confidences h(x) into uniformly spaced buckets in the interval
[0, 1] and plot a bar corresponding to the average accuracy in each bucket. Similar to the dashed line
in our calibration-sharpness diagrams, perfectly confidence calibrated models would have bars that
line up with the average confidence of each bucket (i.e. the height of the bar for the [0, 0.1] bucket
should be somewhere in [0, 0.1]).
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(a) HB, Calibration-Sharpness (b) IR, Calibration-Sharpness

(c) HB, Reliability (d) IR, Reliability

Figure 2: Comparing calibration-sharpness diagrams to reliability diagrams using histogram binning
and isotonic regression. Y-axes of HB and IR are aligned for more direct comparison.

Figure 2 shows reliability diagrams (using 15 bins, as was done in Guo et al. (2017)) for the histogram
binning (HB) and isotonic regression (IR) recalibration approaches juxtaposed with axis-aligned
calibration-sharpness diagrams from Figure 1. The reliability diagrams suggest that IR leads to better
calibration than HB in the confidence range around 0.2 and in [0.5, 0.9]. However, these diagrams
cannot be used to compare generalization and also do not give a sense of where predicted confidences
concentrate.

On the other hand, the calibration-sharpness diagrams allow us to compare generalization while
providing a more granular view of calibration performance as well. They show that (1) while the
calibration of HB is worse than IR, the confidence region around 0.2 is not a major problem for HB
since there is no confidence density there and (2) that IR has better generalization performance (with
respect to Brier score) due to smaller sharpness gaps.

Our work is not the first to point out these drawbacks of reliability diagrams for comparing calibration;
the work of Błasiok & Nakkiran (2023) on SmoothECE also discusses such issues and puts forth a
visualization that includes density plots combined with a kernel regression estimate of the calibration
error as opposed to a binning estimate. However, their approach does not include a sharpness
component, which in this instance is crucial for comparing HB and IR since this is where HB really
loses out. We compare to the SmoothECE visualization approach in Appendix G.

6 CONCLUSION

In this work, we have reviewed the reporting of calibration metrics in the recent literature and identified
several pitfalls that appear even in well-known works. To address the pointed out issues, we have
proposed a reporting methodology based on proper scoring rules that are Bregman divergences, and
shown in both theory and practice how our approach fits alongside the popular notion of confidence
calibration in the literature. In developing our methodology, we have also introduced a new extension
of reliability diagrams for visualizing calibration.

The core tenets we hope to emphasize through both our theory and experiments are: report test
accuracy and calibration error alongside the appropriate generalization metric, use a visualization of
calibration that shows the density of predicted confidences, and be aware of whether improvements
in calibration in some regions of predicted confidence come at the cost of sharpness/generalization.
We believe there is still much work to be done on addressing how to compare and visualize calibra-
tion/generalization metrics, and we hope future work continues to push in this direction.
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ETHICS STATEMENT

While calibration has become an increasingly important topic given the use of machine learning
models for decision-making, our work concerns only the theory and practice of reporting calibration.
As a result, we do not anticipate any negative societal impacts or significant ethical considerations as
consequences of this work.

REPRODUCIBILITY STATEMENT

Full proofs of all results in the main paper can be found in the appendices following the references.
The code necessary to recreate the experiments in the main paper as well as the experiments in the
appendices can be found in the supplementary material.
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A BACKGROUND RESULTS

Lemma 4.1. [Bregman Divergence Decomposition] For dϕ defined as in (4.1) and two integrable
random variables Z and X defined on the same probability space, it follows that:

E[dϕ(Z,X)] = E[ϕ(Z)]− E[ϕ(E[Z | X])]︸ ︷︷ ︸
Sharpness Gap

+E[dϕ(E[Z | X], X)]︸ ︷︷ ︸
Calibration Error

. (4.2)

Proof. We observe that by (4.1), we have:

E[dϕ(E[Z | X], X)] = E[ϕ(E[Z | X])]− E[ϕ(X)]− E[∇ϕ(X)⊤(E[Z | X]−X)]

= E[ϕ(E[Z | X])]− E[ϕ(X)]− E[∇ϕ(X)⊤(Z −X)]. (A.1)

Where the last line follows from the fact that E[Y E[Z | X]] = E[Y Z] for any X-measurable random
variable Y . Equation (4.2) then immediately follows from applying definition (4.1).

Proposition 4.2. For g1, g2 : Rd → ∆k−1 and π the joint distribution of data and label (X,Y ) on
Rd × [k], if σ(g1(X)) ⊆ σ(g2(X)), then:

E[ϕ(E[πY |X | g1(X)])] ≤ E[ϕ(E[πY |X | g2(X)])]. (4.3)

Proof. By Jensen’s inequality and the tower property of conditional expectation, we have:

E[ϕ(E[πY |X | g2(X)])] = E[E[ϕ(E[πY |X | g2(X)]) | g1(X)]]

≥ E[ϕ(E[E[πY |X | g2(X)] | g1(X)])]

= E[ϕ(E[πY |X | g1(X)])].

Proposition 4.3. Let π correspond to the joint distribution of data and label (X,Y ) on Rd × [k].
Then every predictor g that is calibrated in the sense of (2.1) satisfies:

E[dϕ(πY |X , g(X))] ≤ E[dϕ(πY |X , πY )]. (4.4)

Proof. Firstly, we observe that for any calibrated predictor we have E[dϕ(E[πY |X | g(X)], g(X))] =

0. Next, we note that for every g : Rd → ∆k−1, g(X) is measurable with respect to the σ-algebra
generated by the constant predictor πY (since this is the trivial σ-algebra). The inequality (4.4) then
follows by applying Proposition 4.2 to the decomposition from Lemma 4.1.

Proposition 4.4. Let π correspond to the joint distribution of data and label (X,Y ) on Rd ×
[k], and define the Lq (for integers q ≥ 1) ECE of a function g : Rd → ∆k−1 to be

E
[
∥E[Y | g(X)]− g(X)∥qq

]
. Then only the L2 ECE is induced by a Bregman divergence in the

sense of Lemma 4.1.

Proof. We first note that the case of q = 1 is not a Bregman divergence since Bregman divergences
are differentiable in their first argument. For q > 1, Lemma 2 in Boissonnat et al. (2010) shows that
a twice differentiable function ϕ induces a symmetric Bregman divergence dϕ iff the Hessian of ϕ
is constant. This implies that for any Lq norm (raised to the q power) to be a Bregman divergence,
differentiating it twice in the first argument must yield a constant. It is easy to see that this is only the
case for q = 2, and the result follows.
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B PROOFS FOR SECTION 4.1

Proposition 4.5. Suppose π satisfies the property that there exists y∗ : ∆k−1 → [k] such that
πY |X=x(y

∗(x)) = 1 for πX -a.e. x. Now consider any function ỹ : ∆k−1 → [k] satisfying
ỹ(x) ̸= y∗(x) for πX -a.e. x. Then the “always wrong” predictor defined as gỹ(x)(x) = 1/k + ϵ and
gy(x) = 1/k − ϵ/(k − 1) for all y ̸= ỹ(x) with ϵ = O(1/k) satisfies

E
[(
1Y=c(X) − h(X)

)2]
= O(1/k) but E

[∥∥πY |X − g(X)
∥∥2] = Ω(1) (4.5)

for the standard confidence calibration choices c(z) = argmaxi zi and h(z) = maxi zi.

Proof. Observing that 1Y=c(X) = 0 and h(X) = 1/k + ϵ gives the first part of (4.5). On the other

hand, the leading term of E[
∥∥πY |X − g(X)

∥∥2] is (1− 1/k + ϵ/(k − 1))2, which is Ω(1).

Lemma 4.6. For any C1, convex functions ϕ : ∆k−1 → R and φ : [0, 1] → R such that their
Bregman divergences satisfy dϕ(x, y) ≥ dφ(xi, yi) for all i ∈ [k], it follows (with probability 1) that:

E[dϕ(E[πY |X | g(X)], g(X)) | h(X)] ≥ dφ(E[1Y=c(X) | h(X)], h(X)). (4.6)

Proof. Firstly, recalling that ec(X) denotes the basis vector in Rk with non-zero index c(X),

E[1Y=c(X) | g(X)] = E[E[1Y=c(X) | X] | g(X)]

= E[e⊤c(X)πY |X | g(X)]

= e⊤c(X)E[πY |X | g(X)], (B.1)

where the last line follows due to the measurability of ec(X) with respect to g(X). By the assumptions
on dϕ and dφ and the fact that h(X) = e⊤c(X)g(X), we have:

dϕ(E[πY |X | g(X)], g(X)) ≥ dφ(E[πY |X | g(X)]c(X), g(X)c(X))

= dφ(e
⊤
c(X)E[πY |X | g(X)], e⊤c(X)g(X))

= dφ(E[1Y=c(X) | g(X)], h(X)). (B.2)

The desired (4.6) then follows by noting that

E[dφ(E[1Y=c(X) | g(X)], h(X)) | h(X)] = E[φ(E[1Y=c(X) | g(X)]) | h(X)]− φ(h(X))

− E[φ′(h(X))(E[1Y=c(X) | g(X)]− h(X)) | h(X)]

≥ φ(E[1Y=c(X) | h(X)])− φ(h(X))

− φ′(h(X))(E[1Y=c(X) | h(X)]− h(X)) (B.3)

due to Jensen’s inequality and h(X)-measurability of φ′(h(X)).

Corollary 4.7. The inequality (4.6) holds for the choices ϕ(x) =
∑

i xi log xi (KL divergence) and
φ(x) = x log x+ (1− x) log(1− x) (logistic loss).

Proof. We need only show that dϕ(x, y) ≥ dφ(xi, yi) for the choices of KL divergence and logistic
loss. Let us as usual identify x and y with vectors in Rk corresponding to distributions in ∆k−1. Then,
fixing an i ∈ [k], the map f(x) = Bernoulli(xi) is a Markov kernel, and by the data-processing
inequality we have dϕ(x, y) ≥ dϕ(f(x), f(y)). Since dϕ(f(x), f(y)) = dφ(xi, yi), the result
follows.

C PROOFS FOR SECTION 4.2

Proposition 4.8. Suppose that ϕ and φ satisfy the conditions of Lemma 4.6. Then the function ρ as
defined in (4.7) is nonnegative.
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Proof. From Lemma 4.1, we have:

E
[
dϕ(πY |X , g(X)) | h(X) = p

]
≥ E

[
dϕ(E[πY |X | g(X)], g(X)) | h(X) = p

]
. (C.1)

Applying Lemma 4.6 then yields the result.

To state and prove a formal version of Theorem 4.9, we need a result of Devroye (1978). We first
state the necessary kernel and distributional assumptions for this result. We state everything in the
generality of Rd as that is how they are presented in Devroye (1978), but for our particular result we
only need the 1-D analogues.

Assumption C.1 (Kernel Assumptions). We assume the kernel K : Rd → R satisfies the following:

1. K(x) ∈ [0,K∗] for some K∗ < ∞.

2. K(x) = L(∥x∥) for some nonincreasing function L.

3. limu→∞ uL(u) = 0.

4. L(u∗) > 0 for some u∗ > 0.

Assumption C.2 (Distributional Assumptions). We assume the joint distribution π of (X,Y ) on
Rd × R satisfies:

1. X has compact support and a density πX that is bounded away from 0.

2. |Y − E[Y | X]| is almost surely bounded.

3. A version of E[Y | X] is bounded and continuous on supp(πX).

In some cases above, we have stated slightly stronger forms of the assumptions in Devroye (1978)
for brevity, and also because our application is relatively simple and works under these stronger
assumptions.

Theorem C.3 (Theorem 2 in Devroye (1978), Paraphrased). Let K be a kernel satisfying Assumption
C.1 with a sequence of bandwidths σn, and suppose π satisfies Assumption C.2. Then if σn → 0 and
nσ2d

n / log n → ∞, we have uniform convergence of the kernel regression estimator m̂σn
:

ess sup
x∈supp(πX)

|m̂σn
(x)− E[Y | X = x]| → 0 a.s. (C.2)

We now state and prove the formal version of Theorem 4.9.

Theorem C.4. Let m̂σ be as in (4.8). Given a sequence of bandwidths σn, we define the plugin
estimator d̂φ,n as follows:

d̂φ,n =
1

n

n∑
i=1

φ
(
m̂σn

(h(xi))
)
− φ

(
h(xi)

)
− φ′(h(xi)

)(
1yi=c(xi) − h(xi)

)
. (C.3)

Suppose K satisfies Assumption C.1 and σn satisfies σn → 0 and nσ2
n/ log n → ∞. If we addi-

tionally have that E[1Y=c(X) | h(X) = h(x)] is continuous in h(x) and that h(X) has a density
bounded away from zero, it follows that:

d̂φ,n → E[dφ
(
E[1Y=c(X) | h(X)], h(X)

)
] (C.4)

in probability.

Proof. By definition and properties of conditional expectation (covariance matching, the same trick
we used in the proof of Lemma 4.1), we have that:

E
[
dφ

(
E[1Y=c(X) | h(X)], h(X)

)]
= E[φ

(
E[1Y=c(X) | h(X)]

)
]− E[φ

(
h(X)

)
]

− E[φ′(h(X))(1Y=c(X) − h(X))]. (C.5)

It is immediate from the law of large numbers that the second and third terms in (C.3) converge to
their counterparts in (C.5). It remains to show the convergence of the first term of (C.3).
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We observe that since 1Y=c(X) ≤ 1, along with the fact that we have assumed E[1Y=c(X) | h(X) =
h(x)] is continuous in h(x) and that h(X) has a density bounded away from zero, we satisfy all of
the conditions of Assumption C.2. Thus we have uniform convergence of m̂σn from Theorem C.3.

It follows from uniform convergence and the boundedness of E[1Y=c(X) | h(X)] that m̂σn
(h(X))

is constrained to a compact set for n sufficiently large. Since φ is uniformly continuous on a compact
set, we then have that:

E

[
1

n

n∑
i=1

φ
(
m̂σn(h(xi))

)]
= E[φ

(
E[1Y=c(X) | h(X)]

)
] + δn (C.6)

for some δn → 0 as n → ∞. The result C.4 then immediately follows.

D CALIBRATION-SHARPNESS DIAGRAM DETAILS

Here we go over the fine-grained details of constructing calibration-sharpness diagrams, beginning
with estimation of the conditional expectations involved.

Estimation details. We estimate the term E
[
dϕ(πY |X , g(X)) | h(X)

]
in Equation (4.7) by replacing

(xi, yi) data point pairs with (xi, dϕ(eyi
, g(xi))) (i.e. the divergence of g(xi) from the one-hot

encoded label yi) and then using the kernel regression estimator (4.8). The same is done with
E[1Y=c(X) | h(X)], except the label is replaced with pointwise accuracy, i.e. 1yi=c(xi). We also
estimate the density ph(X) using a kernel density estimate (this is just the denominator of the kernel
regression (4.8)) with the same kernel, and refer to this estimate as p̂h(X).

With these estimates, we can estimate the pointwise sharpness gap ρ(h(x)). We visualize this gap as
a band whose length is p̂h(X)(h(x))ρ(h(x)) centered around the calibration curve E[1Y=c(x) | h(x)].
Note that we scale the band by p̂h(X)(h(x)), as this is important for making it visually obvious where
most of the sharpness error is concentrated and also allows the aggregated total sharpness gap area to
better correspond to the actual total sharpness gap.

Visualization details. Our kernel regression estimates for the diagrams in Figure 1 were computed
using a Gaussian kernel with σ = 0.05 (different choices of kernel and bandwidth are discussed in
Appendix H). Due to the size of ImageNet-1K Val, we also replace the full kernel regression estimate
of (4.8) with a mean over 10 estimates in which we randomly subsample the data to 5000 data points,
so as to fit the entire computation into memory. The standard deviations of these estimates is shown
alongside the mean calibration error scaled by 100 (dφ,CAL in all of the plots); in all cases they are
negligible, and we checked that subsampling loses virtually nothing. Lastly, for stylistic reasons, we
opt to threshold the curve defining the bottom of the sharpness band at 0, but do not threshold the
top curve at 1. In Figure 1 and the plots of Appendix H, we do not align the Y-axes of the plots due
to the large differences in sharpness gaps between some methods. However, for direct comparisons
between two approaches (or a handful of similar approaches) we recommend aligning the Y-axes as
we have done in Figure 2.

A note on estimating conditional expectations. We have used the Nadaraya-Watson estimator for
the conditional expectation terms in all of the above as it is the standard choice for nonparametric
estimation and is known to be minimax optimal under certain technical conditions on the data
distribution and the choice of kernel (Tsybakov, 2008). However, if there is some prior knowledge of
the parametric form of E[Y | g(X)], then one can of course achieve better estimation results using
such a form, but we expect such forms would not be known in most applications. For further details
regarding the asymptotic properties (bias, consistency, convergence rates) of Nadaraya-Watson style
estimators we recommend Tsybakov (2008) and Györfi et al. (2002).

E DETAILED COMPARISON TO PRIOR WORK ON GROUPING LOSS

We have focused on using the sharpness-calibration decomposition of Bregman divergences to better
understand model performance, but there exist other decompositions in the proper scoring rule
literature that can provide different perspectives on performance. In particular, Kull & Flach (2015)
proposed a decomposition of divergences derived from proper scoring rules that splits the total
divergence into calibration error (like we have in Lemma 4.1) as well as grouping loss and irreducible
loss.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

To make these notions precise, let us for simplicity consider a binary classification problem with
Y ∈ {0, 1}, X ∈ Rd and some classifier g : Rd → [0, 1]. In this context, we recall that the
calibration condition is simply E[Y | g(X)] = g(X). Now let us further define C = E[Y | g(X)]
and Q = E[Y | X]. Kull & Flach (2015) showed that, for any divergence dϕ derived from a proper
scoring rule (to keep background discussion brief, one can just think of this as one of the Bregman
divergences we consider in the main paper), we have:

E[dϕ(Y, g(X))] = E[dϕ(Y,Q)]︸ ︷︷ ︸
Irreducible Loss

+E[dϕ(Q,C)]︸ ︷︷ ︸
Grouping Loss

+E[dϕ(C, g(X))]︸ ︷︷ ︸
Calibration Error

. (E.1)

Here the irreducible loss captures the uncertainty inherent to the problem as it does not depend on
the classifier g, while the grouping loss captures the deviation of the conditional expectation using
the predicted confidences from the true conditional expectation derived from the underlying data.
Intuitively, the grouping loss measures how much information from the data is “grouped” together by
our classifier – for example, if g is a bijection, then this term is zero since g(X) generates the same
σ-algebra as X . Our interpretation of sharpness as “resolution” or “fine-grainedness” of the model
can be attributed to this grouping loss term, as also discussed in Pohle (2020).

The key idea in the work of Perez-Lebel et al. (2023) is that this grouping loss term should be reported
alongside calibration error and other metrics, and they provide similar examples to what we provide
in the main paper for how a model can be calibrated and have perfect accuracy but not recover the
ground-truth distribution. The main results of Perez-Lebel et al. (2023) consequently regard the
estimation of grouping loss as well as joint visualizations of the grouping loss and calibration error.

In the multi-class setting, the results of Perez-Lebel et al. (2023) are applied directly to the confidence
calibration problem. However, our results in Section 4 tie together the full multi-class problem with
the confidence calibration problem; this allows us to not reduce the entire problem to confidence
calibration (where the labels are binary and the probabilities are 1-D). This is important because
ultimately we care about our generalization metrics in the context of the original multi-class problem,
and the purpose of Lemma 4.6 was to show that we can simply replace the full, high-dimensional
calibration error with its 1-D confidence calibration counterpart while still maintaining a reasonable
interpretation.

Additionally, by working with the sharpness gap as opposed to grouping loss and irreducible loss, we
need only concern ourselves with the estimating the conditional expectation E[Y | g(X)] as opposed
to also considering E[Y | X]. The inclusion of the irreducible loss in the sharpness gap is not an
issue; as this is shared by all models, it does not have an impact on how we rank them relative to one
another. To summarize, our approach differs in that we tie the calibration-sharpness decomposition in
the full calibration setting to confidence calibration as opposed to working with grouping loss in the
confidence calibration setting, which leads to easier estimation and maintains important properties of
the original multi-class problem.

F ADDITIONAL EXPERIMENTS WITH ALTERNATIVE MODELS

F.1 FURTHER IMAGENET EXPERIMENTS

We focused on recalibrating a pretrained ViT model on ImageNet throughout the main paper for
consistency across sections; here we consider different model backbones applied to ImageNet and
recreate the results of Table 1 and Figure 1 for each of the different models. As with the ViT model,
we use pretrained models from the timm library that have strong performance on ImageNet. In
particular, we consider ResNet-50 (He et al., 2015), EfficientNet (Tan & Le, 2019), and ConvNext
(Liu et al., 2022) backbones. Final tabular results are shown in Tables 2 to 4, and corresponding plots
are shown in Figures 3 to 5.

F.2 CIFAR EXPERIMENTS

We used ImageNet in the main paper due to the plethora of high quality, pretrained models available
via open source libraries. To show that our observations extend to other datasets, however, we also
include experiments on CIFAR-10 and CIFAR-100. In particular, we use the pretrained ResNet-32
models of Yaofo Chen (https://github.com/chenyaofo/pytorch-cifar-models)
and calibrate them using 20% of the CIFAR-10 and CIFAR-100 test sets to be consistent with our
ImageNet experiments. Numerical results are shown in Tables 5 and 6, and plots are shown in Figures
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(a) ResNet-50 (Baseline) (b) ResNet-50 + TS (c) ResNet-50 + HB

(d) ResNet-50 + IR (e) ResNet-50 + MRR

Figure 3: Calibration-sharpness diagrams using MSE/Brier score for the ResNet-50 experiments of
Table 2.

(a) EfficientNet (Baseline) (b) EfficientNet + TS (c) EfficientNet + HB

(d) EfficientNet + IR (e) EfficientNet + MRR

Figure 4: Calibration-sharpness diagrams using MSE/Brier score for the EfficientNet experiments of
Table 3.
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Model Test Accuracy ECE ACE SmoothECE NLL MSE/Brier Score
ResNet-50 (Baseline) 80.33 8.68 10.48 8.26 93.98 29.69

ResNet-50 + TS 80.33 4.97 6.00 4.85 88.63 28.69
ResNet-50 + HB 78.70 6.44 15.11 4.77 ∞ 32.94
ResNet-50 + IR 79.12 7.25 8.81 7.20 ∞ 30.55

ResNet-50 + MRR 80.33 0.28 0.28 0.28 185.48 35.48

Table 2: Table 1 in the main paper recreated using a pretrained ResNet-50 backbone
(timm/resnet50.a1_in1k).

Model Test Accuracy ECE ACE SmoothECE NLL MSE/Brier Score
EfficientNet (Baseline) 81.47 10.66 9.97 10.67 85.50 28.24

EfficientNet + TS 81.47 3.44 5.85 3.41 75.17 26.94
EfficientNet + HB 77.63 5.44 12.92 4.58 ∞ 33.01
EfficientNet + IR 80.25 4.92 7.80 4.88 ∞ 28.75

EfficientNet + MRR 81.47 0.07 0.07 0.07 175.92 33.62

Table 3: Table 1 in the main paper recreated using a pretrained EfficientNet backbone
(timm/efficientnet_b3.ra2_in1k).

Model Test Accuracy ECE ACE SmoothECE NLL MSE/Brier Score
ConvNeXt (Baseline) 84.13 6.93 6.80 6.94 68.34 23.78

ConvNeXt + TS 84.13 3.00 4.70 2.99 62.01 23.38
ConvNeXt + HB 80.96 3.64 12.60 4.09 ∞ 28.68
ConvNeXt + IR 82.72 4.93 8.29 4.84 ∞ 25.57

ConvNeXt + MRR 84.13 0.13 0.13 0.13 153.34 29.22

Table 4: Table 1 in the main paper recreated using a pretrained ConvNeXt backbone
(timm/convnext_tiny.in12k_ft_in1k).

6 and 7. The comparison between the CIFAR-10 and CIFAR-100 results highlights the advantage of
the sharpness gap bands in the calibration-sharpness diagrams: we see that while calibration does not
suffer too much between CIFAR-10 and CIFAR-100, sharpness is much worse on CIFAR-100 and
consequently generalization metrics (MSE/Brier Score) are also much worse.

Model Test Accuracy ECE ACE SmoothECE NLL MSE/Brier Score
ResNet-32 (Baseline) 93.46 4.15 16.01 3.94 29.21 10.87

ResNet-32 + TS 93.46 0.72 5.79 0.88 21.86 10.00
ResNet-32 + HB 93.12 1.45 15.17 1.46 ∞ 11.75
ResNet-32 + IR 93.29 1.33 5.11 1.34 ∞ 10.18

ResNet-32 + MRR 93.46 0.34 0.34 0.34 38.52 12.60

Table 5: Pretrained ResNet-32 model + recalibration approaches evaluated on CIFAR-10.

Model Test Accuracy ECE ACE SmoothECE NLL MSE/Brier Score
ResNet-32 (Baseline) 70.20 13.25 15.71 13.12 132.31 44.08

ResNet-32 + TS 70.20 1.71 2.42 1.53 111.37 40.98
ResNet-32 + HB 65.76 9.56 18.10 6.97 ∞ 49.84
ResNet-32 + IR 68.70 6.81 7.87 6.80 ∞ 43.02

ResNet-32 + MRR 70.20 0.20 0.20 0.20 197.85 50.63

Table 6: Pretrained ResNet-32 model + recalibration approaches evaluated on CIFAR-100.

G COMPARISON TO SMOOTHECE
As we mentioned in Section 5, the SmoothECE of Błasiok & Nakkiran (2023) is an alternative to ECE
that is calculated and visualized using a similar kernel regression approach to ours. The differences
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(a) ConvNeXt (Baseline) (b) ConvNeXt + TS (c) ConvNeXt + HB

(d) ConvNeXt + IR (e) ConvNeXt + MRR

Figure 5: Calibration-sharpness diagrams using MSE/Brier score for the ConvNeXt experiments of
Table 4.

(a) ResNet-32 (Baseline) (b) ResNet-32 + TS (c) ResNet-32 + HB

(d) ResNet-32 + IR (e) ResNet-32 + MRR

Figure 6: Calibration-sharpness diagrams using MSE/Brier score for the ResNet-32 experiments of
Table 5 on CIFAR-10.
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(a) ResNet-32 (Baseline) (b) ResNet-32 + TS (c) ResNet-32 + HB

(d) ResNet-32 + IR (e) ResNet-32 + MRR

Figure 7: Calibration-sharpness diagrams using MSE/Brier score for the ResNet-32 experiments of
Table 6 on CIFAR-100.

between our two approaches are that Błasiok & Nakkiran (2023) use a particular choice of kernel and
kernel bandwidth motivated by the framework of Błasiok et al. (2023), and they do not include any
kind of notion of sharpness in their visualization. Additionally, they show the density estimate of the
confidences using the thickness of the calibration curve as opposed to an overlain density plot.

We show a SmoothECE analogue to Figure 1 in Figure 8. Due to memory constraints, we plot the
visualization after subsampling the test data to 5000 data points. While the SmoothECE plots still
pick up issues with the MRR recalibration strategy, they make it much trickier to compare histogram
binning (HB) and isotonic regression (IR) as we did in Section 5. As we mentioned, for these cases
the visualization of sharpness is crucial for understanding the tradeoffs between the methods.

H EFFECT OF KERNEL HYPERPARAMETERS

Here we examine the importance of the hyperparameters (choice of kernel and kernel bandwidth) in
the calibration-sharpness diagrams of Section 5. The main takeaway from this section is that, for a
range of different (reasonable) kernel choices and bandwidths results remain consistent.

A note on choosing kernel hyperparameters in practice. Our choice of using a bandwidth of
0.05 in the main paper was motivated by the recent Logit-Smoothed ECE of Chidambaram et al.
(2024), where taking the bandwidth to be the inverse of the number of bins used in binning estimators
worked as a good analogue (and 15 to 20 bins is standard practice for datasets of the size we consider).
However, in “real life” one can of course tune both the choice of kernel and the kernel bandwidth
using held-out data. In particular, we may have a set of models and various estimated (or known)
properties of these models (e.g. model A has poor performance whenever its confidences are in the
range [0.7, 0.8]), and we can tune our kernel/bandwidth to best distinguish these properties across
models. This is essentially also how we qualitatively evaluate the different figures in the following
two subsections, since our goal is to produce visualizations that display the results of Table 1 in as
precise a manner as possible.

H.1 THE IMPACT OF KERNEL BANDWIDTH

We first consider the same Gaussian kernel used in Section 5 but vary the bandwidth between 0.01
and 0.25. We find that values that are less than 0.01 lead to significant under-smoothing, and values
that are larger than 0.1 lead to over-smoothing. Values in the range [0.01, 0.05] appear to work best.
We visualize the choices of 0.01, 0.03, 0.1, and 0.25 in Figures 9 to 12 respectively.
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(a) ViT (Baseline) (b) ViT + TS (c) ViT + HB

(d) ViT + IR (e) ViT + MRR

Figure 8: SmoothECE visualization analogue to Figure 1.

We note that when we over-smooth, the ranking of calibration error can change across methods (as
shown in Figures 11 and 12). This is similar to known issues with reporting binned ECE in which
only a small number of bins are used.

(a) ViT (Baseline) (b) ViT + TS (c) ViT + HB

(d) ViT + IR (e) ViT + MRR

Figure 9: The experiments of Figure 1 but using a bandwidth parameter of 0.01.

H.2 THE IMPACT OF KERNEL CHOICE

We also consider the impact of changing the kernel used for the visualizations of Figure 1. In particular,
we consider the popular choice of the Epanechnikov kernel, which is K(u) = (3(1− u2)/4)1|u|≤1

in the 1D setting. Results using this kernel with a bandwidth of 0.03 and 0.05 are shown in Figures
13 and 14.
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(a) ViT (Baseline) (b) ViT + TS (c) ViT + HB

(d) ViT + IR (e) ViT + MRR

Figure 10: The experiments of Figure 1 but using a bandwidth parameter of 0.03.

(a) ViT (Baseline) (b) ViT + TS (c) ViT + HB

(d) ViT + IR (e) ViT + MRR

Figure 11: The experiments of Figure 1 but using a bandwidth parameter of 0.1.
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(a) ViT (Baseline) (b) ViT + TS (c) ViT + HB

(d) ViT + IR (e) ViT + MRR

Figure 12: The experiments of Figure 1 but using a bandwidth parameter of 0.25.

As can be seen from the results, changing the kernel does not change the ranking of the recalibration
methods, although it does impact the actual reported calibration error. We find that the range of kernel
bandwidths suitable in the Gaussian case also applies here.

(a) ViT (Baseline) (b) ViT + TS (c) ViT + HB

(d) ViT + IR (e) ViT + MRR

Figure 13: Epanechnikov kernel using a bandwidth parameter of 0.03.
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(a) ViT (Baseline) (b) ViT + TS (c) ViT + HB

(d) ViT + IR (e) ViT + MRR

Figure 14: Epanechnikov kernel using a bandwidth parameter of 0.05.
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