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Abstract

Multi-rotor aerial autonomous vehicles (MAVs)
primarily rely on vision for navigation purposes.
However, visual localization and odometry tech-
niques suffer from poor performance in low or di-
rect sunlight, a limited field of view, and vulnera-
bility to occlusions. Acoustic sensing can serve as
a complementary or even alternative modality for
vision in many situations, and it also has the added
benefits of lower system cost and energy footprint,
which is especially important for micro aircraft.
This paper proposes actively controlling and shap-
ing the aircraft propulsion noise generated by the
rotors to benefit localization tasks, rather than
considering it a harmful nuisance. We present a
neural network architecture for self-noise-based
localization in a known environment. We show
that training it simultaneously with learning time-
varying rotor phase modulation achieves accurate
and robust localization. The proposed methods
are evaluated using a computationally affordable
simulation of MAYV rotor noise in 2D acoustic en-
vironments that is fitted to real recordings of rotor
pressure fields. Code and data are accompanied.

1. Introduction

Research in the field of multi-rotor micro air vehicles
(MAVs, colloquially known as “drones”) has been gain-
ing increasing interest in recent years due to their rapidly
growing applicability in a wide range of industries, such
as agriculture, construction, and emergency services. This
growth is enabled in part by the constantly improving ability
of MAVs to operate autonomously in unknown and unex-
pected environments. A key element allowing this progress
is the recent developments in artificial intelligence, enabling
improved localization and navigation capabilities that are
vital for the MAV to fulfill its designated tasks.
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Research in the field of MAV localization and navigation
mainly focuses on employing various computer vision tech-
niques to harness observed visual data into the MAV’s
decision-making process (Couturier & Akhloufi, 2021; Khat-
tar et al., 2021; Krul et al., 2021; Skoda & Bartak, 2015;
Antonopoulos et al., 2022). While these methods have
proved to supply impressive performance, they are highly
dependent on the availability and reliability of visual data.
In cases of low visibility conditions, increased light expo-
sure, occlusions, or visual-based adversarial attacks, visual
localization may become ineffective.

To overcome these difficulties, we turn to harnessing acous-
tic signals for MAV localization — a domain that has been
explored to a much lesser extent compared to its visual
counterpart. In particular, we propose to focus on drone’s
self-noise generated by the propulsion system. Drones offer
a limited amount of space for mounting sensors, and the
demand for them to be autonomous requires minimizing
their energy consumption as much as possible. The use of
visual sensors, or even mounting speakers for the sake of
sound generation, could be costly in this aspect. On the
other hand, the drone’s self-generated noise, which has so
far been mainly considered a nuisance, is already generated
for our disposal without any increased space consumption
or costs. As we demonstrate in this study, the noise signal
can be actively shaped to improve localization capabilities.
This makes self-noise signals a viable candidate for acoustic-
based localization.

This paper makes the following contributions: Firstly, we
introduce a novel neural network-based algorithm capable
of localizing an MAV down to a few centimeters in a known
acoustic environment using only the self-noise and the rotor
angular positions as the inputs. Secondly, we propose a
method for simultaneously optimizing the rotor phase mod-
ulation in concert with the localization model, obtaining
a substantial improvement in localization accuracy. The
learned phases are physically viable and do not interfere
with the drone’s flight stability. To the best of our knowl-
edge, this is the first work to harness phase modulation for
this purpose. Lastly, we provide a fully-differentiable for-
ward model of a drone in an acoustic environment and a
first-of-its-kind set of recordings of a real rotor pressure
field.
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2. Related Work

Usage of acoustic signals in the field of robotics has proven
effective in a variety of tasks and settings in recent years.
(Fan et al., 2020) used auditory signals for joint localization
and collision detection. Hu et al (Hu et al., 2011) showed the
potential of acoustic signals for the task of joint robot and
sound source localization. Zhang et al(Zhang et al., 2021)
aggregate acoustic signals from several dynamic sources to
perform sound source localization.

A number of works in particular have considered using
auditory signals for the sake of localization alone. Eliakim
et al (Eliakim et al., 2018) offered a sonar-based mechanism
where a robot equipped with set of a speaker and a pair of
mounted microphones learns to map the generated sound
reflected into the microphones to location. Baxendale et
al(Baxendale et al., 2018) harnessed Cerebellar models to
perform audio based localization. Kim et al(Kim & Ko)
localized in an underwater setting using an acoustic guided
Particle Filter based algorithm.

Several works have also used acoustic signals in multi-
modal systems ((Vargas et al., 2021; Franchi et al., 2019)).
These works consider acoustic signals alongside some other
(mostly visual) signals from different channels, and integrate
these channels to achieve the downstream target task.

The localization methods proposed in the above mentioned
works are inherently dependant on some external set of
speakers mounted on the drones or embedded into the en-
vironment. This dependence could be costly and limit the
MAV’s navigational flexibility. In our method we propose
to replace these external signals with the sound emitted by
the drone’s rotors.

3. Forward model

In what follows, we describe a fully-differentiable forward
model of a multi-rotor aircraft in an acoustic environment.
The need to model moving parts is avoided by using a
phased array of fixed stationary sources; our experiments
show that it allows us to accurately represent intricate pres-
sure field geometries created by real MAV rotors. For a
visualization of the model stages as well as for the definition
of coordinate transformations, refer to Fig. 1.

3.1. Rotor in free space

We model the pressure field generated by rotating rotor
blades as a collection of fixed omnidirectional point sources
located at a set of locations {{,} (in rotor’s coordinates) and
temporally modulated with the signal a,(¢) generated by
source s at time t:

t) = Z g, cos(2kwt + Pgp), ()
%

where w is the shaft rotation frequency, 2 corresponds to the
modeled number of blades, the sum is over K harmonics,
and a and v, are, respectively, the amplitude and phase
parameters of each harmonic k. The pressure field generated
by the point source at location x at time ¢ is given by the time
convolution ag * hg(e, &, x) with the free-space impulse
response
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where ¢ is a Dirac delta, and ¢ denotes the speed of sound
in air. The total rotor pressure field is given by

Yot

where S = {ask, ¥sk,&s} denote the model parameters.
These parameters are fitted to a set of actual pressure mea-
surements along concentric locations at different radii. Data
collection and parameter fitting procedures are detailed in
Section 7.1.

(E t|S *hO t Ssa )v

3.2. Aircraft in free space

We model the pressure field of the entire drone rotor as-
sembly of the aircraft by linear superposition of spatially-
transformed and temporally-shifted pressure fields of the
individual rotors. We denote by 7. the spatial transforma-
tion (rotation and translation) of the r-th rotor coordinates
into aircraft coordinates, and by ¢,.(¢) the rotor’s phase mod-
ulation. The total pressure field generated by the drone at
location x (in aircraft coordinates) at time ¢ is given by

pp(z,t®,D,S) ZpR<:17 t—¢7()‘TS)

where we denote the phase modulations by ® = {¢, }, the
drone geometry parameters by D = {7}, and the trans-
formed source parameters by TS = {ask, Ysk, TEs }-

3.3. Aircraft in acoustic environment

We model an acoustic environment by summing the contri-
bution of the direct path (zeroth order) pressure field from
the sources, their reflections from the walls (first order), the
reflections of the reflections (second order), etc. Given a
point source at location & (in environment coordinates), the
environment geometry, denoted by &, determines its map
EZ () to the set of n-th order image sources.

Denoting by 7' the transformation of the aircraft coordinates
to the environment coordinates, the drone pressure field at
time ¢ and location x in the environment is given by

=2 >
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where EZ(S) = {7 sk, Ysi, EL(€s)}, and y is the acous-
tic reflection coefficient according to which higher-order
decay exponentially due to acoustic energy absorption in
the wall material.

3.4. Microphone array

Denoting by M = {y,,} the locations of M omni-
directional microphones (in aircraft coordinates), the mea-
surement of the m-th microphone of the pressure field cre-
ated by the drone in the environment at time ¢ is given by

pm(t|Ta (I)v Da M? Sa 5) = pD(Tymv t|T7 (I)v Da Sa 5)*hAA(t)v

where ha A is the impulse response of the anti-aliasing low
pass filter matching the microphone’s sampling frequency f;.
We collectively denote all microphone readings in discrete
time by p[n] = (pr(n/fs), .-, pm(n/ fs)).

Our JAX-based implementation of the forward model based
on the pyroomacoustics package allows to differenti-
ate its output with respect to the parameters. In Section 5,
we specifically use the gradients with respect to the rotor
phases @ to learn optimal phase modulations.

4. Inverse model

The localization inverse problem consists of estimating the
spatial orientation and location 7' = (R, t) from the mi-
crophone readings p, assuming known the forward model.
Since the rotor phases are controlled on a best-effort basis
by a flight controller that also needs to ensure a stable flight
in the presence of perturbations such as wind, we also as-
sume the phases are measured continuously and provided as
the input sampled by the rotor encoders with the frequency

fe, yielding (/j)[n] = (¢1(n/fe)a AR ¢4<n/fe))

In this study, we restrict our attention to the estimation
of the location parameter ¢ only, assuming the orientation
R is known and provided externally (e.g., from a compass
sensor). We also defer to future studies the more challenging
setting of simultaneous localization and mapping, in which
the environment £ needs to be estimated together with ¢.
Under these assumptions, we denote the inverse operator as
t(p, $|c), representing the orientation as the azimuth o and
omitting for clarity the dependence on the source, drone, and
environment geometries that are assumed fixed and known.

4.1. Localization model

We model the inverse operator as a feed-forward neural net-
work receiving the sampled microphone recordings p and
the azimuth «, and outputting a vector of location parame-
ters. We used two separate trainable positional embeddings:
one for the time dimension allowing the model to distinguish
the data at different time locations, and another encoding the
microphone that perceived the relevant input sound sample.
This allows the model to recognize the source of the pressure
field. Microphone readings are transformed to the short-time
Fourier transform (STFT) domain and represented as magni-
tude and phase. These embeddings are summed to the STFT
frames after that they have been encoded by a 3D convo-
lutional layer and reshaped as a vector. This vector is then
encoded by a Transformer-Encoder architecture (Vaswani
et al., 2023). The azimuth « is represented by its sine and its
cosine, and these latter are encoded by an MLP. The encoded
p and « are first concatenated and then aggregated using
an MLP followed by a Transformer-Encoder architecture
which returns an estimate of the location. The knowledge
of the forward model is implicit through training detailed in
the sequel. Model architecture is depicted in figure 2.
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Figure 3. Simulated pressure fields generated by the aircraft in free space (A) and in a square room at different times (B-D). Positive and
negative pressures are color-coded in red and blue, respectively. A circle of 0.51m around each rotor is not modeled in the absence of data

recording in blade proximity.

4.2. Model training

The model is trained by minimizing the loss

I

Eta ||t — to(p((Ra,t), @), ¢(®)|e)]|”, 3)

where ||t —£||? quantifies the localization error, p((Rq, t), ¢)
denotes the forward operator simulating the microphone
readings given the aircraft location and orientation (R, t)
and the rotor phases @, and ¢(®P) denotes the sampling of
the phases. For notation clarity, we omit the dependence
on the known geometries. The expectation is approximated
on a training set of random viable aircraft locations and
orientations in the environment. Optimization is performed
over the localization model parameters collectively denoted
as 6.

5. Learning rotor phase modulation

Among the “hardware” properties of the forward model (like
the drone geometry), the rotor phase modulation, ®, is freely
controllable, at least in principle. Differences in relative ro-
tor phases exhibit a dramatic impact on the pressure field
generated by the aircraft while being inconsequential to its
flight characteristics. Changing the acoustic field generated
by the drone at a static location is essentially synonymous
with performing measurements through distinct forward

models, potentially providing more information useful for
localization. These facts make the phase modulation an
appetible degree of freedom to try optimizing simultane-
ously with the inverse model training. The corresponding
minimization of (3) can be extended as

min By o ([t — o (p((Ro.1), ), &(2)|0)||” + Lonya(@).
“

(note & among the optimization variables), with the ad-
ditional second term ,,},,(®) that imposes physical con-
straints on the learned phases. In what follows, we describe
the details of this learning problem.

5.1. Parametrization

The solution of (4) requires representing the continuous
rotor phase modulation functions, ¢,.(t), as a finite set of
discrete parameters amenable to optimization. The angular
position of a rotor at time ¢ is given by wt + ¢(t), suggesting
that w + qS(t) determines the instantaneous angular velocity.
We therefore opted for representing the temporal derivative
directly and obtaining the phase ¢(t) through integration.
We further assume that the phase modulation signal is peri-
odic with some period T}, which, for convenience, we set to
be an integer multiple of nominal revolution periods 27 /w
(T, = 167 /w in our experiments). We parametrize the



Active propulsion noise shaping for multi-rotor aircraft localization

phase derivative in the basis of K discrete cosine harmon-

ics,
. 2k
¢(t)=26kcos( ;t) ®)
k>0 p
such that
Br . [27kt
o(t) = — sin ( ) . (6)
25,

With some abuse of notation, we continue to collectively
denote by ® = {1} the parameters characterizing the
phase modulations of all rotors.

5.2. Physical constraints

In order to guarantee that the found phase modulations are
actually realizable on a real aircraft, every rotor’s phase
has to be subjected to a set of physical constraints that are
implemented as penalty terms in the training loss (4).

Angular velocity constraint keeps the instantaneous an-
gular velocity within the range [—wmax,Wmax). This is
achieved by imposing a hinge penalty in the form

Ew = Z[(b(t) +w— Wmax}—l— + [7wmax - d)(t) - w]-‘rv (7)

t

where [w]; = max{w, 0} and the sum is over a discrete
set of times in the interval [0, T},]. The phase derivative is
directly accessible in closed form according to (5).

Angular acceleration constraint keeps the instantaneous
angular acceleration within the range [—max, max|- AS
before, the constraint is translated into the penalty

o = Z[¢(t) — Omax]+ + [~ Qmax — é(t)]h ®)

t

where the phase second-order derivative is also given in
closed form,

ot) = Y kb sin (2;’”) . ©)
p

k>0

Zero net thrust constraint Since the rotor’s angular ve-
locity is linearly related to the amount of thrust it produces,
in order not to interfere with aircraft stability, we demand
that the net change in gZ)(t) over a sufficiently long period
of time is zero. Since the phases are represented directly as
harmonic series, it is convenient to impose zero net thrust
constraints by penalizing the energy contained in the low
frequencies of the phase. This is achieved through a penalty
of the form

Cinrust = »_ G(K) B}, (10)

k>0

where G(k) is a low-pass kernel monotonically decreasing
with frequency. In our experiments, we used a sum of
Gaussian kernels with varying bandwidth. Note that by
construction, QS(t) integrates to zero over the entire period
0, 7,).

The aforementioned physical constraints are further summed
over all rotors and combined into a single penalty term with
relative weights of A, = 0.1, Ay, = 0.1, A\gprust = 1 set to
the angular velocity, acceleration, and zero net thrust terms,
respectively.

5.3. Phase modulation optimization

Utilizing the differentiability of both the forward and inverse
models, the loss (3) is backpropagated through both mod-
els to jointly update the localization model parameters 6 as
well as the phase parameters ® = {3, }. The localization
model is extended by taking as input also ¢ which is em-
bedded using two trainable positional embeddings: one for
the time dimension, and another encoding the rotor » whose
phase is modulated. Similarly to the sampled microphone
recordings p, the phase modulations are transformed to the
STFT domain and represented as magnitude and phase. The
embeddings are summed to the STFT frames after that they
have been encoded using a 3D convolutional layer and that
they have been reshaped ad a vector. This vector is then en-
coded by a Transformer-Encoder architecture. Downstream
of the Transformer-Encoder these encodings are concate-
nated to the encodings of p and «, which are fed to an
MLP followed by a Transformer-Encoder which outputs the
location prediction t.

To improve convergence, we adopted the “freezing* tech-
nique similar to the one used in (Shor, 2023) for the si-
multaneous learning of scan trajectories and reconstruction
operators in magnetic resonance imaging. According to this
method, each of the rotor phases are learned separately for
several epochs, while keeping “frozen” the phases of the
rest of the rotors. This is followed by jointly fine-tuning all
rotor phases at once for a certain number of epochs. During
the process, the localization model parameters 6 are always
updated.

6. Multi-measurement aggregation

Due to environment symmetries, the inverse operator
t(p, $|) tends to have high uncertainties for a specific set
of orientations. To mitigate it, we collect and aggregate
multiple measurements from different orientations. Let us
assume that J measurements are acquired at the same la-
tent location ¢ at a known set of orientations aq, ..., ay,
resulting in matrices of microphone and rotor phase read-
ings, P = (p1,...,ps) and ® = (¢1,...¢,), with p; =
p((Ra,,t),¢j). We then estimate the location parameter
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Figure 4. Rotor phase modulations evaluated in the experiments. Rotors are color-coded. Counter-rotating rotor pairs are (1,4) and (2,3).

t; = t(p;, d;|c;) separately from each measurement and
aggregate the estimates by calculating their geometric me-
dian

t:argmtinZHt—th. (11)

J

The latter is calculated using the Weiszfeld’s algorithm
(Weiszfeld, 1937), typically taking a few iterations to con-
verge.

7. Experimental evaluation

In what follows, we present a simulation evaluation of the
performance of the proposed methods, with real free-space
recordings of an MAV rotor.

7.1. Single rotor data acquisition

Existing publicly available audio datasets of MAV and sin-
gle rotors are few, and mainly consist of flyover scenarios
only, making the recordings vulnerable to aircraft move-
ments and external environmental disturbances, such as
wind (Strauss et al., 2018). Therefore, to model the self
sound of a rotor in free-space, we recorded a new dataset
of a single spinning rotor in a semi-anechoic room. The
recording setup included a motor with a rotor mounted on
a tripod placed in the middle of the room. A microphone
array of four RODE NTG4 directional shotgun microphones
was placed circularly around the rotor to capture the sound.
To measure the instantaneous shaft position, an encoder
was mounted on the motor, and its readings were synchro-
nized with the array recordings using the Roland OCTA-
CAPTURE digitizer at a 44.1kHZ sampling rate for the
audio, and 128 samples per revolution for the encoder. The
four microphones were placed with 90 degree angular steps
from each other at eight radial locations from the rotor axis:
0.53, 0.57, 0.63, 0.68, 0.73, 0.83, 0.93, and 1.03 meters.
An open-loop control system was used to control the motor
speed. The control hardware included a BeagleBoard with
an Electronic Speed Controller (ESC) providing up to 40
amperes of current to the motor. In each experiment, the

motor was stabilized at 10 fixed angular velocities for the
duration of 5 seconds. The angular velocity was measured
through the encoder readings.

7.2. Simulation settings

The rotor source was modeled according to (2) with 256
point sources with locations & arranged into two con-
centric circles at radii 0.23m and 0.51m, each containing
128 points spread at a uniform angular grid. Each point
source was modeled according to (1) with four harmonics
k = 0.5,1,2, 3 harmonics (the “half” harmonic was used to
capture the mechanical noise produced by the motor itself).
The total of 2048 parameters were fitted to the recorded
data by solving a non-linear least-squares problem using
L-BFGS.

We used the two-dimensional forward model detailed in Sec-
tion 3 to simulate the pressure fields created by a four-rotor
aircraft in a rectangular room. Unless specified otherwise,
all experiments were performed in a 5m X 5m room with
wall acoustic reflection coefficient v = 0.5. In this room
we considered only the positions that could be physically
occupied by the drone, namely, we took a margin of 0.93 m
from each wall. Reflections were calculated according to
Section 3.3 up to the first order. The rotors were placed in a
square formation 1.42m apart, with the forward left and rear
right rotors rotating clockwise, while the forward right and
the rear left rotors rotating counter-clockwise. The baseline
angular velocity was set to w = 23.46 rotations per second
(RPS). The sensing array comprised 8 microphones circu-
larly arranged at a radius of 0.91m from the drone center
with an equal angular spacing of 45 degrees.

7.3. Training settings

Training and evaluation were performed on a single NVIDIA
GeForce RTX 2080 GPU. Optimization in all experiments
was done using the Adam optimizer (Kingma & Ba). For the
localization model, we used a 3D convolutional layer with
a kernel size and a stride of (3,3,2), a 3-layer Transformer
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encoder with a 1024 hidden dimension and a single output
head. The Transformer encoder’s weights were trained with
the learning rate of 10~°. To learn the phase modulation,
we used a basis of K = 10 discrete cosine harmonics in
(6). Phase coefficients (,; were learned individually for
each rotor using Adam, with an initial learning rate of 0.001
and decay rate of 0.5 every 20 epochs, starting from the
optimization fine-tuning stage. 160 epochs were used in
all training runs with a batch size of 50. These 160 epochs
were split into four 25-epoch cycles of per-rotor phase opti-
mization followed by 25 epochs of joint optimization for all
modulations. Finally, phase parameters were frozen and the
localization model was trained for 35 additional epochs.

The following physical constraints were imposed as de-
scribed in Section 5.2: wyax = 8000 rad/sec for the angular
velocity constraint (7); auax = 4000 rad/sec? for the angu-
lar acceleration constraint (8). Each room has been sampled
at 3969 spatial points with 64 orientations. This dataset

was split into train, validation, and test sets by the ratios of
80%, 10%, and 10%, respectively. For each location and
orientation, an input of 1025 time steps spanning eight rotor
revolutions (about 0.34 sec) was generated.

7.4. Impact of rotor phase modulation

This set of experiments is designed to evaluate the extent
to which phase modulation learning helps achieve supe-
rior localization accuracy. To this end, we compared our
learned per-rotor phase modulations with a set of constant
modulations, where the pairwise phase differences between
the rotors are fixed in time, and with a set of handcrafted
modulations where the phase differences vary in time. All
learned, handcrafted, and constant modulations fully satis-
fied the physical constraints. The following modulations
were evaluated (refer to Fig 4):

1. Constant — all rotors at constant phase 0.
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2. Slow sine — for all rotors a sine wave with a period of
8 rotor revolutions and peak amplitude of 20 degrees.

3. Fast sine — for all rotors a sine wave for all rotors com-
pleting 10 periods per 8 revolutions and peak amplitude
of 2 degrees.

4. Gradual freq. — a sine wave with a period of 8 rotor
revolutions and peak amplitude of 20 degrees for the
first rotor. For each rotor r, the frequency of the sine is
increased by r and the amplitude is decreased by r.

5. Offset — sine waves of 8 rotor revolutions and peak am-
plitude of 20 degrees, offset by multiples of 90 degrees
for each rotor.

6. Learned — phases learned as described in Section 5.

Localization accuracy of the different phase modulations
is summarized in Figure 7. Phase learning improves lo-
calization by over a factor of x2.7 compared to the best
hand-crafted phase. Figure 5 visualizes the spatial distri-
bution of the localization error using the learned phases
with and without angular aggregation using the geometric
median (11). We also compare phase modulation learned
through the aggregation step. In all cases, 64 orientations
were aggregated. Our conclusion is that aggregation has a
dramatic (over x13) effect on localization accuracy. Learn-
ing through the localization model brings an additional x 1.5
improvement, further characterized by a spatially more uni-
form error distribution.

7.5. Robustness to environment modeling errors

We conducted several tests to assess the sensitivity of the
model to the presence of different sources of environment
modeling errors. To that end, the localization model and the
rotor phases were trained on a nominal environment, while
a perturbed environment was presented at evaluation time.
The following parameters were perturbed in isolation:

1. Uniform room scaling by factors ranging from 0.5 to 2
of area (nominal: 1).

2. Room aspect ratio ranging from 0.5 to 2 while preserv-
ing the room area (nominal: 1).

3. Room shear deformation transforming the square room
into a parallelogram by changing its right angle with
a deformation ranging from 0 (nominal) to 45 degrees
(maximum deformation).

4. Acoustic reflection coefficient v ranging from 0.05 to
0.95 (nominal: v = 0.5).

Localization accuracy in response to these perturbations is
depicted in Figure 6 (A-D). In general, we can conclude that
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Figure 7. Localization accuracy of different phase modulations
in a bm X 5m room. RMS errors are reported in relative units. 1o
confidence intervals were calculated over all room locations (and
orientations in the unaggregated case).

the model can gracefully cope with over 20% deviations of
the nominal environment parameters.

7.6. Robustness to noise

We also assessed the sensitivity of the model to the presence
of sensor and phase noise. The localization model and
the rotor phases were trained on a nominal environment
(noiseless training) as well as in the presence of simulated
noise injected in the relevant parameters (noisy training).

Sensor noise was emulated by adding white Gaussian noise
of different amplitudes to the input sound. Signal-to-noise
ratios (SNRs) ranging from 5 dB to oo were evaluated. For
noisy training, noise was injected in the range of 25 — 35
dB SNR.

Phase noise accounts for inexact control of the rotor phases
that are not controlled exactly. We injected colored noise
with SNRs ranging from 5 dB to oo simulating the effect of
a PD controller. For noisy training in the presence of phase
noise, the noise was only injected in the forward pass while
being masked during backpropagation. Noisy training was
performed at 15 and 24 dB SNR.

Localization accuracy in response to these perturbations
in depicted in Fig. 6 (E-F). The model appears resilient
to realistic levels of sensor and phase noise. As expected,
noisy training improves robustness at the expense of mildly
degraded performance in the noiseless setting.

8. Discussion

In this work, we introduced, to the best of our knowledge
for the first time, a localization algorithm for multi-rotor
aircraft relying on the propulsion noise produced by the
drone’s rotors. We demonstrate in simulation that the active
shaping of the rotors phases substantially improves the lo-
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calization accuracy and evaluate the algorithm robustness
against various types of noise and modeling errors. We also
provide a unique dataset of real rotor pressure field record-
ings in free space as well as a fully-differentiable forward
model.

Limitations and future work. While conceptually extensi-
ble to three dimensions, all our simulations focused on the
two-dimensional localization problem. The sensitivity of a
predominantly flat pressure field to the vertical location will
be assessed in future studies. Our focus in this work was
limited to localization within a known environment (up to
some modeling uncertainties). The ability of the proposed
approach to perform simultaneous localization and mapping
(SLAM) is an exciting possibility left for future research.
Finally, except for the phase noise experiment, we assumed
that the nominal phases are realized perfectly by the aircraft.
In reality, the flight control system is required to trade-off
between vehicle stability and the accuracy of the phase. The
integration of the localization algorithms with a realistic
phase controller is deferred to future research.

Acknowledgements

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 863839). We are grateful to Yair Atzmon, Matan Ja-
coby, Aram Movsisian, and Alon Gil-Ad for their help with
the data acquisition.

References

Antonopoulos, A., Lagoudakis, M. G., and Partsinevelos, P.
A ros multi-tier uav localization module based on gnss,
inertial and visual-depth data. Drones, 6(6):135, 2022.

Baxendale, M. D., Pearson, M. J., Nibouche, M., Secco,
E. L., and Pipe, A. G. Audio localization for robots
using parallel cerebellar models. IEEE Robotics and
automation letters, 3(4):3185-3192, 2018.

Couturier, A. and Akhloufi, M. A. A review on absolute
visual localization for vav. Robotics and Autonomous
Systems, 135:103666, 2021.

Eliakim, I., Cohen, Z., Kosa, G., and Yovel, Y. A fully
autonomous terrestrial bat-like acoustic robot. PLoS com-
putational biology, 14(9):e1006406, 2018.

Fan, X., Lee, D., Chen, Y., Prepscius, C., Isler, V., Jackel,
L., Seung, H. S., and Lee, D. Acoustic collision detec-
tion and localization for robot manipulators. In 2020
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 9529-9536. IEEE, 2020.

Franchi, M., Ridolfi, A., Zacchini, L., and Allotta, B. Exper-
imental evaluation of a forward-looking sonar-based sys-
tem for acoustic odometry. In OCEANS 2019-Marseille,
pp. 1-6. IEEE, 2019.

Hu, J.-S., Chan, C.-Y., Wang, C.-K., Lee, M.-T., and Kuo,
C.-Y. Simultaneous localization of a mobile robot and
multiple sound sources using a microphone array. Ad-
vanced Robotics, 25(1-2):135-152, 2011.

Khattar, F., Luthon, F., Larroque, B., and Dornaika, F. Vi-
sual localization and servoing for drone use in indoor
remote laboratory environment. Machine Vision and Ap-
plications, 32(1):32, 2021.

Kim, T. G. and Ko, N. Y. Localization of an underwa-
ter robot using acoustic signal. The Journal of Korea
Robotics Society.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization. In 3rd International Conference on Learning
Representations, ICLR 2015.

Krul, S., Pantos, C., Frangulea, M., and Valente, J. Visual
slam for indoor livestock and farming using a small drone
with a monocular camera: A feasibility study. Drones, 5
(2):41, 2021.

Shor, T. Multi pilot: Feasible learned multiple acquisition
trajectories for dynamic mri. In Medical Imaging with
Deep Learning, 2023.

Skoda, J. and Bartdk, R. Camera-based localization and
stabilization of a flying drone. In The Twenty-Eighth
International Flairs Conference. Citeseer, 2015.

Strauss, M., Mordel, P., Miguet, V., and Deleforge, A.
Dregon: Dataset and methods for uav-embedded sound
source localization. In 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp.
1-8. IEEE, 2018.

Vargas, E., Scona, R., Willners, J. S., Luczynski, T., Cao, Y.,
Wang, S., and Petillot, Y. R. Robust underwater visual
slam fusing acoustic sensing. In 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp- 2140-2146. IEEE, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2023.

Weiszfeld, E. Sur le point pour lequel la somme des dis-
tances de n points donnes est minimum. 7ohoku Mathe-
matics Journal 43, pp. 355-386, 1937.

Zhang, T., Zhang, H., Li, X., Chen, J., Lam, T. L., and
Vijayakumar, S. Acousticfusion: Fusing sound source



Active propulsion noise shaping for multi-rotor aircraft localization

localization to visual slam in dynamic environments. In
2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 6868—6875. IEEE, 2021.

10



