

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MUBENCH: ASSESSMENT OF MULTILINGUAL CAPABILITIES OF LARGE LANGUAGE MODELS ACROSS 61 LANGUAGES

Anonymous authors

Paper under double-blind review

ABSTRACT

Multilingual large language models (LLMs) are advancing rapidly, with new models frequently claiming support for an increasing number of languages. However, existing evaluation datasets are limited and lack cross-lingual alignment, leaving assessments of multilingual capabilities fragmented in both language and skill coverage. To address this, we introduce MUBENCH, a benchmark covering 61 languages with 3.9M samples and evaluating a broad range of capabilities. We evaluate several state-of-the-art multilingual LLMs and find notable gaps between claimed and actual language coverage, particularly a persistent performance disparity between English and low-resource languages. Leveraging MUBENCH’s alignment, we propose Multilingual Consistency (MLC) as a complementary metric to accuracy for analyzing performance bottlenecks and guiding model improvement. MUBENCH provides flexible evaluation formats, including mixed-language testing. Experimental results show that increasing model size does not improve its ability to handle mixed-language contexts. We recruited human experts to evaluate translation quality and cultural sensitivity for 34k samples across 17 languages, and combined these assessments with an LLM-as-a-Judge approach to ensure overall data quality in low resource languages. Our data is open at <https://huggingface.co/datasets/trustunogen/nYtVx4RmQp7wZc>

1 INTRODUCTION

Recent developments in large language models (LLMs) reflect a clear shift toward broad multilingual support. For instance, Gemma3 (Team, 2025) reports support for over 140 languages, while Qwen3 (Yang et al., 2025) emphasizes wide linguistic coverage across 119 languages and dialects. Proprietary models such as GPT-4o (OpenAI, 2024), Claude ¹, and Gemini (Team, 2024) also highlight strong multilingual capabilities.

Despite rapid advances in multilingual LLMs, evaluating their capabilities across languages remains a core challenge. The multilingual evaluations in their technical reports cover only a small number of languages and a narrow range of capabilities (Yang et al., 2025). Moreover, multilingual evaluation involves more dimensions of assessment compared with single-language evaluation. Assessments should go beyond per-language task performance to include relative performance across languages, cross-lingual knowledge transfer (Lample & Conneau, 2019; Conneau et al., 2020), and robustness in mixed-language contexts (Chua et al., 2025; Huzaifah et al., 2024). Evaluation along these dimensions requires broad language and task coverage, as well as aligned test samples across languages. Existing multilingual benchmarks fall short in at least one of these aspects. Table 1 presents the comparison between popular multilingual benchmarks (INCLUDE (Romanou et al., 2024), MultiLoKo (Hupkes & Bogoychev, 2025), BenchMax (Huang et al., 2025) and MUBENCH).

To address these limitations, we introduce MUBENCH, a comprehensive multilingual benchmark spanning 61 languages and a diverse range of tasks, including natural language understanding, commonsense reasoning, factual recall, knowledge-based QA, academic and technical reasoning, and

¹<https://www.anthropic.com/news/clause-4>

Benchmark	Languages	Ability	Tasks	Samples	Cross-lingual Alignment	Multiple Formats	Code-switched Evaluation
INCLUDE	44	1	1	22,655	✗	✗	✗
MultiLoKo	31	1	1	15,500	✓	✗	✗
BenchMax	17	6	9	177,684	✓	✗	✗
MUBENCH	61	6	12	3,921,751	✓	✓	✓

Table 1: Comparison of multilingual benchmarks.

truthfulness. MUBENCH ensures cross-lingual alignment by maintaining consistent test items across languages, enabling fair and direct comparisons. We construct MUBENCH by translating widely used English benchmarks through an automated pipeline with rigorous quality control. We include code-switched variants that mix multiple languages within a single test item, allowing evaluation under multilingual input conditions. Cultural applicability is also assessed to remove items with obscure cultural references or Western-centric biases, mitigating cultural skew. Finally, stratified human evaluations across 17 languages validate the quality and fidelity of the translations.

Using MUBENCH, we conduct extensive evaluations of state-of-the-art LLMs and find that current models often fall short of their claimed multilingual coverage. A persistent performance gap remains between English and low-resource languages, and this gap does not consistently narrow with increased model size. In code-switched evaluation, we find that larger models do not necessarily exhibit greater robustness. Leveraging MUBENCH’s fully aligned test samples, we analyze cross-lingual consistency and observe stable inter-language correlation patterns in each model, revealing implicit structures in multilingual knowledge sharing. We also investigate the impact of parallel corpora in pre-training on cross-lingual transfer of language abilities (Appendix C). These findings highlight the importance of analyzing the relationship between consistency and accuracy as a diagnostic tool for identifying multilingual performance bottlenecks—whether due to insufficient task knowledge or limited generalization across languages. MUBENCH thus provides a rigorous framework for understanding and advancing multilingual LLM development.

In summary, our contributions are:

- 1) We introduce MUBENCH, a multilingual benchmark supporting 61 languages that enables consistent and cross-lingual evaluation across 6 capabilities and 12 tasks.
- 2) We propose an automated data construction approach to reduce reliance on human annotation, enabling rapid scaling of multilingual evaluation. We design a rigorous quality-control pipeline that combines human evaluation with LLM-based evaluation.
- 3) We conduct extensive experiments to evaluate MUBENCH’s utility, providing valuable insights into the strengths and weaknesses of existing multilingual LLMs, language influence pattern and mixed-language stability.

2 RELATED WORK

Several prior efforts have attempted to construct multilingual evaluation benchmarks. Local MMLU datasets like CMMLU (Li et al., 2024) and ArabicMMLU (Koto et al., 2024) collect data from local exams and across diverse educational levels and subjects. INCLUDE (Romanou et al., 2024) established an evaluation suite for local knowledge sourced from exams under a variety of regional contexts, supporting 44 languages. MultiLoKo (Hupkes & Bogoychev, 2025) extracts local documents in 31 languages from Wikipedia and organizes them into knowledge-based QA test questions. Those benchmarks only focus on knowledge QA capability and cannot constitute a comprehensive evaluation. They handle each language separately, without aligning the test samples across multiple languages. It causes fragmentation of the evaluation between languages. Moreover, these benchmarks rely entirely on manual annotation, making them difficult to scale further and leaving the gap between low-resource language evaluation and English evaluation unresolved.

In contrast to benchmarks built from native-language corpora, other efforts have extended high-quality English benchmarks into multiple languages. BenchMAX (Huang et al., 2025) extends 10 benchmark from English into 17 languages. BMLAMA (Qi et al., 2023) includes up to 53 languages with factual question answering task. GeoMLAMA (Yin et al., 2022) focuses on regional cultural differences, building in English and translating to another 4 languages. Other translation-based works include (Singh et al., 2025; Lin et al., 2022b; Lai et al., 2023; Xuan et al., 2025). These works either cover a limited range of evaluation capabilities or support too few languages to comprehensively assess the multilingual proficiency of today’s LLMs. In addition, during the translation process, these works either rely heavily on human translation, which limits scalability, or use machine translation but the data construction procedure and quality control are not transparent.

3 MUBENCH

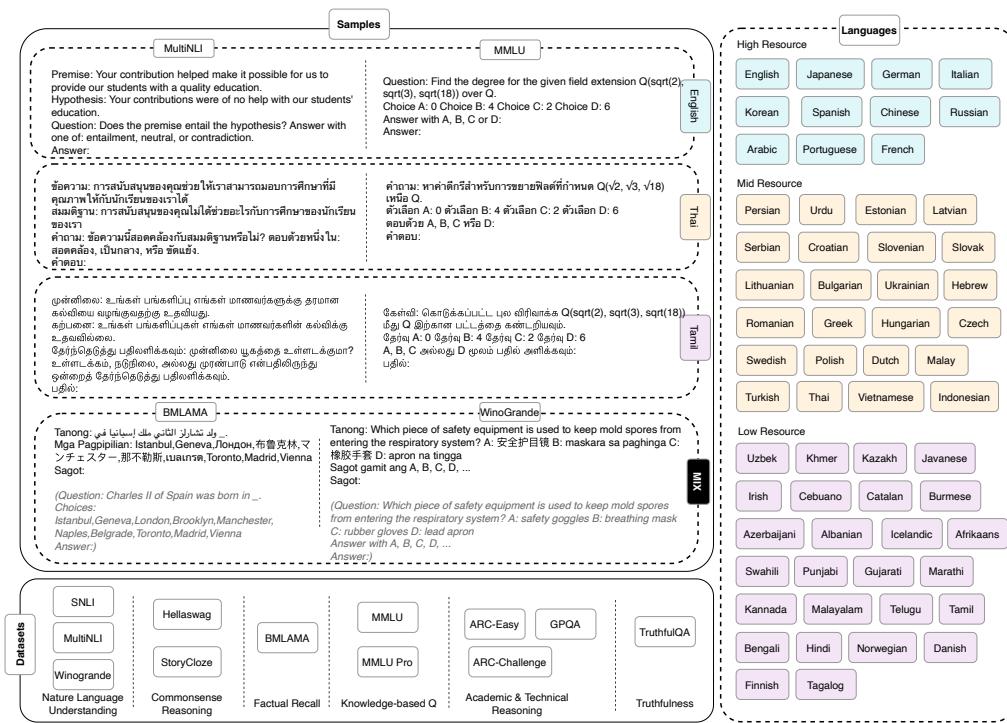


Figure 1: Overview of MUBENCH. MUBENCH supports 61 languages and covers popular datasets for evaluating natural language understanding, knowledge, and reasoning abilities. It also provides multiple variants for each dataset to accommodate different evaluation methods.

We extend widely-used English benchmarks to a broader set of languages while covering a diverse range of capabilities, including: Natural Language Understanding: SNLI (Bowman et al., 2015), MultiNLI (Williams et al., 2018) and WinoGrande (Sakaguchi et al., 2019); Commonsense Reasoning: HellaSwag (Zellers et al., 2019) and StoryCloze (Mostafazadeh et al., 2016); Factual Recall: BMLAMA (Qi et al., 2023); Knowledge-based QA: MMLU (Hendrycks et al., 2021) and MMLUPro (Wang et al., 2024); Academic & Technical Reasoning: GPQA (Rein et al., 2023), ARC-Easy and ARC-Challenge (Clark et al., 2018); Truthfulness: TruthfulQA (Lin et al., 2022a). This selection also spans a range of difficulty levels, from relatively simple datasets like StoryCloze to more challenging ones such as GPQA. For language selection, we chose the 61 most widely spoken languages based on the number of native speakers, covering over 60% of the global population (native speakers only) (Lis, 2025). Figure 1 illustrates the languages, data structure, and examples of MUBENCH.

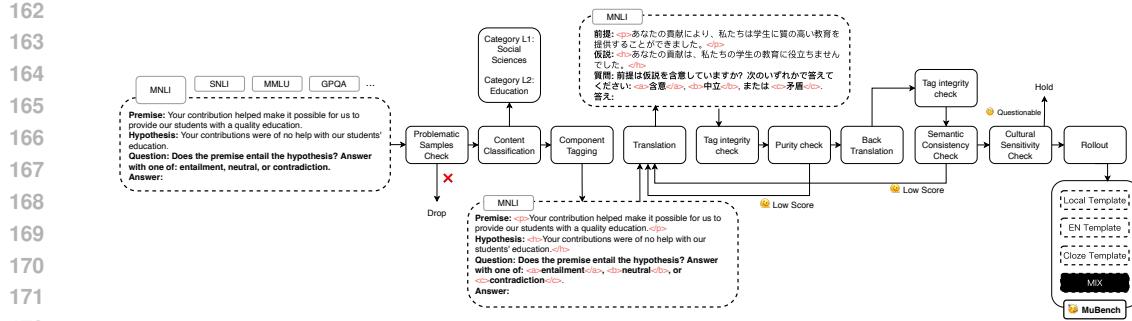


Figure 2: MUBENCH data collection pipeline. MUBENCH has established an automated benchmark translation framework with strict rules to control the quality. Each sample is labeled with content categories and undergoes a cultural sensitivity check.

3.1 DATA PIPELINE

We developed a rigorous data pipeline, as shown in Figure 2, comprising several main stages: **content classification**, **translation**, **semantic consistency evaluation**, **translation purity assessment**, and **cultural sensitivity check**. The finalized dataset variants constitute MUBENCH.

Content Classification In addition to covering a broad spectrum of capabilities, MUBENCH also emphasizes sample-level diversity analysis. To achieve this, we extend the subject classification schema from MMLU by introducing additional categories that capture more everyday and real-world scenarios, structured in a two-level hierarchy. For each benchmark sample, GPT-4o is used to perform content-based classification—focusing on the topic rather than question type—by first selecting the most suitable high-level category, followed by a corresponding subcategory within it.

Translation To preserve the structural consistency of test samples and enable future flexibility, we wrap each component of a question—such as the prompt and answer choices—with explicit tags and concatenate them into a unified text block for translation via GPT. Post-translation, we perform strict validation to ensure tag integrity; samples with missing or corrupted tags are flagged for retranslation. This design ensures the complete and faithful translation of the prompt, question stem, and answer choices. It also facilitates flexible modification of question formats in the future, allowing adaptation to different evaluation protocols tailored to various model types. Crucially, this design enables the construction of mixed-language test cases, allowing for targeted assessment of LLMs under code-switching and multilingual conditions.

Semantic Consistency Evaluation At this stage, we control for semantic shifts introduced during translation. Each sample is first translated into the target language using GPT-4o, then back-translated into English. The original and back-translated English texts are compared, with GPT-4o assigning a semantic consistency score on a custom 1-to-5 scale. Samples receiving low scores (1 or 2) are flagged for retranslation. This procedure not only ensures semantic fidelity but also serves as a proxy for evaluating GPT-4o’s translation performance in low-resource languages.

Translation Purity Assessment Maintaining semantic consistency alone is insufficient; translations must also exhibit linguistic authenticity in the target language and avoid inappropriate English intrusions. While the retention of certain English proper nouns may be acceptable, we prioritize replacing them with widely recognized equivalents in the target language to ensure natural and native-like expression. To evaluate this, we define a 1-to-5 scoring rubric and prompt GPT to assess the linguistic purity of each translation.

Cultural Sensitivity Checking Finally, It is essential to ensure that a question, once translated into the target language, remains culturally appropriate and does not conflict with the cultural context of that language. Commonsense knowledge can vary significantly across cultures, potentially altering the correct answer if cultural assumptions shift during translation. To address this, we design a

216 prompt that instructs GPT-4o to identify and annotate instances of cultural shift in the translated
 217 samples.
 218

219 **Rollout** We construct several variants for
 220 each tasks. **Local Template**: Uses the native-
 221 language prompt and content to assess the
 222 model’s ability to follow instructions and an-
 223 swer within the linguistic context of the tar-
 224 get language. **EN Template**: Keeps the sam-
 225 ple content in the target language but uses
 226 the English prompt. This format aligns with
 227 many existing multilingual benchmarks and of-
 228 ten leads to improved performance due to mod-
 229 els’ stronger instruction-following capabilities
 230 in English. **Close Template** (Alzahrani et al.,
 231 2024; Clark et al., 2018): Removes explicit task
 232 instructions and instead organizes the question and answer choices into natural sentences. Model
 233 performance is evaluated based on which option yields the lowest perplexity (PPL). This format is
 234 particularly effective for early-stage or smaller models that may struggle with instruction compre-
 235 hension. **MIX**: For each of the above variants, we additionally construct a code-switched version
 236 by randomly replacing components (e.g., prompt, options) with content in another language at a
 237 controlled probability, allowing robust testing under mixed-language settings.

238 3.2 DATA ANALYSIS

240 **Statistics** Table 2 presents the number of samples included in each dataset within MUBENCH,
 241 which constitutes a significantly larger scale than previous dataset expansion efforts. During the
 242 final rollout, we removed samples flagged for cultural sensitivity, as well as those receiving the
 243 lowest scores in semantic consistency and linguistic purity evaluations. Moreover, all languages are
 244 aligned; thus, if a sample is filtered out in one language, its counterparts in all other languages are
 245 also removed accordingly. More details of cultural sensitive samples and the diversity are present in
 246 the appendix.

247 3.3 QUALITY CONTROL AND HUMAN EVALUATION

248 During dataset translation, samples scoring below 3 in either semantic consistency or linguistic
 249 purity were retranslated multiple times.

250 We conducted human evaluations on 2,000 samples per language across 17 languages, using the
 251 same scoring criteria. Additionally, 100 matched samples from 9 languages in OpenAI MMMLU²
 252 and MUBENCH were evaluated to directly compare GPT-4o translations with human ones.

253 Table 3 shows that human scores for MUBENCH and OpenAI MMMLU are closely aligned, with
 254 no significant difference across 8 of 9 languages; the only exception is Chinese, where MUBENCH
 255 shows slightly lower consistency. Table 4 compares GPT-4o’s self-assessments with human scores,
 256 revealing that GPT-4o tends to underrate its translations, indicating conservative scoring. Overall,
 257 MUBENCH achieves translation quality on par with human-translated benchmarks. The detail of
 258 consistency and purity distribution are included in the appendix.

259 For translation quality details, we report COMET scores and GPT-4o consistency scores in Table 5
 260 by three language tiers on terminology-dense Mubench datasets. On low resource languages, GPT’s
 261 consistency scores also remain at a very high level. Through our analysis of COMET scores, we
 262 observed that the COMET score significantly dropped for certain languages, such as Cebuano (ceb)
 263 with a score of 0.5858 ± 0.0543 . However, manual spot checks did not reveal a corresponding drop
 264 in translation quality. This suggests that the COMET model’s limited support for low-resource lan-
 265 guages may also contribute to the lower scores. In summary, MuBench maintains high data quality
 266 even for low-resource languages. More details of human evaluation is elaborated in Appendix A.6.

267 **Table 2: Sample statistics of MUBENCH. CS**
 268 stands for Culturally Sensitive

Dataset	Origin Samples	CS Samples	Final Samples
SNLI	613,050	5,314	549,000
MultiNLI	602,802	4,091	541,924
StoryCloze	95,221	2,522	81,252
WinoGrande	80,322	220	76,860
BMLAMA	413,831	1,125	369,721
MMLU	873,946	18,058	768,112
MMLU Pro	738,212	5,302	696,315
HellaSwag	615,534	8,331	554,368
ARC-Easy	147,986	72	146,949
ARC-Challenge	74,542	28	74,054
GPQA	27,328	0	27,328
TruthfulQA	49,837	3,149	35,868
Total	4,332,611	48,212	3,921,751

269 ²<https://huggingface.co/datasets/openai/MMMLU>

270 Table 3: Per-language comparison of Semantic
 271 Consistency and Translation Purity be-
 272 tween OpenAI-MMMLU and MUBENCH-
 273 MMMLU (mean scores only, with t -test p -
 274 values).

Lang	n	Semantic Consistency			Translation Purity		
		MMMLU	Ours	p	MMMLU	Ours	p
es	100	4.91	5.00	0.0061	4.93	4.98	0.1667
ja	100	4.13	4.24	0.1803	3.73	3.81	0.2188
pt	100	4.84	4.89	0.3718	4.94	4.94	1.0000
ko	100	4.73	4.78	0.5663	4.51	4.45	0.5471
it	100	4.79	4.76	0.7075	4.94	4.97	0.3197
id	100	4.95	4.93	0.5298	4.83	4.88	0.2534
de	100	5.00	4.95	0.1324	5.00	5.00	—
zh	100	4.31	3.85	0.0000	4.69	4.79	0.0584
fr	100	5.00	5.00	—	4.98	4.96	0.4823
ar	100	5.00	5.00	—	4.85	4.82	0.5343
All	900	4.74	4.71	0.2980	4.73	4.75	0.3700

Table 4: Per-language GPT vs Human ratings on Semantic Consistency and Translation Purity (mean \pm std).

Lang	Semantic Consistency		Translation Purity	
	Human	GPT	Human	GPT
th	4.865 \pm 0.431	3.887 \pm 1.267	4.805 \pm 0.577	3.717 \pm 1.200
es	4.947 \pm 0.279	4.107 \pm 1.154	4.926 \pm 0.314	3.826 \pm 1.227
fr	4.994 \pm 0.092	4.189 \pm 1.135	4.903 \pm 0.344	3.777 \pm 1.143
vi	4.836 \pm 0.504	3.956 \pm 1.269	4.603 \pm 0.812	3.844 \pm 1.229
tr	4.781 \pm 0.596	3.953 \pm 1.269	4.614 \pm 0.761	3.824 \pm 1.174
id	4.859 \pm 0.411	4.173 \pm 1.146	4.748 \pm 0.461	3.668 \pm 1.235
tl	4.738 \pm 0.572	4.035 \pm 1.218	4.681 \pm 0.581	3.364 \pm 1.276
ko	4.674 \pm 0.740	3.949 \pm 1.277	4.569 \pm 0.888	3.883 \pm 1.176
pt	4.774 \pm 0.598	4.125 \pm 1.146	4.776 \pm 0.624	3.974 \pm 1.212
nl	4.805 \pm 0.554	4.176 \pm 1.171	4.777 \pm 0.517	3.739 \pm 1.247
it	4.774 \pm 0.580	4.189 \pm 1.131	4.782 \pm 0.558	3.798 \pm 1.235
ru	4.729 \pm 0.600	4.179 \pm 1.153	4.761 \pm 0.534	3.975 \pm 1.167
de	4.860 \pm 0.409	4.355 \pm 1.055	4.828 \pm 0.432	3.755 \pm 1.209
zh	4.358 \pm 0.738	4.045 \pm 1.190	4.739 \pm 0.492	3.931 \pm 1.166
ja	4.104 \pm 0.655	4.150 \pm 1.122	3.623 \pm 0.765	4.015 \pm 1.061
ar	4.995 \pm 0.071	4.014 \pm 1.249	4.784 \pm 0.412	3.626 \pm 1.217

Table 5: Translation quality (COMET / GPT-4o semantic consistency scores) by language tier.

Tier	ARCChallenge	ARCEasy	MMLU	GPQA	TruthfulQA
High	85.9 \pm 1.5 /	85.8 \pm 1.7 /	82.4 \pm 2.0 /	79.8 \pm 2.0 /	85.7 \pm 1.3 /
	4.84 \pm 0.04	4.81 \pm 0.03	4.79 \pm 0.05	4.87 \pm 0.08	4.82 \pm 0.05
Mid	86.2 \pm 1.3 /	86.1 \pm 1.6 /	83.0 \pm 1.5 /	79.8 \pm 1.8 /	86.2 \pm 1.2 /
	4.81 \pm 0.04	4.78 \pm 0.04	4.76 \pm 0.05	4.88 \pm 0.04	4.80 \pm 0.05
Low	83.4 \pm 5.4 /	83.2 \pm 5.2 /	80.2 \pm 5.5 /	77.4 \pm 4.4 /	84.2 \pm 4.3 /
	4.64 \pm 0.22	4.58 \pm 0.25	4.61 \pm 0.23	4.75 \pm 0.18	4.69 \pm 0.15

4 MULTILINGUAL CAPABILITY EVALUATION

4.1 OVERVIEW

Since the pretraining stage plays a crucial role in determining the multilingual capabilities of large language models (LLMs), our evaluation focuses on the base versions of various model families. While MUBENCH is designed with the flexibility to adapt test samples to different task formats, we mainly focus on its application to the base models. Importantly, MUBENCH allows for evaluations of chat-oriented models by providing instructions tailored to each language.

We perform zero-shot evaluations on **Qwen3** (Yang et al., 2025), **Qwen2.5** (Qwen et al., 2025), **Gemma2** (Team et al., 2024), and **Gemma3** (Team, 2025) models ranging from 1–3B, 7–14B, up to 70B. Babel (Zhao et al., 2025) series are also included, which are built upon Qwen2.5 models and aims to cover the top 25 most widely spoken languages. Moreover, dedicated for 13 SouthEast Asian (SEA) languages, Sailor2 (Dou et al., 2025) series is also Qwen2.5-like models and we include them into the comparison. The evaluation is conducted using MUBENCH **cloze template** variants. An exception is made for **SNLI** and **MultiNLI**, where we adopt the **local template** in a QA-style with 10-shot settings. We report accuracy (ACC) on SNLI, MultiNLI, WinoGrande, and BMLAMA, and char-length normalized accuracy (ACC_NORM) on the other datasets. Additionally, we also evaluated **GPT-4o**. Since it is not a base model, we assessed its performance on each benchmark using **local template** and report Exact Match (EM) scores.

Table 6 summarizes the performance of selected LLMs on MUBENCH, along with their performance gaps relative to English. While GPT-4o substantially outperforms open-source base models across the board (noting that evaluation protocols differ), it still exhibits a clear drop in performance for non-English languages.

Among open models, Qwen demonstrates strong and consistent performance across a wide range of tasks. This is particularly evident in inference-focused benchmarks (MultiNLI), knowledge-intensive tasks (BMLAMA, MMLU), and QA-style datasets (ARC). Both Qwen3-14B and Qwen2.5-72B stand out for their balanced and robust performance across nearly all evaluation metrics. In contrast, Gemma models—especially Gemma-3-27B-pt—excel in narrative and com-

Table 6: Performance of LLMs on MUBENCH. The values in parentheses indicate the score differences relative to English performance.

Figure 3: Model performance by language.

monsense reasoning tasks such as StoryCloze and HellaSwag, and perform competitively on factual knowledge benchmarks like BMLAMA. Overall, Qwen models offer stronger and more stable performance, whereas Gemma exhibits sharper peaks in specific reasoning-heavy tasks. Both Babel-9B and Sailor2-8B are extended from Qwen2.5-7B. Babel-9B generally retains the capabilities of its base model, with modest gains in factual QA and language understanding tasks (e.g., BMLAMA, WinoGrande). In contrast, Sailor2-8B shows a broad regression, suggesting that its specialized training on Southeast Asian languages may have compromised its performance on other languages. Notably, Babel-83B underperforms relative to its baseline Qwen2.5-72B, despite a larger parameter count, with performance degradation particularly evident on knowledge-heavy tasks such as MMLU and ARC.

As expected, larger models tend to achieve better overall performance. However, the relative performance gap between English and other languages does not consistently narrow with scale. This trend holds across most tasks, with the exception of SNLI. These findings suggest that the performance gap for low-resource languages remains persistent, and only begins to close when a model approaches saturation in English performance on a given benchmark. The evaluation results on full MUBENCH test sets are presented in Appendix E.

378 4.2 PER-LANGUAGE PERFORMANCE COMPARISON
379

380 Figure 3 presents the per-language performance of the evaluated LLMs, measured as the mean score
381 across all datasets for each language. As expected, models tend to perform better on high-resource
382 languages such as English, Chinese, and Spanish, while lower-resource languages generally yield
383 lower scores. GPT-4o demonstrates strong multilingual performance across all 61 languages. How-
384 ever, when normalized against its own English performance, notable drops are observed in languages
385 such as Tagalog (tl) and Burmese (my). Interestingly, several affected languages—such as Chinese
386 (zh) and German (de)—are not traditionally considered low-resource, underscoring the broader chal-
387 lenges in achieving consistent performance across typologically and culturally diverse languages.

388 Among open-source models, Gemma-3-27B emerges as the best overall performer, achieving con-
389 sistently strong results across nearly all languages. The Babel and Sailor2 models demonstrate
390 notable gains in their targeted language groups, though often at the expense of reduced performance
391 in others. Larger models from the Qwen2.5 and Qwen3 series also perform well, with performance
392 improving steadily with increased model size. These findings highlight the critical role of both scale
393 and model design in achieving robust and balanced multilingual capabilities.

394 4.3 CROSS-LINGUAL CONSISTENCY EVALUATION
395

396 Evaluating multilingual LLMs goes beyond per-language accuracy. Consistency across lan-
397 guages—producing similar responses even when incorrect—signals shared cross-lingual represen-
398 tations and potential for improvement. As such, consistency serves as a crucial complement to ac-
399 curacy. Qi et al. (Qi et al., 2023) introduced BMLAMA to evaluate cross-lingual consistency using
400 ranking-based scores. However, for multiple-choice questions with discrete answers (e.g., “What is
401 the capital of China?”), only the top choice matters—ranking secondary options is often irrelevant
402 and may distort consistency assessment. We instead use a multilingual consistency (MLC) metric
403 based on exact Top-1 answer match across languages: $MLC(l, l') = \frac{1}{|N|} \sum_{i=1}^N \mathbf{1}_{c_i = c'_i}$, where N is
404 the number of questions, l and l' are two languages, and c_i, c'_i are the model’s Top-1 choices for
405 the same question in l and l' , respectively. All MUBENCH samples are aligned across 61 languages,
406 providing a robust foundation for consistent cross-lingual evaluation and analysis of knowledge
407 transfer.

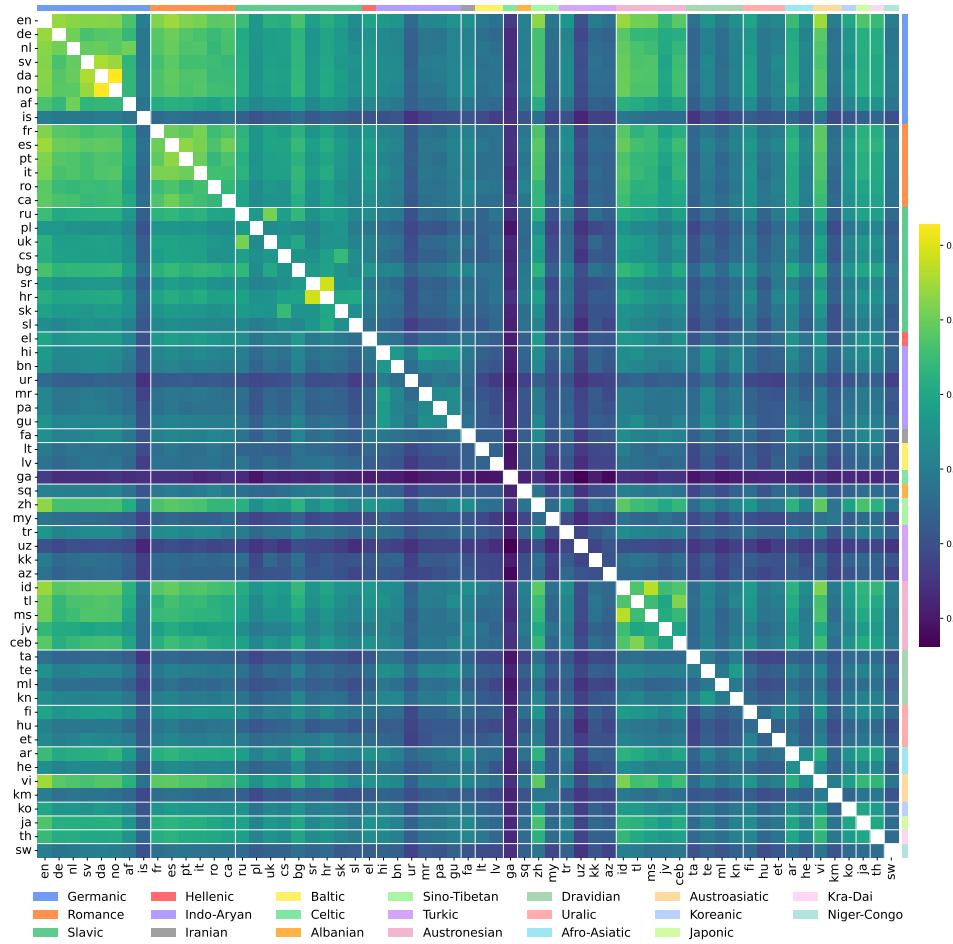
408 Table 7 reports average MLC scores across all language pairs, and between each language and En-
409 glish. In general, MLC correlates with accuracy—models with higher accuracy tend to exhibit better
410 consistency. However, notable exceptions reveal important dynamics. For example, in MultiNLI,
411 GPT-4o achieves lower accuracy than several open-source models above 20B parameters, yet main-
412 tains competitive or superior consistency (e.g., outperforming gemma-2-27b), suggesting stronger
413 cross-lingual representation alignment. Conversely, in MMLUPro and GPQA, GPT-4o significantly
414 outperforms gemma-3-27b-pt and gemma-2-27b in accuracy, but lags in consistency, indicating less
415 overlap in correct answers across languages. These discrepancies highlight that accuracy and con-
416 sistency reflect distinct facets of multilingual performance. Low consistency suggests fragmented
417 cross-lingual representations, while low accuracy indicates limited task knowledge. We therefore
418 advocate using MLC alongside accuracy to better diagnose model weaknesses and inform multilin-
419 gual model development. Additionally, we find that consistency between each language and English
420 is generally higher than the average across all language pairs, reaffirming English’s central role in
multilingual LLMs.

421 4.4 CROSS-LINGUAL INFLUENCE PATTERN
422

423 Beyond measuring overall consistency, MLC scores also reveal patterns of cross-lingual interaction
424 within LLMs. Figure 4 visualizes these interactions on the BMLAMA task, with 61 languages
425 grouped by family and ordered by resource availability. Each cell represents the consistency score
426 between a language pair. Since consistency is influenced by accuracy, to isolate language inter-
427 action patterns independent of accuracy, we normalize MLC scores by the average accuracy of
428 each pair: $Rel-MLC(l, l') = \frac{MLC(l, l')}{\text{Mean}(\text{ACC}_l, \text{ACC}_{l'})}$. We observe similar patterns across different mod-
429 els. Strong intra-family consistency is evident, especially within Germanic, Romance, Slavic, Indo-
430 Aryan, Austronesian, and Dravidian families. Some pairs, like Croatian (hr) and Serbian (sr), show
431 exceptionally high alignment. Notably, cross-family consistency—especially involving English and
other Indo-European languages—extends to most language families, including isolates.

432
 433 Table 7: Consistency across languages. ‘All’ refers to the average consistency across all language
 434 pairs, while ‘vs. EN’ indicates the average consistency between each language and English.

	MNLI		BMLAMA		MMLU		MMLUPro		GPQA		ARCEasy		ARCChallenge	
	all	vs. EN	all	vs. EN	all	vs. EN	all	vs. EN	all	vs. EN	all	vs. EN	all	vs. EN
Proprietary Model														
gpt-4o-2024-05-13	74.60	79.25	66.21	74.67	68.42	69.71	42.46	47.07	47.46	43.93	90.34	94.28	84.52	89.24
Model (1-4B)														
Qwen3-0.6B-Base	49.51	51.04	29.64	35.36	49.22	48.98	44.84	42.07	64.00	63.52	39.42	40.44	40.94	41.26
Qwen3-1.7B-Base	56.72	62.92	33.92	42.06	49.82	50.21	44.14	42.48	64.00	64.70	41.45	43.91	42.66	43.48
Qwen3-4B-Base	70.39	70.99	36.24	44.74	51.08	52.36	44.42	43.41	64.16	65.36	43.54	46.92	44.13	45.65
Qwen2.5-0.5B	42.98	48.39	27.93	34.21	47.67	45.94	45.06	40.15	62.83	60.68	37.17	37.19	39.40	38.03
Sailor2-1B	58.48	71.72	28.96	36.57	48.64	48.28	46.54	43.36	63.88	62.98	38.56	39.51	40.45	40.46
Qwen2.5-1.5B	45.29	55.07	32.64	40.60	48.31	47.52	43.53	39.96	63.44	61.53	38.52	39.92	39.87	38.64
gemma-3-1b-pt	86.21	92.58	40.64	51.17	52.79	54.52	48.13	48.67	65.85	67.30	40.81	43.46	42.78	43.76
gemma-3-4b-pt	42.04	44.77	51.35	61.04	50.89	53.02	45.52	45.80	64.08	64.18	39.47	42.46	41.23	42.81
gemma-2-2b	41.50	29.26	39.24	49.81	53.82	54.36	48.60	47.53	67.84	68.35	43.21	46.23	44.09	45.98
Model (7-20B)														
Qwen3-8B-Base	74.47	78.24	45.48	55.63	51.39	52.52	44.59	43.79	64.79	66.12	45.23	48.91	45.21	46.85
Qwen3-14B-Base	80.76	79.75	49.80	59.66	52.59	54.06	45.02	44.74	64.85	66.84	46.26	49.78	46.01	48.45
Qwen2.5-7B	65.37	74.53	34.49	42.58	49.28	50.29	42.92	42.04	61.89	62.62	41.29	45.31	41.33	43.29
Sailor2-8B	49.86	60.37	38.36	48.17	50.40	50.93	44.98	43.13	64.89	64.63	42.04	44.87	42.07	43.57
Babel-9B	58.75	69.49	40.97	51.46	46.99	49.04	40.81	40.83	61.82	63.79	39.53	44.21	39.66	42.06
Qwen2.5-14B	74.97	79.11	26.19	31.21	50.08	51.71	43.35	42.79	62.96	64.29	43.20	47.79	42.89	45.41
Sailor2-20B	73.25	78.18	46.03	56.05	50.96	51.85	45.07	44.40	65.84	68.21	44.16	47.80	44.43	46.68
gemma-3-12b-pt	47.53	59.61	58.73	66.71	48.36	50.23	42.68	43.66	60.44	60.74	36.69	39.52	38.79	39.74
gemma-2-9b	70.00	74.91	51.62	61.12	55.87	57.51	50.12	49.77	71.00	73.30	47.12	51.71	47.02	49.58
Model (>20B)														
Qwen2.5-32B	80.83	84.48	46.54	56.12	50.91	52.75	43.07	43.12	61.88	63.80	44.21	48.69	43.74	47.11
Qwen2.5-72B	84.65	88.06	50.23	59.90	53.01	55.39	45.08	45.26	64.67	66.63	47.44	52.25	45.83	49.05
Babel-83B	85.20	88.34	50.17	59.73	52.70	55.09	45.46	45.64	65.66	66.39	46.24	50.90	45.59	48.59
gemma-3-27b-pt	77.43	82.09	61.02	68.10	58.66	61.91	53.24	54.88	73.72	74.46	52.16	55.87	51.07	54.29
gemma-2-27b	74.24	77.78	53.65	62.81	55.39	58.03	47.98	48.62	66.33	68.82	48.27	51.44	48.06	51.77



485 Figure 4: Consistency of Qwen3-14B-Base across languages tested on BMLAMA.

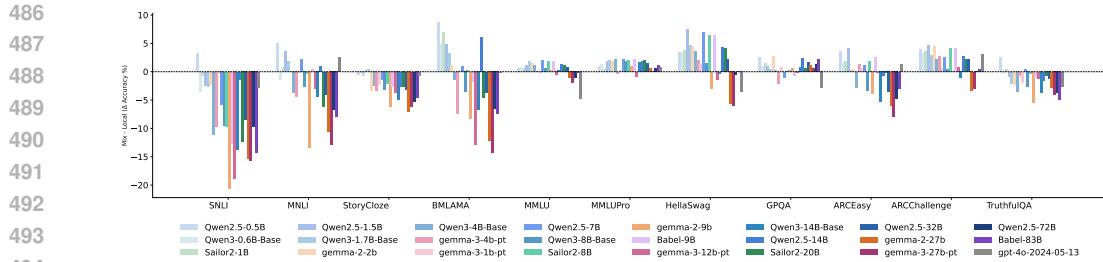


Figure 5: Model performance under mixed-language context.

These stable patterns reflect the underlying distribution of multilingual training data, rather than specific model architectures. Appendix B presents consistency results according to other linguistic typologies. We find that cross-lingual influence generally occurs within language families and is largely independent of morphological type or word order. Understanding such pattern of cross-lingual influence can provide guidance for configuring training data in multilingual LLMs.

4.5 PERFORMANCE UNDER CODE-SWITCHED CONTEXTS

An often overlooked aspect of multilingual LLMs is their ability to process and remain stable in mixed-language contexts. Chua et al. (Chua et al., 2025) identified a cross-lingual knowledge barrier in large models. Leveraging MUBENCH, we examine LLM behavior under such scenarios across a wide range of tasks by randomly replacing the template, question stem, and answer choices of each English test sample with other languages at a 0.5 probability. BMLAMA samples may contain up to 9 languages, while other benchmarks include up to 3 per sample.

Figure 5 shows the performance gap between the mixed-language setting and the average score across individual languages. The Qwen series exhibits greater stability in code-switched contexts compared to the gemma models. Interestingly, smaller models often benefit from the presence of English in mixed-language inputs, resulting in higher scores relative to their monolingual average. However, as model size increases, the gap between mixed-language performance and single-language gains widens—suggesting that improvements in multilingual understanding do not necessarily translate to better handling of mixed inputs.

These findings highlight the need to treat mixed-language performance as a distinct evaluation target. While LLMs may improve across individual languages, their ability to generalize under code-switching remains limited.

5 CONCLUSION

We present MUBENCH, a comprehensive multilingual benchmark for evaluating large language models (LLMs) across 61 languages. Through rigorous translation quality control and cross-lingual consistency evaluation, MUBENCH provides valuable insights into the strengths and limitations of current multilingual models. Our experiments highlight performance gaps between high-resource and low-resource languages, emphasizing the challenges in achieving consistent cross-lingual capabilities. This work offers a standardized tool for assessing multilingual LLMs and guides future improvements, particularly for low-resource languages. MUBENCH focuses only on evaluating knowledge that is universal across languages. However, another important aspect of multilingual evaluation is assessing language-specific, localized abilities, which will be a direction for our future work.

REFERENCES

SlimPajama: A 627B token, cleaned and deduplicated version of RedPajama. <https://www.cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama>.

List of languages by number of native speakers. *Wikipedia*, April 2025.

540 Norah Alzahrani, Hisham Alyahya, Yazeed Alnumay, Sultan AlRashed, Shaykhah Alsubaie, Yousef
 541 Almushayqih, Faisal Mirza, Nouf Alotaibi, Nora Al-Twairesh, Areeb Alowisheq, M Saiful Bari,
 542 and Haidar Khan. When Benchmarks are Targets: Revealing the Sensitivity of Large Language
 543 Model Leaderboards. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings*
 544 of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 545 Papers), pp. 13787–13805, Bangkok, Thailand, August 2024. Association for Computational Lin-
 546 guistics. doi: 10.18653/v1/2024.acl-long.744.

547
 548 Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large anno-
 549 tated corpus for learning natural language inference. In Lluís Màrquez, Chris Callison-Burch, and
 550 Jian Su (eds.), *Proceedings of the 2015 Conference on Empirical Methods in Natural Language*
 551 *Processing*, pp. 632–642, Lisbon, Portugal, September 2015. Association for Computational Lin-
 552 guistics. doi: 10.18653/v1/D15-1075.

553 Lynn Chua, Badih Ghazi, Yangsibo Huang, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Amer
 554 Sinha, Chulin Xie, and Chiyuan Zhang. Crosslingual Capabilities and Knowledge Barriers in
 555 Multilingual Large Language Models, March 2025.

556 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 557 Oyvind Tafjord. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
 558 Challenge, March 2018.

559
 560 Alexis Conneau, Shijie Wu, Haoran Li, Luke Zettlemoyer, and Veselin Stoyanov. Emerging Cross-
 561 lingual Structure in Pretrained Language Models. In Dan Jurafsky, Joyce Chai, Natalie Schluter,
 562 and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Compu-
 563 tational Linguistics*, pp. 6022–6034, Online, July 2020. Association for Computational Linguistics.
 564 doi: 10.18653/v1/2020.acl-main.536.

565
 566 Longxu Dou, Qian Liu, Fan Zhou, Changyu Chen, Zili Wang, Ziqi Jin, Zichen Liu, Tongyao Zhu,
 567 Cunxiao Du, Penghui Yang, Haonan Wang, Jiaheng Liu, Yongchi Zhao, Xiachong Feng, Xin Mao,
 568 Man Tsung Yeung, Kunat Pipatanakul, Fajri Koto, Min Si Thu, Hynek Kydlíček, Zeyi Liu, Qun-
 569 shu Lin, Sittipong Sripaisarnmongkol, Kridtaphad Sae-Khow, Nirattisai Thongchim, Taechawat
 570 Konkaew, Narong Borijindargoong, Anh Dao, Matichon Maneegard, Phakphum Artkaew, Zheng-
 571 Xin Yong, Quan Nguyen, Wannaphong Phatthiyaphaibun, Hoang H. Tran, Mike Zhang, Shiqi
 572 Chen, Tianyu Pang, Chao Du, Xinyi Wan, Wei Lu, and Min Lin. Sailor2: Sailing in South-East
 573 Asia with Inclusive Multilingual LLMs, February 2025.

574
 575 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 576 Steinhardt. Measuring Massive Multitask Language Understanding, January 2021.

577
 578 Xu Huang, Wenhao Zhu, Hanxu Hu, Conghui He, Lei Li, Shujian Huang, and Fei Yuan. Bench-
 579 MAX: A Comprehensive Multilingual Evaluation Suite for Large Language Models, February
 2025.

580
 581 Dieuwke Hupkes and Nikolay Bogoychev. MultiLoKo: A multilingual local knowledge benchmark
 582 for LLMs spanning 31 languages, April 2025.

583
 584 Muhammad Huzaifah, Weihua Zheng, Nattapol Chanpaisit, and Kui Wu. Evaluating Code-
 585 Switching Translation with Large Language Models. In Nicoletta Calzolari, Min-Yen Kan,
 586 Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), *Proceedings of*
 587 *the 2024 Joint International Conference on Computational Linguistics, Language Resources and*
 588 *Evaluation (LREC-COLING 2024)*, pp. 6381–6394, Torino, Italia, May 2024. ELRA and ICCL.

589
 590 Fajri Koto, Haonan Li, Sara Shatnawi, Jad Doughman, Abdelrahman Sadallah, Aisha Alraeesi,
 591 Khalid Almubarak, Zaid Alyafeai, Neha Sengupta, Shady Shehata, Nizar Habash, Preslav Nakov,
 592 and Timothy Baldwin. ArabicMMLU: Assessing Massive Multitask Language Understanding in
 593 Arabic. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association*
 594 *for Computational Linguistics: ACL 2024*, pp. 5622–5640, Bangkok, Thailand, August 2024.
 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.334.

594 Viet Lai, Chien Nguyen, Nghia Ngo, Thuat Nguyen, Franck Dernoncourt, Ryan Rossi, and Thien
 595 Nguyen. Okapi: Instruction-tuned Large Language Models in Multiple Languages with Rein-
 596forcement Learning from Human Feedback. In Yansong Feng and Els Lefever (eds.), *Proceedings*
 597 of the 2023 Conference on Empirical Methods in Natural Language Processing: System Dem-
 598onstrations, pp. 318–327, Singapore, December 2023. Association for Computational Linguistics.
 599 doi: 10.18653/v1/2023.emnlp-demo.28.

600 Guillaume Lample and Alexis Conneau. Cross-lingual Language Model Pretraining, January 2019.
 601

602 Hector Levesque, Ernest Davis, and Leora Morgenstern. The Winograd Schema Challenge.
 603

604 Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timothy
 605 Baldwin. CMMU: Measuring massive multitask language understanding in Chinese, January
 606 2024.

607 Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring How Models Mimic Human
 608 Falsehoods, May 2022a.

609 Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuhui Chen, Daniel Simig, Myle
 610 Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh
 611 Koura, Vishrav Chaudhary, Brian O’Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva,
 612 Mona Diab, Veselin Stoyanov, and Xian Li. Few-shot Learning with Multilingual Language
 613 Models, November 2022b.

614 Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Van-
 615 derwende, Pushmeet Kohli, and James Allen. A Corpus and Evaluation Framework for Deeper
 616 Understanding of Commonsense Stories, April 2016.

617 OpenAI. GPT-4o System Card, October 2024.

618 Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
 619 Raffel, Leandro Von Werra, and Thomas Wolf. The FineWeb Datasets: Decanting the Web for
 620 the Finest Text Data at Scale, October 2024.

621 Jirui Qi, Raquel Fernández, and Arianna Bisazza. Cross-Lingual Consistency of Factual Knowl-
 622 edge in Multilingual Language Models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
 623 *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*,
 624 pp. 10650–10666, Singapore, December 2023. Association for Computational Linguistics. doi:
 625 10.18653/v1/2023.emnlp-main.658.

626 Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 627 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 628 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 629 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 630 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 631 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report,
 632 January 2025.

633 Ricardo Rei, Craig Stewart, Ana C. Farinha, and Alon Lavie. COMET: A Neural Framework for
 634 MT Evaluation, October 2020.

635 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 636 Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A Graduate-Level Google-Proof Q&A
 637 Benchmark. <https://arxiv.org/abs/2311.12022v1>, November 2023.

638 Angelika Romanou, Negar Foroutan, Anna Sotnikova, Zeming Chen, Sree Harsha Nelaturu, Shiv-
 639 alika Singh, Rishabh Maheshwary, Micol Altomare, Mohamed A. Haggag, Sneha A, Alfonso
 640 Amayuelas, Azril Hafizi Amirudin, Viraat Aryabumi, Danylo Boiko, Michael Chang, Jenny
 641 Chim, Gal Cohen, Aditya Kumar Dalmia, Abraham Diress, Sharad Duwal, Daniil Dzenhaliov,
 642 Daniel Fernando Erazo Florez, Fabian Farestam, Joseph Marvin Imperial, Shayekh Bin Islam,
 643 Perttu Isotalo, Maral Jabbarishvili, Börje F. Karlsson, Eldar Khalilov, Christopher Klamm, Fa-
 644 jri Koto, Dominik Krzemiński, Gabriel Adriano de Melo, Syrielle Montariol, Yiyang Nan, Joel
 645 Niklaus, Jekaterina Novikova, Johan Samir Obando Ceron, Debjit Paul, Esther Ploeger, Jebish

648 Purbey, Swati Rajwal, Selvan Sunitha Ravi, Sara Rydell, Roshan Santhosh, Drishti Sharma, Mar-
 649 jana Prifti Skenduli, Arshia Soltani Moakhar, Bardia Soltani Moakhar, Ran Tamir, Ayush Kumar
 650 Tarun, Azmine Toushik Wasi, Thenuka Ovin Weerasinghe, Serhan Yilmaz, Mike Zhang, Imanol
 651 Schlag, Marzieh Fadaee, Sara Hooker, and Antoine Bosselut. *INCLUDE: Evaluating Multilingual*
 652 *Language Understanding with Regional Knowledge*, November 2024.

653 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. *WinoGrande: An Ad-*
 654 *versarial Winograd Schema Challenge at Scale*. <https://arxiv.org/abs/1907.10641v2>, July 2019.

655

656 Shivalika Singh, Angelika Romanou, Clémentine Fourrier, David I. Adelani, Jian Gang Ngui, Daniel
 657 Vila-Suero, Peerat Limkongchotiwat, Kelly Marchisio, Wei Qi Leong, Yosephine Susanto, Ray-
 658 mond Ng, Shayne Longpre, Wei-Yin Ko, Sebastian Ruder, Madeline Smith, Antoine Bosselut, Al-
 659 ice Oh, Andre F. T. Martins, Leshem Choshen, Daphne Ippolito, Enzo Ferrante, Marzieh Fadaee,
 660 Beyza Ermis, and Sara Hooker. *Global MMLU: Understanding and Addressing Cultural and*
 661 *Linguistic Biases in Multilingual Evaluation*, February 2025.

662 Gemini Team. *Gemini: A Family of Highly Capable Multimodal Models*, July 2024.

663

664 Gemma Team. *Gemma 3 Technical Report*, March 2025.

665 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
 666 patiraju, Léonard Hussonot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. *Gemma*
 667 *2: Improving open language models at a practical size*. *arXiv preprint arXiv:2408.00118*, 2024.

668 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 669 Ren, Aaran Arulraj, Xuan He, Ziyang Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
 670 Fan, Xiang Yue, and Wenhui Chen. *MMLU-Pro: A More Robust and Challenging Multi-Task*
 671 *Language Understanding Benchmark*, November 2024.

672

673 Adina Williams, Nikita Nangia, and Samuel Bowman. *A Broad-Coverage Challenge Corpus for*
 674 *Sentence Understanding through Inference*. In Marilyn Walker, Heng Ji, and Amanda Stent
 675 (eds.), *Proceedings of the 2018 Conference of the North American Chapter of the Association*
 676 *for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pp.
 677 1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
 10.18653/v1/N18-1101.

678

679 Weihao Xuan, Rui Yang, Heli Qi, Qingcheng Zeng, Yunze Xiao, Yun Xing, Junjue Wang, Huitao
 680 Li, Xin Li, Kunyu Yu, Nan Liu, Qingyu Chen, Douglas Teodoro, Edison Marrese-Taylor, Shijian
 681 Lu, Yusuke Iwasawa, Yutaka Matsuo, and Irene Li. *MMLU-ProX: A Multilingual Benchmark for*
 682 *Advanced Large Language Model Evaluation*, March 2025.

683

684 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 685 Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 686 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 687 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 688 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 689 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 690 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 691 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 692 Qiu. *Qwen3 Technical Report*, May 2025.

693

694 Da Yin, Hritik Bansal, Masoud Monajatipoor, Liunian Harold Li, and Kai-Wei Chang. *GeoM-*
 695 *LAMA: Geo-Diverse Commonsense Probing on Multilingual Pre-Trained Language Models*. In
 696 Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference*
 697 *on Empirical Methods in Natural Language Processing*, pp. 2039–2055, Abu Dhabi, United Arab
 Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 emnlp-main.132.

698

699 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. *HellaSwag: Can a*
 700 *Machine Really Finish Your Sentence?* In Anna Korhonen, David Traum, and Lluís Márquez
 701 (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*,
 pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
 18653/v1/P19-1472.

702 Yiran Zhao, Chaoqun Liu, Yue Deng, Jiahao Ying, Mahani Aljunied, Zhaodonghui Li, Lidong Bing,
 703 Hou Pong Chan, Yu Rong, Deli Zhao, and Wenzuan Zhang. Babel: Open Multilingual Large
 704 Language Models Serving Over 90% of Global Speakers, March 2025.

708 A DETAILS OF MUBENCH

710 A.1 LANGUAGE SUPPORT

712 Table 8 presents the languages supported by MUBENCH. We rank the languages by their estimated
 713 number of native speakers, using data from Wikipedia³ and other reputable online sources. To
 714 estimate the distribution of each language in web-scale data, we also report the number of tokens
 715 per language in the Common Crawl corpus. For this, we randomly selected one snapshot from
 716 each year between 2022 and 2024 and computed the average token proportion for each language.
 717 Considering only native speakers, these languages cover over 60% of the global population. When
 718 including second-language speakers, the coverage exceeds 99% worldwide.

719 Table 8: Languages sorted by native speakers and ratios in Common Crawl (HIGH at left, MID
 720 center, LOW right)

Code	Name	Speakers	Tokens	Code	Name	Speakers	Tokens	Code	Name	Speakers	Tokens
zh	Chinese	1390M	6.34%	vi	Vietnamese	86M	1.35%	hi	Hindi	345M	0.31%
es	Spanish	484M	4.14%	tr	Turkish	85M	0.98%	bn	Bengali	242M	0.18%
ar	Arabic	411M	0.78%	ms	Malay	82M	0.03%	mr	Marathi	83M	0.04%
en	English	390M	42.62%	ur	Urdu	78M	0.04%	te	Telugu	83M	0.03%
pt	Portuguese	250M	1.51%	id	Indonesian	75M	1.05%	ta	Tamil	79M	0.09%
ru	Russian	145M	9.16%	fa	Persian	65M	0.79%	jv	Javanese	69M	0.00%
ja	Japanese	124M	4.72%	pl	Polish	38M	1.69%	gu	Gujarati	58M	0.03%
ko	Korean	81M	0.84%	th	Thai	38M	0.64%	my	Burmese	33M	0.03%
de	German	76M	5.21%	uk	Ukrainian	32M	0.60%	pa	Punjabi	32M	0.01%
fr	French	74M	4.10%	ro	Romanian	24M	0.64%	tl	Tagalog	28M	0.02%
it	Italian	63M	2.33%	nl	Dutch	23M	1.57%	uz	Uzbek	27M	0.01%
				el	Greek	12M	0.69%	az	Azerbaijani	24M	0.10%
				bg	Bulgarian	8M	0.32%	ceb	Cebuano	21M	0.00%
				hr	Croatian	5.1M	0.24%	sw	Swahili	16M	0.01%
				sk	Slovak	5M	0.35%	km	Khmer	16M	0.02%
				he	Hebrew	5M	0.27%	sq	Albanian	7.5M	0.05%
				lt	Lithuanian	2.8M	0.18%	af	Afrikaans	7M	0.01%
				lv	Latvian	1.75M	0.10%	no	Norwegian	5.3M	0.37%
				et	Estonian	1.1M	0.14%	da	Danish	5M	0.36%
				sv	Swedish	10M	0.63%	fi	Finnish	5M	0.41%
				cs	Czech	11M	1.02%	is	Icelandic	0.314M	0.04%
				hu	Hungarian	13M	0.49%	ga	Irish	—	0.01%
				sr	Serbian	9M	0.21%	ca	Catalan	4M	0.17%
				sl	Slovenian	2.1M	0.13%	kk	Kazakh	15M	0.04%
								kn	Kannada	44M	0.01%
								ml	Malayalam	38M	0.02%

731 A.2 COMPARISON WITH OTHER WORK

741 Table 9 presents a comparison between MUBENCH, INCLUDE (Romanou et al., 2024), and BENCH-
 742 MAX (Huang et al., 2025). INCLUDE collects test questions from regional academic and professional
 743 certification exams, with a primary focus on local culture and knowledge. It supports 44 languages;
 744 however, the test samples are not aligned across languages and the number of samples per language
 745 varies significantly. BENCHMAX encompasses a broader range of task types to assess diverse model
 746 capabilities, including instruction following and code generation. Nevertheless, each task includes
 747 only a small number of samples. Although BENCHMAX is multilingual, it does not emphasize core
 748 multilingual capabilities such as natural language understanding and commonsense reasoning. In
 749 contrast, MUBENCH offers more comprehensive coverage in terms of language diversity, capability
 750 assessment, and sample volume. It aligns test samples across all supported languages and preserves
 751 fine-grained multilingual versions of each question—covering the instruction, question stem, and
 752 answer choices. This design enables high flexibility, facilitating the generation of variants tailored
 753 to different evaluation scenarios.

754
 755 ³https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers

756 Table 9: Comparison of multilingual LLM benchmarks
757

Benchmark	Supported Languages	Total Samples	Language Aligned	Variant Generation
MUBENCH	61	3,921,751	✓	✓
INCLUDE	44	197,243	✗	✗
BENCHMAX	17	177,684	✓	✗

763
764 A.3 DATASETS
765

766 MUBENCH focuses on core multilingual capabilities, including natural language understanding,
767 commonsense reasoning, factual recall, knowledge-based question answering, academic and technical
768 reasoning, and truthfulness. Therefore, we extend the most widely used English benchmarks
769 for evaluating these capabilities to the multilingual setting. For each benchmark, we extend its test
770 set to the multilingual setting and sample 50 examples from its training or validation set to serve as
771 few-shot demonstrations.

772 **SNLI and MultiNLI** SNLI (Bowman et al., 2015) is a widely used dataset for evaluating natural
773 language inference (NLI), where the task is to determine the logical relationship (entailment, con-
774 tradiction, or neutral) between a given premise and hypothesis. It contains sentence pairs derived
775 from image captions. MultiNLI (Williams et al., 2018) extends SNLI by including a broader range
776 of genres, such as fiction, government, and telephone speech, making it a more diverse benchmark
777 for evaluating models’ generalization across different domains in NLI tasks. We use the mismatched
778 validation set as the test set and matched validation set for few-shot demonstrations.

779 **StoryCloze** Story Cloze Test (Mostafazadeh et al., 2016) is a benchmark for evaluating a model’s
780 ability to understand narrative coherence and commonsense reasoning. Each example consists of
781 a four-sentence story followed by two possible endings, and the task is to choose the more plau-
782 sible ending. The dataset tests whether models can understand everyday events and make realistic
783 predictions about what happens next in a story.

784 **WinoGrande** WinoGrande is a large-scale dataset comprising 44,000 problems, designed to eval-
785 uate commonsense reasoning in LLMs. Inspired by the original Winograd Schema Challenge
786 (WSC) (Levesque et al.), WinoGrande addresses limitations of earlier datasets by increasing both
787 the scale and difficulty of the tasks. Each problem presents a sentence with an ambiguous pronoun
788 and two possible antecedents; the task is to determine the correct referent based on commonsense
789 understanding. We use its validation set as the test samples.

790 **MMLU and MMLUPro** The MMLU (Hendrycks et al., 2021) dataset is a benchmark designed
791 to assess language models’ knowledge and reasoning across 57 subjects, including math, history,
792 law, and medicine, using over 15,000 multiple-choice questions with four options each. MMLUPro
793 (Wang et al., 2024) is an enhanced version that introduces more challenging questions, each with
794 ten answer choices, making the task significantly harder and reducing the likelihood of guessing
795 correctly. It is designed to better evaluate models’ reasoning abilities and robustness across diverse
796 prompts and domains.

797 **ARC** ARC (Clark et al., 2018) is a benchmark designed to evaluate the ability in advanced ques-
798 tion answering. It comprises 7,787 multiple-choice science questions sourced from grade-school
799 exams, divided into two subsets: the Easy Set and the Challenge Set. The Challenge Set includes
800 questions that are difficult for simple retrieval or co-occurrence-based models.

801 **GPQA** GPQA (Rein et al., 2023) comprises 448 multiple-choice questions in biology, physics, and
802 chemistry, crafted by domain experts to assess the reasoning abilities of both humans and LLMs.
803 Designed to be exceptionally challenging.

804 **TruthfulQA** TruthfulQA (Lin et al., 2022a) is a benchmark designed to evaluate the truthfulness
805 of language models in generating answers to diverse questions. The benchmark includes 817 ques-
806 tions covering 38 categories and targets “imitative falsehoods,” which are false answers that resemble

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

<div style="border: 1px dashed black; padding: 5px; margin-bottom: 10px;"> <p>SNLI</p> <p>Premise: A man in a black business suit stands upright next to a man wearing blue and leaning against a railing. Hypothesis: The man in blue is Batman and the man in black is Jonny Cash. Question: Does the premise entail the hypothesis? Answer with one of: entailment, neutral, or contradiction. Answer:</p> <p>前提: 黒いビジネススーツを着た男性が、青い服を着て手すりにもたれかかっている男性の隣に直立している。 仮説: 青い服の男性はバットマンで、黒い服の男性はジョニー・キャッシュである。 質問: 前提は仮説を含意していますか? 次のいずれかで答えてください: 含意、中立、または矛盾。 答え:</p> <p>Explain: While Batman is culturally known in Japan, Johnny Cash's lower recognition may soften the contradiction, possibly confusing the label for some readers.</p> </div>	<div style="border: 1px dashed black; padding: 5px; margin-bottom: 10px;"> <p>WinoGrande</p> <p>The pharmacy offered a product that could cure any disease, made of a new chemical and container, but the ___ was not FDA approved. What does the blank refer to? Option A: chemical Option B: container Answer with A or B. Answer:</p> <p>Аптека предложила продукт, который мог бы вылечить любую болезнь, сделанный из нового химического вещества и контейнера, но ___ не был одобрен FDA. На что указывает пропуск ___? Вариант А: химическое вещество Вариант В: контейнер Ответьте А или В. Ответ:</p> <p>Explain: This item depends on culturally specific knowledge of the FDA's regulatory scope, which may not be shared by readers in other languages like Russian. This could lead to a different answer selection, even though the sentence translation is accurate.</p> </div>
--	--

Figure 6: Cultural or background sensitive samples.

common misconceptions found in the models' training data. The goal is to assess the likelihood of models producing false or deceptive information without task-specific fine-tuning. We expand its validation set as our test set.

BMLAMA BMLAMA (Qi et al., 2023) is designed to evaluate the cross-lingual consistency of factual knowledge in multilingual LLMs. The test questions in this benchmark are aligned across all languages. We expand the 17-language version, BMLAMA-17, which contains 6,792 samples per language. However, upon inspection, we found numerous issues in BMLAMA-17, including inconsistencies among answer choices across different language versions. Therefore, we re-extended the dataset from its English version to 61 languages. MuBench does not include the original non-English samples from BMLAMA.

HellaSwag HellaSwag (Zellers et al., 2019) is a sentence completion task designed to test commonsense reasoning. Each example provides a short context followed by four possible sentence endings, and the model must choose the most plausible one. The incorrect options are crafted to be grammatically and stylistically similar, making the task challenging and requiring more than just surface-level understanding.

A.4 CULTURAL SENSITIVITY

Analyzing the culturally sensitive samples reveals that, although our prompt instructed GPT-4o to flag only cases where cultural differences clearly influence the correct answer, the model adopted a more conservative criterion. It frequently identified content involving religion, region-specific knowledge, and niche cultural references as culturally sensitive. Given that the original datasets were created in English and contain numerous Western—particularly U.S.-centric—cultural assumptions, removing such samples helps mitigate cultural bias and supports a fairer, more balanced evaluation of LLMs across languages. Figure 6 illustrates two examples of culturally sensitive cases.

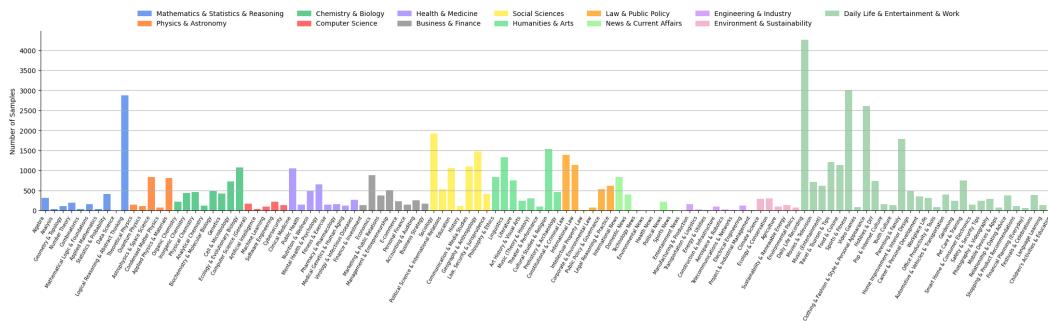
Table 10 presents a comparison between human experts and GPT-4o in labeling samples for cultural adaptability. Human experts identified significantly fewer culturally sensitive samples than GPT-4o. However, when we separately examine the human annotations for samples that GPT-4o labeled as sensitive and non-sensitive, we find that samples flagged as sensitive by GPT-4o are much more likely to be marked as sensitive by human experts as well.

Case analysis reveals that GPT-4o tends to flag samples involving niche cultural references tied to specific regions, religious topics, or similar themes. More specifically, because these datasets originate in English, they contain a substantial number of samples with a Western-centric perspective. While such content may not directly hinder the ability to answer the original questions, it implicitly assumes that LLMs respond from a Western cultural background. Using such samples to evaluate multilingual models may introduce or amplify regional and cultural biases in the development of LLMs.

As a result, we excluded samples labeled as culturally sensitive by GPT-4o from the final dataset. The impact of these samples on model behavior will be further investigated in future work.

864 Table 10: Per-language Cultural Sensitivity Agreement between GPT and Human Annotators
865

866 Language	867 n	868 GPT True Count	869 Human True GPT=True	870 Human True GPT=False
871 id	872 2452	873 1193	874 0.023	875 0.004
876 de	877 2155	878 980	879 0.042	880 0.018
881 ms	882 2159	883 958	884 0.313	885 0.013
886 fr	887 2008	888 927	889 0.033	890 0.026
891 tr	892 1893	893 901	894 0.069	895 0.011
896 ru	897 1830	898 856	899 0.105	900 0.017
901 ja	902 1850	903 848	904 0.134	905 0.046
906 it	907 2128	908 839	909 0.156	910 0.061
911 zh	912 1849	913 706	914 0.540	915 0.160
916 es	917 1745	918 669	919 0.027	920 0.005
921 th	922 1917	923 669	924 0.039	925 0.021
926 nl	927 1667	928 653	929 0.230	930 0.229
931 pt	932 1807	933 555	934 0.040	935 0.013
936 ko	937 1762	938 485	939 0.165	940 0.046
941 vi	942 1619	943 450	944 0.013	945 0.006
946 tl	947 1640	948 325	949 0.332	950 0.077

893 Figure 7: Sample content classification.
894895

A.5 DIVERSITY

896 Figure 7 presents the distribution of all MUBENCH samples based on the two-level classification
897 scheme. MUBENCH demonstrates substantial diversity, encompassing a broad spectrum of
898 academic disciplines and everyday topics. Daily life scenarios constitute a significant portion of the
899 dataset, largely contributed by sources such as SNLI, MultiNLI, StoryCloze, and Winogrande. This
900 diversity in real-world content is crucial for assessing the semantic understanding capabilities of
901 LLMs across multiple languages.902

A.6 QUALITY CONTROL

903 We recruited human annotators who hold at least a college degree, possess C1-level English pro-
904 ficiency or equivalent certification, and are native speakers of the languages they were assigned to
905 evaluate.906 We first extract all samples labeled as culturally sensitive by GPT-4o from SNLI, MNLI, Wino-
907 Grande, HellaSwag, BMLAMA, ARCEasy, ARCChallenge, StoryCloze, and MMLU. Then, we per-
908 form sampling based on semantic consistency scores and language purity scores estimated by GPT-
909 4o during the translation process, aiming to ensure that there are at least 30 samples for each score
910 level whenever possible. Additionally, we include samples extracted from OpenAI’s MMMLU. All
911 selected samples are then submitted to human experts for evaluation of semantic consistency, purity,
912 and cultural sensitivity, using the same rubrics as those employed by GPT-4o. Notably, when asking
913 human experts to evaluate semantic consistency, we directly provide the original and translated
914 versions without performing back-translation.

918 Table 11 presents the average scores given by human experts and GPT-4o for each dataset. It can be
 919 observed that GPT-4o generally rates the translations more strictly than human evaluators. Across
 920 the datasets, the expert scores do not show significant variation, indicating that the translation quality
 921 is consistently high regardless of the dataset content.

923 Table 11: Comparison of Human and GPT Consistency and Purity Scores across Datasets
 924

Dataset	Samples	Semantic Consistency		Translation Purity	
		Human	GPT	Human	GPT
MNLI	3757	4.6577	3.4195	4.5885	3.4482
SNLI	3623	4.6953	3.7248	4.6539	3.8184
ARCEasy	2561	4.8684	4.0016	4.8134	4.3811
ARCChallenge	2161	4.8903	4.1731	4.8066	4.3734
WinoGrande	2643	4.7499	4.0851	4.7662	3.5634
BMLAMA	1499	4.8953	4.3062	4.5264	3.5911
Hellaswag	3668	4.7001	4.2435	4.4959	3.4602
StoryCloze	2389	4.7401	4.3713	4.6756	3.7874
MMLU	8180	4.7605	4.4189	4.6632	3.8302

934 Figure 9 exhibits the distributions of semantic consistency and purity scores in each language rated
 935 by GPT-4o.

937

B LINGUISTIC TYPOLOGY INFLUENCES ON LANGUAGE CONSISTENCY

 938

940 We report GPT-4o’s MLC scores on our 61-language MMLU in Table 12. The mean and standard
 941 deviation of intra-group MLC scores are presented using three language typology classifications:
language family, **morphological type**, and **word order**. Only groups with more than two languages
 942 are included. We observe that language families generally exhibit high intra-group MLC, while
 943 groups based on word order or morphology show lower consistency.

945 Table 12: Intra-group MLC scores by Language Family, Morphological Type, and Word Order
 946

Language Family			Morphological Type			Word Order Type		
Family	Mean	Std	Type	Mean	Std	Order	Mean	Std
Austronesian	83.04	1.49	Agglutinative	66.48	20.90	Flexible/Mixed	62.38	26.04
Dravidian	74.54	2.80	Analytic	75.84	10.14	SOV	69.01	18.67
Germanic	55.02	25.61	Fusional	68.72	22.47	SVO	73.62	17.63
Indo-Aryan	80.67	2.47						
Romance	84.80	3.89						
Slavic	85.05	1.90						
Turkic	49.25	28.43						
Uralic	82.54	2.26						

957

C PARALLEL CORPORA IMPACT STUDY

 958

959 Consistency and accuracy together provide a holistic view of a model’s multilingual capabilities, re-
 960 vealing both performance and the extent of cross-lingual transfer. Enhancing such transfer remains
 961 a key open challenge. While parallel corpora are commonly used to improve cross-lingual gen-
 962 eralization, their exact contribution is not well understood. To explore this, we conduct experiments
 963 examining how incorporating parallel data under different language ratio settings affects model per-
 964 formance across languages.

965 **Experimental Setup** We pretrain 1.2B-parameter LLaMA-2 models on Chinese-English and
 966 Arabic-English corpora—two linguistically distant, high-resource languages—cleaned from Com-
 967 monCrawl. Training is done under two data distributions: (1) equal Chinese-English, and (2) a
 968 1:9 ratio of Chinese-to-English / Arabic-to-English, with total tokens fixed at 500B. To assess the
 969 impact of parallel data, we translate English into Chinese and Arabic and filter with COMET (Rei

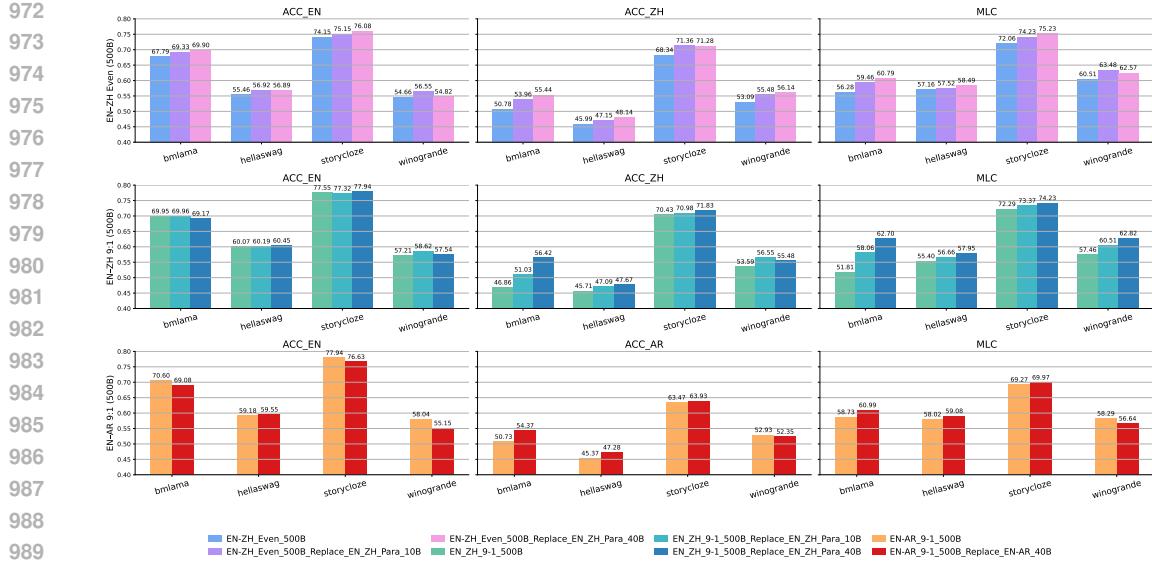


Figure 8: Impact of parallel corpus proportion on language proficiency.

et al., 2020), keeping only pairs with scores above 0.8, yielding 10B and 40B tokens of parallel data. In each setting, we replace 10B or 40B monolingual tokens—removing equal parts from both languages—to maintain the total token count.

Result Figure 8 shows the performance of 1.2B-parameter models on natural language understanding and factual knowledge tasks. Even under equal data distribution, English consistently outperforms Chinese, reflecting its dominance in global data availability. For the Chinese-English setting, introducing parallel corpora improves overall performance across both data settings, with gains primarily observed in Chinese. This, along with increased consistency, suggests that some English capabilities are effectively transferred to Chinese. Conversely, modest improvements in English performance under the equal distribution setting indicate reciprocal benefits from Chinese. Since both languages are limited to 250B tokens, excessive parallel data—despite its transfer benefits—can reduce overall information diversity due to redundancy. This is evident as the performance gain from 40B tokens of parallel data is marginal compared to 10B. In the 90% English setting, however, even a small amount of parallel data significantly boosts Chinese performance, matching that of a model trained on 250B Chinese tokens. Yet, diminishing returns and even regression (e.g., on WinoGrande) with 40B tokens, which is also the case in Arabic, highlight potential drawbacks of overusing parallel data. These results reveal a trade-off between preserving information diversity and enhancing cross-lingual transfer, shaped by data ratios and parallel corpus size. They also showcase MUBENCH’s value in probing multilingual dynamics and guiding future LLM development.

D IMPLEMENTATION DETAILS

D.1 EVALUATION

All evaluations of open-source models were conducted on a single 8xH100 GPU cluster node. The evaluation code was based on the Hugging Face Transformers⁴ library, and for models larger than 20B parameters, we used vLLM⁵ for inference.

D.2 PARALLEL CORPORA EXPERIMENT

Training Data We process Common Crawl snapshots with deduplication and heuristic filtering pipelines inspired by SlimPajama (Sli) and FineWeb-Edu (Penedo et al., 2024).

⁴<https://huggingface.co/docs/transformers>

⁵<https://github.com/vllm-project/vllm>

1026 **Model Architecture** We adopt a transformer architecture based on the LLaMA-2 model, scaled
 1027 to approximately 1.2 billion parameters. All models are initialized randomly prior to pretraining.
 1028 Table 13 provides the full configuration details and training hyperparameters. To support training,
 1029 we construct a custom Byte-Pair Encoding (BPE) tokenizer using the BBPE algorithm, resulting in
 1030 a vocabulary of 250,000 tokens. The primary experiments are run on 64 NVIDIA H100 GPUs, with
 1031 each experiment taking roughly 50 hours on average.

1032

1033

1034

1035

1036

1037

1038

Model Configuration	Value
Number of attention heads	16
Number of layers	24
Hidden size	2048
Intermediate layer dimension	5504
Maximum position embeddings	4096
Layer normalization epsilon	1×10^{-5}
Training Hyperparameters	Value
Batch size	3072
Sequence length	4096
Optimizer	AdamW
Learning rate	4.3×10^{-4}
Learning rate schedule	Cosine decay to 10% of initial value
Training steps	Varied based on total token budget
Precision	bfloat16 (mixed-precision training)

1056 Table 13: Model configuration and training hyperparameters used for LLM pretraining.
 10571058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072 D.3 PROMPT DESIGN
 1073
 1074
 1075
 1076
 1077
 1078
 1079

The following contains the prompts used during the construction of MuBench, including the main stages content classification, translation, semantic consistency evaluation, translation purity assessment, and cultural sensitivity check. For semantic consistency evaluation, first the back translation is involved and then the scoring follows.

1080

Translation Prompt

1081

1082

Please translate the entire text, into {target language}.

1083

1084

1085

1086

Translate **all content**, including prompt indicators (e.g., Premise, Hypothesis, Question, Choice, Option, Answer, header, title, step, substeps, etc.), partial phrases, and any other English words or phrases. **Do not** leave any part untranslated.

Strictly preserve:

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

Back Translation Prompt

1125

Please translate the text back into English.

1126

1127

Strictly preserve all original HTML tags (such as <p></p>), formatting, punctuation, line breaks, and structure.

1128

1129

Do **not** answer any questions or interpret the meaning — just provide a **faithful translation** of the text.

1130

Do **not** add any explanation or commentary.

1131

1132

1133

Text:

{translated text}

1134
1135**Semantic Consistency Scoring Prompt**

1136

You will be given two English texts: an original and a rewritten version.

1137

Score the rewritten version's consistency with the original on a scale of 1 to 5, based on these criteria:

1138

5 points: Completely consistent — the rewritten version conveys exactly the same meaning as the original.

1139

4 points: Mostly consistent — only very minor wording changes with no effect on understanding.

1140

3 points: Generally consistent — some differences that might slightly confuse.

1141

2 points: Significant differences — clear changes that can affect the answer.

1142

1 point: Completely inconsistent — the meaning has fundamentally changed.

1143

Original Text:

1144

{original text}

1145

Rewritten Text: {back translated text}

1146

Only output a single digit between 1 and 5.

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

Cultural Sensitivity Judgment Prompt

1159

Please determine whether the following question contains cultural context or background that would definitively cause the meaning or correct answer to change when translated into {target language}.

1160

Only respond with "Yes" if there is a clear cultural difference that would lead to a different interpretation or answer in the target language. If you are not sure or if no such difference exists, respond with "No". Do not explain your reasoning.

1161

Text:

1162

{original text}

1163

Translated Text:

1164

{translated text}

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

Category Prompt

1179

Please choose the most relevant category for this text, focusing on the content and scenario described in the question stem or the main body of the text, rather than the question type or answer format.

1180

Categories: {categories}. Only output one of these categories without any explanation, even if the question type might be misleading.

1181

1182

1183

1184

1185

1186

1187

1188 **Language Purity Scoring Prompt**
1189
1190 Evaluate the language purity of the text, based on how fully it is written in {Target
1191 Language}.
1192 Give a score from 1 to 5, where:
1193 5 — The text is written entirely in {Target Language}, with **no English words at all**,
1194 not even one.
1195 4 — The text is mostly in {Target Language}, but includes a few English loanwords,
1196 brand names, or transliterations that are commonly accepted.
1197 3 — The text contains some English words, names, or abbreviations that are not necessary
1198 and could have been translated.
1199 2 — The text mixes {Target Language} with many English terms that break the lan-
1200 guage flow and reduce clarity.
1201 1 — The text contains a large amount of English or appears heavily code-mixed, making it
1202 hard to identify {Target Language} as the dominant language.
1203
1204 Ignore option labels such as A, B, C, D — they are not considered part of the language and
1205 should not affect the score.
1206 Only reply with a number from 1 to 5. Do not include any explanation or reasoning.
1207
1208 **Text to evaluate:**
1209 {translated text}

E FULL RESULTS

MuBench includes datasets of varying difficulty levels. Some test sets are particularly challenging for base models. Due to space limitations, we only present the results on key datasets in the main text and omit those test sets that are excessively difficult for base models such as MMLUPro and GPQA.

Table 14 presents the full results on all datasets of MUBENCH. Table 15 shows the full results of multilingual consistency on all datasets of MUBENCH.

F COST ESTIMATION

We used GPT-4o-2024-05-13 for all translations, with a total cost of approximately \$57,038. In addition, using GPT-4o-2024-05-13 for evaluation across all languages incurred a total cost of \$6,441. Evaluating all other open-source models required approximately 8,064 H100 GPU hours. The cost of human expert evaluations was around \$31,212. Annotators were paid at an hourly rate of \$16, with a maximum of 8 working hours per day.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Table 14: Performance of LLMs on MUBENCH. The values in parentheses indicate the score differences relative to English performance.

	SNLI	MultinLI	StoryClose	WinoGrande	BMLAMA	MMLU	MMLUPro	HellaSwag	GPOQA	ARCEasy	ARCChallenge	TruthfulQA
Proprietary Model												
gpt-4o-2024-05-13	78.74 (±8.57)	69.78 (±11.18)	97.68 (±1.62)	71.68 (±10.35)	66.87 (±6.90)	70.01 (±2.26)	38.22 (±5.65)	83.02 (±10.75)	30.15 (±2.92)	93.64 (±5.00)	87.32 (±7.35)	75.25 (±6.38)
Model (1-4B)												
Owen3-0.6B-Base	41.21 (-25.96)	38.45 (-30.53)	56.05 (-15.78)	50.67 (-6.20)	27.17 (-32.19)	26.88 (-5.38)	9.12 (-2.11)	31.01 (-21.29)	22.16 (-0.83)	29.75 (-19.25)	24.62 (-8.89)	28.60 (-2.86)
Owen3-1.7B-Base	54.36 (-31.13)	56.33 (-24.75)	59.71 (-17.84)	50.99 (-6.30)	31.89 (-28.45)	28.13 (-7.30)	10.41 (-4.46)	35.68 (-28.29)	23.06 (-1.49)	33.46 (-23.00)	26.88 (-9.80)	29.83 (-1.80)
Owen3-4B-Base	72.06 (-10.42)	69.26 (-4.47)	64.16 (-17.19)	53.27 (-10.04)	37.82 (-26.87)	30.18 (-8.38)	12.81 (-5.82)	22.19 (-1.25)	42.52 (-29.57)	30.09 (-9.43)	31.25 (-0.89)	
Owen2.5-0.5B	35.39 (-2.03)	35.10 (-25.94)	54.26 (-17.10)	50.39 (-3.44)	26.42 (-39.55)	26.27 (-4.85)	8.71 (-1.46)	29.42 (-20.54)	21.36 (-0.52)	28.06 (-21.83)	23.67 (-7.34)	25.45 (-4.14)
Sailor2-1B	34.30 (-2.05)	34.56 (+2.06)	54.82 (-18.32)	49.98 (-5.50)	28.37 (-37.95)	26.22 (-3.45)	8.57 (-0.11)	29.88 (-20.30)	21.94 (+0.06)	28.83 (-18.18)	23.51 (-5.79)	26.04 (-2.36)
Owen2.5-1.5B	46.19 (-41.99)	46.11 (-10.94)	56.17 (-24.63)	50.48 (-10.94)	31.91 (-37.04)	27.19 (-7.73)	9.34 (-3.36)	31.64 (-33.95)	21.80 (±2.53)	29.51 (-24.67)	24.62 (-12.92)	27.37 (-3.92)
gemma-3-1b-pt	32.89 (+0.75)	32.66 (+0.22)	56.91 (-10.74)	51.62 (-5.76)	51.62 (-27.31)	26.62 (-1.29)	10.36 (-0.71)	31.11 (-13.02)	22.41 (-1.25)	28.94 (-7.77)	24.84 (-2.05)	29.83 (-0.78)
gemma-3-4b-pt	43.20 (-1.54)	42.48 (-5.82)	58.31 (-10.74)	56.01 (-11.43)	52.57 (-17.96)	26.70 (-1.40)	9.99 (-0.37)	34.31 (-16.81)	22.63 (-2.15)	29.26 (-10.08)	24.47 (-2.94)	27.35 (+0.31)
gemma-2-2b	36.43 (+0.63)	34.51 (-12.74)	63.98 (-18.91)	52.53 (-11.94)	40.48 (-30.73)	28.05 (-6.27)	11.27 (-4.30)	40.29 (-30.46)	22.42 (-1.46)	33.45 (-16.53)	27.36 (-8.81)	30.74 (-0.89)
Model (7-20B)												
Owen3-8B-Base	80.12 (-6.73)	76.16 (-6.56)	67.87 (-16.42)	55.41 (-12.03)	47.44 (-24.70)	31.47 (-8.14)	14.09 (-6.00)	47.72 (-28.02)	24.30 (-2.49)	40.51 (-17.90)	31.73 (-8.13)	32.42 (-0.23)
Owen3-14B-Base	84.20 (-3.59)	81.63 (-0.92)	71.14 (-13.61)	57.67 (-15.04)	51.72 (-21.14)	32.61 (-8.22)	15.74 (-6.15)	52.86 (-25.90)	26.08 (-2.04)	42.75 (-15.41)	33.71 (-5.98)	33.54 (-2.68)
Owen3-5.7B	68.28 (-21.13)	67.23 (-18.14)	61.88 (-22.02)	51.68 (-14.68)	36.02 (-28.39)	29.77 (-9.56)	11.76 (-5.27)	22.91 (-1.87)	39.52 (-36.92)	28.14 (-11.98)		
Sailor2-8B	52.81 (-7.29)	54.66 (-25.99)	61.89 (-20.62)	52.59 (-11.96)	40.26 (-30.47)	28.25 (-7.76)	10.09 (-3.81)	38.44 (-34.76)	22.77 (-0.22)	34.11 (-22.44)	26.62 (-11.01)	27.56 (-1.52)
Bab1-9B	68.26 (-21.89)	66.38 (-22.27)	61.96 (-21.48)	53.29 (-14.72)	42.73 (-29.34)	29.15 (-9.30)	11.76 (-5.34)	40.57 (-34.25)	22.84 (-1.04)	34.25 (-27.73)	27.64 (-13.08)	28.26 (-1.84)
Owen2.5-1.4B	76.04 (-1.95)	74.24 (-11.83)	66.50 (-19.26)	50.19 (-11.89)	23.68 (-31.04)	31.64 (-9.70)	13.92 (-5.82)	45.62 (-35.09)	24.03 (-1.19)	39.05 (-20.59)	31.13 (-0.84)	
Sailor2-20B	75.26 (-15.83)	73.36 (-16.07)	67.41 (-18.50)	56.30 (-18.64)	48.11 (-25.13)	30.61 (-8.94)	12.71 (-5.62)	46.74 (-32.83)	24.10 (+0.22)	38.14 (-20.95)	30.36 (-10.71)	
gemma-3-12b-pt	51.85 (-15.21)	37.08 (-4.45)	55.42 (-4.02)	61.40 (-11.56)	59.61 (-12.17)	26.27 (-0.87)	10.13 (+0.67)	30.50 (-4.01)	23.26 (+0.05)	28.77 (-3.40)	24.23 (+1.21)	26.22 (-0.82)
gemma-2-9b	69.92 (-5.87)	65.10 (-12.05)	73.40 (-12.28)	57.98 (-13.83)	53.59 (-18.12)	31.64 (-7.18)	14.87 (-4.44)	55.66 (-22.19)	24.20 (-1.92)	41.75 (-13.91)	33.27 (-7.11)	32.25 (+0.28)
Model (20B)												
Owen2.5-32B	81.67 (-9.51)	80.36 (-7.61)	68.19 (-18.57)	56.95 (-17.91)	48.84 (-23.45)	33.30 (-8.51)	16.09 (-5.47)	49.43 (-32.07)	24.15 (-3.53)	41.51 (-17.96)	33.12 (-10.95)	31.85 (-3.69)
Owen2.5-72B	84.63 (-6.63)	84.48 (-5.53)	71.89 (-15.42)	59.17 (-18.82)	52.87 (-19.79)	36.25 (-7.59)	18.56 (-4.57)	54.99 (-28.77)	25.86 (-1.15)	46.73 (-15.50)	34.53 (-3.23)	
Bab1-8B	85.68 (-5.86)	85.29 (-5.04)	71.40 (-15.83)	58.52 (-18.89)	52.46 (-20.91)	34.75 (-8.19)	17.52 (-5.06)	54.65 (-28.33)	26.06 (-2.06)	43.08 (-18.51)	34.47 (-3.06)	32.88 (-4.36)
gemma-3-27b-pt	81.71 (-5.27)	77.12 (-8.60)	79.06 (-8.48)	63.49 (-13.34)	61.74 (-10.48)	36.46 (-4.84)	19.19 (-4.16)	66.09 (-4.28)	27.55 (-1.47)	48.18 (-7.01)	37.99 (-3.59)	32.19 (-0.46)
gemma-2-27b	79.28 (-8.92)	75.38 (-8.58)	77.21 (-10.17)	60.78 (-15.81)	56.09 (-14.85)	34.09 (-6.76)	17.41 (-4.23)	62.08 (-20.02)	26.40 (-1.72)	44.23 (-9.48)	35.70 (-3.90)	32.40 (-2.46)

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

Table 15: Consistency across languages. ‘All’ refers to the average consistency across all language pairs, while ‘vs. EN’ indicates the average consistency between each language and English.

Proprietary Model sg-40-2024-05-13	SNLI		MultiNLI		StoryCloze		Winogrande		BMLAMA		MMLU		HellaSwag		GPQA		ARCEasy		ARCCChallenge		TruthfulQA				
	All		vs. EN		All		vs. EN		All		vs. EN		All		vs. EN		All		vs. EN		All				
	Model (1-4B)		Model (4-16B)		Model (16-64B)		Model (64-128B)		Model (128-256B)		Model (256-512B)		Model (512-1024B)		Model (1024-2048B)		Model (2048-4096B)		Model (4096-8192B)		Model (8192-16384B)				
Owen3-64B-Base	42.32	48.53	49.51	51.04	64.15	62.68	55.10	57.79	29.64	35.36	49.22	48.98	44.84	42.07	49.68	45.60	64.00	63.52	39.42	40.44	40.94	41.26	55.71	51.53	
Owen3-17B-Base	53.28	61.02	56.72	62.92	65.67	67.12	55.84	54.96	33.92	42.06	49.82	50.21	44.14	42.48	50.91	48.79	64.00	64.70	41.45	43.91	42.66	43.48	56.39	54.98	
Owen3-4B-Base	71.09	75.54	70.39	70.99	67.89	69.64	57.28	60.18	36.24	44.74	51.08	52.36	44.42	43.41	53.48	54.04	64.16	65.36	43.54	46.92	44.13	45.65	56.40	54.87	
Owen2.5-0.5B	41.39	32.35	42.98	48.39	62.45	60.86	54.09	54.11	27.93	34.21	47.67	45.94	45.06	40.15	47.63	42.30	60.68	62.83	37.19	39.40	38.03	39.40	54.06	51.49	
Sailor2-1B	49.24	15.33	58.48	71.72	62.71	61.63	54.75	55.64	28.96	36.57	48.64	48.28	46.54	43.36	47.89	43.45	63.88	62.98	38.56	39.51	40.45	40.46	53.76	52.19	
Owen2.5-1.5B	43.09	52.32	45.29	55.07	63.38	62.97	54.18	55.19	32.64	40.60	48.31	47.52	45.53	43.55	48.21	43.50	63.44	61.53	38.52	39.92	39.67	38.64	54.14	51.67	
gamma-3-1b-pt	42.90	44.96	86.21	92.58	65.71	66.21	55.84	58.85	40.64	51.17	52.79	54.52	48.13	48.67	50.64	65.85	67.30	40.81	43.46	42.78	43.76	52.52	53.49		
gamma-3-4b-pt	43.49	43.90	48.92	42.04	44.77	66.11	66.30	59.46	62.38	51.35	61.04	50.89	53.02	45.52	45.80	51.50	64.08	64.18	39.47	42.46	41.23	42.81	51.49	52.83	
gamma-2-2b-pt	35.45	43.90	41.50	29.26	55.75	58.26	39.24	49.81	53.82	54.36	48.60	47.53	51.53	52.15	67.84	68.35	43.21	46.23	44.09	45.98	56.68	56.45			
Model (7-20B)		78.37		81.58		74.47		78.24		69.90		72.52		58.79		62.14		45.48		55.63		51.39			
Owen3-3B-Base	83.45	83.45	80.76	87.75	72.01	74.85	60.12	63.72	49.80	59.66	52.59	54.06	45.02	44.74	58.75	52.75	64.85	66.84	61.95	64.82	46.01	49.78	48.45	58.61	
Owen3-14B-Base	65.59	74.58	65.37	74.53	66.10	68.76	54.96	56.65	34.49	42.58	49.28	50.29	42.92	42.04	50.72	51.05	61.89	62.62	41.29	45.31	41.33	43.29	55.19	54.90	
Owen2.5-7B	53.75	62.30	49.86	60.37	66.55	68.44	56.51	58.37	38.36	48.17	50.40	50.93	44.98	43.13	51.13	50.40	64.89	64.63	42.04	44.87	42.07	43.57	54.14	53.91	
Sailor2-8B	62.61	72.29	58.75	69.49	65.08	68.86	57.03	59.66	40.97	51.46	46.99	49.04	40.81	40.83	50.50	52.44	61.82	63.79	39.53	44.21	39.66	42.06	47.47	50.70	
Babel-9B	74.94	80.05	74.97	79.11	68.59	72.11	57.45	56.17	26.19	31.21	50.08	51.71	43.35	42.79	53.83	56.40	62.96	64.29	43.20	47.79	42.89	45.41	56.55	55.89	
Owen2.5-14B	75.07	80.40	70.00	74.91	73.61	77.25	60.18	64.31	51.62	61.12	55.87	57.51	50.12	49.77	60.41	64.38	71.00	73.30	47.12	51.71	47.02	49.58	57.85	57.82	
Model (7-20B)		81.18		85.94		80.83		84.48		69.48		72.74		61.98		46.54		56.12		52.75		43.07			
Owen2.5-72B	84.69	88.64	84.65	88.06	82.34	88.34	80.20	87.37	81.83	87.87	59.90	53.01	55.39	45.08	52.70	55.09	45.46	45.64	65.66	63.59	67.95	52.25	45.83	49.05	
Babel-8B	86.30	89.37	85.80	88.34	82.09	77.43	82.09	78.16	81.36	64.50	69.68	61.02	68.10	58.66	61.91	53.24	54.88	68.55	62.16	56.39	50.90	45.59	55.89	57.83	
gamma-3-27B	82.68	86.53	77.43	82.09	77.78	76.15	79.80	61.57	65.91	53.65	62.81	55.39	58.03	47.98	48.62	64.55	69.50	66.33	68.82	48.27	51.44	48.06	51.77	59.25	61.73
gamma-2-27B	79.14	82.88	74.24	77.78	76.15	77.78	76.15	77.78	76.15	77.78	76.15	77.78	76.15	77.78	76.15	77.78	76.15	77.78	76.15	77.78	76.15	77.78	76.15	77.78	

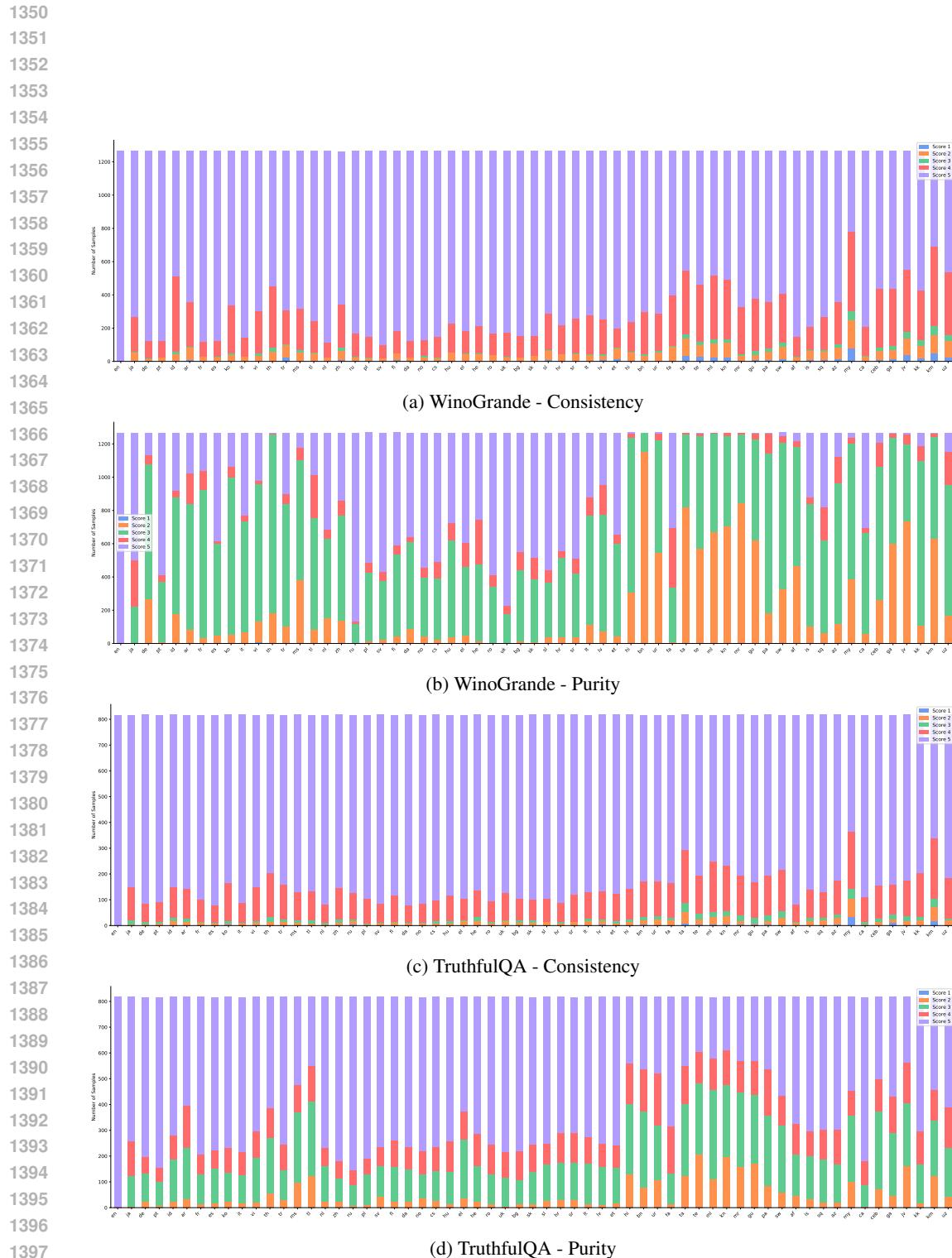


Figure 9: Consistency and purity distributions evaluated by GPT-4o (Part 1/6)

1400
1401
1402
1403

Figure 9: Consistency and purity distributions evaluated by GPT-4o (Part 2/6)

Figure 9: Consistency and purity distributions evaluated by GPT-4o (Part 3/6)

Figure 9: Consistency and purity distributions evaluated by GPT-4o (Part 4/6)

Figure 9: Consistency and purity distributions evaluated by GPT-4o (Part 5/6)

Figure 9: Consistency and purity distributions evaluated by GPT-4o (Part 6/6)