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ABSTRACT

This paper presents a novel approach to premise selection, a crucial reasoning task
in automated theorem proving. Traditionally, symbolic methods that rely on exten-
sive domain knowledge and engineering effort are applied to this task. In contrast,
this work demonstrates that contrastive training with the transformer architecture
can achieve higher-quality retrieval of relevant premises, without the engineer-
ing overhead. Our method, Magnushammer, outperforms the most advanced and
widely used automation tool in interactive theorem proving called Sledgehammer.
On the PISA and miniF2F benchmarks Magnushammer achieves 59.5% (against
38.3%) and 34.0% (against 20.9%) success rates, respectively. By combining Mag-
nushammer with a language-model-based automated theorem prover, we further
improve the state-of-the-art proof success rate from 57.0% to 71.0% on the PISA
benchmark using 4x fewer parameters. Moreover, we develop and open source a
novel dataset for premise selection, containing textual representations of (proof
state, relevant premise) pairs. To the best of our knowledge, this is the largest
available premise selection dataset, and the first one for the Isabelle proof assistant.

1 INTRODUCTION
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Figure 1: Proof success rate for varying computa-
tional budget for Magnushammer, Sledgehammer,
and BM25. Magnushammer shows remarkable
scalability. See Sections 5.1 for the definition of
computational budget and Section 5.2.1 for con-
figurations depicted in this figure.

Automating mathematical reasoning has been a
central theme of artificial intelligence since its
earliest days (De Bruijn, 1970). Recently, ma-
chine learning has led to significant advance-
ments in both informal (Lewkowycz et al., 2022)
and formal mathematical reasoning (Kaliszyk
and Urban, 2015b; Alemi et al., 2016; Polu and
Sutskever, 2020; Han et al., 2022). The latter ap-
proach, adopted in this paper, allows mechanical
verification of proofs by proof assistants.

Modern mathematics development is gradual: it
feeds upon a huge body of already established
knowledge and constantly adds to it. Proving a
mathematical statement requires retrieval of facts
from the knowledge base that can advance the
proof. In automated reasoning literature, this
retrieval process is known as premise selection.

∗Equal contribution.
†Work performed while at the University of Warsaw.
‡Work performed while at Google Research.
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Many tools have been developed to tackle premise selection (Alama et al., 2011; Kühlwein et al.,
2012; Kaliszyk et al., 2017; Bansal et al., 2019), including a broad class known as “hammers,” which
leverage powerful automated theorem provers (ATPs) to determine useful premises (Paulson and
Blanchette, 2012; Gauthier and Kaliszyk, 2015; Kaliszyk and Urban, 2015a; Czajka and Kaliszyk,
2018). One such tool, Sledgehammer (SH) (Paulson and Blanchette, 2012), has gained prominence
with Isabelle (Paulson, 1993), where it helped to create a significant portion of Isabelle’s proof corpus.
Hammers are not yet available in all proof assistants (Ebner, 2020): implementing them is challenging
due to the complex techniques required for different logics and type systems. There is a need for an
effective premise selection tool that requires less adaptation to work for different proof assistants.

In this study, we provide a generic, data-driven, transformer-based (Vaswani et al., 2017) premise
selection tool: Magnushammer. It constitutes a novel way to tackle the premise selection task,
effective while requiring little domain-specific knowledge. Magnushammer is trained contrastively
to perform premise retrieval in two stages: in the SELECT stage, it retrieves the most relevant 1024
premises (measured by the cosine similarity of their embeddings to that of the current proof state)
from tens of thousands (the database contains 433K premises in total and typically 30K–50K are
available in each proof state); in the RERANK stage, the retrieved premises are re-ranked with proof-
state-aware scores: tokens of the proof state directly attend to tokens of the premise, giving a more
contextualized relevance score. An overview of Magnushammer’s architecture is shown in Figure 2b.

Magnushammer can prove 59.5% of the theorems on the PISA benchmark (Jiang et al., 2021),
a substantial improvement over Sledgehammer’s 38.3%. We demonstrate that this dominance is
consistent with varying controlled compute budgets, shown in Figure 1. Furthermore, we replace the
premise selection component (Sledgehammer) in a neural-symbolic model Thor (Jiang et al., 2022a)
with Magnushammer and improve the state-of-the-art proof success rate on PISA from 57% to 71%.

To train Magnushammer, we extracted a premise selection dataset from the Isabelle theorem prover
and its human proof libraries. The dataset consists of 4.4M premise selection instances, with 433K
unique premises. To the best of our knowledge, this is the largest open-sourced premise selection
dataset, and the first one of this kind for Isabelle. We find Magnushammer to be data efficient,
outperforming Sledgehammer with only 4K training examples (0.1% of the training data available).
The main contributions of this work are the following:

• We propose the use of transformers trained contrastively as a novel way of addressing the
premise selection problem. Our method, Magnushammer, achieves a 59.5% proof rate on
the PISA benchmark, significantly improving the 38.3% proof rate of Sledgehammer, the
most powerful general-purpose automation tool for Isabelle.

• We extract and open source the largest, to the best of our knowledge, premise selection
dataset. It consists of 4.4M premise selection examples and 433K unique premises.

• We analyze how Magnushammer’s performance depends on the model size, dataset size,
and the inference-time compute budget. We show its superiority with moderate resources.

2 BACKGROUND: PROOF ASSISTANTS, ISABELLE, AND SLEDGEHAMMER

Proof assistants (aka interactive theorem provers, or ITPs) such as Isabelle (Paulson, 1993), Lean
(de Moura et al., 2015), Coq (Bertot, 2008), HOL Light (Harrison, 1996), or Mizar (Grabowski
et al., 2010), are software tools designed to assist the development of formal proofs. They provide
expressive language for the formalization of mathematical statements and proofs while verifying
them formally. In Isabelle, theorems are proved sequentially: an initial proof state is obtained after
the theorem is stated, and the proof state changes when the user provides a valid proof step (see
Appendix A.1 for an example). Proof states contain information about the already established facts
and the remaining goals to prove. Proof steps consist of tactics, which are optionally parametrized by
premises. Tactics are theorem-proving procedures and can complete some proofs in one step provided
with relevant premises. However, finding these premises is difficult: one needs to select a handful of
relevant facts from the current proof context, which typically contains tens of thousands of them.

Sledgehammer (Paulson and Blanchette, 2012; Blanchette et al., 2013) is a powerful automated
reasoning tool for Isabelle. It belongs to a broader class of tools known as “hammers,” which integrate
automated theorem provers (ATPs) into proof assistants. The goal of these tools is to support the
process of finding and applying proof methods. Sledgehammer has become an indispensable tool for
Isabelle practitioners (Paulson and Blanchette, 2012). It allows for closing low-level gaps between
subsequent high-level steps of proof without the need to memorize entire lemma libraries.
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(a) A call to Sledgehammer triggers the following
sequence of steps: First, available facts are filtered
based on their similarity to the conjecture. Then, the
conjecture together with the selected facts (usually
a few hundred in number) are translated to simpler
logic used by the external provers (E, SPASS, etc.).
Then, such problems are fed into each ATP sepa-
rately. Finally, the premises used in the successful
ATP proofs are used to reconstruct a proof inside
Isabelle using its native methods.
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(b) Given a proof state, we first retrieve the most
relevant premises according to the cosine similar-
ity of their embeddings with the proof state embed-
ding (SELECT). We then re-rank these with a model
that encodes each proof state and premise pair, out-
putting a relevance score (RERANK). The bulk of the
architecture is a shared transformer model, in orange.

Figure 2: Overview of Sledgehammer (a) and Magnushammer (b).

Sledgehammer is designed to first pre-select a number of relevant facts heuristically, translate them
together with a conjecture to simpler logic, and try to prove the conjecture using strong, external
ATPs like E (Schulz, 2004), SPASS (Weidenbach, 2001), Vampire (Kovács and Voronkov, 2013),
Z3 (de Moura and Bjørner, 2008), or cvc5 (Barbosa et al., 2022). If successful, these provers generate
complete proofs. They are, however, not trusted by Isabelle. Instead, the facts used in the external
proofs are extracted and used to produce a proof inside Isabelle using its native methods. Up to
this last step, known as proof reconstruction, Sledgehammer is essentially used as a precise premise
selection tool. See Figure 2a depicting the whole process.

While immensely useful, Sledgehammer comes with several limitations. First, increasing compu-
tational power for Sledgehammer brings quickly diminishing returns (Böhme and Nipkow, 2010).
Second, the logic projection and proof reconstruction in a hammer are not straightforward for
type systems other than higher-order logic (Czajka and Kaliszyk, 2018). Finally, Sledgehammer’s
performance hinges on the relevance filtering scheme, a suite of methods based on handcrafted
heuristics (Meng and Paulson, 2009) or classical machine learning (Kühlwein et al., 2013). Such
approaches are unlikely to efficiently utilize the constantly growing body of proof data.

We argue that all these limitations can be overcome with deep-learning-based approaches. Neural
networks have shown remarkable effectiveness in end-to-end problem solving with little or no feature
engineering (Krizhevsky et al., 2012; Brown et al., 2020). Adopting textual representations with
generic neural solutions removes the need for logic projection, ATP solving, and proof reconstruction.
Moreover, large language models have recently displayed impressive scaling properties with respect
to both model size (Kaplan et al., 2020) and data (Hoffmann et al., 2022).

3 MAGNUSHAMMER

The goal of premise selection is to find relevant mathematical facts for a given proof state. We
focus on selecting premises with a neural model informed by their textual representations instead of
relying on fact structures like Sledgehammer (see Section 2). The core idea of Magnushammer is to
combine fast retrieval based on representational similarity (SELECT) with a more accurate re-ranking
(RERANK), as outlined in Algorithm 1. Our method closely follows those of Nogueira and Cho (2019)
and Izacard et al. (2021). This hierarchical approach is scalable to large formal libraries containing
hundreds of thousands of facts. Below we describe the two-stage Magnushammer approach.

3



Published as a conference paper at ICLR 2024

SELECT leverages representation similarity and is based on batch-contrastive learning similar to
the methods of Alemi et al. (2016), Bansal et al. (2019), Han et al. (2021), or Radford et al. (2021).
SELECT embeds premises and proof states into a common latent space and uses cosine similarity to
determine their relevance. During inference, it requires only one pass of a neural network to compute
the proof state embedding and dot product with cached premise embeddings. SELECT is hence fast
and scalable to large sets of premises. In our experiments, there are between 30K and 50K premises
in a typical proof state context, from which we select KS = 1024 most relevant ones.

RERANK scores the relevance of the KS selected premises for the current proof state by analyzing the
(proof state, premise) pairs. RERANK is trained to output the probability of the premise being
relevant to the proof state. The KS premises retrieved by SELECT are re-ranked with respect to
these probabilities, and the final list comprises of the top KR premises (we set KR = KS). Having
both the premise and the proof state in a single input allows RERANK to be more accurate. However,
at the same time, it is much slower, as each pair must be scored individually.

Algorithm 1 Premise selection with Magnushammer.
Require:

proof state, premises ▷ proof state to retrieve premises for and database of available premises
KS ,KR ▷ number of premises to retrieve with SELECT and RERANK, respectively

1: state embedding← get embeddings(proof state) ▷ SELECT stage starts
2: premises embeddings← get embeddings(premises)
3: Cache(premises embeddings)
4: sim scores = state embedding · premises embeddings
5: selected = premises[argsort(−sim scores)[: KS ]]
6: batch = [] ▷ RERANK stage starts
7: for premise in selected do
8: batch.append((proof state, premise))

9: rerank scores← get rerank scores(batch)
10: top premises = selected[argsort(−rerank scores)[: KR]]
11: return top premises

Training We train Magnushammer using two alternating tasks: SELECT is trained with a modified
InfoNCE loss (van den Oord et al., 2018), and RERANK is trained with the standard binary cross-
entropy loss. The architecture of Magnushammer shares a transformer backbone with specialized
linear projections on top (see Figure 2b). The backbone is pre-trained with a language modeling task
on the GitHub and arXiv subsets of the Pile dataset (Gao et al., 2021). For training, we use datasets
consisting of (proof state, premise) pairs extracted with a procedure described in Section 4.

During SELECT’s training, each batch consists of N proof states, N positive premises (one for each
proof state), and additional M negative premises sampled from available facts that are not ground truth
premises for any of the selected proof states. This gives N − 1 +M negatives per proof state in one
batch. We typically use M = 3N , which differs from standard batch-contrastive learning (Radford
et al., 2021), in which M = 0 and negatives are only the other N − 1 premises in the batch RERANK
is trained using a binary classification objective. For each positive (proof state, premise) pair
in the dataset, we construct 15 negatives from the most likely false positives returned by SELECT.
Specifically, all the premisesM that are facts that were never used as a premise for proof state,
are first chosen. Then, the top 1024 ofM according to SELECT are selected, and 15 are sampled
from them to construct negative training pairs. See Appendix B for complete training details.

Evaluation in Isabelle We outline how premises chosen by Magnushammer are used to prove
theorems in Isabelle. Given a proof state, a list of the k most relevant premises P is retrieved. We
construct proof steps consisting of a tactic t and a subset of premises S ⊆ P . Such proof steps are
executed in parallel, with a timeout of 2 seconds. The evaluation is successful if any of these proof
steps completes the proof. For S, we pick the top i of P , where i’s are consecutive powers of 2 up to
210, or 0 for tactics that do not accept premises. More details, including the set of tactics used, are
presented in Appendix D. An example of a proof with tactics and premises is given in Appendix A.3.

Note that the procedure of trying multiple different subsets of premises is commonly applied in the
context of automated theorem proving (Urban et al., 2008; Kühlwein et al., 2012) and similar to the
technique implemented in Sledgehammer (Paulson and Blanchette, 2012). The rationale behind this
is that the proof procedures implemented in ATPs and high-level ITPs’ tactics perform combinatorial
search, and providing them with fewer premises to restrict their search space is beneficial.
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4 DATASETS

We created and released1 a comprehensive dataset of textual representations for Isabelle’s proof
states and premises.To the best of our knowledge, this is the first high-quality dataset of this kind for
Isabelle, and also the largest premise selection dataset overall. We used the two largest collections of
Isabelle theories to create the dataset: the Archive of Formal Proofs and the Isabelle Standard library.

For every proof step in every proof from these collections, we extracted the preceding proof state
and the set of premises used in the proof step; this was turned into (proof state, premise) pairs
constituting training data points. We call this the HUMAN PROOFS LIBRARY (HPL) dataset. In
addition, we used Sledgehammer to generate proofs that are different from the human ones by
using potentially alternative premises. We refer to this as the SH partition, and its union with HPL
constitutes the MACHINE-AUGMENTED PROOFS LIBRARY (MAPL) dataset. Statistics for all these
datasets are given in Table 1. Note that MAPL grosses over 4M data points.

Table 1: Statistics of MAPL and both its
partitions: HPL (coming from human-written
proofs) and SH (coming from Sledgehammer-
generated proofs). The data points are of the
form of (proof state, premise) pairs.

Dataset HPL SH MAPL

Data points 1.1M 3.3M 4.4M
Unique proof states 570K 500K 570K
Unique premises 300K 306K 433K

Below we describe in more detail how data points
are extracted from a proof step. An Isabelle’s proof
is a sequence of (proof state, proof step)
pairs: proof state has the state information, and
proof step is a tactic application that advances
the proof. A proof step may use premises: the-
orems, lemmas, or definitions established previ-
ously. Suppose a proof step contains n premises:
p1, p2, . . . , pn. We then extract n data points:
(proof state, p1), . . . , (proof state, pn). Ex-
ecuting Sledgehammer on the proof state may
result in multiple different synthetic proof steps,
and data points can be extracted from each in the
same way (see Appendix A.2 for details).

Mining the HPL partition took 10K CPU hours, and mining the SH partition took 150K CPU hours
(17 CPU years) on a distributed system.

Our datasets have 2 distinguishing features:

1. The human-originating dataset is augmented by alternatives generated with Sledgehammer,
which results in a significantly larger and more diverse dataset. This also decreases the
probability of sampling false negatives while training contrastively: a negative example
(proof state, premise) may in fact be positive, but we just have not seen an alternative
proof using premise. Generating multiple alternative proofs partially remedies this problem.

2. Both proof states and premises are represented as “high-level” Isabelle’s text instead of
“low-level” logical formalism like, e.g., TPTP (Sutcliffe, 2017) used by Alama et al. (2014).
This makes the dataset more suitable for language models, decreases the need for feature
engineering, and facilitates cross-proof-assistant pre-training (Conneau and Lample, 2019).

5 EXPERIMENTS

We evaluate Magnushammer on the PISA and miniF2F theorem proving benchmarks using proof
success rate as a metric. Our main result is that Magnushammer outperforms Sledgehammer by a
large margin and, combined with Thor (Jiang et al., 2022a), sets a new state of the art on the PISA
benchmark (71.0% from 57.0%). Through ablations, we study the effectiveness of Magnushammer
and the contribution of its components. Additional results and details can be found in Appendix E.

5.1 EXPERIMENTAL DETAILS

Benchmarks For evaluation, we use PISA (Jiang et al., 2021) and miniF2F (Zheng et al., 2022)
benchmarks. PISA contains problems randomly selected from the Archive of Formal Proofs;2 we
use the same 1000 problems as Jiang et al. (2022a) for our evaluations. miniF2F consists of 488
high-school competition-level problems, split into validation and test set, each with 244 problems.

1
https://huggingface.co/datasets/Simontwice/premise_selection_in_isabelle

2When training on data from the Archive of Formal Proofs, we remove the subset of it appearing in PISA.
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Table 2: Proof rates on the PISA benchmark. On the single-step task, Magnushammer outperforms
both Sledgehammer and BM25 by a wide margin. On the multi-step task, Magnushammer combined
with Thor achieves the state-of-the-art proof rate of 71.0%.

Task Method Proof rate (%)

BM25 30.6
TF-IDF 31.8

Single-step OpenAI embed. (Neelakantan et al., 2022) 36.1
Sledgehammer 38.3
Magnushammer (ours) 59.5

LISA (Jiang et al., 2021) 33.2
Multi-step Thor (Jiang et al., 2022a) 57.0

Thor + Magnushammer (ours) 71.0

Table 3: Proof rates on the miniF2F benchmark. On the single-step task, Magnushammer outperforms
Sledgehammer and its variant with additional heuristics (Jiang et al., 2022b). On the multi-step task,
Thor+Magnushammer obtains competitive results, significantly outperforming Thor+Sledgehammer.

Task Method Valid (%) Test (%)

Sledgehammer 9.9 10.4
Single-step Sledgehammer + heuristics 18.0 20.9

Magnushammer (ours) 33.6 34.0

Thor + Sledgehammer (Jiang et al., 2022a) 28.3 29.9
Multi-step Thor + Sledgehammer + auto (Wu et al., 2022a) 37.3 35.2

Thor + Magnushammer (ours) 36.9 37.3
DSP (Jiang et al., 2022b) 43.9 39.3

Metric and evaluation setups To evaluate the performance, we measure proof success rate: the
percentage of successful proofs. A proof is successful if it is formally verified by Isabelle. We
distinguish single-step and multi-step settings. In the single-step setting, we check if the theorem
can be proven in one step by applying premises retrieved by the evaluated premise selection method
(e.g., Magnushammer). In the multi-step scenario, we perform a proof search using a language
model following Thor (Jiang et al., 2022a). Thor + Magnushammer uses Magnushammer instead of
Sledgehammer as the premise selection component. A further explanation is given in Section 5.2.

Evaluation protocol and computational budget Algorithm 3 (in Appendix D) details the evaluation
of Magnushammer in the single-step setting. It generates |T | × |K| proof steps by combining each
tactic t ∈ T with top k premises from a ranking provided by Magnushammer, where T is a prescribed
set of tactics, k ∈ K, and K is a list of integers. Such constructed proof steps are then executed
in Isabelle. We define the computational budget for such an evaluation as C = |T | × |K| × T ,
where T is a timeout expressed in seconds (we use T = 2 s as we observed little benefit from
increasing it). Estimating the computational budget for Sledgehammer is difficult due to its complex
internal architecture. We approximate it by C = S × T , where S is the ‘number of CPU cores’
(corresponding to steps executed in parallel) and T is the timeout. We use S = 10 for our calculations.
See Appendix A.4 for more details.

Architecture and training details For our main experiments, we pre-train standard decoder-
only transformer models with 38M and 86M non-embedding parameters and fine-tune them for
downstream tasks of premise selection or proof step generation. Full details are given in Appendix C.
In our experiments, we use the Portal-to-ISAbelle API (Jiang et al., 2021) to interact with Isabelle.

5.2 RESULTS ON PISA AND MINIF2F BENCHMARKS

Our main empirical results, summarized in Table 2 and Table 3, were obtained with the 86M parameter
model. Figure 1 and Section 5.2.1 deepen this study, showing that Magnushammer outperforms
Sledgehammer across a broad spectrum of computational budgets.

Performance on the single-step task In the single-step setting, Magnushammer outperforms
Sledgehammer by a wide margin on both PISA (59.5% vs. 38.3%) and miniF2F (34.0% vs. 20.9%).
Additionally, on PISA, Magnushammer outperforms TF-IDF and BM25: text-based, non-trainable
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retrieval methods (Robertson and Zaragoza, 2009) which are strong baselines in common retrieval
benchmarks (Thakur et al., 2021). This suggests that Magnushammer is able to learn more than just
superficial text similarity. In all these experiments we used the same evaluation protocol (following
Algorithm 3) and computational budget of 1000 as detailed in Appendix D.1.

Interestingly, retrieval based on the generic OpenAI embeddings (Neelakantan et al., 2022) (specifi-
cally: text-embedding-ada-002) yields reasonable performance comparable to Sledgehammer. This
confirms the potential of neural premise selection to replace traditional symbolic methods. There is,
however, a large gap to match Magnushammer. This shows that contrastive fine-tuning on our dataset
provides non-trivial gains and supports our hypothesis that Magnushammer learns more than just
mere textual similarity exploited by the general purpose method.

Performance on the multi-step task Neural theorem provers utilize language models to generate
proof steps, following the approach proposed by Polu and Sutskever (2020). This allows for the
creation of more complex, multi-step proofs. The proof generation involves sampling a proof step
from the language model, verifying it, and repeating this process until the proof is closed or the
computational budget is exceeded. The best-first search algorithm is often used to explore the most
promising proof steps.

Thor (Jiang et al., 2022a) augments neural theorem provers with premise-selection capabilities. To
this end, Thor allows the model to generate proof steps using Sledgehammer, which we replace with
Magnushammer (see Appendix D.2 for details). Thor + Magnushammer establishes a new state of
the art on the PISA benchmark (71.0% vs. 57.0%). On miniF2F, our method also significantly out-
performs Thor and achieves results competitive with the current state of the art. In these experiments,
we give Magnushammer a computational budget of 200.

It is important to note that other theorem-proving approaches in the multi-step section of Table 3
require much larger language models: for Thor it is 700M non-embedding parameters; DSP (Draft,
Sketch, and Prove) by Jiang et al. (2022b) uses Minerva model (Lewkowycz et al., 2022) with
62B parameters. Moreover, these other approaches rely on ideas orthogonal to premise selection.
Specifically, Thor + auto (Wu et al., 2022a) proposes a variation of Thor, involving expert iteration on
auto-formalized data. DSP involves creating a high-level outline of a proof and uses Sledgehammer
to solve the low-level subproblems. We hypothesize that both methods would perform even better
when combined with Magnushammer.

5.2.1 SCALING COMPUTATIONAL BUDGET

In this section, we discuss how the quality of premise selection methods varies with the computational
budget available during evaluation. Figure 1 shows the results, and the definition of the compute
budget is provided in Section 5.1. Notably, Magnushammer outperforms Sledgehammer even with
very limited computational resources, and it scales well, particularly within the medium budget range.

For Magnushammer and BM25, we use Algorithm 3 (Appendix D) in various configurations (i.e.,
settings of T and K). We start with one tactic, T = {smt}, and K = [27], which yields C = 2
(recall that T = 2 s). We then gradually add more tactics to T and more values to K. The final setup
uses |T | = 36 and K containing all powers of 2, from 20 up to 210, which yields C ≈ 800. The
details are provided in Appendix D. For Sledgehammer, we scale the timeout parameter T up to 80 s.

5.3 IMPACT OF TRAINING DATA

We study how the amount and type of data impact the proof success rate by comparing HPL and
MAPL datasets. For this comparison, we used models with 38M non-embedding parameters and a
computational budget of 800.

Dataset size Our method is data-efficient: see Figure 3a. We observe that Magnushammer fine-tuned
on only 0.1% of MAPL – equivalent to approximately 4K samples – is already able to outperform
Sledgehammer. This indicates that when starting from a pre-trained model, Magnushammer is a
promising approach for addressing premise selection in theorem-proving environments with limited
training data. The effect of pre-training diminishes as the amount of training data increases.

Dataset type Fine-tuning on MAPL or HPL leads to subtle differences (56.3% vs. 54.0% when the
whole datasets are used). This outcome may be attributed to the impact of model pre-training and
the fact that the HPL dataset is rich enough to obtain good performance on the PISA benchmark (as
observed in the previous paragraph). We speculate that the bigger MAPL dataset might be essential
for future harder benchmarks and scaling up the model size.
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Figure 3: Impacts of the training data quantity and the model parameters on the proof rate. The
vertical axis is the proof rate in percentage. In Subfigure 3a, the horizontal axis is the fraction of
training dataset used and in Subfigure 3b it is the number of parameters in the model.

5.4 ABLATIONS

We use models trained on the MAPL dataset and evaluate them with a computational budget of 800.
To study how the performance of our method depends on the model size, we vary the number of layers
L and embedding dimension D. A positive correlation between the model size and the proof rate is
shown in Figure 3b. We observe that even a tiny model with 920K parameters (L = 1, D = 256)
outperforms Sledgehammer (40.7% vs. 38.3%). We also note the benefit of pre-training and that
scaling the number of layers is more beneficial than scaling the embedding dimension. The details
can be found in Appendix C.1. The impact of re-ranking is studied in Appendix C.5.

6 RELATED WORK

Premise selection becomes a crucial task whenever proving theorems automatically within a large
formal library. Moreover, this task has several unique aspects that are challenging from the perspective
of learning-based approaches. Therefore, there exist multiple works that tackle learning premise
selection (either explicitly or implicitly) applying various methods focusing on different aspects.

Many works employ classical machine learning like Bayesian and kernel methods (Kühlwein et al.,
2012; Alama et al., 2014), k-NN (Blanchette et al., 2016), or decision trees (Piotrowski and Urban,
2018; Nagashima and He, 2018; Piotrowski et al., 2023). The common weakness of these approaches
is the necessity of using hand-engineered features, whereas faster, simpler training is an advantage.

Alemi et al. (2016) were the first to apply deep learning to premise selection, thus dispensing with the
hand-designed features completely. Their approach was evaluated in an automated theorem proving
setting and not in a proof assistant, as is Magnushammer. They also implicitly learn embeddings of
conjectures and premises, which are concatenated and passed through a shallow network, whereas the
training signal comes from the logistic loss. In contrast, Magnushammer demonstrated the strength
of training with the contrastive loss, where the obtained embeddings just need to be passed through a
simple cosine similarity measure to provide high-quality rankings.

Most of the methods explicitly targeting the premise selection problem (including this work) retrieve
a ranking of independently treated premises. In contrast, Piotrowski and Urban (2020) aimed at
modelling the implicit dependencies between the premises and used LSTM-based language models
to produce structured sequences of premises. However, the premises were treated there as opaque
tokens, not giving the neural model the ability to inspect the statements of the premises.

Effective deep learning approaches often leverage the explicit structure of mathematical expressions
using graph neural networks (Wang et al., 2017; Paliwal et al., 2020; Goertzel et al., 2022). Our
work uses the transformer architecture (Vaswani et al., 2017), which is highly scalable and capable of
producing powerful representations of raw text data.
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Pre-trained transformer language models have been applied to various aspects of theorem proving,
including autoformalization (Wu et al., 2022a; Jiang et al., 2022b), conjecturing (Urban and Jakubuv,
2020), and tactic prediction / proof step search (Yang and Deng, 2019; Polu and Sutskever, 2020; Han
et al., 2022; Lample et al., 2022; Polu et al., 2023). The works from the last category often implicitly
deal with premise selection by treating premises as names / tokens to be generated and not inspecting
their statements. The application of generative language models to statement-aware premise selection
has been limited, as the length of the possible premises often greatly exceeds the context of several
thousand tokens that the models are designed to handle. Thor (Jiang et al., 2022a) circumvents the
difficulty of premise selection by invoking Sledgehammer. In contrast, Magnushammer retrieves
rather than generates to overcome the context length limitation. Therefore it can be used in tandem
with other models (its combination with Thor is demonstrated in Section 5).

Batch-contrastive learning is widely used in speech (van den Oord et al., 2018), text (Izacard et al.,
2021), image (Chen et al., 2020) and image-text (Radford et al., 2021) representation learning. These
methods have proven effective despite the possibility of false negatives occurring in contrastive
batches (Robinson et al., 2021). The SELECT phase of our premise selection model relies on in-batch
negative examples to train the retriever, similar to HOList (Bansal et al., 2019) and Contriever (Izacard
et al., 2021). Like HOList, we mine additional negatives, which we found crucial for performance.
The RERANK stage closely resembles (Nogueira and Cho, 2019), but instead of using BM25, we
jointly train retrieval and re-ranking, utilizing premises retrieved by SELECT as hard negatives
for RERANK training. Han et al. (2021) use contrastive learning in informal premise selection.
Concurrently to our work, Yang et al. (2023) develop a premise selection method for Lean also using
contrastive learning in a way similar to our SELECT method, but without the RERANK stage.

There are multiple lines of work considering datasets based on formal theorem proving. These include
benchmarks like ProofNet (Azerbayev et al., 2022) for Lean, and miniF2F (Zheng et al., 2022) that
supports multiple ITPs. These datasets only focus on evaluation, not providing data for training the
models. Another line of research focuses on benchmarking machine learning models’ reasoning
capabilities while also providing training data (Bansal et al., 2019; Li et al., 2021; Han et al., 2022).
Existing public datasets for premise selection include the ones introduced in (Alama et al., 2014;
Piotrowski and Urban, 2020). In comparison to these works, we publish the data in high-level, textual
format, as seen in Isabelle, instead of low-level, structured languages such as TPTP (Sutcliffe, 2017).

There exists a rich body of work developing complex hammers systems for different proof assistants
(Paulson and Blanchette, 2012; Kaliszyk and Urban, 2015a; Gauthier and Kaliszyk, 2015; Czajka
and Kaliszyk, 2018). Unlike the traditional hammers, our method does not depend on external ATPs
and requires little domain-specific knowledge.

7 LIMITATIONS AND FUTURE WORK

Other proof assistants Magnushammer treats proof states and premises as text and makes no
assumptions about their structure. As such, no feature engineering is needed to apply it to other proof
assistants. We conjecture that Magnushammer can prove effective in other environments because it is
agnostic to the logic or type system used. We plan to evaluate Magnushammer in Lean proof assistant
on ProofNet (Azerbayev et al., 2022) and miniF2F (Zheng et al., 2022) benchmarks, using the recently
published LeanDojo toolkit (Yang et al., 2023) that also provides baselines for comparison.

Richer proof and premise representations Magnushammer utilizes the textual representation of
the proof state given by Isabelle. This representation, however, does not provide complete semantic
information about the referenced objects. Including function definitions and object types in the proof
state representation might further improve performance.

Modelling full proof steps Combining language models with external premise selection tools
significantly improves their theorem-proving performance, as demonstrated by Jiang et al. (2022a)
and our work. A natural step would be to further integrate premise selection with language models
into a single model capable of generating proof steps containing relevant retrieved premises. A proof
of concept of this idea was explored by Tworkowski et al. (2022). This would also allow to model
existing implicit dependencies between returned premises, which was shown beneficial by Piotrowski
and Urban (2020). We believe that recent advances in retrieval-augmented language models (Wu
et al., 2022b; Borgeaud et al., 2022) could facilitate progress in this direction.
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REPRODUCIBILITY STATEMENT

The data that were used for pre-training of the backbone transformer model of Magnushammer are
freely available under this link: https://pile.eleuther.ai/

The Isabelle data used in training for the down-stream tasks are available under this link:
https://huggingface.co/datasets/Simontwice/premise_selection_in_
isabelle

The benchmarks used for evaluation of Magnushammer are freely available on GitHub:

• miniF2F: https://github.com/openai/miniF2F
• PISA: https://github.com/albertqjiang/Portal-to-ISAbelle

PISA also implements the interface for interacting with Isabelle that we used in our experiments.

Appendix A.4 specifies the setup of Sledgehammer that we used in our comparisons. Appendices
B and C detail the shape of the transformer architecture used, define the loss functions applied in
the SELECT and RERANK stages, specify the hyperparameters used in pre-training and training for
our down-stream tasks, and disclose the hardware used for training. Appendix D details the setup
for evaluation of Magnushammer in Isabelle, in particular the list of tactics applied on top of the
Magnushammer’s premise selection.
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Tahar, editors, Theorem Proving in Higher Order Logics, 21st International Conference, TPHOLs
2008, Montreal, Canada, August 18-21, 2008. Proceedings, volume 5170 of Lecture Notes in
Computer Science, pages 12–16. Springer, 2008. doi: 10.1007/978-3-540-71067-7\ 3. URL
https://doi.org/10.1007/978-3-540-71067-7_3.
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APPENDIX

A ISABELLE ENVIRONMENT

This section contains visual examples of proofs in Isabelle and provides some configuration details of
the environment.

A.1 VISUALIZATION OF THE ISABELLE ENVIRONMENT

Figure A.1 shows an example theorem and its proof, as seen in Isabelle’s most popular IDE, jEdit. The
theorem comes from an entry to the Archive of Formal Proofs – Fun With Functions (Nipkow, 2008).
It states that any mapping f from the set of natural numbers to itself that satisfies f(f(n)) < f(n+1)
must be the identity function. The proof starts with a simple induction and then refines the result
to arrive at the thesis. This problem was included in Terence Tao’s booklet Solving Mathematical
Problems (Tao, 2010).

Figure A.1: An example theorem in Isabelle. The statement is highlighted in the orange frame and
the body of the proof is in the green frame. In this proof, most of the lines contain two consecutive
steps: the first formulates a new proposition, and the second proves it. See a detailed analysis of the
line 8 of the proof in Figure A.2 below.

Figure A.2: The line is broken down into two steps: the first one (green frame) includes the proposition
(since m is natural and positive, it must have a predecessor k) and the second (blue frame) proves it
using the tactic metis with premise not0 implies Suc, that states that a nonnegative natural
number is a successor of some other natural number. The used premise is a fact which is already
defined in the lemma library. The proof state resulting from the first step is in the yellow frame. The
full premise statement is highlighted in pink.
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A.2 ALTERNATIVE PROOF STEP GENERATION WITH SLEDGEHAMMER

This section describes how to generate alternative proof steps using Sledgehammer which we do to
obtain datasets described in Section 4. First, we find all intermediate propositions within the proof
(they can be nested) and try to replace the proof of the proposition with a Sledgehammer step. If
successful, we record such a step in the dataset and proceed with both the original and the alternative
proof. Figure A.3 provides a visual example of the aforementioned propositions.

Figure A.3: Example intermediate propositions highlighted in red. Note: not all propositions were
highlighted.

A.3 EXAMPLE OF A PROOF WITH TACTICS REQUIRING PREMISES

Figure A.4 contains a multi-step proof of the irrationality of
√
2 written in Isabelle. The proof

contains multiple usages of tactics that require premises.

Figure A.4: A proof of
√
2 /∈ Q (Jiang et al., 2022a, Figure 1). The steps containing metis,

smt, fastforce, blast, auto, fastforce are examples of steps using premises. For
instance, one such proof step is by (metis Rats cases’ less irrefl). This step invokes
metis and provides two premises as arguments, namely Rats cases’ and less irrefl.
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A.4 SLEDGEHAMMER SETUP

We set up Sledgehammer in Isabelle 2021-1, following the configuration used by Jiang et al. (2022a).
We run Sledgehammer using different sets of settings and calculate the total proof rate by taking the
union of problems solved by each run. The Sledgehammer timeout is set to default 30 seconds. We
use only on-machine automated theorem provers (same as Isabelle environment), so external provers
used by Sledgehammer are the following: Z3, SPASS, Vampire, CVC4, and E.

In our calculation of the Sledgehammer computation budget, see Section 5.1, we assume S = 10 ’CPU
cores.’ We run our experiments on machines with 96 CPU cores, making the assumption realistic.
Moreover, we emphasize that the performance gap between Magnushammer and Sledgehammer is
large enough that altering the value of S, e.g., to an unrealistic level S = 1, would not qualitatively
change conclusions.

B DETAILS OF MAGNUSHAMMER

B.1 SELECT STAGE

SELECT stage is trained using the InfoNCE loss van den Oord et al. (2018) defined as:

L (q, k+) = −
exp (s (q, k+) /τ)

exp (s (q, k+) /τ) +
∑K

i=1 exp (s (q, ki) /τ)
,

where q is a query (a proof state), k+ is a positive premise (a ground truth from the dataset), ki are
negative premises. We define s as cosine similarity between proof state and premise embeddings;
τ > 0 is a non-trainable temperature parameter. We list our hyperparameter choices in section C.2.

B.2 RERANK STAGE

Premise retrieval task can be cast as binary classification, trying to determine if a given pair
(proof state, premise) is relevant. Applying classification to each pair is computationally in-
feasible, however, it could be used to re-rank a small set of premises retrieved by SELECT. Namely,
we use the following cross-entropy loss:

L = −
∑
p∈P

log score(p)−
∑
p/∈N

log(1− score(p)),

where score(p) is the output of the RERANK part of the model (see ”Sigmoid” in Figure 2b) for a
given p = (proof state, premise) pair. Typically, we sample a batch of 16 positive pairs P from
the dataset. For each such pair (proof state, premise) 15 negatives are constructed from the most
likely false positives returned by SELECT. Specifically, negative premisesM, which are facts that
were never used as a premise for proof state, are first chosen. Then, the top 1024 ofM according
to SELECT are selected, and 15 are sampled from them to construct negative pairs, which are included
in N .

B.3 MAGNUSHAMMER

We train Magnushammer as two separate tasks alternating update steps as presented in Algorithm 2.
Note that the backbone of the architecture is shared between SELECT and RERANK, thus such multi-
task training is potentially more effective than having two separate models. Calculation of the negative
premises for SELECT is costly, thus for efficiency reasons we recalculate the top 1024 premises, see
Section B.2, every T = 1000 steps in the recompute negatives for rerank function, as outlined
in the Algorithm 2.

C TRAINING DETAILS

C.1 MODEL ARCHITECTURE

We use a decoder-only transformer architecture, following the setup from Wang and Komatsuzaki
(2021) and using rotary position embedding by Su et al. (2021), a variation of relative positional
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Algorithm 2 Magnushammer training.

Require:
θ ▷ initial trainable parameters
D ▷ premise dataset
T ▷ interval for updating rerank dataset

1: Drerank ← recompute negatives for rerank(θ,D)
2: step = 0
3: while step < num train steps do
4: batch select← D.sample()
5: θ ← train step(θ, batch select)
6: batch rerank← Drerank.sample()
7: θ ← train step(θ, batch rerank)
8: step← step+ 1
9: if step mod T = 0 then

10: Drerank ← recompute negatives for rerank(θ,D)

encoding. The feedforward dimension in the transformer block is set to 4 × D where D denotes
embedding dimension, and the number of attention heads is H = D/64. Our 38M model has L = 12
layers and an embedding dimension of D = 512. The larger 86M model consists of L = 12 layers
and has D = 768. For all the models, we use the original GPT-2 tokenizer (Radford et al., 2019).

In SELECT, we append a specialized token at the end of the sequence to compute the embedding
for a proof state and linearly project its embedding. Premises are embedded analogously. Similarly
to Radford et al. (2021) that train separate projections for images and captions, we train separate
proof state and premise projections and share the transformer backbone (see Figure 2b). Analogously
for RERANK, we compute the relevance score by taking the embedding of the last token and then
projecting it to a scalar value.

C.2 HYPERPARAMETER SETUP

We performed the following hyperparameter sweeps. We note that we have not observed significant
differences between obtained results.

• Learning rate: {1e−4, 2e−4, 3e−4, 5e−4}, chosen: 2e−4
• Dropout: {0.0, 0.05, 0.1, 0.2}, chosen: 0.1
• Weight decay: {0.02, 0.05, 0.1}, chosen: 0.02
• Batch size N in SELECT: {128, 256, 512}, chosen: 256
• Number of negatives M in SELECT: {0, 256, 768, 1536}, chosen: 768
• Temperature for InfoNCE loss in SELECT: {0.05, 0.07, 0.2, 1}, chosen: 0.07
• Batch size for RERANK: {16, 32, 64}, chosen 64

• Number of negatives per proof stateM in RERANK: {7, 15}, chosen: 15.

C.3 PRE-TRAINING ON LANGUAGE MODELING

Pre-training has been shown to dramatically increase the capabilities and performance of decoder-only
models on tasks other than language modeling (Howard and Ruder, 2018). Motivated by that, we
pre-train our models on GitHub and arXiv subsets of the Pile (Gao et al., 2021). The models are
trained for 1M steps, with a context length of 2048. Global batch size is set to 32 sequences giving a
total number of 65536 tokens per batch. Dropout is disabled, and weight decay is set to 0.02. The
learning rate increases linearly from 0 to 0.0003 for the first 10000 steps, and then the cosine schedule
is applied to decrease its value gradually.

C.4 FINE-TUNING FOR DOWNSTREAM TASKS

We train Magnushammer by taking a pre-trained language model, removing its language modeling
head, and attaching three linear projections heads – one projection for proof state embedding, another
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one for premise embedding, and the last one for producing relevance score for RERANK, as depicted
in Figure 2b and described in Section C.1. For the proof step generation task, we fine-tune our
language models by applying the algorithm used to train Thor (Jiang et al., 2022a).

C.5 IMPACT OF RE-RANKING

We find that the SELECT-only method, i.e., Magnushammer without the RERANK phase, already
significantly outperforms Sledgehammer. Tested on the 38M model, it achieves a 54.2% proof
rate comparable to 56.3% obtained by Magnushammer. SELECT-only mode is a computationally
appealing alternative, as it only needs a single forward pass to embed the current proof state (the
setting used recently by Yang et al. (2023).) Premise embeddings can be pre-computed and cached,
allowing inference on the CPU without the need for GPU or TPU accelerators.

C.6 HARDWARE

We gratefully acknowledge that our research was supported with Cloud TPUs from Google’s TPU
Research Cloud (TRC). We use TPU virtual machines from the Google Cloud Platform (GCP) for
all stages: pre-training, fine-tuning, and evaluation. Each TPU virtual machine has 8 TPU v3 cores,
96 CPU cores, and over 300GB of RAM. TPU v3 cores have around 16GB of memory each. The
Isabelle environment is set to have access to 32 CPU cores.

D MAGNUSHAMMER EVALUATION

In Algorithm 3 we outline our evaluation method described in Section 5.1. To generate proof
steps, we use the following tactics: smt, metis, auto, simp, blast, meson, force,
eval, presburger, linarith. Algorithm 3 is also used to evaluate BM25, where we select
top premises with this retrieval method instead of Magnushammer.

D.1 COMPUTATIONAL BUDGET

For our main result (Section 5.2), we allocate the computational budget of 1000 as follows: apart
from the powers of two from 20 to 210, we also try the following k values: [48, 96, 192], which in
total gives 14 values. With each of these k values, 36 tactics are used with timeout T = 2, yielding
C ≈ 1000.

For the ablation studies, we only use powers of two from 20 to 210, and the same set of 36 tactics,
which gives C ≈ 800.

Algorithm 3 Magnushammer evaluation in ITP environment.

Require:
theorem ▷ theorem to prove
premsel model ▷ Magnushammer’s premise selection model
KS ▷ number of premises to retrieve with SELECT
KR ▷ number of premises to retrieve with RERANK
premises ▷ available premises
top k premises to try ▷ list with the number of top premises to generate steps with
tactics to try ▷ list of tactics to generate steps with
env ▷ ITP environment (e.g., Isabelle)

1: proof state← init problem(env, theorem) ▷ initialize problem
2: top premises← premsel model(proof state, premises,KS ,KR) ▷ get top premises
3: steps = [] ▷ generate proof steps combining of tactics and top k premises
4: for k in top k premises to try do
5: top k premises← top premises[: k]
6: new steps← generate steps(tactics to try, top k premises)
7: steps.extend(new steps)

8: solved← try steps(env, steps) ▷ evaluate generated proof steps in the ITP’s environment
9: return solved
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D.2 THOR + MAGNUSHAMMER

To generate more complex proofs we combine Thor (Jiang et al., 2022a) with Magnushammer as
introduced in multi-step setting in Section 5.2.

Firstly, we follow the procedure described in Jiang et al. (2022a) to pre-process training data and fine-
tune our pre-trained language model for the proof generation task (pre-training details can be found
in Appendix C.3). During the evaluation, when the language model generates the <hammer> token,
we call our method instead of Sledgehammer. More specifically, we use an augmented Algorithm 3
that returns the proof states resulting from applying the steps (instead of returning binary information
on whether any of the steps closed the proof). We then pick at most s = 2 states among these and add
them to the BFS queue.

We assign the same computational budget as proposed in Thor, with the only difference being that
each proof step has a timeout limit of 2 s (instead of 10 s), which we found to perform better in
our setup. The search is terminated if and only if one of the following scenarios happens: (1) a valid
proof has been found for the theorem; (2) the language model is queried 300 times; (3) a wall-time
timeout of 500 s has been reached (assuming parallel execution of Magnushammer steps); (4) the
queue is empty but the theorem is not proved. We keep the same maximum length of the queue equal
to 32.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 SUPPLEMENTAL DETAILS

We provide additional details for our main experiments and ablations.

Table 4: Relation between the training data and the proof rate discussed in Section 5.3 and Figure 3a.

Dataset Fraction Pre-trained Proof rate (%)

MAPL 0.1% Yes 39.2
HPL 0.1% Yes 34.9

MAPL 0.1% No 16.8

MAPL 1% Yes 47.7
HPL 1% Yes 42.7

MAPL 1% No 29.0

MAPL 10% Yes 53.2
HPL 10% Yes 49.4

MAPL 10% No 48.5

MAPL 100% Yes 56.3
HPL 100% Yes 54.0

MAPL 100% No 53.0

E.2 STEP TACTIC PROMPT

We observed that different tactics use different subsets of premises. This motivated us to extend the
context given to our model with tactic prompt. Namely, provide the tactic name as an additional
argument to the premise selection model, similarly to Bansal et al. (2019). Prompting model with
the tactic name does not yield significant improvements. However, it allows the model for a more
accurate premise selection. Namely, as presented in Figure A.5 and Table 6, we observe that premises
necessary to close the proof are ranked higher. This motivates an alternative performance metric
presented in the next section.
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Table 5: Proof rate on PISA for different models discussed in Section 5.4 and Figure 3b. We vary the
number of layers L and the embedding dimension D of the Transformer model.

Transformer (L,D) #Parameters Pre-trained Proof rate (%)

(1, 256) 920K No 40.7
(1, 512) 3.7M No 43.9
(2, 256) 1.7M No 47.0
(2, 512) 6.8M No 48.4
(2, 768) 15.4M No 49.9
(6, 512) 19.2M No 52.5
(6, 512) 19.2M Yes 53.3
(6, 768) 43.7M No 52.1
(12, 512) 38.3M No 52.6
(12, 512) 38.3M Yes 56.3
(12, 768) 86.2M Yes 57.0
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Figure A.5: We calculate accumulated proof rate in the following way: try 1 premise, count problems
solved, then try 2 premises, count problems solved using 1 or 2 premises, then try 4 premises, count
problems solved using 1, 2, or 4 premises etc. Following this, on the x-axis we have the number
of premises used to generate steps in Algorithm 3. The y-axis presents the accumulative proof rate
as we try more and more premises. The higher the proof rate for the smaller number of premises
used the better. We observe that prompting the model with the tactic is not necessary to achieve the
final high proof. However, it allows the model for a more accurate premise selection – all premises
necessary to close the proof are ranked higher.

Table 6: Effect of the number of premises used for generating tactic steps on the proof rate. We fix a
set of tactics and accumulate problems solved as we increase the number of premises used to generate
steps in Algorithm 3. Namely, for each k, we count the number of problems solved using at most k
premises. The “Tactic” column indicates whether the model was given a tactic prompt.

Model Tactic Dataset k ≤ 0 ≤ 1 ≤ 2 ≤ 4 ≤ 8 ≤ 16 ≤ 32 ≤ 64 ≤ 128 ≤ 256

BM25 No N/A 9.63 13.56 15.62 16.70 18.47 20.73 23.38 25.44 28.00 30.55
MH-86M No HPL 9.63 19.25 22.99 28.68 34.58 39.88 44.50 47.84 51.47 52.95
MH-86M Yes HPL 9.63 20.24 25.44 31.53 36.15 40.67 44.70 48.53 51.87 54.22
MH-86M No MAPL 9.63 18.27 22.00 27.70 35.07 39.78 44.99 49.31 52.65 55.60
MH-86M Yes MAPL 9.63 19.94 25.93 33.79 39.29 43.71 47.94 52.06 54.32 56.19
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E.3 NUMBER OF PREMISES USED AS A PERFORMANCE METRIC FOR PREMISE SELECTION.

Consider the number of premises used to generate steps in Algorithm 3 (parameter k in the for-loop).
Intuitively, the fewer premises needed the better, since it means that all the premises necessary to
close the proof are ranked higher (high recall), thus the model does a more accurate premise selection.
In other words, a better retrieval model should be able to score all the necessary facts higher and push
unnecessary facts down the list.

To compare different models we fix a set of tactics and accumulate problems solved as we increase
the number of premises used to generate steps in Algorithm 3. This is presented in Table 6 and
Figure A.5. Namely, for each k, we count the number of problems solved using at most k premises.
Effectively, each new value of k adds one new step per tactic to try.

E.4 SINGLE-STEP PROOF RATE BOUND

It is non-trivial to estimate the lower bound on how many problems can be closed directly from
the root state in a single proof step. To answer this question, we use different models in Algorithm
3 and take the union of problems solved by them. Namely, we ensemble the results of the Mag-
nushammer variations introduced in previous sections: Magnushammer-86M, Magnushammer-38M,
Magnushammer-SELECT, Sledgehammer, BM25, and the models presented in Section 5.4. Such a
combination successfully closes 65.5% of the proofs.

F EXAMPLES OF PROOFS FOUND BY MAGNUSHAMMER

In Sledgehammer, once one of the external provers found a proof, it is likely that it can be reproduced
inside Isabelle (but not always, as reported by Paulson and Blanchette (2012)). The external provers
significantly reduce the number of premises passed to the reproduction step, therefore the Isabelle’s
proof will be short. The major bottleneck of Sledgehammer, however, is the pre-selection step: the
external provers often cannot find a proof because they are provided too few – or too many – premises.

In Magnushammer, on the other hand, we skip the external provers completely and input premises
directly into the native Isabelle’s tactics to produce a proof. This means that the prediction must be of
high quality in order to obtain good results. The number of the premises will be typically larger –
therefore the proofs will be longer, and of form of a combination of a strong tactic and a long list of
premises as its arguments.

As an example demonstrating the difference between Magnushammer and Sledgehammer from the
perspective of produced proofs, let’s see two proofs of the algebraic theorem set r ar cos ker
from the Archive of Formal Proofs:3

Sledgehammer’s proof:

by (smt (z3) Ring.set_r_ar_cos ker_ideal)

Magnushammer’s proof:

by (clarsimp simp add: set_ar_cos_def Ring.Ring Ring.set_r_ar_cos
eq_prop Ring.I_in_set_ar_cos Set.bexE Ring.ring_is_ag ker_ideal)

Both Sledgehammer and Magnushammer were able to solve it, however, the latter used more premises.
This is expected: whenever both methods find a proof, the Magnushammer’s proof is often longer in
the sense of the number of premises used. Yet, Sledgehammer’s weaker pre-selection scheme causes
it to find fewer proofs in comparison.

An example of a theorem that Sledgehammer was unable to prove (with a generous time limit of
60 s), but Magnushammer has proven, is lemma unit disc fix moebius uminus.4 The proof

3from the theory Group-Ring-Module/Algebra4.thy, accesible at https://search.isabelle.in.
tum.de/#theory/default_Isabelle2022_AFP2022/Group-Ring-Module/Algebra4

4from the theory Complex Geometry/Unit Circle Preserving Moebius.thy, accessible at
https://search.isabelle.in.tum.de/#theory/default_Isabelle2022_AFP2022/
Complex_Geometry/Unit_Circle_Preserving_Moebius
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produced by Magnushammer consists of the smt tactic and a list of premises. Thus, Magnushammer
was able to retrieve the necessary premises in contrast to Sledgehammer:

by (smt (z3) unit_disc_fix_unit_circle_fix
Oriented_Circlines.unit_disc_def unit_circle_fix_moebius_uminus
unit_disc_fix_moebius_comp Set.image_iff unit_disc_fix_iff
Moebius.uminus_moebius_def Unitary11_Matrices.unitary11_unitary11_gen
unit_disc_fix.abs_eq Oriented_Circlines.inf_notin_unit_disc
Moebius.plus_moebius_def unit_disc_fix_discI unit_disc_fix_moebius_add
unit_disc_fix_id_moebius Set.imageE Set.imageI
Oriented_Circlines.zero_in_unit_disc SMT.verit_minus_simplify(4)
unit_circle_fix_moebius_comp
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