Tuning-Free LLM Can Build A Strong Recommender Under
Sparse Connectivity And Knowledge Gap Via Extracting Intent

Wengqing Zheng® Noah Fatsi Daniel Barcklow Dmitri Kalaev Steven Yao

Capital One Capital One Capital One Capital One Capital One
Owen Reinert C. Bayan Bruss Daniele Rosa
Capital One Capital One Capital One
Abstract

Recent advances in recommendation with large language models (LLMs) often
rely on either commonsense augmentation at the item-category level or im-
plicit intent modeling on existing knowledge graphs. However, such approaches
struggle to capture grounded user intents and to handle sparsity and cold-start
scenarios. In this work, we present LLM-based Intent Knowledge Graph Recom-
mender (IKGR), a novel framework that constructs an intent-centric knowledge
graph where both users and items are explicitly linked to intent nodes extracted
by a tuning-free, RAG-guided LLM pipeline. By grounding intents in exter-
nal knowledge sources and user profiles, IKGR canonically represents what a
user seeks and what an item satisfies as first-class entities. To alleviate sparsity,
we further introduce a mutual-intent connectivity densification strategy, which
shortens semantic paths between users and long-tail items without requiring
cross-graph fusion. Finally, a lightweight GNN layer is employed on top of
the intent-enhanced graph to produce recommendation signals with low latency.
Extensive experiments on public and enterprise datasets demonstrate that IKGR
consistently outperforms strong baselines, particularly on cold-start and long-tail
slices, while remaining efficient through a fully offline LLM pipeline.

1 Introduction

Modern recommender systems are expected to reason over sparse and evolving interactions while
serving highly personalized needs across vast catalogs. This challenge is acute in enterprise environ-
ments, where recommendations support internal search and knowledge discovery yet must cope with
heterogeneous vocabularies, domain jargon, and long-tail content [1, 2]. Collaborative filtering and
graph-based models have improved user—item representation learning [3—6], while knowledge-aware
recommenders further leverage structured relations for interpretability [7, 8]. Nevertheless, their
effectiveness is bounded by incomplete coverage and weak connectivity, particularly for long-tail and
cold-start cases [9].

To mitigate incomplete coverage and weak connectivity, a prominent direction uses LLMs to inject
commonsense relations, typically complement or substitute links then fuses them with an existing
item KG (CSRec) [10]. This line is attractive because (i) it regularizes sparse graphs with priors
that are broadly valid (jackets complement sweaters; lenses complement cameras), (ii) it is offline-
friendly (relations are generated once and reused), and (iii) it improves item-side coverage where
merchant metadata is incomplete. However, three limitations recur in practice. (1) Granularity &
intent mismatch. Category-level commonsense smooths the space but only loosely correlates with
user-specific intent. Two users who click the same camera page may have very different intents
(e.g., low-light astrophotography vs. lightweight travel kit). Category edges cannot capture these

*wenging.zheng @capitalone.com

Zheng et al., Tuning-Free LLM Can Build A Strong Recommender Under Sparse Connectivity And Knowledge
Gap Via Extracting Intent. Proceedings of the Fourth Learning on Graphs Conference (LoG 2025), PMLR 269,
Hybrid Event, December 10-12, 2025.

Title Suppressed Due to Excessive Length

fine distinctions, which limits cold-start personalization. (2) Cross-graph fusion & alignment risk.
CSRec-style pipelines typically align an LLM-augmented commonsense graph with an existing
metadata/interaction graph. This requires ontology matching, entity resolution, and confidence
thresholds. Errors here introduce structural noise that is hard to debug, and different domains require
repeated re-alignment [8]. (3) Temporal & domain drift. Off-the-shelf commonsense tends to be
domain-neutral and slow-moving. Enterprise or fast-evolving domains (e.g., internal tools, niche
APIs) quickly deviate; commonsense edges may become stale or irrelevant without domain grounding
[11,12].

Another line remains within a pre-existing KG and learns latent mixtures over relations to explain
interactions [13—15]. This method has several strengths: it’s entirely symbolic and structural, avoiding
the need for LLMs; it uses relation paths to capture higher-order semantics; and it doesn’t require
cross-graph fusion because it operates within a single KG. However, these pre-existing KG methods
have several notable gaps. First, the intent remains latent and difficult to audit, as it’s represented
as a vector or a mixture over relations rather than an explicit, human-readable node. This limits
explainability and hinders downstream applications like intent analytics. Additionally, the model is
bounded by the existing KG, meaning that if the base KG is sparse or doesn’t align with how users
actually express themselves, the model struggles to capture missing semantics and often overfits to
popular hubs, which hurts its performance on the long tail [9]. Finally, there is a weak tie to external
knowledge, which means issues like polysemy and synonymy in relation labels (e.g., guide, how-to,
playbook) and unstandardized domain jargon persist, as the model lacks explicit text grounding or
retrieval capabilities [16].

A third family places the LLM directly in the loop — either to synthesize interactions (augment
clicks/purchases) or to produce rankings end-to-end [17-20]. This approach offers benefits such as
broader semantic coverage and simplified modeling with fewer bespoke modules. Howeyver, the trade-
offs are substantial. Inference-time LLM calls introduce significant latency and cost, complicating
service-level agreements and A/B testing at scale, especially for multi-stage recommenders [12].
Furthermore, synthetic interactions often lead to distribution shift and popularity bias, as they
over-represent head items and reflect the LLM’s generic priors rather than the platform’s actual
demand patterns; even with loss calibration, realistic long-tail fidelity is difficult to guarantee [20].
Finally, governance and reproducibility are challenging due to frequent model or LoRA updates
that change behavior and varying privacy filtering across deployments, making it difficult to maintain
offline-online consistency and respond to incidents in enterprise environments [11].

Summarizing the pros and cons of various existing

[Automatic Data Storage Q)]

Personalized Search Results,
o ADW:dat Guarehousd
_oADS: Anal ytical DatacStore>}

iy x|
o ASD: Automatic sharing dai‘a\

L alized Search Results

o ADS: Analytical Data Store
o ADS: Affiliate data source
o ASD: Automatic sharing data

77

+1 /)

Aimed for:

Match //
Auto Data Warehouse
¥ __Mis-spelled to : data process
ata Storage Ia) { arehouse data storage

O
O A
<

methods, we distill three core challenges to LLM
and KG based recommenders.

(i) User intent extraction is an effective way to
clarify and densify the KG, but this step needs
to be more grounded. User profiles, queries, and
enterprise documents are messy: synonyms, ab-
breviations, internal codenames, polysemy, and
multi-lingual snippets all coexist. Extracting what
a user seeks and what an item satisfies requires
more than NER; it needs disambiguation (MLP =

. . e Developer Profile multilayer perceptron vs. marketing launch plan),
Figure 1: In enterprise search, the queries could ormalization to a stable vocabulary, and aggrega-
contain special terminologies and acronyms, jon across sources. Pure LLM prompts help but
where traditional search engines or personalized are prone to hallucination and label drift across
rerankers fail to capture the real intents under paiches. Without external knowledge grounding
such knowledge gap. IKGR addresses the chal- (rerieval of glossaries, wikis, policy pages) and
lenge via injecting fine-grained understanding t0 gchema-aware canonicalization, intent nodes will
textual features. be noisy, redundant, and unmaintainable [11, 16].

This suggests the approach to elevate intent to
first-class nodes extracted and normalized via RAG-guided LLMs.

(ii) The extracted intent needs to be more directly aligned with the existing user and items. The
goal is to shorten semantic paths by adding edges that reflect shared or similar intents (user <+
intent, item < intent), thereby enabling information to flow even when user—item links are missing.

Title Suppressed Due to Excessive Length

This step is better achieved by leveraging the extracted intents to densify a single graph, rather
than through a separate cross-graph alignment stage. If densification requires merging a separate
LLM commonsense graph with an interaction/metadata graph, we re-introduce entity resolution and
ontology mismatch—exactly the failure modes that cause silent errors in production [8, 10].

(iii) The system should be efficient, stable, and scalable for deployment. An efficient system should
keep all heavy LLM work offline. That means handling batch extraction, incremental refresh, and
backfill for new content/users; caching retrieval results; and defining compatible online components
(e.g., a small GNN layer) [12]. To avoid synthetic-data drift [20], improvements should also come
from structural connectivity and explicit intents, not from generating pseudo-interactions.

In response to these needs, we propose LLM-based Intent Knowledge Graph Recommender (IKGR),
an intent-centric knowledge graph framework. First, we instantiate intent nodes and link users
and items to them via a tuning-free, RAG-guided LLM extraction pipeline, grounded in external
knowledge [11, 16]. Second, we introduce mutual-intent connectivity densification, which structurally
improves graph connectivity for sparse and cold-start regimes without relying on cross-graph fusion
[10, 18]. Finally, a lightweight GNN layer learns over the intent-enhanced graph to produce low-
latency recommendations, fully decoupled from online LLM inference [12, 17]. Empirically, IKGR
consistently outperforms strong baselines on public and enterprise datasets, especially on long-tail
slices, while providing interpretable pathways via explicit intents. The contributions of IKGR can be
summarized as follows.

* IKGR introduces an intent-centric KG construction approach that turns user and item intents
into first-class nodes. Using a tuning-free, RAG-guided LLM extractor, it canonically links
users and items to intents with high precision.

» IKGR involves an intent connectivity densification step, which shortens semantic paths between
users and long-tail items, improving sparsity and cold-start performance without cross-graph
fusion.

* IKGR’s pipeline is offline and low-latency online by construction, and consistently outper-
forms state-of-the-art KG or LLM baselines on public and enterprise datasets, with notable
improvements on long-tail and cold-start slices.

2 Related Works

LLM and KG based Recommenders. Recent responses to sparsity and cold start fall into four
camps. (1) LLM-assisted item-side augmentation injects category/attribute-level commonsense (e.g.,
complement/substitute) and fuses it into an item KG (CSRec) [10]. This regularizes sparse graphs
with broadly valid priors and is offline-friendly, yet it struggles to align with user-specific intent
(two camera clicks can imply very different needs), requires brittle cross-graph ontology/entity
alignment, and drifts in fast-moving or enterprise domains without domain grounding [8, 11, 12].
(2) KG-based implicit-intent modeling (KGIN) stays inside a single KG and explains interactions
via latent mixtures over relations [13]. It avoids fusion and can exploit multi-hop paths, but the
intent remains a non-auditable latent vector, performance is bounded by the coverage of the base
KG (hurting the long tail), and weak ties to text/external knowledge leave synonymy/polysemy
unresolved [9, 16]. (3) LLM-as-Recommender / synthetic interactions broaden semantic coverage
or even replace ranking end-to-end [17, 18, 20], but introduce inference-time cost and tail latency,
amplify popularity bias in generated data, and complicate governance and reproducibility under
frequent model updates [11, 12]. (4) Text/multimodal node enrichment improves representations by
attaching reviews/UGC/features to nodes, yet leaves knowledge ungraphized—no new edges/nodes
for message passing or structural densification [21, 22]. Taken together, current trends either inject
coarse item-side priors, keep intent latent and hard to use beyond ranking, or pay online-LLM costs
and stability penalties.

Recommender Approaches Discovering Intent. Recent works explore intent modeling by leverag-
ing external signals such as search queries and knowledge graphs. UDITSR [23] jointly models search
and recommendation by utilizing explicit search queries to infer implicit demand intents, while a
dual-intent translation mechanism captures relationships between inherent intent, demand intent, and
item interactions. Alternatively, knowledge graph-based methods, such as KGIN [24], refine intent
discovery by representing user-item interactions through fine-grained relational paths, improving
interpretability and recommendation quality. These approaches demonstrate that integrating external
intent signals and structured relational modeling enhances intent-aware recommendations.

Title Suppressed Due to Excessive Length

Intent Graph
Creation Process

Step 1: Extract intent entities from user
profiles and item descriptions in training set

Knowledge
y Base
&User Profile Intent Entities

Step 2: Increase connectivity in the intent graph by 1
finding approximate intents for users and items

Top-k approximate
intent candidates Knowledge
ase

User Profile

Retrieval System

Top-k intents +
(excluding

Item
Description
E Semantic

Search

"Select mter;(ls

retrieved intents},

Item Intents frozen direct intents) that are relevant
Description since previous step () J—LM to this text:
o LI {userfitem
LY Vector description)’
“Extract entities from DB Q.0 -
this text that may pproximate

be of interest..." Intents

[Start with a simple user-item Build a KG with intents, shared

interaction graph among users and items The related intents added to KG

Users Items

- =
&

Embedding learning is based on user-item User 3's ion to item 3 is gl User 1 is connected to item 3 through a
direct connection, impaired by edge sparsity with the addition of a shared intent shared approximate intent

Figure 2: IKGR’s graph augmentation steps to build intent knowledge graph with LLM. IKGR
overcomes knowledge gap via in-context learning, avoids synthetic noise by focusing on the simple
node-level intent entity retrieval task, and being light weight and tuning-free.

LLM-Based Interaction Augmentation for Recommender Systems. Gen-RecSys provides a
comprehensive overview of generative models in recommendation, highlighting LLM-driven natural
language understanding and multimodal integration [25]. LLMRec introduces graph augmentation
strategies using LLMs to enrich interaction graphs, refine side information, and denoise implicit
feedback, demonstrating performance gains across benchmark datasets [20]. BLAIR further bridges
language and recommendation by pretraining sentence embeddings on large-scale review data,
improving item retrieval in complex natural language contexts [26]. Additionally, BERT4Rec
employs bidirectional self-attention to model user behavior sequences, overcoming limitations of
traditional sequential models [27]. These studies collectively showcase the potential of LLMs in
augmenting interactions, refining representations, and enhancing recommendation performance.

More related works regarding data sparsity, LLM as recommender, and personalized re-rankers are
detailed in Appendix C.

3 Preliminaries

We leverage this section to present the problem formulation and commonly adopted techniques across
these domains, and introduce our contributions in Section 4.

3.1 Graph Formulation of Recommendation System

We consider the recommendation system where a set of registered users I/ interact over a set of
items Z. Define the interactions as a graph G, and each user « or item i is a node in the graph. The
collection of user-item interactions are the edges in the graph, denoted as £. We employ the implicit
feedback protocol, where each edge of (u, i) implies the user u € U consumes the item ¢ € Z. The
goal is to learn a model that recommends the top-N items for a target user.

The goal is to learn a scoring function that is trained over some graph G’, and predicts positive
interactions among a set of (u,) pairs at inference time. This scoring function is denoted as

go ({(u,) pairs}; G'), parameterized by ©. In mathematical formulation, the objective of the recom-
mendation systems is to maximize the link prediction posterior probability of accurately predicting
all interactions in the dev set:

0F = argénaxp(g@({(% i)}dev; gtrain) = 5dev) ey

where {(u, 1) }qev is the dev set input user-item pairs, Gyin is the graph used to train the model, Egey
is the ground truth positive edges in the dev set inputs. The formulation above means that the model
maximizes the probability of accurately predicting edges on the dev set, while observing certain
training graph Gipin-

Title Suppressed Due to Excessive Length

We study a simple and effective approach to augment the graph, which adds new nodes and edges to
augment the original graph G into a larger graph G U G*. The training objective then becomes:

@* = 3rgglaxp(g®({(% i)}dev; gtrain U g+) == 5dev) (2)

The augmented graph GT is comprised of a unified set of intent nodes and heterogeneous connections
to existing graph nodes, which is visualized in Figure 2 and to be described in Section 4.1.

3.2 Knowledge Graph Convolution Layer

A Knowledge Graph (KG) is a directed graph composed of subject-property-object triple facts. Each
triplet (e, e;,) denotes a relationship r from head entity ey, to tail entity e;.

Similar to KGCN [28], we employ a knowledge graph convolution layer to capture structural
proximity among entities in a knowledge graph. The model learns node embeddings E € RY*¢ and
relation embeddings R € RT=*4, where T is number of relation types, N is number of nodes, and
d is the embedding dimensionality. Denote the input features for some node v as v, the set of entities
directly connected to v as S, then the output embedding is the summation-aggregated neighborhood
entity and relation embeddings:

v = o (W - [v + softmax(R[S,| E[S,]")E[S,]] + b) ©)

where R[S, and E[S,] are the relationship embedding vector set and entity embedding vector set,
each containing |S, | of d-dimensional vectors. W and b are transformation weights and a bias term,
respectively, and o is the activation function.

4 Methodology

The key components of IKGR involve grounded user/item intent extraction with RAG, KG densifica-
tion and a GNN prediction layer.

4.1 Intents Extraction with RAG

Despite significant progress in incorporating side information into recommendation systems, in-
troducing low-quality side information may even undermine what little signal we can glean from
sparse interactions. To address this challenge, the proposed IKGR focuses on an effective and simple
node-level graph augmentation. We leverage an LLM to build a knowledge graph with an additional
type of node: the interaction intent entities. The intent nodes are linked to the existing graph via two
types of edges: exact intent £ and related intent Ep.

In order to address challenges posed by sparse user behavior scenarios, we leverage the LLM to
perform data augmentation. Unlike existing LLM recommendation methods that directly synthesize
user-item interactions [20], we take a more conservative approach, tasking the LLM with a simpler,
more reliable role to minimize noise in the generated outputs. This approach leverages the LLM’s
pre-trained common sense knowledge for accurate distillation.

We note that a forward call to the LLM with appropriate instructions is able to extract an intent entity
set. For example, for item node i, we denote the set of intent entities as ;, Q; = LLM (###ltem
Description: {Item i description} Return a list of entities mentioned in the Item Description that the
user may have intents to interact with).

4.2 Factual Knowledge Access for Grounded Extraction

The intent extraction step assumes a high quality ltem Description paragraph describing the intent.
However, the Item Description can often be poorly-formulated in the datasets, leading to a gap in
properly extracting intent. (i) In the case of enterprise search, the existence of private enterprise
knowledge makes it difficult for the LLM to fully understand the context, and (ii) in the open sourced
datasets case, only the item names are available without appropriate description - though details of
these items are often available via online search or baked into the LLM, so that an agent with web
access is able to augment it easily [29].

We bridge this gap by feeding the intent extraction module with enterprise private knowledge or open-
world knowledge. Specifically, for our adapted enterprise use-case, user profiles and item descriptions

Title Suppressed Due to Excessive Length

often contain abbreviations and domain-specific concepts unknown to LLMs. We curate a knowledge
base of key-value pairs, where keys are the domain-specific abbreviations/concepts, and values are
their explanations. We identify any such terminology present in the user profile or item description
and append their corresponding explanations to the prompt under a ###Concept Explanation tag.
This enriches the context for the LLM, enabling better understanding without the need for fine-tuning.
For open source datasets, the item name is first expanded into a paragraph summary by an LLM agent
before it feeds into the entity extraction module.

4.3 Intent Connectivity Enrichment via RAG

The connectivity of the extracted intents could follow a very long-tail distribution, meaning that the
majority of intent nodes might only link to few user/item nodes. To mitigate these challenges, a
two-round process is used to extract and densify the intents KG. In the first round, a simple prompt
template is used to generate specific entities, linking users and items to intent nodes. However, this
initial graph may be sparsely connected, with many intent nodes linked to only a few users/items. To
address this, a second round enriches connectivity by linking additional user/item nodes to existing
intent nodes, avoiding the computationally expensive alternative of grouping similar intents (O(N?)
complexity)

In the second round, each user and item node is connected to additional intent entities from the
fixed pool of intents generated in the first round. We call these new connections "related intents".
During this second round of related intent selection, the existing intents for a given user/item node
are excluded from the retrieval step.

Denote the intent entities obtained after the first round extraction as €). Given a user profile
or an item description text, the second round intent extraction prompt can be formulated as:
LLM (###Knowledge Context: ... ### Options: R(z, N'\Q,, K) What are the intents mentioned
in x that are the most relevant?) , where R(z, 2\, K) retrieves a group of K intents that are
semantically similar to the input text z, yet have not been extracted during the first round output (£2%).
The full prompt is provided in Appendix A.

New users and items undergo this two-round extraction to connect them to the existing, well-connected
knowledge graph. Intent construction is always applied to items (representing an item satisfying a
user intent). When available, user profile data is also used for intent construction, and the resulting
user and item intent nodes are merged using case-insensitive exact matches. Both rounds prompt the
LLM for structured output.

4.4 Generating Recommendation Candidates with Graph Module

After the KG has been built, a graph module is used to generate the recommendation candidate list.
While multiple combinations of GNN architectures and loss functions could fit, we find a simple
translation layer based architecture [30] that injects the learned intents as structural priors outperforms
vanilla GNN options. We leverage this intent prior GNN as the default option in the experiment
sections, and discuss the details in Appendix B. We also benchmark across three other options and
show results in Section 5.3.

5 Experiments

In this section, we verify the performance of the proposed recommender using both proprietary and
open-source data 2. For the proprietary data, we introduce IKGR to an enterprise knowledge search
platform to test IKGR’s effectiveness in re-ranking search results. We also benchmark against existing
baselines on four open-source recommendation datasets to verify the results in diverse scenarios. The
details of these datasets are presented in Table 1.

We use Llama-3.1-8B model for LLM inference, and all-mpnet-base-v2 from sentence transformer
for encoding textual features. We retrieve the top 100 prebuilt intent candidates in the kNN retrieval
step of RAG. We apply an 8:1:1 ratio when sampling the positive/negative edges for train/dev/test
sets in the graph.

5.1 Baselines and Datasets

Enterprise Search. In the enterprise search setting, a set of developers query the search engine to
search for datasets published by other developers within the enterprise. The search engine first uses

2code release: https://github.com/CapitalOne-Research/IKGR

https://github.com/CapitalOne-Research/IKGR

Title Suppressed Due to Excessive Length

Table 1: Statistics of datasets: Density is the ratio of interactions over #Users-#Items, #IntEdges
is the total number of connectivities between intent node and other graph nodes. AvgIntDeg is the
average intent node degree.

Datasets Search Beauty Books Steam Yelp2022
#Users 36033 40226 251394 281428 1987898
#Items 872678 54542 25606 13044 150 347
#Inter 3.5M 0.35M 3.2M 3.5M 6.9M

Density 0.011% 0.02% 0.05% 0.095% 0.002%
#Intents 495285 39305 45932 53940 65040
#IntEdges 69M 209K 390K 231K 409K
AvglIntDeg 13.9 53 8.5 43 6.3

Table 2: Performance comparison of different methods. Bold scores are the best in each row, while
underlined scores are the second best.

Datasets Metric KGIN CSRec HAKG LLMRec RippleNet KGCN KTUP IKGR
HR@1 0.0074 0.0079 0.0080 0.0075 0.0024 0.0051 0.0078 0.0086
HR@5 0.0162 0.0156 0.0187 0.0158 0.0118 0.0161 0.0166 0.0202
Search HR@10 0.0263 0.0258 0.0255 0.0253 0.0218 0.0232 0.0262 0.0267
NDCG@5 0.0142 0.0144 0.0139 0.0148 0.0068 0.0101 0.0137 0.0151
NDCG@10 0.0154 0.0153 0.0161 0.0164 0.0087 0.0123 0.0142 0.0172
MRR 0.0135 0.0136 0.0128 0.0143 0.0091 0.0100 0.0130 0.0153
HR@1 0.1103 0.1401 0.1623 0.1563 0.0532 0.0984 0.1783 0.1369
HR@5 0.3092 02044 0.2984 0.2803 0.1972 0.3120 0.3388 0.3316
Beauty HR@10 04194 04293 0.4817 0.4204 0.3695 0.4204 04610 0.4846
NDCG@5 0.2398 0.2390 0.2184 0.2293 0.1307 0.1729 0.2583 0.2806
NDCG@10 0.2643 0.2433 0.2580 0.2930 0.1713 0.2345 0.2814 0.2939
MRR 0.2294 0.2300 0.2402 0.2203 0.1382 0.2254 0.2581 0.2641
HR@1 0.1218 0.1194 0.1177 0.1020 0.0480 0.0853 0.1125 0.1251
HR@5 0.2983 0.3093 0.2764 0.2674 0.1691 0.2465 0.2652 0.3197
Books HR@10 0.3204 03449 0.3781 0.4094 0.3553 0.3582 0.3614 0.4248
NDCG@5 0.1910 0.1980 0.1874 0.1877 0.1031 0.1579 0.1921 0.2097
NDCG@10 0.2573 0.2673 0.2963 0.2673 0.1607 0.2016 02415 0.2814
MRR 0.2130 0.2203 0.2599 0.2563 0.1407 0.1832 02193 0.2672
HR@1 0.0783 0.0847 0.0960 0.0744 0.0304 0.0641 0.1060 0.1095
HR@5 0.2653 0.2483 0.2665 0.2174 0.1429 0.1966 0.2445 0.2759
Steam HR@10 0.2901 0.2899 0.3170 0.3237 0.2735 03218 03126 0.3574
NDCG@5 0.1691 0.1335 0.1221 0.1694 0.0915 0.1496 0.1614 0.1735
NDCG@10 0.1739 0.1562 0.1771 0.1884 0.1161 0.1905 0.1809 0.2212
MRR 0.2007 0.1965 0.1882 0.1872 0.1294 0.1528 0.1957 0.2168
HR@1 0.0771 0.0936 0.1077 0.0724 0.0495 0.0917 0.1005 0.0989
HR@5 0.2766 0.2355 0.2687 0.2211 0.1513 0.2405 0.2395 0.2869
Yelp2022 HR@10 0.3108 03362 0.3760 0.3228 0.2996 0.3395 03317 0.3966
NDCG@5 0.1733 0.1823 0.1995 0.1931 0.1201 0.1397 0.2067 0.2078
NDCG@10 0.2034 0.2164 0.2234 0.2127 0.1225 0.1861 02145 0.2277
MRR 0.2093 0.2029 0.1842 0.1980 0.1356 0.1578 0.1906 0.2100

BM25 [31] to retrieve a list of item candidates, then the IKGR 1is applied to rerank the search results.
Evaluations are done over user’s feedback on how high the item of interest could be ranked among
the final reranked list. In this setting, the items are enterprise datasets, which consist of text features
such as dataset name, description, column names, ID labels, etc. The users are all registered within
the enterprise and their developer profiles could be collected through separate channels to offer a
hint about their dataset consumption preference. The IKGR is trained over historical user-dataset
consumption interactions collected from separate channels. This dataset is labeled as Search in
dataset description table and result tables.

Books, Beauty. These datasets are obtained from Amazon review? in [32], which contains a variety
of categories. We utilize the Books and Beauty categories. We leverage the features of title, sales
type, sales rank, categories, price, and brand.

Steam”. This is a dataset collected from Steam [33], a large online video game distribution platform.
We leverage the item features of app name, genres, publisher, sentiment, specs, tags.

Yelp2022°. This is a popular dataset for business recommendation. Given the large size, we use the
transaction records after January 31st, 2022. We treat the categories of businesses as attributes for
items, and user compliment types as attributes for users.

*http://jmcauley.ucsd.edu/data/amazon/
‘nttps://cseweb.ucsd.edu/~jmcauley/datasets.htmlésteam data
‘https://www.yelp.com/dataset

http://jmcauley.ucsd.edu/data/amazon/
https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data
https://www.yelp.com/dataset

Title Suppressed Due to Excessive Length

We employ Hit Ratio (HR), Normalized Discounted Cumulative Gain (NDCG), and Mean Reciprocal
Rank (MRR) as evaluation metrics. We report HR and NDCG with k£ = 1, 5, 10. For all these metrics,
the higher the value, the better the performance.

To verify the effectiveness of our method, we compare it with the following representative baselines.
KGIN [13] extracts non-readable intent in the latent embedding space. CSRec [10] adds new nodes
into KG with LLM, then post align the graph. HAKG [14] is a hierarchy KG built upon the hyperbolic
space. ConvINCF [34] employs conv layers to learn correlations in neural collaborative filtering.
FPMC [35] captures users’ general taste as well as their sequential behaviors by combining MF with
first-order Markov chains. LLMRec [20], an LLM as interaction synthesizer approach. RippleNet [7]
uses a single layer of embedding translation by applying transH to user-item interaction. KGCN [28],
a KG based GNN that captures inter-item relatedness. KTUP [30] uses a single layer of embedding
translation to user-item interaction.

5.2 Result Analysis

Observing the results in Table 2, different datasets have different levels of knowledge gaps, with the
Search dataset possibly having the largest knowledge gap for the LLM. This could be indicated by
the number of intents and average intent node degrees in Table 1, where the Search dataset’s intent
count is about one magnitude larger than other datasets. From the approaches perspective, IKGR
shows new state-of-the-art performances especially on the Search dataset.

Each reported score in Table 2 corresponds to the average
of five independent runs with different random seeds. To
assess statistically significancy, we employed a two-tailed
paired ¢-test with o« = 0.05 for the per-run results of IKGR Thigset Best Bascline pvalue 95% CI (IKGR)

Table 3: Statistical significance test with
baselines.

against the strongest baseline shown in Table. 3. The best ~scarch LLMRec 0021 [0.0148,0.0158]

1 1 1 Beauty KTUP 0.038 [0.2605, 0.2677]
baseline is selected per datqset accord'mg to thf.: average peud HAKG 003 (02614 0.2750]
MRR score. A result is considered statistically significant stam KTUP 0018 [0.2089, 0.2347]

Yelp2022 KGIN 0.061 [0.2055, 0.2144]

if the null hypothesis (no difference between means) is
rejected at the p < 0.05 level. In addition, we report 95%
confidence intervals computed via bootstrapping (with 10,000 resamples) to quantify the uncertainty
of performance estimates. As shown in Table 3, the performance gains of IKGR are statistically
significant (p < 0.05) on four out of five datasets. Even on the Yelp2022 dataset, where margins are
smaller, IKGR maintains a consistent advantage of performance gap from baselines.

5.3 Ablation Studies

To investigate the influence of each component over the enterprise search data, we conduct a list
of experiments that drop each component in the proposed pipeline and compare with the original
pipeline on the Search and Beauty dataset. Results are presented in Table 4.

Table 4: Ablation Study

Dataset Versions HR@! HR@5 HR@10 NDCG@5 NDCG@10 MRR
Optl. Int. Prior GNN 0.0086 0.0202 0.0267 0.0151 0.0172 0.0153
Opt2. Vanilla GNN 0.0078 0.0184 0.048 0.0132 0.0152 0.0130
Search Opt3. Vanilla Trans. 0.0082 0.0193 0.0256 0.0140 0.0164 0.0139
Opt4. Vanilla Scoring 0.0084 0.0199 0.0258 0.0142 0.0161 0.0137
No Related Intent 0.0077 0.0185 0.0254 0.0147 0.0163 0.0134
No Intent 0.0073 0.0175 0.0240 0.0131 0.0150 0.0125
Optl. Int. Prior GNN 0.1369 0.3316 0.4846 0.2806 0.2939 0.2641
Opt2. Vanilla GNN 0.1294 0.3201 0.4299 0.2537 0.2674 0.2502
Beauty Opt3. Vanilla Trans. 0.1311 0.3193 0.4272 0.2519 0.2566 0.2439
Opt4. Vanilla Scoring 0.1332 0.3214 0.4249 0.2555 0.2579 0.2522
No Related Intent 0.1266 0.3284 0.4462 0.2643 0.2741 0.2536
No Intent 0.1183 0.2984 0.4093 0.2463 0.2453 0.2399

In Table 4, Optl. Int. Prior GNN means the full IKGR version without component dropping. Opt2.
Vanilla GNN means to use a plain GNN to make predictions over the generated user-intent-item graph.
Opt3. Vanilla Trans. means removing both GNN and intent-aware scoring function, and only use a
plain graph translation layer. Opt4. Vanilla Scoring means removing the intent prior scoring. These
four options correspond to four candidates in modeling the intent graph, all detailed in Appendix B.
No Related Intent means dropping the second round of related intent retrieval using RAG, and only
exact intent edges are presented in the graph, without the related intent edges. No Intent drops all
intent nodes and simply use the GNN of IKGR to predict over user-item graph.

Title Suppressed Due to Excessive Length

As observed in the results shown in Table 4, the relative contributions of each components of IKGR
can be estimated. The most significant observation is that the intent edges augmentation steps as a
whole helps to densify the graph almost twice, as reflected by the #IntEdges and #Inter in Table 1,
and the MRR performance correspondingly improved 22% (0.0125 to 0.0153 in Search dataset). This
confirms that adding intent relations to the graph improves the IKGR performance while densifying
the graph with meaningful knowledge connectivities.

The proposed intent node embedding improves the performance by offering a straightforward em-
bedding structure between user and item vectors, hence guiding the learning procedure, as shown in
Table 4 that learning the relation vectors from scratch and removing the intent based scoring both
harms the performance.
5.4 Cold Start Metrics
We use the Books, Steam, Yelp2022 datasets to evaluate the cold start setting. The evaluation set
is chosen to be a subset of edges whose end nodes both have less than or equal to 3 interactions
(node degrees). The results are presented in Table 5. As can be seen from the table, IKGR achieves
better performance than other methods on the tail edge set, validating its effectiveness of graph
augmentation in dealing with cold start.

Table 5: Performance comparison over tail edges

Dataset Books Steam Yelp2022
Setting HR@10 NDCG@I0 MRR | HR@10 NDCG@I0 MRR | HR@10 NDCG@I10 MRR
IKGR 0.4085 0.2791 0.2630 | 0.3482 0.2218 0.2005 | 0.3684 0.2191 0.1904
ConvNCF | 0.2699 0.1373 0.1382 | 0.2546 0.1548 0.1225 | 0.2436 0.1256 0.1194
FPMC 0.2810 0.1427 0.1326 | 0.2897 0.2010 0.1453 | 0.2573 0.1634 0.1429
KTUP 03114 0.2044 0.1679 | 0.3340 0.2186 0.1898 | 0.3104 0.1944 0.1774
5.5 Hyperparameter Sensitiveness Table 6: Results on hyperparameter configurations

To test how model behaves under different hy- -

. Configuration HR@10 NDCG@10 MRR
perparameters, we computed top-k in the kNN = 190 Fcomv=T1 04262 09835 02711
retrieval step of RAG, and number of GNN lay— k= 100: #eonv=1 0.4248 0.2814 0.2672
ers in the model architecture. These experiments k = 80, #conv= 1 0.3610 0.2619 0.2520

are conducted on the Books dataset. k = 50, #conv= 1 0.3023 0.2205 0.1945
k = 100, #conv= 2 0.3735 0.2517 0.2482

The hyperparameter sensitivity results are
shown in Table 6. As seen from the table, the
model kNN saturates at k=100, which validates our architecture choice of k& that both ensures
performance and avoid over lengthy token sequences.

5.6 Impact of Knowledge Base Table 7: Statistics of extracted intents

To quantify the influence of the knowledge base, we -

use the enterprise search data to compare the ex- Metric - Value
Average num entity with KB 15.5

tracted intent sets for two scenarios: the knowledge
base appended and dropped. We computed the av-
erage number of entity extracted, and the Jaccard

Similarity Coefficient (.J(A, B) = {4531) for the

entities under these two settings in Table 7.

Average num entity without KB 14.5
Avg Jaccard Similarity Coefficient 0.892

The result shows that the average number of intents does not differ much, and the Jaccard Similarity
Coefficient is close to 1, meaning the knowledge base has limited impact on the extracted entity
set. Our intention with the knowledge base is to serve as a lightweight information source in the
event of heavy domain gap, rather than a bottleneck key component. Indeed, we have made the LLM
generation task as a simple entity extraction task, hence the impact of missing structured knowledge
is minimized.

6 Conclusions

In this work, we propose IKGR, a knowledge graph based recommender built with a Large Language
Model (LLM). The proposed method features a data augmentation step to explicitly extract entities
that the users have intents to interact with, and learns node embeddings over the knowledge graph
using an embedding translation layer to combine the intent structure knowledge. This work takes
the enterprise search personalization as a case study, and verifies that (1) when knowledge gap
exists, using a simplified node-level augmentation task helps learn embeddings, while synthesizing
interactions harms the model performance and introduces noise; (2) injecting intent structure prior
into the modeling helps better capturing the semantic structure and boosts embedding learning.

Title Suppressed Due to Excessive Length

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Chetan Verma, Michael Hart, Sandeep Bhatkar, Aleatha Parker-Wood, and Sujit Dey. Improving
scalability of personalized recommendation systems for enterprise knowledge workers. IEEE
Access, 4:204-215, 2015. 1

Deepjyoti Roy and Mala Dutta. A systematic review and research perspective on recommender
systems. Journal of Big Data, 9(1):59, 2022. 1

Yehuda Koren, Steffen Rendle, and Robert Bell. Advances in collaborative filtering. Recom-
mender systems handbook, pages 91-142, 2021. 1

Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian Wu, Peng
Jiang, Junfeng Ge, Wenwu Ou, et al. Personalized re-ranking for recommendation. In Proceed-
ings of the 13th ACM conference on recommender systems, pages 3—11, 2019. 17

Weiwen Liu, Qing Liu, Ruiming Tang, Junyang Chen, Xiuqiang He, and Pheng Ann Heng.
Personalized re-ranking with item relationships for e-commerce. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, pages 925-934,
2020. 17

Chandler Zuo, Jonathan Castaldo, Hanqing Zhu, Haoyu Zhang, Ji Liu, Yangpeng Ou, and Xiao
Kong. Inductive modeling for realtime cold start recommendations. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 6400-6409, 2024.
1,16

Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi Guo.
Ripplenet: Propagating user preferences on the knowledge graph for recommender systems.
In Proceedings of the 27th ACM international conference on information and knowledge
management, pages 417-426, 2018. 1, 8, 16

Hongwei Wang et al. Knowledge-aware recommendation with graph neural networks: A survey.
arXiv preprint arXiv:2112.14936,2021. URL https://arxiv.org/abs/2112.14936.
1,2,3

Yankai Chen, Menglin Yang, Yingxue Zhang, Mengchen Zhao, Zigiao Meng, Jian Hao, and
Irwin King. Modeling scale-free graphs for knowledge-aware recommendation. arXiv preprint
arXiv:2108.06468,2021. URL https://arxiv.org/abs/2108.06468.1,2,3

Shenghao Yang, Weizhi Ma, Peijie Sun, Min Zhang, Qingyao Ai, Yiqun Liu, and Mingchen
Cai. Common sense enhanced knowledge-based recommendation with large language model.
arXiv preprint arXiv:2403.18325, 2024. URL https://arxiv.org/abs/2403.18325.
1,3,8

<first name> Author et al. Large language models for knowledge graph construction: A survey.
In International Conference on Learning Representations (ICLR), OpenReview, 2023. URL
https://openreview.net/pdf?id=MipDf3C38E. 2,3

<first name> Zhang et al. LIm-enhanced knowledge graphs for recommendation: Opportunities
and challenges. arXiv preprint arXiv:2402.13840,2024. URL https://arxiv.org/abs/
2402.13840.2,3

Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu, Xiangnan He,
and Tat-Seng Chua. Learning intents behind interactions with knowledge graph for recommen-
dation. In Proceedings of The Web Conference (WWW), pages 878—887. ACM / IW3C2, 2021.
URL https://arxiv.org/pdf/2102.07057.2,3,8

Yuntao Du, Xinjun Zhu, Lu Chen, Baihua Zheng, and Yunjun Gao. Hakg: Hierarchy-aware
knowledge gated network for recommendation. In Proceedings of the 45th international ACM
SIGIR conference on Research and development in Information Retrieval, pages 1390-1400,
2022. 8

Yankai Chen, Menglin Yang, Yingxue Zhang, Mengchen Zhao, Ziqiao Meng, Jianye Hao,
and Irwin King. Modeling scale-free graphs with hyperbolic geometry for knowledge-aware
recommendation. In Proceedings of the fifteenth ACM international conference on web search
and data mining, pages 94-102, 2022. 2

<first name> Zhao et al. Learning from rich external knowledge for recommendation. arXiv
preprint arXiv:2204.04959,2022. URL https://arxiv.org/abs/2204.04959. 2,3

10

https://arxiv.org/abs/2112.14936
https://arxiv.org/abs/2108.06468
https://arxiv.org/abs/2403.18325
https://openreview.net/pdf?id=MipDf3C38E
https://arxiv.org/abs/2402.13840
https://arxiv.org/abs/2402.13840
https://arxiv.org/pdf/2102.07057
https://arxiv.org/abs/2204.04959

Title Suppressed Due to Excessive Length

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

<first name> Li et al. Recformer: Large language model for recommendation. arXiv preprint
arXiv:2305.07001, 2023. URL https://arxiv.org/abs/2305.07001. 2,3

<first name> Lin et al. Alignrec: Alignment-enhanced recommendation with large language
models. arXiv preprint arXiv:2306.10933,2023. URL https://arxiv.org/abs/2306.
10933.3

Priyanka Dey, Daniele Rosa, Wenqing Zheng, Daniel Barcklow, Jieyu Zhao, and Emilio
Ferrara. Gravity: A framework for personalized text generation via profile-grounded synthetic
preferences. arXiv preprint arXiv:2510.11952, 2025.

Wei Wei, Xubin Ren, Jiabin Tang, Qinyong Wang, Lixin Su, Suqi Cheng, Junfeng Wang,
Dawei Yin, and Chao Huang. Llmrec: Large language models with graph augmentation for
recommendation. In Proceedings of the 17th ACM International Conference on Web Search
and Data Mining, pages 806-815, 2024. 2,3,4,5, 8

Hyeyoung Ko, Suyeon Lee, Yoonseo Park, and Anna Choi. A survey of recommendation
systems: recommendation models, techniques, and application fields. Electronics, 11(1):141,
2022. 3

Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenxuan Tu, Siwei Wang, Sihang Zhou, and
Xinwang Liu. Learn from relational correlations and periodic events for temporal knowledge
graph reasoning. In Proceedings of the 46th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval Conference on Research and Development in
Information Retrieval, pages 1559-1568, 2023. 3

Yuting Zhang, Yiqging Wu, Ruidong Han, Ying Sun, Yongchun Zhu, Xiang Li, Wei Lin, Fuzhen
Zhuang, Zhulin An, and Yongjun Xu. Unified dual-intent translation for joint modeling of search
and recommendation. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 6291-6300, 2024. 3

Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu, Xiangnan He,
and Tat-Seng Chua. Learning intents behind interactions with knowledge graph for recommen-
dation. In Proceedings of the web conference 2021, pages 878-887, 2021. 3

Yashar Deldjoo, Zhankui He, Julian McAuley, Anton Korikov, Scott Sanner, Arnau Ramisa,
René Vidal, Maheswaran Sathiamoorthy, Atoosa Kasirzadeh, and Silvia Milano. A review of
modern recommender systems using generative models (gen-recsys). In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 64486458,
2024. 4

Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian McAuley. Bridging
language and items for retrieval and recommendation. arXiv preprint arXiv:2403.03952, 2024.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec:
Sequential recommendation with bidirectional encoder representations from transformer. In Pro-
ceedings of the 28th ACM international conference on information and knowledge management,

pages 1441-1450, 2019. 4

Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, and Minyi Guo. Knowledge graph convolu-
tional networks for recommender systems. In The world wide web conference, pages 3307-3313,
2019. 5,8

Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo Chen, Ruiming
Tang, Weinan Zhang, and Yong Yu. Towards open-world recommendation with knowledge
augmentation from large language models. In Proceedings of the 18th ACM Conference on
Recommender Systems, pages 12-22,2024. 5

Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua. Unifying knowledge
graph learning and recommendation: Towards a better understanding of user preferences. In
The world wide web conference, pages 151-161, 2019. 6, 8, 14

John S Whissell and Charles LA Clarke. Improving document clustering using okapi bm?25
feature weighting. Information retrieval, 14:466-487,2011. 7

J. J. McAuley, C. Targett, Q. Shi, and A. van den Hengel. Image-based recommendations on
styles and substitutes. In SIGIR 2015, pages 43-52, 2015. 7

11

https://arxiv.org/abs/2305.07001
https://arxiv.org/abs/2306.10933
https://arxiv.org/abs/2306.10933

Title Suppressed Due to Excessive Length

[33] W.-C. Kang and J. J. McAuley. Self-attentive sequential recommendation. In ICDM 2018,
pages 197-206, 2018. 7

[34] Xiangnan He, Xiaoyu Du, Xiang Wang, Feng Tian, Jinhui Tang, and Tat-Seng Chua. Outer
product-based neural collaborative filtering. arXiv preprint arXiv:1808.03912,2018. 8

[35] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized
markov chains for next-basket recommendation. In Proceedings of the 19th international
conference on World wide web, pages 811-820, 2010. 8

[36] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information
processing systems, 26,2013. 14

[37] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by
translating on hyperplanes. In Proceedings of the AAAI conference on artificial intelligence,
volume 28, 2014. 14

[38] Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, and
Karthik Subbian. Cold brew: Distilling graph node representations with incomplete or missing
neighborhoods. arXiv preprint arXiv:2111.04840, 2021. 16

[39] Sein Kim, Hongseok Kang, Seungyoon Choi, Donghyun Kim, Minchul Yang, and Chanyoung
Park. Large language models meet collaborative filtering: An efficient all-round 1lm-based
recommender system. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 1395-1406, 2024. 17

[40] Junda Wu, Cheng-Chun Chang, Tong Yu, Zhankui He, Jianing Wang, Yupeng Hou, and Julian
McAuley. Coral: collaborative retrieval-augmented large language models improve long-
tail recommendation. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 3391-3401, 2024. 17

[41] Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
effective and efficient tuning framework to align large language model with recommendation.
In Proceedings of the 17th ACM Conference on Recommender Systems, pages 1007-1014, 2023.
17

[42] Huizhi Liang, Yue Xu, Yuefeng Li, Richi Nayak, and Xiaohui Tao. Connecting users and items
with weighted tags for personalized item recommendations. In Proceedings of the 21st ACM
conference on Hypertext and hypermedia, pages 51-60, 2010. 17

[43] Ariel Evnine, Stratis Ioannidis, Dimitris Kalimeris, Shankar Kalyanaraman, Weiwei Li, Israel
Nir, Wei Sun, and Udi Weinsberg. Achieving a better tradeoff in multi-stage recommender
systems through personalization. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 4939—-4950, 2024. 17

[44] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan
Wang, and Ji-Rong Wen. S3-rec: Self-supervised learning for sequential recommendation with
mutual information maximization. In Proceedings of the 29th ACM international conference on
information & knowledge management, pages 1893-1902, 2020. 17

12

Title Suppressed Due to Excessive Length

A Full Prompts And Visualizations

For the enterprise search scenario, the full prompt in the first round of intent generation is provided
as follows.

Task

You are given a short paragraph of description of a dataset.
Extract a few entities mentioned in the description that
the users may be interested in when they consume this
dataset. Acronyms can also be included in your answer, if
any. Acronyms connected via underscores can be broken
apart and partially used, so as to only include the core
part into your answer. Please discard entities that have
too general and broad meaning, and only pick those
specific to this dataset. Please also discard entities
that are over-specific, such as date or seemingly highly
specified serial numbers/markers.

Please return answer in the format of python list of string,
such as: ["answer 1", "answer 2"]. Only return the python
list of string. Do NOT return any other explaination words.

Dataset Description:

{desc}

Answer:

The full prompt in the second round of intent linkage densification is provided as follows.

You are given a short paragraph of description of a dataset,
and a list of entity candidates. Based on the available
entity candidates, which of them are likely to attract the
user’s attention, if the user has proven interest in the
dataset? Please include related entities, which may not be
diretly mentioned in the dataset description. Please make
selections only from the available options given below.
Please return answer in the format of python list of
string.

Dataset Description:

{desc}

Available Options:

{RAG_options}

Important Notes:

1. You can ONLY choose from the Available Options above. If
certain entity is not mentioned in the Available Options,
you CANNOT return that entity.

2. Please return as many related entities as possible.

3. Please only return the python list of string. Do NOT
return any other explaination words.

Answer:

For the open source dataset (e.g. Steam), the prompt for description summarization using the open
world knowledge agent is as follows.

{item_name} is a game on Steam. Collect necessary information
for this game, and write one paragraph summary of why a
user is potentially interested in it. Use objective tone.

The above prompt converts the item name into a paragraph of LLM summary. Then LLM is used to
extract the intent using a similar prompt as above. An example of extracted intents for steam dataset
is as follows.

13

Title Suppressed Due to Excessive Length

Origin item name: Half-Life 2

LLM summary: Half-Life 2 is a landmark first-person shooter
that remains highly relevant today for its exceptional
storytelling, physics-based gameplay, and rich
world-building. Players could be interested in it because
it offers more than just combat; the game’s silent
protagonist, Gordon Freeman, navigates a deeply immersive
narrative that unfolds entirely through gameplay, pulling
you into a desperate human resistance against an alien
empire. The revolutionary Gravity Gun allows for creative
problem-solving and combat by manipulating objects, while
the game’s detailed environments and memorable
characters—like the resourceful Alyx Vance-create a
compelling and lasting experience that set a new standard
for the genre. Ultimately, it’s a masterclass in game
design that is both historically significant and still
incredibly fun to play.

Extracted Intent entities: ["storytelling", "physics-based
gameplay", "world-building", "combat", "narrative", "human
resistance", "alien empire", "gravity gun",
"problem-solving", "characters", "alyx vance", "game
design"]

B Intent Prior GNN

Below we specify the details of intent prior GNN and how it improves scoring with intent awareness
at test time.

B.1 Knowledge Graph Embedding Translation Formulations

Due to the incomplete nature of KGs, KG completion is often leveraged as a self-supervised learning
task, which predicts the missing entity ej, or e; for a triplet (ep, e¢, 7). To this end, TransE [36],
a popular knowledge graph embedding model commonly used for KG completion, enforces a
translation in the embedding space: e, + e, =~ e;. This embedding translation is achieved via the
following training objective: min ¥ || ep +r —e; |
€ep,I'es

One issue with TransE embedding is that a single relation type may correspond to multiple head
entities or tail entities, leading to significant 1-to-N, N-to-1, and N-to-N issues [37]. As an improve-
ment, TransH [37] learns different representations for an entity conditioned on different relations. It
assumes that each relation owns a hyperplane, and the translation between head entity and tail entity
is valid only if they are projected to the same hyperplane. It defines an energy score function for a
triplet as follows:

flen,ex) =|l ey +r—ej || S

where a lower score of f(ey, e;,) indicates that the triplet is likely valid. eﬁ and e;- are projected
entity vectors:

1 T
€, =€, — W, e,w, 5)

etL =e; — W;Fetw,, 6)

where w,. and r are two learned vectors for a specified relation r. w,. denotes the projection vector of
its corresponding hyperplane where r is the relationship embedding vector.

Finally, the training of TransH encourages the discrimination between valid triplets and incorrect
ones using margin-based ranking loss. Similar to KTUP [30], we employ:

14

Title Suppressed Due to Excessive Length

uy

(i1)
uy § iz) Emb Translation Layer Intent score
ug (is) min ¥ [ey+r—e | Yui = maz /6) €q0) - 21 T0=2) Einalecorg
ep,r.ep <

R eQyn!

Interaction graph Yui +)\Zu i
y y

o,

(%
‘ User Item Intent "/ L\L.
\ emb emb emb
. 71 : user consumes dataset
T : user contains exact intent
& n (en,er,7) Embedding matching score 2 i

[T
[
[

KG Conv Layer T3 : user contains related intent

N T4 : item satisfies exact intent

Zui = (eu €i) 75 : item satisfies related intent

" Eq. (3)
Knowledge graph

Figure 3: The intent prior GNN in IKGR. This module is the knowledge graph convolution layer
followed by an embedding translation layer, where the intent translation is encoded as structure prior
in the embedding space.

Lxka=— Y, logo[f(ene;,v7) = f(en,ef,r")])
(eh,et ,r+)EICg
(en,e; ,r7)EKG™

where G~ contains corrupted triplets constructed by randomly sampling a tail entity and relation.
In practice, weight decay and normalization-enforcing losses are also applied to prevent overfitting.

B.2 Intent Prior Injected Translation layers

Having obtained the intent nodes from items and users, we train a knowledge graph-based GNN
to predict user-item interaction probabilities. The architecture is shown in Figure 3, which is a
knowledge graph convolution layer followed by a transH layer. We note that this component of the
system can be swapped for any KG-compatible graph learning method. We posit that as long as
the node-level features are efficiently decoupled and connections are made, semantic meaning can
be effectively captured even with a relatively simple graph model. Therefore, we leverage a simple
embedding translation-based approach to verify that building intent-item and intent-user connections
helps enable more accurate user-item interaction predictions even with simpler architectures. This
GNN module is implemented for the ease of the benchmarking and ablation study, so that the gain
from the intent graph augmentation can be readily observed. Next, we discuss the embedding
translation mechanisms and how we connect the user-item preference translation with the newly
added intent embeddings at inference time.

First, we leverage a pre-trained natural language encoder to process textual node features into
embeddings as input to IKGR. Given the raw embedding input, we apply a KG convolution layer
described in Equation 3 to pass signals among intent, item, and user nodes to prepare for interaction
prediction. Then, the KG embedding translation layer is applied to encourage semantic meaning
alignment given the identified intent nodes in the graph.

In the intent-augmented knowledge graph, there are three main types of relations: user possesses
intent, item satisfies intent, and user consumes item. For the first two relation types, we leverage
Equation 7 to train relation representation r and projection vector w,. without modification. For
the third type, user consumes item, the projection vector w;,. is still independently trained, but the
translation vector r is based on intent node embeddings.

The motivation behind leveraging the intent nodes to compute relation representation is that both
the user and the item are decoupled into lists of intents, and when there are shared or similar intent
nodes, their difference is expected to be small, i.e., ej- =~ e;- or || r ||~ 0. In this way, the intent
embedding introduces direct insight for the relation embedding translations. We hence build the
relation embeddings r** € R? as follows.

Denote the intent embeddings for user node u and item node i as Z* € RIS(W)|xd and Z* ¢ RIS()Ixd,
where S(u) and S(¢) are the intent node neighbor sets.

15

Title Suppressed Due to Excessive Length

We first calculate two matrices: Pt € RISWIIS@)Ix1 containing cosine similarities between each
pair of rows in Z* and Z?, and D%* € RISWIIS(M)Ixd containing qu j — Zf, , for each row index

Then, to enforce the relationship of more similar intent pairs inducing a smaller translation vector,
the resulting vector r** is computed via:

r? = softmax(P"“*)TD*? 8)

B.3 Intent Aware Scoring

To further leverage signal from the intents extracted during KG construction, we incorporate them
into the user-item interaction scoring function, in conjunction with the more traditional embedding
similarity score. At inference time, given a tuple of user and item (u,), we derive embedding
matching and intent matching scores between a user and an item, and the final score is a hybrid
combination of them. The embedding matching score between v and ¢ is the cosine similarity between
their embeddings:

€y - €;

Cleall - Ileil]

&)

Zu,i

s

We denote a single intent extracted from item ¢ as n(9, and the collection of all intents for i as
;. Similarly, a single intent extracted from u and their collections is denoted as n(*) and Q.
Additionally, e,, is used to represent the embedding of some entity n.

The intent matching score between u and ¢ is determined by:

a €, - €,(i) . 0.51(QuN2:i=2) (10)
n(0 e nMe; [leqw |- | e ||

Yu,i =

Equation 10 has two components, the similarity component and the non-overlap punishment compo-
nent. In the event that v and ¢ share a single intent (no need to have completely equal intent set), the
non-overlap punishment component will be disabled (=1), otherwise if no intents are shared, it will
punish by 0.5. The choice of 0.5 is decided based on empirical comparison along the development of
the approach, which shows priority over too severe punishment values (e.g. 0.1). Finally, the score
for the triplet (u,) is the hybrid mixture of the embedding score and intent matching score:

score(u,) = Yui + Az (11)

where) is an empirical mixer coefficient. In the experiments, the coefficient A is set to 0.1 based on
grid search result on the validation set.

In the ablation study section Section 5.3, Opt2. Vanilla GNN means translation layers, simply use
a two-layer GNN trained with standard ranking loss. Opt3. Vanilla Trans. means simply use a
translation layer without GNN and the scoring function of Equation 11. Op#4. Vanilla Scoring means
keep both GNN and translation layer, but removing intent-aware scoring function of Equation 11.

C Related Works Continued

Recommender Approaches Addressing Data Sparsity. Recent works tackle the data sparsity
issue through enhanced model architectures, graph-based techniques, and knowledge-aware methods.
The Item History Model (IHM) improves cold-start item recommendations by directly injecting
user-interaction data into the item tower and employing an inductive structure for real-time inference
[6]. Cold Brew addresses sparsity in graph neural networks by distilling node representations,
mitigating the impact of missing or noisy neighbors [38]. RippleNet further alleviates sparsity by
propagating user preferences through knowledge graph relations, enriching item representations
beyond collaborative signals [7]. These approaches demonstrate that leveraging historical interactions,
distilling structural knowledge, and integrating external information effectively mitigate data sparsity
in recommendation systems.

16

Title Suppressed Due to Excessive Length

Directly Leveraging LLM as the Recommender. A-LLMRec enhances LLM-based recommenda-
tion by leveraging embeddings from state-of-the-art collaborative filtering models, excelling in both
cold and warm scenarios while maintaining efficiency and model-agnostic integration [39]. CoRAL
introduces collaborative retrieval-augmented prompting, addressing LLMs’ reliance on semantic
information by incorporating user-item interactions through reinforcement learning-based retrieval
policies, significantly improving long-tail recommendation [40]. TALLRec proposes a tuning frame-
work to align LLMs with recommendation-specific tasks, demonstrating strong generalization and
efficiency even with limited training data [41]. These approaches collectively highlight the potential
of LLMs as standalone recommenders by addressing cold-start challenges, enhancing collaborative
reasoning, and improving alignment with recommendation-specific objectives.

Personalized Re-ranking Recommender System. Re-ranking in recommender systems aims to
refine an initially ranked list to better capture user preferences and item relationships. Traditional
ranking methods optimize global performance but often overlook the mutual influence between items
and user-specific intent [4]. Recent approaches address these limitations by integrating semantic tag
information [42], multi-stage ranking optimization [43], and item relationships [5]. Transformer-
based models effectively model global item interactions, while graph-based methods leverage item
relationships for improved ranking [4, 5]. Furthermore, self-supervised learning enhances sequential
recommendation by mitigating data sparsity issues [44]. These methods collectively demonstrate that
incorporating user personalization, item dependencies, and efficient ranking strategies significantly
enhances re-ranking effectiveness.

17

	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Graph Formulation of Recommendation System
	3.2 Knowledge Graph Convolution Layer

	4 Methodology
	4.1 Intents Extraction with RAG
	4.2 Factual Knowledge Access for Grounded Extraction
	4.3 Intent Connectivity Enrichment via RAG
	4.4 Generating Recommendation Candidates with Graph Module

	5 Experiments
	5.1 Baselines and Datasets
	5.2 Result Analysis
	5.3 Ablation Studies
	5.4 Cold Start Metrics
	5.5 Hyperparameter Sensitiveness
	5.6 Impact of Knowledge Base

	6 Conclusions
	A Full Prompts And Visualizations
	B Intent Prior GNN
	B.1 Knowledge Graph Embedding Translation Formulations
	B.2 Intent Prior Injected Translation layers
	B.3 Intent Aware Scoring

	C Related Works Continued

