
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DualTune: Decoupled Fine-Tuning for On-Device Agentic Systems

Anonymous authors
Paper under double-blind review

ABSTRACT

The deployment of Large Language Models (LLMs) as agentic orchestrators
has revolutionized task automation, but the need for privacy-preserving, cost-
effective solutions demands on-device inference capabilities. However, local LLMs
consistently underperform compared to frontier models in tool calling scenarios,
struggling with both tool selection from large tool sets and accurate argument
generation for complex parameter structures. We introduce a methodology that
disaggregates a tool-calling task into two distinct subtasks: tool selection and
argument generation. We propose decoupled fine-tuning, a novel post-training
approach that employs LoRA fine-tuning to create dedicated LoRA adapters for
tool selection and tool-specific argument generation using separate loss masking for
each of the subtasks. Furthermore, we present DualTune, an inference framework
that leverages the LoRA adapters created using decoupled fine-tuning to perform
efficient agent orchestration with the help of local models on end-user devices.
DualTune decomposes the tool-call generation step into tool selection and argument
generation, and dynamically loads the corresponding LoRA adapters to generate
tool calls. Additionally, DualTune implements hierarchical orchestration to restrict
the number of tools required for tool selection. Our experiments on the MCP-Bench
benchmark demonstrate that the Qwen-2.5-7B model trained using decoupled
fine-tuning improves the tool calling accuracy of the base model by 46%, and
outperforms other local reasoning, non-reasoning and fine-tuned models of similar
size in all cases, and models that are 2× larger, in most cases.

1 INTRODUCTION

The emergence of Large Language Models (LLMs) has enabled the development of sophisticated
agent systems that can interpret natural language commands and coordinate multiple tools to execute
complex, end-to-end tasks. These agent systems use an LLM as the central controller (also called
as orchestrator) that receives user requests and a list of available tools. The orchestrator then works
through the task step-by-step: it calls a tool, stores the results, uses those results to decide the next
action, calls another tool, and builds up a collection of information from each step. The process
continues until the controller has gathered enough data to provide a complete response to the user’s
original request.

The proliferation of agentic architectures has driven the establishment of standardized integration
protocols, most notably the Model Context Protocol (MCP) (Anthropic, 2024). MCP establishes a
standardized protocol for LLMs to communicate with external applications. Every MCP application
defines a set of tools (called as a “toolset” or MCP Server), that contains all the tools belonging
to the application, along with their descriptions and instructions on how the LLM can use them.
Leveraging this protocol, practitioners have built a vibrant ecosystem, from reading and writing local
files to invoking remote APIs (Model Context Protocol (MCP) contributors, 2025), all of which are
accessible directly through LLMs.

Nevertheless, incorporating applications into agentic frameworks raises security concerns, as it can
involve exposing sensitive or private information residing within these applications to LLMs (Hasan
et al., 2025; Hou et al., 2025; Guo et al., 2025). This makes on-device inference critical for agentic
systems. Running LLMs locally on end-user devices enhances privacy by ensuring that personal
data remains on-device, while simultaneously eliminating the costly API expenses associated with
orchestration via frontier models (Gu et al., 2025). However, this shift toward local deployments
raises a critical question: Can locally deployed LLMs match the orchestration performance of their
cloud-based counterparts?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our investigation using MCP evaluation benchmarks (Wang et al., 2025) reveals two core short-
comings that make existing local LLMs ineffective as agentic orchestrators. First, these models
demonstrate poor tool selection capabilities, frequently choosing inappropriate tools due to limited
ability to reason about the right tool usage from sometimes ambiguous descriptions. This challenge
intensifies with larger tool sets, as expanded context length (often exceeding tens of thousands of to-
kens) overwhelms local models’ attention mechanisms. Second, local LLMs exhibit poor argument
generation capabilities, frequently failing to produce accurate parameters for tools with structural
requirements. They also have limited ability to fix the mistakes in subsequent steps, causing repeated
failures in tool calling. Furthermore, our experiments show that straightforward approaches such as
prompt tuning yield marginal accuracy improvements, but fail to improve local models’ orchestration
capabilities.

A popular approach for improving the tool-calling capability of local models is fine-tuning (Erdogan
et al., 2024; Lin et al., 2024; Liu et al., 2024b). While traditional fine-tuning helps in improving the
accuracy of local models for specialized tasks, its improvements in tool-calling performance are not
substantial. This is because traditional fine-tuning requires that the local models simultaneously learn
both tool selection and argument generation. Fundamentally, these two capabilities differ from each
other in that tool selection is a classification task (identifying appropriate tools from available options),
while argument generation combines task-specific parameter selection with syntactic accuracy.

To overcome these constraints, we introduce a novel methodology that disaggregates the tool-calling
task into two distinct specialized components: (1) tool selection and (2) argument generation.
Leveraging this decomposition, we propose decoupled fine-tuning, a post-training approach that
employs LoRA fine-tuning (Hu et al., 2022) to create dedicated adapters for tool selection and
argument generation for individual tools, separately. Decoupled fine-tuning uses separate loss
masking for tool selection and argument generation, and creates a dedicated LoRA adapter for each
tool to generate its arguments, and a common LoRA adapter for the classification task of selecting
the right tool at every step. We build an automated pipeline including synthetic data generation
to produce diverse and high-quality training datasets and performing decoupled fine-tuning on the
dataset to create the LoRA adapters.

This paper presents DualTune, an inference framework for local model orchestration that leverages
the LoRA adapters generated through decoupled fine-tuning to perform efficient agent orchestration
with the help of local models on end-user devices. DualTune breaks down every generation step
into tool selection and argument generation, and dynamically loads the corresponding adapters for
generating a tool call. Furthermore, DualTune implements hierarchical orchestration that enables it
to support a large number of tools without compromising on accuracy. Hierarchical orchestration
employs a second layer of decoupling that uses the base model to perform the high-level routing task
of selecting the most appropriate toolset (such as filesystem or notion) at every step, which
then routes the request to the tool selector that is trained on the particular toolset. This helps the tool
selectors to choose from a restricted set of tools and thereby use a smaller context length containing
only the restricted set of tools.

We use decoupled fine-tuning on the baseline Qwen-2.5-7B to create an LLM orchestrator called
DualTuneModel-7B. Extensive experimentation across two benchmarks validates DualTune’s ef-
fectiveness. Results demonstrate that DualTuneModel-7B significantly enhances tool orchestration
quality compared to other local off-the-shelf and fine-tuned models of a similar size. DualTune
also performs similar or better than local reasoning models, thus achieving high accuracy along
with lower latency. Additionally, decoupled fine-tuning delivers 2× higher improvement in tool
calling compared to baseline on a standard MCP benchmark for the filesystem toolset, compared
to traditional fine-tuning on the same dataset. DualTune operates efficiently on consumer-grade
hardware, democratizing access to powerful and privacy-preserving agentic AI systems.

2 RELATED WORKS

2.1 LLMS ON END-USER DEVICES

Due to privacy concerns and the high costs of using advanced AI models through cloud APIs (Hasan
et al., 2025; Hou et al., 2025; Guo et al., 2025), researchers have explored ways to run AI models

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

locally, including small foundation models (Belcak et al., 2025; Apple Inc., 2024) and systems
support for improving efficiency (Frantar et al., 2022; Gerganov & ggml-org contributors, 2023).

2.2 LLMS AS AGENT ORCHESTRATORS

In recent years, there has been a significant interest in building autonomous agents based on LLMs
that can execute complex tasks by calling an external tool. An increasing number of models,
both in frontier models (OpenAI, 2025; Anthropic, 2025) and local models (Zhang et al., 2024;
Lin et al., 2024; Liu et al., 2024b), support tool calling to function as agent orchestrators. The
popularity of LLM agents has led to the creation of standard protocols, notably the Model Context
Protocol (MCP) (Anthropic, 2024) MCP allows applications to expose themselves as MCP Servers,
containing a list of tools along with their descriptions. Using this protocol, LLMs can connect to
external applications and issue tool calls to the connected toolsets, allowing them to interact with the
applications autonomously.

Additionally, there have been advancements in developing datasets, benchmarks, and leaderboards to
assess the tool-calling capabilities of LLMs (Patil et al., 2025). In the context of MCP, benchmarks
like MCP-Bench are designed to assess the capability of LLMs to generate MCP tool-calls (Wang
et al., 2025), which involve realistic user prompts encompassing various applications and domains.

2.3 POST TRAINING FOR TOOL CALLING

Some works propose post-training methods to improve tool calling capability. TinyAgent (Erdogan
et al., 2024) performs fine-tuning with dataset generation that includes negative examples, and
employs Retrieval Augmented Generation to select relevant tools corresponding to a user query,
for reducing the context length of the model. Hammer (Lin et al., 2024) employs an augmented
dataset that enhances models’ sensitivity to irrelevant functions and incorporates function masking
techniques to minimize misleading. ToolACE (Liu et al., 2024b) generates diverse tool-learning data
to build a powerful local model.

3 ANALYSIS

In this section, we analyze the effectiveness of local LLMs as orchestrators for agentic systems. To
this end, we developed an agentic system in Rust that operates in a loop, beginning with a system
prompt. It calls an LLM orchestrator to generate a tool call at each step. It then executes this tool in a
containerized environment and appends the outcome to the conversational context, continuing to the
next iteration. The workflow concludes when the orchestrator determines the task is complete and
generates no further tool calls.

3.1 EVALUATION BENCHMARK AND METRIC

Model ToolFit (%) Reasoning

Qwen-2.5-7B 16.0 No
Qwen-3-8B 52.3 Yes

Qwen-3-8B* 34.2 No
Qwen-3-32B-Quant 58.3 Yes

Llama-3.1-8B 42.4 No
xLAM-2-8B 15.8 No
ToolAce-8B 45.4 No

GPT-5-mini 88.4 No

Table 1: Performance of Local LLMs on MCP-Bench with the filesystem toolset

Benchmark. We use MCP-Bench (Wang et al., 2025), a recently proposed benchmark that evaluates
LLM agents in realistic tool-use scenarios. Tasks in MCP-Bench are generated using an LLM-based
synthesis pipeline which uses tool I/O signatures to create dependency chains of tool invocations, and
then translates these dependency chains into natural language instructions, called “task descriptions”.
This is followed by a query-fuzzing phase where each task is rewritten such that it retains the core

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

objective but omits explicit tool references and execution steps. An example of the task description
and the fuzzed query is in §C. We use MCP-Bench to create 50 tasks for the filesystem MCP
toolset (Model Context Protocol, 2024), a collection of 12 tools for managing files and directories
such as reading and writing files, creating directories, and querying metadata such as file size.

Metric. To ensure objective and scalable evaluation, we employ an LLM-as-judge methodology
(Zheng et al., 2023). We use GPT-5 as the judge, which is provided with the ground-truth state of the
filesystem for each task, allowing for a deterministic and accurate assessment of the final outcome.
We assess orchestration performance using ToolFit, a metric which evaluates the output of agent
systems on a 0-10 scale for tool-calling proficiency. The evaluation framework decomposes user
queries and leverages the ground-truth data to establish an expected set of tool invocations that the
agent system should produce. A model’s score represents the proportion of expected tool outputs
successfully generated relative to the expected tool calls. Note that there can be more than one tool
that is suitable for a particular task; the judge is instructed to consider all such suitable tools as valid
in §D. A perfect score of 10 indicates complete alignment, where the model correctly invokes all
anticipated tools.

3.2 LOCAL MODELS EVALUATED

Based on the typical memory capacity of consumer-grade GPUs, we consider models smaller than
24GB in size for model weights as local models, so as to fit the model weights as well as the key-value
cache in the GPU memory. We test a variety of these local models on the benchmark, as specified
below:

Off-the-shelf Local Models. These include Qwen-2.5-7B (Yang et al., 2024), Llama-3.1-8B
(Grattafiori et al., 2024), Qwen-3-8B (Yang et al., 2025) (with and without reasoning tokens) and
Qwen-3-32B-Quant (Yang et al., 2025)

Local Fine-tuned Models. These include popular fine-tuned function-calling models, namely,
xLAM-2-8B (Zhang et al., 2024) and ToolAce-8B (Liu et al., 2024b).

3.3 LOCAL MODELS ARE INCAPABLE AS LLM ORCHESTRATORS

As shown in Table 1, our evaluation reveals that existing local non-reasoning models perform
significantly worse than the frontier GPT-5-mini model. The closest top-performing local model,
Qwen-3-32B-Quant is a reasoning model, which incurs a high latency of generation, a known problem
with the reasoning-based models (Liu et al., 2025). This shows that local models are not able to
perform effectively as orchestrators for agentic systems.

Prompt Tuning Is Not the Solution. We next investigate whether a prompt-tuning-like approach
can be used to significantly improve the performance of local models. While we cannot validate
the effectiveness of prompt tuning exhaustively, we check the performance of Qwen-2.5-7B for the
straightforward, non-fuzzed task descriptions (explained in §3.1) for the same 50 tasks. These tasks
contain explicit instructions about tool names and tool arguments. We observe that even using explicit
task descriptions incrementally improves the performance of Qwen-2.5-7B, from 16% to 22%. We
show this impact of prompt tuning on other local models in §A.

Tool Selection Model Argument Generation Model ToolFit (%)

Qwen-2.5-7B Qwen-2.5-7B 16.0
Qwen-2.5-7B GPT-5-mini 28.8
GPT-5-mini Qwen-2.5-7B 60.8
GPT-5-mini GPT-5-mini 88.5

Table 2: Performance breakdown for Qwen-2.5-7B on MCP-Bench with the filesystem toolset

3.4 PROBLEMS IN TOOL SELECTION AND ARGUMENT GENERATION

To pinpoint the sources of failure in local models, we conducted an ablation study that decouples the
two key stages of tool use: tool selection and argument generation. We achieve this by modifying the
agent’s workflow to use two separate LLM calls at each step: one to generate the tool’s name and a
second to generate its arguments.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This separation allows us to isolate each stage by substituting a frontier model’s output for one of
the steps. For example, to measure the quality of a local model’s tool selection, we use it to choose
the tool name but rely on GPT-5-mini to generate the arguments. Conversely, to assess its argument
generation capability, we use GPT-5-mini to select the tool and the local model to generate the
arguments. The results of this breakdown for the Qwen-2.5-7B local model are presented in Table 2.

We find that the performance bottleneck is primarily for the tool selection as changing the tool selector
to GPT-5-mini improves the ToolFit from 16% to 60.8%. On the other hand, delegating the argument
generation to GPT-5-mini only improves the performance from 16% to 28.8%. More importantly,
this performance breakdown also suggests that tool selection and argument generation fundamentally
differ in their nature, and can benefit from different optimizations. Fundamentally, tool selection is
a classification problem, which requires identifying the appropriate tool at every step in the agent
workflow from the available options. Argument generation, on the other hand, requires generating
the right arguments as well as producing a structured output with syntactic accuracy.

3.5 PROBLEMS WITH LONG CONTEXT DUE TO TOOL DESCRIPTIONS

The attention mechanism of local models is often impacted due to long context inputs, as identified
by prior work (Liu et al., 2024a; Qin et al., 2023). Even when the total number of tokens is smaller
than the maximum context length that the model supports, a large context increases the complexity of
the attention mechanism, causing the accuracy to drop. Furthermore, it also increases the latency
of generation – the reasoning models (Qwen-3-8B, Qwen-3-32B-Quant) require 10-20× higher
end-to-end time compared to the non-reasoning local models on the consumer-grade RTX 6000 GPU,
for processing the queries in MCP-Bench

We run the same benchmark on Qwen-2.5-7B, but we increase the list of available tools to include
tools from 2 other common applications: Notion and monday.com. This increases the total number of
tools from 12 to 30. MCP mandates every tool to provide a description of its functionality, along
with a json schema that contains the required and optional arguments for the tool. As a result of this,
the tool descriptions account for a total of 9.8K tokens, as opposed to only 3K-4K tokens belonging
to the actual task to be performed. We find that the increased context length reduces the ToolFit for
Qwen-2.5-7B from 16% to 10.4%.

4 EFFICIENT LOCAL AGENT ORCHESTRATION WITH DUALTUNE

We introduce DualTune, a novel framework designed to enable the practical adoption and deployment
of local LLMs in agentic systems via Low-Rank Adaptation (Hu et al., 2022). The core design
principle of DualTune is decoupled fine-tuning, a strategy that decomposes the complex agent
workflow at two levels.

At the first level, it separates tool selection from argument generation. This decoupling allows the
creation of a dedicated LoRA adapters for the tool selection process and for the argument generation
process. The output of decoupled fine-tuning is a single tool selection adapter and multiple argument
generation adapters. The tool selection adapter is responsible for performing the classification task of
choosing the right tool to invoke at every step, and every tool has a dedicated argument generation
adapter that generates the tool-call arguments for its tool, given an input conversation history.

DualTune employs a second level of decoupling through hierarchical orchestration, which enables
local models to operate on shorter context lengths, thereby benefiting both accuracy and latency. This
strategy allows using a separate tool selector for every toolset (e.g., filesystem or notion), thus
limiting the tool selector’s decision space and improving its accuracy.

In this section, we detail the DualTune methodology. We begin by describing the fine-tuning process
that includes our synthetic data generation strategy and the use of separate loss masking to train
the tool selector and argument generator adapters. We then explain the hierarchical orchestration
mechanism for managing a large number of tools. Finally, we discuss the integration of these
components into a robust inference framework for effective local orchestration.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1 DECOUPLED FINE-TUNING PIPELINE

The primary objective of the decoupled fine-tuning is to enhance the tool-calling accuracy of a
general-purpose LLMs. This is achieved by fine-tuning two distinct types of LoRA adapters. First,
we train a Tool Selector adapter that identifies the most appropriate tool among a given toolset to use
at each step of a task. It effectively acts as a router, outputting only the name of the tool to be used.
Second, we also train a separate Argument Generator adapter for each individual tool in the toolset.
The sole responsibility of this adapter is to generate the correct and well-formed arguments required
by its corresponding tool.

A critical requirement for this approach is a high-quality and diverse training dataset. To prevent
the classifier from being biased towards frequently used tools and to ensure each argument adapter
has sufficient data to learn its specific parameter schema, the dataset must contain a rich and evenly
distributed set of examples for every available tool.

4.1.1 SYNTHETIC DATASET GENERATION

To automate and scale the creation of our fine-tuning dataset, we leverage a powerful frontier model,
GPT-5-mini, as a data generator. For each tool in a given toolset (e.g., filesystem), we prompt
GPT-5-mini to generate 1,000 diverse training examples, where each example consists of a user-like
prompt that necessitates the use of that specific tool. The prompt used for this data synthesis process
is detailed in the Appendix §B.

After generating the task prompts, we use the same frontier model (GPT-5-mini) to generate the
tool-call sequences for each prompt1. We log the complete execution trajectories, which capture
the initial prompt, the step-by-step LLM reasoning, the exact tool calls generated, and the resulting
outputs from the tool. These high-quality trajectories serve as the ground truth for our fine-tuning
process. While it may contain cases where GPT-5-mini performs poorly, that such cases are rare,
given the high quality of the frontier model. After generation, we partition the entire set of trajectories
into an 80% training set and a 20% validation set. In addition, we reserve 50 randomly sampled
queries as a separate test set (also referred to as DualTune-TestSet which we evaluate in §5) that
employs a balanced distribution to ensure coverage of all tools within each category. From each
trajectory, we extract training instances for both the tool selection adapter and the relevant argument
generation adapter.

4.1.2 SEPARATE FINE-TUNING FOR TOOL SELECTION AND ARGUMENT GENERATION

The training of the tool selection and argument generation adapters requires different inputs and
applies different loss masking during fine-tuning, since they focus on different parts of a tool call.

The tool selection adapter is trained on all the trajectories in the training set. The fine-tuning process
involves predicting the name of the tool for the next step based on the context of all the prior steps
and the user prompt for each trajectory. Since the aim of the tool selection adapter is only to choose
the right tool (and not its arguments), we apply loss masking to compute loss only over the tool name
tokens, not its arguments.

The argument generation adapter of a particular tool is trained on all the appearances of the tool
within the training trajectories. The fine-tuning process involves predicting the arguments for the tool,
given the context of all prior steps in the trajectory and the tool name for the current step. The loss is
computed over the tokens that contain the arguments for the tool call.

4.2 HIERARCHICAL ORCHESTRATION FOR SCALABILITY

As the number of available tools grows, a single classifier must choose from an increasingly large set
of options, which increases context length and the complexity of the tool selection task. To address
this, we introduce hierarchical orchestration to manage multiple toolsets (i.e., MCP servers).

This approach introduces a two-tiered tool selection process. At each step, we first use the base
local model without any fine-tuned adapters to perform a high-level routing task: selecting the most

1Note that the use of cloud-based APIs does not pose privacy concerns in this context, as the training data can be
generated within a controlled, dummy environment that excludes any sensitive information.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 1: DualTune Inference Framework.

appropriate toolset (e.g., filesystem). We find that this high-level routing is more straightforward
than fine-grained tool selection and can be effectively guided by a system prompt and structured
decoding, without requiring fine-tuning. Intuitively, this is because the tools belonging to different
toolsets are vastly different since they belong to different applications. Selecting an appropriate
toolset is thus a simpler task than selecting a tool from within a toolset.

Once a toolset is selected, we dynamically load the specialized tool selection adapter for that
server. This tool selector then operates on a much smaller, more manageable set of tools (only the
tools belonging to the selected toolset), significantly reducing the complexity of its decision. This
hierarchical method effectively contains the context length and allows the system to scale to a larger
number of tools without performance degradation. We evaluate hierarchical orchestration in §5.3.

4.3 INFERENCE FRAMEWORK

We integrate these techniques into the DualTune inference framework, a complete agentic orches-
tration framework implemented in Rust. For security and stability, DualTune executes all tools in
containerized environments, providing fault isolation and resource management.

Our inference backend is powered by vLLM (Kwon et al., 2023), which is crucial for the practical
feasibility of our approach. vLLM’s ability to efficiently load, unload, and swap hundreds of LoRA
adapters on the fly allows us to dynamically activate the necessary classifier and argument adapters at
each step with minimal overhead. Fig. 1 shows the inference worflow in DualTune:

1. Toolset Selection: Given the current user prompt and conversation history, the base LLM selects
the appropriate toolset (such as filesystem and Notion).

2. Tool Selection: DualTune loads the tool selection adapter for the selected MCP server. An
inference call is made to this adapter, which returns the name of the desired tool.

3. Argument Generation: DualTune then dynamically swaps in the LoRA adapter specific to the
chosen tool. A second inference call generates the precise arguments for the tool call.

4. Execution and Observation: The generated tool call is executed in a secure container. The output
is captured and appended to the conversation history.

5. Termination: This loop continues until the tool selection adapter outputs a special token, “sum-
marize”. The system then generates a final summary for the user and terminates the execution.

5 EVALUATION

In this section, we present a comprehensive evaluation of different models and conduct ablation
studies to analyze the contribution of individual components. We use DualTune to create an LLM
orchestrator called DualTuneModel-7B, which creates the LoRA adapters for Qwen-2.5-7B.

5.1 EXPERIMENTAL SETUP

Baselines. We compare DualTuneModel-7B against local base models (Qwen-2.5-7B, Qwen-3-14B,
Qwen-3-32B-Quant, Llama-3.1-3B), fine-tuned models (ToolAce-8B, xLAM-2-8B) and frontier
models (GPT-OSS-20b, GPT-OSS-120b, GLM-4.5, Kimi-K2-Instruct, DeepSeek-v3.1).

Tools Evaluated. Our evaluation encompasses 30 MCP tools spanning three distinct toolsets (detailed
below), representing common real-world applications. We conduct 50 queries per toolset for each
benchmark to ensure statistical reliability.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model DualTune-TestSet MCP-Bench Size Reasoning

filesys monday notion filesys monday notion

DualTuneModel-7B 66.4 55.8 87.2 61.5 43.2 71.8 18GB No

GPT-OSS-20B 25.8 28.4 24.0 2.0 31.6 72.2 13GB Yes
Qwen-2.5-7B 7.0 45.4 37.0 15.0 19.2 33.4 14GB No
Llama-3.1-8B 9.4 29.4 40.2 24.0 13.8 13.4 15GB No
xLAM-2-8B 2.6 40.2 43.0 15.4 18.2 12.8 15GB No
ToolAce-8B 14.0 36.6 14.0 45.4 7.4 3.4 15GB No
Qwen-3-32B-Quant 43.0 56.2 78.8 58.6 37.0 85.6 18GB Yes

Qwen-3-14B 21.6 45.0 68.8 62.6 29.2 79.6 28GB Yes
GPT-OSS-120B 40.4 62.0 52.2 46.6 55.0 84.2 66GB Yes
GLM-4.5-Air-FP8 80.2 69.8 43.2 89.6 72.6 83.2 113GB Yes
DeepSeek-V3.1 79.0 64.2 57.6 80.4 77.6 93.4 689GB Yes
Kimi-K2-Instruct 6.2 47.6 35.6 14.8 22.6 46.2 1.03TB Yes
GPT-5-nano 66.8 65.4 83.8 86.8 63.0 87.6 / Yes
GPT-5-mini 67.4 60.2 87.0 88.4 76.4 91.6 / Yes

Table 3: Performance of different base models on rena-bench and mcp-bench across three applications.
The first 6 models we compare are local models that are smaller than 24GB in size.

• Filesystem toolset: This includes file and directory operations such as reading, writing,
creating, and deleting files, as well as directory traversal and permission management tasks that
form the backbone of system administration workflows.

• monday.com toolset: These tools encompass project management functionalities including
task creation, status updates, team collaboration features, and workflow automation capabilities
commonly used in enterprise project management environments.

• Notion toolset: This suite covers knowledge management operations including page creation,
database queries, content organization, and collaborative editing features essential for modern
documentation and information sharing workflows.

Benchmarks. We assess DualTune using two complementary benchmarks that evaluate different
performance dimensions. The first benchmark is the test evaluation set of DualTune (called DualTune-
TestSet), which includes 50 tasks for each toolset. The queries are designed to comprehensively test
every tool in the toolset by generating roughly the same number of test cases for each tool, ensuring
that all tools receive equal evaluation coverage. The second benchmark is MCP-Bench (Wang et al.,
2025), an open-source benchmark featuring predefined system prompts that generate complex, fuzzed
queries requiring coordination across multiple diverse tools, though with non-uniform tool usage
patterns when compared to DualTune-TestSet as explained in §3.1. We do not evaluate queries with
writes, since we cannot judge objectively based on the content generated by the LLMs for writes.

Evaluation Metrics. Model performance is assessed using ToolFit, a score ranging from 0 to 10 as
detailed in §3.1. Our evaluation employs GPT-5 as the judge model, which analyzes trajectory lists
alongside ground-truth data to compute ToolFit scores based on tool output quality and correctness.

5.2 OVERALL PERFORMANCE

Table 3 presents the comparative performance of all evaluated models across both benchmarks. We
run all the models with the help of DualTune and enable hierarchical orchestration for all the models.

DualTuneModel-7B versus local models without reasoning. DualTuneModel-7B achieves a higher
accuracy compared to all the other local models (Qwen-2.5-7B, xLAM-2-8B and ToolAce-8B) in
both the benchmarks and across all the toolsets.

DualTuneModel-7B versus reasoning models. DualTuneModel-7B achieves a higher accuracy
despite being a non-reasoning model compared to the local reasoning models (Qwen-3-14B, Qwen-3-
32B-Quant) in 5 out of 6 cases.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: The contribution of each of the components of DualTune.

DualTuneModel-7B versus base model. The DualTune fine-tuning approach significantly improves
the performance of DualTuneModel-7B compared to Qwen-2.5-7B on which it is post-trained, and
achieves an accuracy up to 60% higher than Qwen-2.5-7B.

5.3 ABLATION STUDIES

To understand the individual contributions of DualTune’s components, we conduct systematic ablation
studies examining the effects of decoupled fine-tuning and hierarchical orchestration.

We first begin with the base model (Qwen-2.5-7B) without hierarchical orchestration. To this we add
hierarchical orchestration that reduces the context length of the model due to using a restricted set of
tools. Then we test the performance of Qwen-2.5-7B with hierarchical orchestration and traditional
fine-tuning, creating a single LoRA adapter using the training data generated in DualTune. Finally, we
evaluate DualTuneModel-7B, which is Qwen-2.5-7B with hierarchical orchestration and decoupled
fine-tuning instead of traditional fine-tuning.

We perform this experiment on the Filesystem toolset for the queries generated using MCP-Bench
The results for this ablation study are in Fig. 2. We find that hierarchical orchestration improves the
accuracy of Qwen-2.5-7B from 10.4% to 16%. Using traditional fine-tuning further improves the
accuracy from 16% to 39%. However, when we substitute traditional fine-tuning with decoupled
fine-tuning for the same training dataset, we find that the accuracy jumps from 16% to 61.5%.

6 LIMITATIONS AND FUTURE WORK

DualTune relies on fine-tuning the base model to create a LoRA adapter to act as the tool selector for
a toolset to select between available tools, and a separate LoRA adapter for each tool for argument
generation. This has consequences in that adding new tools requires fine-tuning the common tool
selector, as well as a separate LoRA adapter for the new tool. However, we believe that this is still a
feasible approach because of two reasons. First, new tools are not added very frequently to existing
tool sets. For example, there has only been one tool added to the monday.com toolset in the last
five months, and no tools added to the filesystem toolset as well as the Notion toolset. This
makes the fine-tuning process rare, and thus, practical. Second, we have a fully automated training
pipeline as part of our contributions, which automatically generates the training dataset, performs
the fine-tuning, and integrates the LoRA adapters as part of DualTune – the end-to-end process
requires less than 10 hours in our experience, even while working with complex tool sets such as
monday.com and Notion. In the future, we hope to explore techniques such as reinforcement
learning to train the model while performing inference, thus automatically adapting to newer tools.

7 CONCLUSION

This paper proposes decoupled fine-tuning, a novel post-training approach that enhances the tool
calling capability of LLMs by disaggregating a tool-call into tool selection and argument generation
sub-tasks, and separately fine-tunes these sub-tasks. This paper presents DualTune, an LLM agent
inference framework that uses LoRA adapters generated using decoupled fine-tuning to perform
efficient agent orchestation on consumer-grade GPUs. We plan to open-source our fine-tuning
pipeline (decoupled fine-tuning) and our inference framework (DualTune).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

To the best of our knowledge, DualTune does not raise questions regarding the Code of Ethics.

9 REPRODUCIBILITY STATEMENT

The implementation of DualTune, along with instructions on how to set it up and reproduce the
results in the paper, is uploaded to Supplementary Material.

REFERENCES

Anthropic. Introducing the model context protocol. Anthropic News, https://
www.anthropic.com/news/model-context-protocol, November 2024.

Anthropic. Introducing claude 4. https://www.anthropic.com/news/claude-4, May
2025. Accessed: 2025-09-24.

Apple Inc. Macbook pro 14- and 16-inch – technical specifications, 2024. URL https://
www.apple.com/by/macbook-pro-14-and-16/spec. Accessed: 2025-05-16.

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan, Yingyan Ce-
line Lin, and Pavlo Molchanov. Small language models are the future of agentic ai. arXiv preprint
arXiv:2506.02153, 2025.

Lutfi Eren Erdogan, Nicholas Lee, Siddharth Jha, Sehoon Kim, Ryan Tabrizi, Suhong Moon, Coleman
Hooper, Gopala Anumanchipalli, Kurt Keutzer, and Amir Gholami. Tinyagent: Function calling at
the edge. arXiv preprint arXiv:2409.00608, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Georgi Gerganov and ggml-org contributors. llama.cpp: Llm inference in c/c++, 2023. URL
https://github.com/ggml-org/llama.cpp. Accessed: 2025-05-11.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Yile Gu, Rohan Kadekodi, Hoang Nguyen, Keisuke Kamahori, Yiyu Liu, and Baris Kasikci. Con-
sumerbench: Benchmarking generative ai applications on end-user devices. arXiv preprint
arXiv:2506.17538, 2025.

Yongjian Guo, Puzhuo Liu, Wanlun Ma, Zehang Deng, Xiaogang Zhu, Peng Di, Xi Xiao, and Sheng
Wen. Systematic analysis of mcp security. arXiv preprint arXiv:2508.12538, 2025.

Mohammed Mehedi Hasan, Hao Li, Emad Fallahzadeh, Gopi Krishnan Rajbahadur, Bram Adams,
and Ahmed E Hassan. Model context protocol (mcp) at first glance: Studying the security and
maintainability of mcp servers. arXiv preprint arXiv:2506.13538, 2025.

Xinyi Hou, Yanjie Zhao, Shenao Wang, and Haoyu Wang. Model context protocol (mcp): Landscape,
security threats, and future research directions. arXiv preprint arXiv:2503.23278, 2025.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems principles,
pp. 611–626, 2023.

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu
Zhou, Cheng Cheng, Yin Zhao, et al. Hammer: Robust function-calling for on-device language
models via function masking. arXiv preprint arXiv:2410.04587, 2024.

10

https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/claude-4
https://www.apple.com/by/macbook-pro-14-and-16/spec
https://www.apple.com/by/macbook-pro-14-and-16/spec
https://github.com/ggml-org/llama.cpp

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024a. doi: 10.1162/tacl_a_00638. URL
https://aclanthology.org/2024.tacl-1.9/.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, et al. Toolace: Winning the points of llm function calling.
arXiv preprint arXiv:2409.00920, 2024b.

Yue Liu, Jiaying Wu, Yufei He, Ruihan Gong, Jun Xia, Liang Li, Hongcheng Gao, Hongyu Chen,
Baolong Bi, Jiaheng Zhang, Zhiqi Huang, Bryan Hooi, Stan Z. Li, and Keqin Li. Efficient inference
for large reasoning models: A survey, 2025. URL https://arxiv.org/abs/2503.23077.

Model Context Protocol. Mcp filesystem server, 2024. URL https://github.com/
modelcontextprotocol/servers/tree/main/src/filesystem. GitHub reposi-
tory.

Model Context Protocol (MCP) contributors. Model context protocol servers. https://
github.com/modelcontextprotocol/servers, August 2025. GitHub repository; MIT
License.

OpenAI. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/, Au-
gust 2025. Accessed: 2025-09-24.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic
evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025.

Guanghui Qin, Yukun Feng, and Benjamin Van Durme. The NLP task effectiveness of long-
range transformers. In Andreas Vlachos and Isabelle Augenstein (eds.), Proceedings of the 17th
Conference of the European Chapter of the Association for Computational Linguistics, pp. 3774–
3790, Dubrovnik, Croatia, May 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.eacl-main.273. URL https://aclanthology.org/2023.eacl-main.273/.

Zhenting Wang, Qi Chang, Hemani Patel, Shashank Biju, Cheng-En Wu, Quan Liu, Aolin Ding,
Alireza Rezazadeh, Ankit Shah, Yujia Bao, et al. Mcp-bench: Benchmarking tool-using llm agents
with complex real-world tasks via mcp servers. arXiv preprint arXiv:2508.20453, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to empower ai
agent systems. arXiv preprint arXiv:2409.03215, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.

11

https://aclanthology.org/2024.tacl-1.9/
https://arxiv.org/abs/2503.23077
https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem
https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem
https://github.com/modelcontextprotocol/servers
https://github.com/modelcontextprotocol/servers
https://openai.com/index/introducing-gpt-5/
https://aclanthology.org/2023.eacl-main.273/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDICES

A IMPACT OF PROMPT TUNING

Model ToolFit (%)

Qwen-2.5-7B 25.8
Qwen-3-8B 53.8

Qwen-3-8B (No Reasoning) 33.2
xLAM-2-8B 18.0
ToolAce-8B 25.6
GPT-5-mini 80.6

Table 4: Performance of Local LLMs on MCP-Bench using task descriptions instead of fuzzed
queries on the MCP-Benchenchmark with the filesystem toolset

B PROMPT FOR QUERY GENERATION

The following passage shows the exact prompt used for the generation of file system queries:

Prompt

SYSTEM PROMPT: You are generating ONE English user request (exactly
one lines, no quotes, no code block, no numbering, no explanations).
GOAL: Create ONE requests that need to call $TOOL_NAME.
OUTPUT RULES (must follow all):

• Output EXACTLY TEN lines containing ONLY the user’s request.

– No prefixes/suffixes

– No labels

– No extra lines

• English only.

• Never include absolute paths.

– Refer to location generically (e.g., “in the allowed directory”,
“within the permitted workspace”, “inside the sandboxed area”)

– Or use a relative subpath (e.g., reports/2024-Q3.csv)

– Do not include drive letters

– Do not include leading “/” root paths

• Vary phrasing and structure aggressively:

– Imperative / interrogative

– Polite / terse / conditional

– With or without “please”

– Passive / active voice

– Different synonyms for “allowed directory”

• Use diverse item names and extensions:

– logs, csv, json, txt, md

– pdf, png, jpg, mp3, mp4

– zip, tar.gz, .env

– Hidden dotfiles

– Names with spaces/Unicode/UPPERCASE

– Nested relative subfolders

• Include concrete numbers:

– “first 10 lines”, “last 5 lines”

– “image1.png”, “report.pdf”

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

– “10 MB”

• Do not mention any tool names, schemas, or parameters explicitly.
The global list of tools is as follows: $GLOBAL_TOOL_LIST

C AN EXAMPLE OF TASK DESCRIPTION AND FUZZED QUERY

Task Description and Fuzzed Query

Task Description:
1. Verify allowed directories.

2. Obtain a recursive directory tree for rena-browserd/browserd/src.

3. For exactly these four subdirectories, list entries with sizes
and sort by size (sortBy=size):

• rena-browserd/browserd/src/inference_engine
• rena-browserd/browserd/src/container
• rena-browserd/browserd/src/container_comm
• rena-browserd/browserd/src/app_registry

4. From those four listings, identify the three individual files
with the largest sizes that have a .rs extension.

5. For each of the top-3 files:

• Read the first 50 lines (head=50).
• Check whether a header is present, defined as: at least two of
the first ten lines start with // or begin a block comment /*.

6. Fetch file metadata for each top file:

• Size
• Last modified
• Permissions

7. Produce a JSON report (array), one object per file containing:

• path
• size_bytes
• header_present (true/false)
• last_modified_iso
• needs_deep_audit (true if size_bytes > 15000 OR last_modified
is within the past 7 days)

• Short recommendation string

• Explicitly traverse only the four named subdirectories (no other
directories).

• Process exactly the three identified files (no more than three
read_file/get_file_info calls each).

• Treat relative dates as: past 7 days and past 90 days when
computing recency.

Fuzzed Query: I’m trying to get a repo ready for a security
review for my project and my boss only wants me to look under
rena-browserd/browserd/src -- specifically those four subfolders
rena-browserd/browserd/src/container, rena-browserd/browserd/
src/app_registry, rena-browserd/browserd/src/inference_engine,
and rena-browserd/browserd/src/container_comm -- and I could
use help figuring out which three individual .rs files are the
largest by file size: can you list the entries in each of those
four subfolders with sizes sorted by size so we can pick the top
three .rs files, then read the first 50 lines of each selected
file to check whether a header seems present (define header as
at least two of the first ten lines starting with // or /*),
fetch each file’s size, last modified time, and permissions, and
return a JSON array (with paths given as relative paths from the
root permitted directory) where each object has path, size_bytes,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

header_present (true/false), last_modified_iso, needs_deep_audit
(true if size_bytes > 15000 or last modified within the past 7
days), and a short recommendation ...

D PROMPT USED FOR COMPUTING TOOLFIT

Prompt

You are an impartial Judger that evaluates whether a tool-calling
trajectory adequately satisfied a filesystem-related query using
only the tools invoked and their raw outputs, not any assistant
summaries.
Your job is to compute coverage:
• Get the user query requirements from the query, for the output
• Map each user query requirement to tool requirements which can
help achieve that requirement (every user query requirement must
necessarily have one tool that is relevant to it). This can be
fetched by looking at tool descriptions

• Check if the tool output exists in the user trajectory item Score
the trajector from 0-10 based on how many tool outputs exist, as
a percentage of the required tool outputs

Inputs:You will be given four inputs:
• input_a (fs_status): the ground-truth snapshot of the relevant
filesystem (directory listings and/or metadata).

• input_b: (tool descriptions): This contains the descriptions of
all the tools that were available for the trajectory.

• input_c (query): the user’s natural-language request (e.g.,
list files, read file contents/data, fetch metadata like
size/mtime/ctime/permissions, produce JSON, etc.).

• input_d (tool_call + tool_response): the exact tools invoked and
their raw outputs. This is the only evidence of what the agent
retrieved. Assume there is no final assistant answer.

Getting user query requirements:
• Define the set of atomic requirements implied by the query:

– Listing queries: one atomic requirement per relevant item that
should appear (file/dir).

– Metadata queries: one atomic requirement per (item,
requested_field) pair (e.g., (fileA, mtime), (fileA, size)).

– Content/data queries: one atomic requirement per item whose
contents are requested. Treat as satisfied only if contents
are shown and not truncated such that the task can be completed.
If explicit ranges are requested (e.g., first 10 lines), treat
each requested range as its own atomic requirement.

– “All”/pattern scope: expand the item set using fs_status (e.g.,
all files under a directory or matching an extension/glob).
Missing any item in scope yields missing atomic tool
requirements for that item.

– When uncertain about presence/completeness, or when elements
are only implied (not evidenced in tool outputs), treat those
atomic requirements as unsatisfied.

Mapping user query requirements to tool requirements:
• Based on the tool description and fs_status, map each user query
requirement to the tool that can achieve it. There MUST BE one /
more tools that can help achieve EVERY user query requirement.
If there are multiple tools that can achieve the user query
requirements, then having any of them is valid.

Your Tasks
• List relevant files/directories. From the query, derive a
concrete list of relevant files/directories (explicit paths, or

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

those implied by patterns/globs). If none, use []. Prefer exact
paths; include directories if applicable.

• Derive the tool requirements. Using the user requirements,
tool descriptions and fs_status, enumerate all atomic tool
requirements as defined above.

• Evidence check (numerator). Using only tool_response:

– Mark an atomic requirement satisfied if the tool requirement
item appears and the needed data for that atom is present (for
metadata: the specific field value; for content: the actual
content, not truncated; for listings: the item name/path).

– If content is clearly truncated (e.g., elided, "output too
long"), mark the content requirement unsatisfied unless the
query asked only for a subset that is fully present.

– If fields are missing, wrong, or unverifiable, mark
unsatisfied.

– Extra/irrelevant outputs do not count against coverage; simply
ignore them.

• Compute coverage.

– coverage_percent = (satisfied_atomic_requirements /
total_atomic_tool_requirements) * 100

– If total_atomic_tool_requirements == 0, set coverage to 0%
(cannot verify anything) and explain.

• Map to score (0-10).

– Score_ToolCoverage = round(coverage_percent / 10) producing an
integer from 0 to 10 (0%→0, 100%→10; 95%→10, 94%→9, etc.). Use
standard rounding (.5 rounds up).

• Output Format (strict JSON, no code fences, no extra keys)

– Produce exactly:

{
"Reasoning_ToolCoverage": "<one concise paragraph that: (a) lists the relevant files/
directories inline (e.g., [\"/path/a.txt\", \"/logs/b.csv\"]) or []; (b) summarizes the
atomic tool requirements and how many were satisfied vs total; (c) states whether required
contents/metadata/JSON values were fully evidenced or truncated/missing; (d) notes any
missing scope items or fields that reduced coverage.>",
"Score_ToolCoverage": <integer 0 to 10>
}

– Reasoning_ToolCoverage must be a single paragraph.
– Score_ToolCoverage must be an integer between 0 and 10.

Additional Principles
• Judge only from tool outputs and fs_status; never infer unseen
data or rely on assistant text.

• For "all"/pattern queries, completeness of scope is derived from
fs_status.

• If any required element is unclear, unverifiable, or implied only
by context, treat it as unsatisfied.

• Do not penalize formatting; coverage concerns presence and
completeness of required data.

15

	Introduction
	Related Works
	LLMs on end-user devices
	LLMs as agent orchestrators
	Post Training for Tool Calling

	Analysis
	Evaluation Benchmark and Metric
	Local Models Evaluated
	Local Models are incapable as LLM orchestrators
	Problems in Tool Selection and Argument Generation
	Problems with Long Context due to Tool Descriptions

	Efficient Local Agent Orchestration with DualTune
	Decoupled Fine-Tuning Pipeline
	Synthetic Dataset Generation
	Separate Fine-Tuning for Tool Selection and Argument Generation

	Hierarchical Orchestration for Scalability
	Inference Framework

	Evaluation
	Experimental Setup
	Overall Performance
	Ablation Studies

	Limitations and Future Work
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Impact of Prompt Tuning
	Prompt for Query Generation
	An Example of Task Description and Fuzzed Query
	Prompt Used for Computing ToolFit

