
When Every Millisecond Counts: Real-Time Anomaly Detection via the
Multimodal Asynchronous Hybrid Network

Dong Xiao * 1 2 Guangyao Chen * 1 Peixi Peng 3 Yangru Huang 1 Yifan Zhao 4 Yongxing Dai 5

Yonghong Tian 1 2 3 6

Abstract
Anomaly detection is essential for the safety and
reliability of autonomous driving systems. Cur-
rent methods often focus on detection accuracy
but neglect response time, which is critical in
time-sensitive driving scenarios. In this paper,
we introduce real-time anomaly detection for au-
tonomous driving, prioritizing both minimal re-
sponse time and high accuracy. We propose a
novel multimodal asynchronous hybrid network
that combines event streams from event cameras
with image data from RGB cameras. Our net-
work utilizes the high temporal resolution of event
cameras through an asynchronous Graph Neural
Network and integrates it with spatial features
extracted by a CNN from RGB images. This com-
bination effectively captures both the temporal
dynamics and spatial details of the driving en-
vironment, enabling swift and precise anomaly
detection. Extensive experiments on benchmark
datasets show that our approach outperforms ex-
isting methods in both accuracy and response
time, achieving millisecond-level real-time per-
formance. The code is available at https:
//github.com/PKU-XD/EventAD.

1. Introduction
Autonomous driving technology has been at the forefront
of research and development in recent years, promising to
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Figure 1. For real-time anomaly detection with an emphasis on
response time, the overall response time is primarily influenced
by the model’s inference duration and the time taken to identify
anomalies.

revolutionize the transportation industry by enhancing road
safety, reducing traffic congestion, and improving fuel effi-
ciency (Huang et al., 2018; Caesar et al., 2020). The core
of autonomous vehicles lies in their ability to perceive and
interpret complex and dynamic driving environments accu-
rately and efficiently. Among the various perception tasks,
anomaly detection plays a pivotal role in ensuring the safety
and reliability of autonomous systems. Anomalies, such as
unexpected obstacles, erratic behaviors of other road users,
or sudden changes in the environment, can pose significant
risks if not promptly identified and addressed (Fang et al.,
2024). For example, a pedestrian darting onto the road from
behind a parked vehicle or a sudden road obstruction re-
quires the autonomous vehicle to react within milliseconds
to prevent potential accidents (Gehrig & Scaramuzza, 2024).

Anomaly detection is a vital component in ensuring the
safety of autonomous driving systems. Despite substantial
progress, current methods often prioritize detection accuracy
over an equally crucial factor: response time (Cui et al.,
2023; Zeng et al., 2023). Many state-of-the-art solutions
rely on increasingly sophisticated deep neural networks,
which can incur large inference latencies (Yao et al., 2022;
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Karim et al., 2023). In a domain where a delay of even a
few hundred milliseconds can dictate the difference between
safe braking and a collision (Tian et al., 2024), these lengthy
detection times significantly compromise the very safety
guarantees that autonomous vehicles are designed to deliver
(Wang et al., 2023).

To overcome this limitation, we focus on the task of real-
time anomaly detection in autonomous driving, specifically
targeting the detection of sudden hazardous anomalies from
the ego-vehicle perspective, while explicitly incorporating
response time into the performance evaluation metrics. In
addition to detection accuracy, this perspective emphasizes
minimizing the total response time—encompassing both
inference latency and the delay between anomaly occurrence
and detection (Tian et al., 2024). By centering on this time-
critical requirement, our approach seeks to bridge the gap
between high-accuracy detection and the urgent demands
of real-world driving scenarios, where prompt decision-
making is paramount for safety.

To address the challenge of real-time anomaly detection,
we introduce a multimodal asynchronous hybrid net-
work that reduces inference latency and detection delays
while preserving high accuracy. Our approach strategically
combines event cameras and conventional RGB cameras
to exploit their complementary advantages. Event cam-
eras capture brightness changes at microsecond resolution,
providing sparse yet highly informative data for dynamic
scenes (Gallego et al., 2020). At the same time, RGB cam-
eras deliver rich spatial context, albeit with higher latency
and susceptibility to motion blur (Zhou & Jiang, 2024). By
fusing the asynchronous, sparse event streams with con-
tinuous image data, we enable the model to capture both
fine-grained spatial details and rapid temporal cues.

In particular, we employ an asynchronous Graph Neural Net-
work (GNN) to process the event stream data, harnessing
the inherent sparsity and asynchronous nature of event cam-
eras (Li et al., 2021). Meanwhile, a CNN-based ResNet ex-
tracts high-level spatial features from the RGB images (He
et al., 2016). Subsequently, by leveraging a GRU module
to jointly learn the spatio-temporal relationships of object-
level and frame-level event streams and RGB features, our
model can anticipate anomaly trends in advance, achieving
both accurate and rapid anomaly detection. Notably, we
are the first to introduce the unique characteristics of event
streams as critical features for road traffic anomaly detec-
tion, and we fully exploit their high temporal resolution
and asynchronous nature through an asynchronous network
architecture. This approach is specifically designed for real-
time operation, enabling crucial millisecond-level response
times in autonomous driving environments. Extensive ex-
periments on multiple benchmark datasets demonstrate that
our approach not only outperforms existing methods in de-

tection accuracy but also substantially lowers response time,
fulfilling the stringent safety requirements of real-world au-
tonomous driving environments (Karim et al., 2023; Yao
et al., 2022).

Our main contributions are summarized as follows:

• We formalize the task of real-time anomaly detection,
emphasizing the pivotal role of rapid response in safety-
critical autonomous driving scenarios. In doing so, we
underscore how existing methods overlook this time-
sensitive aspect, compromising overall system safety.

• We propose a novel network architecture that syner-
gistically fuses event stream data with RGB images to
strike an optimal balance between minimal inference
latency and high detection accuracy. By capitalizing
on the asynchronous, fine-grained temporal informa-
tion from event cameras and the rich spatial features
of conventional images, our model delivers reliable
performance even under challenging conditions.

• We conduct extensive experiments on multiple bench-
mark datasets, demonstrating that our approach not
only surpasses state-of-the-art baselines in detection
accuracy but also significantly reduces response time.
These findings validate the practical effectiveness of
our method, reinforcing its suitability for real-world
autonomous driving applications.

2. Related Works
Ego-View Traffic Accident Detection (TAD). TAD aims
to identify accidents within specific time frames and regions
using two primary approaches: frame-level and object-level
methods. Frame-level methods extract features from video
frames and classify them to detect accidents (Vijay et al.,
2022; Zhou et al., 2022). For example, You and Han (You
& Han, 2020) developed a traffic dataset and utilized a
3D-CNN for accident localization. Reconstruction-based
techniques (Chong & Tay, 2017; Zhao et al., 2017; Gong
et al., 2019) identify anomalies by comparing reconstructed
frames with actual ones. Due to the limited availability of
real accident data, synthetic datasets and domain adapta-
tion methods are often employed to enhance performance
(Batanina et al., 2019; Tamagusko et al., 2022). Object-level
methods focus on the consistency of object movements over
time by using detectors and trackers to generate trajecto-
ries, thereby reducing the impact of dynamic backgrounds.
These methods analyze trajectories (Santhosh et al., 2021;
Chakraborty et al., 2018) or evaluate the consistency of
object positions (Le et al., 2020; Taccari et al., 2018; Hu
et al., 2021a) to detect accidents. Yao et al. (Yao et al.,
2022; 2019) proposed an unsupervised approach that pre-
dicts future object positions, flagging significant deviations
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as potential accidents. Additionally, object-level strategies
model interactions among objects to detect abrupt contex-
tual changes that may indicate accidents (Fang et al., 2022;
Yamamoto et al., 2022; Roy et al., 2020; Vijay et al., 2022).
MOVAD (Rossi et al., 2024) achieves efficient online de-
tection of traffic anomalies based solely on dashcam videos
by combining a Video Swin Transformer and an LSTM
module, and it is the first to introduce the concept of online
traffic anomaly detection.

Ego-View Traffic Accident Anticipation (TAA). TAA
focuses on predicting potential collisions by identifying
unusual behaviors in advance, providing critical time for
safe decision-making. It primarily involves predicting ob-
ject trajectories to assess accident likelihood through de-
tection, tracking, and prediction workflows (Haris et al.,
2021; Thakur et al., 2024). In complex environments like
highways, methods such as SVMs and HMMs analyze ve-
hicle trajectories to forecast accidents (Xiong et al., 2017;
Gutierrez-Osorio & Pedraza, 2020). To handle frequent
obstructions in dashcam footage, recent approaches employ
Dynamic Spatial Attention (DSA) (Chan et al., 2017) and
RNNs to capture complex spatial and temporal relation-
ships (Karim et al., 2022). Beyond trajectory prediction,
TAA also involves identifying high-risk areas (Karim et al.,
2023; Shimomura et al., 2024) and modeling driver attention
(Chen et al., 2023). Risk localization techniques integrate
agent representations with regional interactions to highlight
areas with high accident probabilities (Zeng et al., 2017).
The DRAMA dataset (Malla et al., 2023), which combines
visual and textual data, enhances prediction accuracy by pro-
viding detailed descriptions of potential accident scenarios.
Driver attention models utilize gaze direction to emphasize
possible dangers, focusing on risky areas (Bao et al., 2021).
Additionally, attention maps improve TAA interpretabil-
ity by highlighting high-risk zones, supporting integrated
approaches that combine trajectory prediction, risk localiza-
tion, and driver attention modeling (Monjurul Karim et al.,
2021).

3. Real-Time Anomaly Detection
Real-Time Anomaly Detection in autonomous driving is
essential for ensuring safety by swiftly identifying and re-
sponding to unexpected objects and behaviors in the driving
environment. This task demands a system that operates
with minimal latency, capable of detecting dynamic changes
such as pedestrians suddenly crossing the road or vehicles
appearing abruptly. The primary challenge is to achieve
high precision in anomaly recognition while maintaining
response times at the millisecond level.

Problem Formulation. Let {Xt}Tt=1 denote a sequence of
sensor observations, where Xt ∈ Rn represents the sensor
data at time t. The objective is to detect anomalies in real-

time, identifying unexpected objects or behaviors that may
pose risks.

We define an anomaly indicator function At as:

At = I(Xt is anomalous), (1)

where I(·) is the indicator function, returning 1 if the condi-
tion is true and 0 otherwise.

A detection model f(·) assigns an anomaly score st =
f(Xt). An anomaly is detected when the score exceeds a
threshold θ:

Ât = I(st > θ). (2)

Response Time. Response time R is a critical metric, com-
prising the detection delay and the model’s inference time:

R = ∆Tdetection + Tinference, (3)

where ∆Tdetection = Tdetection − Toccurrence is the delay be-
tween the anomaly occurrence and its detection. Tinference is
the time taken by the model to process the input and produce
a result. The goal of Real-Time Anomaly Detection is to
minimize R while ensuring high detection accuracy by:

• Minimizing Inference Time (Tinference): Developing
efficient algorithms that process data rapidly to reduce
computational delays.

• Reducing Detection Delay (∆Tdetection): Enhancing
the model’s ability to promptly identify anomalies im-
mediately after they occur.

4. Method
To achieve real-time anomaly detection with minimal infer-
ence time and detection delays, we propose a multimodal
asynchronous hybrid network that integrates sparse event
streams with RGB image data. Our framework processes
RGB images using a ResNet to extract appearance features
and captures event data through an asynchronous GNN with
spline convolution. The image features are shared unidi-
rectionally with the GNN, enabling the GNN to enhance
event feature representation without reciprocal communi-
cation. This design significantly improves performance,
especially in scenarios with sparse events, such as static or
slow-moving conditions.

The features from both modalities are fused and passed to
a detection head, which generates object-bounding boxes.
These object-level features are further refined using a global
graph that incorporates bounding box priors, enhancing spa-
tial anomaly detection. To capture temporal dependencies,
we employ a Gated Recurrent Unit (GRU) that processes the
video sequences. An attention mechanism assigns higher
weights to potentially anomalous objects, ensuring focused
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and efficient analysis. The combination of spatial, temporal,
and attention-enhanced features enables accurate and swift
anomaly detection.

In Sec. 4.1, we describe the network backbone, highlighting
the unidirectional integration of image and event features
and the role of asynchronous GNNs in feature representation.
Sec. 4.2 elaborates on how spatial and temporal features are
fused for anomaly detection. Figure 2 presents the overall
architecture of our proposed framework.

4.1. Multimodal Asynchronous Hybrid Network

To achieve real-time anomaly detection, we propose a Mul-
timodal Asynchronous Hybrid Network that efficiently inte-
grates RGB images and event streams. Our network consists
of two parallel branches: a CNN for processing image data
and a GNN for handling event streams. This dual-branch
architecture enables rapid and accurate feature extraction
from both modalities.

Image Feature Extraction. The CNN branch, denoted
as FI , processes input images I ∈ RH×W×3 to extract
rich spatial features. Utilizing a ResNet architecture, FI

generates detection outputs DI and intermediate feature
maps GI = {glI}Ll=1 at various layers. These intermediate
features are reused in the GNN branch to enhance computa-
tional efficiency.

Asynchronous Event Graph Construction. Event streams
E = {ei = (xi, ti, pi)}, where xi = (ui, yi) denotes pixel
coordinates, ti is the timestamp, and pi ∈ {−1, 1} repre-
sents polarity, are captured by event cameras when lumi-
nance changes exceed a threshold C:

|∆L| > C. (4)

These events are modeled as nodes in a graph G = (V,E)
with normalized spatial coordinates x̂i =

(
ui

W , yi

H

)
and

scaled timestamps t̂i = βti. Edges are formed based on
spatial and temporal proximity within a radius R, and edge
features are defined as:

eij =
1

2
(nj,xy − ni,xy) +

1

2
, (5)

where ni,xy and nj,xy are the normalized spatial coordinates
of nodes i and j. Each node connects to up to 16 neighbors
to maintain computational efficiency.

Event Feature Extraction. We employ a Deep Asyn-
chronous Graph Neural Network (DAGr) (Gehrig & Scara-
muzza, 2024) to process the event graph using residual graph
convolutional layers with spline convolutions:

f ′
i = Wcfi +

∑
j∈N (i)

W (eij)fj , (6)

where Wc and W (eij) are learnable weights, and N (i) de-
notes the neighbors of node i. Spline convolutions enable

efficient aggregation of neighbor information, accelerat-
ing computation through lookup tables during deployment.
Temporal consistency is maintained by aggregating nodes
into a voxel grid and applying directional voxel pooling,
which preserves the temporal order of events.

Feature Fusion. To integrate the extracted features from
both modalities, we fuse the CNN and GNN outputs by aug-
menting each GNN node feature fi with the corresponding
CNN feature gI(x̂i) sampled at the node’s location:

f ′
i = [fi, gI(x̂i)]. (7)

This fusion enhances the model’s ability to leverage spatial
information from images alongside the temporal dynam-
ics captured by event streams, improving the detection of
anomalies in diverse driving scenarios.

The Multimodal Asynchronous Hybrid Network is opti-
mized for real-time performance by utilizing asynchronous
processing and efficient feature fusion. This design ensures
minimal latency and high accuracy in detecting anomalies,
making it well-suited for the stringent requirements of au-
tonomous driving systems.

4.2. Anomaly Detection Network

To enable real-time anomaly detection, our Anomaly Detec-
tion Network efficiently extracts and processes object-level
features from both event streams and RGB images, captur-
ing spatial and temporal dynamics with minimal latency.

Object Feature Extraction. We utilize an asynchronous
GNN to extract features from event data overlapping with
detected bounding boxes. For each object i at time t, the
GNN generates an event-based feature ot,i:

ot,i = AsyncGNN (Et,i; θGNN) , (8)

where Et,i represents the event points within the bounding
box of object i, and θGNN are the GNN parameters.

Concurrently, features from the RGB image are extracted
using a CNN, denoted as gt,i. We concatenate the GNN and
CNN features to form a comprehensive feature vector:

pt,i = [ot,i; gt,i], (9)

which is then reduced in dimensionality via a fully con-
nected layer:

ft,i = ϕ(pt,i; θ0). (10)

Spatio-Temporal Relational Learning. To model tem-
poral dependencies and interactions between objects, we
employ Gated Recurrent Units (GRUs). For each object i,
the bounding box features bt,i and the fused features ft,i are
processed as follows:

hb,t,i = GRU(bt,i, hb,t−1,i; θ1), (11)
hf,t,i = GRU(ft,i, hf,t−1,i; θ2). (12)
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Figure 2. Overview of the proposed multimodal asynchronous hybrid network. (a) The framework integrates RGB images and event
streams as inputs. Appearance features are extracted from RGB images using a ResNet architecture, and event features are derived from
event streams through an asynchronous graph neural network (GNN) utilizing spline convolution. These features are then fused and
processed by a detection head to generate object bounding boxes. (b) At the object level, features are refined through a global graph,
leveraging bounding box priors, and temporal dependencies are captured using gated recurrent units (GRU). An attention mechanism
dynamically assigns weights to detected objects, enhancing the focus and accuracy in anomaly detection by emphasizing anomalous
objects.

Here, θ1 and θ2 are the parameters for the GRUs handling
bounding box and fused features, respectively.

Attention Mechanism. To prioritize significant objects, we
apply an attention mechanism to the GRU outputs. The
attention weights for bounding box and fused features are
computed as:

αb,t = softmax
(
tanh

(
H⊤

b,twb

))
, (13)

Ĥb,t = Hb,tαb,t, (14)

αf,t = softmax
(
tanh

(
H⊤

f,twf

))
, (15)

Ĥf,t = Hf,tαf,t, (16)

where Hb,t and Hf,t are the hidden states for bounding box
and fused features, and wb, wf are learnable parameters.

Risk Score Prediction. The attention-weighted features
are concatenated to form a unified representation for each
object:

ĥt,i = [ĥb,t,i; ĥf,t,i], (17)

which is then passed through a fully connected layer and
softmax activation to compute the riskiness score st,i:

st,i = softmax
(
ϕ
(
ĥt,i; θ3

))
. (18)

Here, θ3 are the parameters of the final classification layer.

This network architecture ensures that anomalies are de-
tected accurately and promptly by integrating spatial fea-
tures from RGB images with temporal dynamics from event
streams, all processed through efficient asynchronous and
recurrent mechanisms tailored for real-time performance.

5. Experiments
5.1. Experimental Setup

Datasets. We employ two datasets, ROL (Karim et al.,
2023) and DoTA (Yao et al., 2022), both annotated with de-
tailed temporal, spatial, and categorical information, making
them highly suitable for traffic anomaly detection research.
The ROL dataset provides comprehensive annotations for
each video clip, which encompass object descriptions, acci-
dent details, and scene contexts. Temporal annotations pin-
point the initial appearance of a risky traffic agent and the on-
set of an accident, offering insights into the dynamics of risk
development and collision occurrence. Spatially, the dataset
includes bounding boxes for each traffic agent, which are ini-
tially detected using YOLOv5, subsequently tracked across
frames with DeepSort (Veeramani et al., 2018), and finally
refined by human annotators to ensure high accuracy. Cate-
gorical annotations in the dataset include traffic agent types
and scene contexts, enhancing the dataset’s utility for in-
depth traffic behavior analysis and research. DoTA stands
as the first openly available dataset tailored for traffic video
anomaly detection, featuring robust temporal, spatial, and
categorical annotations. It comprises over 4,600 video clips,
collected under a variety of regional, weather, and light-
ing conditions, with each video documenting one specific
anomaly. Temporal annotations in DoTA detail the start,
duration, and conclusion of anomalies, while spatial annota-
tions provide bounding boxes coupled with unique tracking
IDs for each object involved in the anomalies. Currently,
our DoTA dataset, ROL dataset, and all existing real-world
(non-synthetic) first-person autonomous driving anomaly
detection datasets lack the event modality. To address this,
we utilized the v2e (Hu et al., 2021b) conversion technique
to generate and supplement event modality data. This al-
lows us to simulate the continuous event streams that would
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be captured by event cameras in real-world scenarios. It
is important to note that v2e is solely used for generating
supplementary event data and serves no other purpose in
our work.

Implementation Details. Our proposed multimodal
anomaly detection model is implemented in PyTorch. For
object detection, RGB frames are resized to 224×224 pixels
and processed using a ResNet50 backbone for feature extrac-
tion. We adopt the YOLOX framework for bounding box
detection, optimizing with IoU loss, class loss, and regres-
sion loss. For anomaly detection, features from the tracked
objects are fed into a GRU network to capture temporal
dependencies, complemented by an attention mechanism
that focuses on potential anomalies. Asynchronous event
data are handled using an asynchronous GNN layer, which
models interactions at the frame level with bounding box
priors aiding spatial-temporal analysis. The integration of
spatial and temporal features from the ResNet backbone
facilitates comprehensive anomaly detection.

To address cross-modality training schedule ambiguity, both
modalities are trained with clearly defined parameters. The
RGB component is trained for 30 epochs using a batch size
of 64, and the dataset contains 1,920 images per epoch, re-
sulting in a total of 57,600 data passes during training. For
the event-based component, derived from the v2e conver-
sion of the image-based dataset, we employ a batch size
of 32 and a dataset size of 1,920 samples per epoch, with
training spanning 150,000 iterations. This is equivalent to
approximately 2,500 passes over the event dataset, ensuring
comprehensive learning of the event-derived features.

Training employs the Adam optimizer for the GRU-attention
module with a learning rate of 0.001, and the AdamW op-
timizer for the GNN-ResNet combination with a learning
rate of 2× 10−4. A ReduceLROnPlateau scheduler adjusts
learning rates to optimize training stability. Class weights in
the ROL dataset are set to 0.27 for the negative class and 1
for the positive class to balance the model’s response. These
detailed training schedules and parameters ensure effective
integration of detection and attention mechanisms for both
spatial and temporal anomaly identification.

5.2. Evaluation Metrics

To comprehensively evaluate our real-time anomaly detec-
tion model, we employ a set of metrics designed to measure
both predictive accuracy and timeliness:

Area Under the Curve (AUC). AUC (Hanley & McNeil,
1982) quantifies how well the model distinguishes between
risky and non-risky agents by computing the area under the
ROC curve, thereby providing a single metric that balances
true positive rate (TPR) and false positive rate (FPR).

Average Precision (AP). AP (Everingham et al., 2010)

calculates the area under the Precision-Recall curve, offering
an intuitive measure for imbalanced datasets by emphasizing
both precision and recall.

Mean Average Precision (mAP). mAP (Lin et al., 2014)
evaluates detection performance across varying IoU thresh-
olds (from 0.5 to 0.95 in increments of 0.05), thus capturing
a more nuanced perspective on overall detection robustness.

Mean Time-to-Accident (mTTA). mTTA (Fang et al.,
2023) measures the average earliest time at which a risky
agent’s score st,i surpasses a threshold s̄, reflecting the
model’s capability to foresee accidents before they occur.

Frame-Level AUC (AUC-Frame). AUC-Frame evaluates
the model’s ability to detect risky frames within a video.
It is defined as the area under the ROC curve at the frame
level:

AUC-Frame =

∫ 1

0

TPR(t) d(FPR(t)), (19)

where TPR(t) and FPR(t) denote the true positive rate and
false positive rate at threshold t, respectively.

Mean Response (mResponse). To capture not just if but
also how quickly anomalies are detected at various sensi-
tivity levels, we introduce mResponse. Unlike a single-
threshold evaluation, mResponse measures the average de-
tection delay across multiple thresholds, offering a more
holistic view of real-time performance. Formally, it is de-
fined as:

mResponse =
1

n

n∑
j=1

Responsej , (20)

where n is the number of thresholds and Responsej is the
detection delay at the j-th threshold. By aggregating re-
sponse times across varying operational sensitivities, mRe-
sponse provides a more robust measure of how promptly
the model flags anomalies, making it particularly suitable
for real-world, safety-critical scenarios.

5.3. Result Analysis

We evaluated the effectiveness of our proposed model
(OURS) against several established methods for anomaly de-
tection on the ROL dataset. Performance was assessed using
key metrics including Area Under the Curve (AUC), Aver-
age Precision (AP), Frame-Level AUC (AUC-Frame), and
mean Time-to-Accident (mTTA). The compared models in-
clude ConvAE (Hasan et al., 2016), ConvLSTMAE (Chong
& Tay, 2017), AnoPred (Liu et al., 2018), FOL (Yao et al.,
2019) (with variants FOL-IoU, FOL-Mask, FOL-STD, and
FOL-Ensemble (Yao et al., 2022)), MAMTCF (Liang et al.,
2023), AM-Net (Karim et al., 2023), STFE (Zhou et al.,
2022), and TTHF (Liang et al., 2024).
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Table 1. Comparison of the proposed model with existing methods on the ROL and DoTA test datasets

METHOD AUC(%)↑ AP(%)↑ AUC-FRAME(%)↑ MTTA(S)↑ FPS↑ MRESPONSE(S)↓
DATASETS ROL DOTA ROL DOTA ROL DOTA ROL DOTA ALL ROL DOTA

CONVAE(HASAN ET AL., 2016) 0.759 0.779 0.493 0.521 0.608 0.663 1.64 1.75 82 2.44 2.31
CONVLSTMAE(CHONG & TAY, 2017) 0.713 0.501 0.479 0.626 0.594 0.595 1.47 1.82 65 2.67 2.58
ANOPRED(LIU ET AL., 2018) 0.773 0.790 0.517 0.541 0.610 0.675 1.74 1.89 67 2.39 2.26
FOL-IOU(YAO ET AL., 2022) 0.817 0.830 0.539 0.563 0.660 0.730 1.95 2.09 56 2.14 1.79
FOL-MASK(YAO ET AL., 2022) 0.826 0.846 0.546 0.569 0.674 0.725 1.98 1.99 44 1.98 2.05
FOL-STD(YAO ET AL., 2022) 0.837 0.852 0.550 0.573 0.679 0.714 1.94 2.10 41 2.01 2.03
FOL-ENSEMBLE(YAO ET AL., 2022) 0.849 0.866 0.563 0.577 0.698 0.744 2.05 2.13 33 2.16 2.35
MAMTCF(LIANG ET AL., 2023) 0.841 0.862 0.568 0.581 0.701 0.766 2.01 2.11 98 1.88 1.81
AM-NET(KARIM ET AL., 2023) 0.855 0.874 0.576 0.586 0.707 0.765 2.18 2.24 61 1.96 1.88
STFE(ZHOU ET AL., 2022) 0.862 0.881 0.579 0.602 0.728 0.793 2.23 2.34 77 2.04 1.99
TTHF(LIANG ET AL., 2024) 0.871 0.891 0.585 0.618 0.733 0.847 2.35 2.41 3 2.46 2.58

OURS 0.879 0.896 0.570 0.623 0.736 0.823 2.80 2.78 579 1.17 1.21

As summarized in Table 1, OURS achieves leading perfor-
mance in both AUC and AP metrics, demonstrating superior
capability in distinguishing risky agents and balancing pre-
cision with recall. While the TTHF method outperforms
OURS in the AUC-Frame metric, OURS significantly sur-
passes all other models, including TTHF, in terms of re-
sponse time. This superior response time is attributed to
OURS’s reliance on asynchronous Graph Neural Networks
(GNNs) and event stream integration, which enable an in-
ference speed approaching 600 FPS. Additionally, OURS
achieves an exceptionally low mean response time (mRe-
sponse), highlighting its promptness in detecting anomalies.
This low latency is a result of the model’s high inference
speed and efficient anomaly detection mechanisms, as fur-
ther evidenced by the favorable mTTA values. In contrast,
the TTHF method, which integrates text information fusion,
exhibits slower response times despite higher detection per-
formance. Overall, the comparative analysis underscores
that OURS not only sets a new benchmark in AUC and
frame-level anomaly detection but also significantly en-
hances early risk localization capabilities. These results
establish OURS as the leading model in real-time anomaly
detection, combining high accuracy with exceptional timeli-
ness, as detailed in Table 1.

5.4. Ablation Studies

We conducted ablation experiments to investigate the im-
pact of various modules on model performance, focusing
on metrics including AUC, AP, AUC-Frame, mTTA, and
mAP. Table 2 provides a summary of the results on the ROL
dataset.

RGB + Event. Incorporating both RGB and event data sig-
nificantly enhances the model’s overall performance. RGB
features offer rich visual information that aids in distinguish-
ing between object categories such as vehicles and pedestri-
ans, while also complementing event stream data to improve
object detection accuracy, as reflected by increased mAP in

diverse driving scenarios. Meanwhile, event features cap-
ture asynchronous and dynamic motion cues, effectively
representing the relative movement between objects and the
autonomous vehicle. This enables the model to rapidly and
reliably detect anomalies, particularly in challenging condi-
tions such as extreme lighting or at night, further strength-
ening the robustness of the system.

GRU Module for Temporal Dynamics. The GRU module
is critical for capturing and leveraging temporal information.
Integrating GRUs increases AUC from 0.805 to 0.817 and
AP from 0.479 to 0.508, indicating a more accurate classifi-
cation of anomalies. Moreover, mTTA improves from 1.44
to 1.98 seconds, demonstrating the GRU’s effectiveness in
accumulating temporal features and enabling early detec-
tion—an essential feature for real-time anomaly detection.

Attention Module. Although secondary to GRUs in mod-
eling temporal dependencies, the Attention module con-
siderably boosts the model’s sensitivity to anomalies by
concentrating on salient regions. This targeted approach
proves especially beneficial in complex or cluttered envi-
ronments, where focusing on relevant features is critical for
accurate anomaly detection.

BBox and Object Modules for Precise Localization. The
BBox module refines the model’s localization capabili-
ties, delivering more precise bounding box information and
thereby improving AUC and AP metrics. Building on this,
the Object module leverages these bounding boxes to further
enhance detection accuracy by extracting detailed object-
level features. This enhancement is particularly valuable in
crowded or occluded scenes, where precise object recogni-
tion is challenging.

Together, the multimodal integration (RGB + Event), GRU,
Attention, BBox, and Object modules comprehensively el-
evate the model’s performance across all metrics. While
RGB images increase mAP through richer spatial details, the
GRU and Attention modules substantially enhance temporal
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Table 2. Ablation study results for different model configurations on ROL dataset, showing the effects of different components on AUC,
AP, AUC-Frame, mTTA, and mAP.

RGB EVENT GRU ATTENTION BBOX OBJECT TWO-STAGE AUC(%)↑ AP(%)↑ AUC-FRAME(%)↑ MTTA(S)↑ MAP(%)↑
✓ ✓ 0.805 0.479 0.648 1.44 41.66
✓ ✓ ✓ ✓ ✓ 0.817 0.508 0.668 1.98 43.59
✓ ✓ ✓ ✓ ✓ 0.819 0.498 0.657 1.52 43.77

✓ ✓ ✓ ✓ ✓ 0.823 0.518 0.691 2.06 35.76
✓ ✓ ✓ ✓ 0.813 0.507 0.688 1.73 43.57
✓ ✓ ✓ ✓ ✓ 0.839 0.531 0.703 2.11 43.29
✓ ✓ ✓ ✓ ✓ 0.845 0.539 0.694 1.96 42.94
✓ ✓ ✓ ✓ ✓ ✓ 0.868 0.561 0.726 2.51 43.82
✓ ✓ ✓ ✓ ✓ ✓ 0.879 0.570 0.736 2.80 45.15

detection accuracy and sensitivity. Simultaneously, BBox
and Object modules refine localization and object recog-
nition, culminating in a robust, high-performing anomaly
detection framework.

Our multimodal asynchronous hybrid network is designed in
a modular fashion, allowing the network depth (i.e., number
of ResBlocks and look-up-table Spline convolution layers)
to be increased for more complex data. Experiments show
that increasing the number of layers slightly improves detec-
tion accuracy, with a modest increase in inference latency.
See Table 3.

Table 3. Performance and latency trade-off with different network
depths on ROL.

LAYERS AUC AP AUC-F MTTA FPS MRESPONSE

4 0.879 0.570 0.736 2.80 579 1.17
5 0.885 0.574 0.739 2.89 312 1.31
6 0.892 0.577 0.740 2.93 166 1.56

These results indicate that our model is highly scalable,
with only minor latency trade-offs for improved detection
accuracy in increasingly complex environments.

To further enhance global feature modeling, we replaced the
original CNN backbone with ViT and Swin Transformer.
Transformer architectures can capture long-range dependen-
cies and improve detection accuracy. However, the self-
attention mechanism has O(N2) complexity, introducing
additional inference latency. Experimental results are shown
in Table 4.

Table 4. Performance comparison of different backbone architec-
tures on ROL.

MODEL AUC AP AUC-F MTTA FPS MRESPONSE

OURS(CNN) 0.879 0.570 0.736 2.80 579 1.17
CNN→SWIN 0.881 0.576 0.739 2.85 278 1.44
CNN→VIT-B 0.886 0.581 0.745 2.87 213 1.51

These results show that Transformer backbones can improve
detection accuracy when latency is carefully managed, but

a trade-off exists between accuracy and real-time require-
ments.

5.5. Qualitative Evaluation

Our model leverages multiple feature types: RGB features
encode appearance, bounding box features represent object
position and movement, event stream features capture rapid
and abnormal motion, and object-level features describe
local details. The object-level attention mechanism assigns
scores to detected objects, highlighting those most relevant
to anomaly detection.

As illustrated in Figure 4, when a vehicle suddenly cuts in,
its attention score increases as it approaches, indicating its
growing importance as a potential anomaly. Visualizations
of these attention scores across frames demonstrate how the
model dynamically focuses on critical objects, providing
insight into which features are most vital for identifying
anomalies. This enhanced interpretability aids in under-
standing the model’s decision-making process and improves
its credibility and deployment safety.

Figure 3 presents three challenging scenarios from the ROL
dataset that highlight our model’s effectiveness in detect-
ing traffic anomalies critical for autonomous vehicle safety.
These examples involve small objects and complex abnor-
mal movements. Each example includes three rows. The
top row shows Ground Truth, where normal objects appear
in white and anomalies in red. The middle row displays
our model’s predictions, highlighting anomalies with scores
above 0.5 in red. The bottom row compares frame-level
anomaly scores to the Ground Truth, offering a straightfor-
ward visual measure of our model’s accuracy.

Lane Merger Scenario. In Figure 3(a), a vehicle abruptly
merges into the autonomous vehicle’s lane. At frame 20,
the anomaly score is 0.33, signifying the early onset of
abnormal behavior. By frame 30, the score rises to 0.58,
accurately highlighting the vehicle’s unusual trajectory and
intensified event flow. Here, the GRU module proves essen-
tial by aggregating temporal cues, boosting the detection
sensitivity as the threat unfolds.
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(a) As the side vehicle initiates an abrupt lane change, a series
of anomalous events is triggered, resulting in a steady rise in the
anomaly score.

(b) A vehicle abruptly enters the autonomous vehicle’s field of view
with an intercepting trajectory, causing a sharp spike in the anomaly
score.

Figure 3. In various traffic anomaly scenarios, the actions of hazardous vehicles significantly threaten the autonomous vehicle, causing
elevated anomaly scores.

Figure 4. When a vehicle suddenly cuts in, its attention score in-
creases as it approaches, indicating its growing importance as a
potential anomaly.

Oncoming Collision Risk. Figure 3(b) depicts an oncom-
ing vehicle veering toward the autonomous vehicle, posing
a high collision risk. The model’s anomaly score quickly
escalates, driven by erratic movement and close proximity,
which are detected by leveraging bounding box data to as-
sess relative positions. This underscores the importance of
precise spatial cues for robust anomaly detection.

Early Detection Advantage. Comparisons in Figure 3
indicate that our method achieves earlier anomaly detection
than AM-Net (Karim et al., 2023), thereby reducing latency
in critical situations. These examples confirm that our model
not only covers a wide spectrum of anomalies but also reacts
with temporal precision essential for real-world autonomous
driving applications.

Inter-Frame Anomaly Detection. Figure 5 illustrates a sud-
den pedestrian appearance across two consecutive frames.
Harnessing the asynchronous event stream properties allows
the model to detect anomalies between frames, effectively
anticipating the presence of fast-moving objects before they

fully emerge in the scene. This capability significantly low-
ers detection latency, which can be crucial for avoiding
potential collisions.

Figure 5. In scenarios where high-speed objects suddenly emerge,
a continuous stream of events helps the model perform inter-frame
anomaly detection, allowing for earlier and more timely anomaly
detection.

6. Conclusion
We focus on the task of real-time anomaly detection in
autonomous driving, underscoring the need to minimize
response time without compromising detection accuracy.
To address this challenge, we proposed a multimodal asyn-
chronous hybrid network that combines event streams from
event cameras with RGB image data. By employing an
asynchronous GNN for high-temporal-resolution event data
and a CNN for rich spatial features, our framework captures
both the temporal dynamics and spatial details of driving en-
vironments. Extensive experiments on benchmark datasets
demonstrate that our approach significantly surpasses ex-
isting methods in detection accuracy and response time,
achieving millisecond-level responsiveness. This work lays
a foundation for future research in time-critical perception
tasks and advances safe, reliable deployment of autonomous
vehicles.
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Impact Statement
This paper introduces a multimodal asynchronous hybrid
network for real-time anomaly detection in autonomous
driving. By integrating sparse event stream data with con-
ventional image-based inputs, the method reduces detec-
tion delays, enhances response times, and improves overall
safety and reliability in dynamic driving environments. Its
broader impact lies in potentially reducing traffic accidents
and fatalities, but it also raises ethical concerns, including
job displacement, potential system failures, and privacy is-
sues—particularly in urban settings where both public and
private data may be collected. Ensuring responsible deploy-
ment requires rigorous testing, robust safety measures, and
appropriate regulatory frameworks that uphold transparency,
fairness, and accountability. Future work should address
these challenges and any unintended social consequences,
enabling autonomous driving technology to realize its trans-
formative potential safely and ethically.
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A. Ablation Studies

Table 5. Ablation study results for different model configurations on ROL dataset, showing the effects of different components on AUC,
AP, AUC-Frame, mTTA, and mAP.

RGB Event GRU Attention Bbox Object Two-stage AUC(%)↑ AP(%)↑ AUC-Frame(%)↑ mTTA(s)↑ mAP(%)↑
✓ ✓ 0.805 0.479 0.648 1.44 41.66
✓ ✓ ✓ ✓ ✓ 0.817 0.508 0.668 1.98 43.59
✓ ✓ ✓ ✓ ✓ 0.819 0.498 0.657 1.52 43.77

✓ ✓ ✓ ✓ ✓ 0.823 0.518 0.691 2.06 35.76
✓ ✓ ✓ ✓ 0.813 0.507 0.688 1.73 43.57
✓ ✓ ✓ ✓ ✓ 0.839 0.531 0.703 2.11 43.29
✓ ✓ ✓ ✓ ✓ 0.845 0.539 0.694 1.96 42.94
✓ ✓ ✓ ✓ ✓ ✓ 0.868 0.561 0.726 2.51 43.82
✓ ✓ ✓ ✓ ✓ ✓ 0.879 0.570 0.736 2.80 45.15

We conduct a comprehensive ablation study presented in Table 5, with the analysis detailed as follows:

RGB and Event Modalities. Both RGB and Event modalities are crucial for the model’s performance. RGB features
capture the static appearance of objects, while Event features extract dynamic motion and anomaly-related characteristics.
As illustrated in Figure 6, objects exhibiting abrupt and irregular motions generate a significant number of anomalous
events. In the fourth and seventh groups of the ablation study, the exclusion of RGB and Event inputs, respectively, led to
performance degradation. Specifically, omitting RGB features caused a substantial decline in anomaly detection accuracy
and mean Average Precision (mAP) for object detection, as object detection heavily relies on appearance information.
Similarly, removing Event inputs reduced anomaly detection accuracy and the Time to Anomaly (TTA) metric, since the
Event stream provides essential inter-frame information that enables the model to detect anomalies more promptly. These
results highlight the complementary nature of the two modalities: RGB features provide rich static appearance information,
while Event streams capture dynamic motion information, thereby enhancing the sensitivity of anomaly detection.

Two-Stage vs. Single-Stage Architecture. The eighth and ninth experiments compare the model’s performance using a
two-stage versus a single-stage architecture. In the two-stage architecture, Event and RGB features are first utilized for
object detection, and the resulting detections serve as priors for anomaly detection. In contrast, the single-stage architecture
directly leverages fused Event and RGB features for both tasks simultaneously. The superior performance of the single-stage
model can be attributed to its shared feature extraction module, which allows anomaly detection to benefit directly from
features optimized for object detection, thereby enhancing sensitivity to anomalous behaviors.

Bounding Box (BBox) Priors. The fifth and sixth experiments investigate the impact of using BBox priors for anomaly
detection. BBox priors provide critical information about the relative positions of objects concerning the autonomous
vehicle, which is particularly valuable for detecting anomalies. As shown in Figure 8(b), irregular BBox movements often
serve as early indicators of anomalies. For instance, when a vehicle abruptly merges into the lane of the autonomous vehicle,
this irregularity can be anticipated from the temporal movement of the BBox. The absence of BBox priors led to decreased
anomaly detection accuracy. Unlike the DoTA (Yao et al., 2022) framework, which bases anomaly detection on predicting
future object trajectories and focuses on irregular BBox movements, our method employs a Gated Recurrent Unit (GRU) to
capture the temporal sequence of BBox movements, leveraging this information for anomaly detection. The inclusion of
BBox priors enhances anomaly detection by providing essential positional information, and their absence negatively impacts
performance, underscoring their significance.

GRU and Attention Modules. The second and third experiments assess the importance of the GRU and attention modules
within the anomaly detection framework. Compared to the ninth experiment, removing either the GRU or the attention
module resulted in a significant decrease in anomaly detection accuracy. The GRU is pivotal for modeling temporal
information, as most anomalies in the ROL and DoTA datasets develop over time. Anomalies are often characterized
by gradually accumulating abnormal features rather than sudden appearances. For example, as depicted in Figure 9(c),
a merging vehicle requires approximately 20 frames to transition into the lane of the autonomous vehicle. During this
period, the GRU incrementally aggregates anomaly features, resulting in a continuously increasing anomaly score. This
demonstrates the GRU’s role in modeling the temporal accumulation of anomaly features.

While the GRU captures temporal anomaly accumulation, the attention module focuses on spatial anomalies at each time step.
It assigns higher attention weights to anomalous objects at the object level, enabling the model to prioritize these anomalies
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Figure 6. In scenarios where high-speed objects suddenly emerge, a continuous stream of events helps the model perform inter-frame
anomaly detection, allowing for earlier and more timely anomaly detection.

and assign them higher anomaly scores. Together, the GRU and attention modules provide complementary strengths: the
GRU tracks temporal patterns, and the attention module enhances the spatial prioritization of anomalous objects. Ablation
studies show that incorporating the attention module significantly improves anomaly detection performance, confirming its
critical role in enhancing detection accuracy. Figure 6 illustrates the interaction between the GRU and attention modules.
The GRU facilitates faster accumulation of anomaly scores, allowing for earlier detection, while the attention module enables
more accurate anomaly judgments. In contrast, the baseline anomaly score curve without GRU and attention exhibits greater
fluctuations.

Overall, the ablation analysis underscores the importance of multimodal inputs (RGB and Event), BBox priors, and temporal-
spatial mechanisms (GRU and attention) for effective anomaly detection. These findings validate that each component plays
a vital role in enhancing the model’s performance, particularly in dynamic environments where both temporal and spatial
anomaly features are essential.

Table 6. Ablation study results for different two-stage model configurations on ROL dataset, showing the effects of different components
on AUC, AP, AUC-Frame, mTTA.

No. RGB BBox Event(asyn.) Event(sync.) Flow GRU Attention AUC(%)↑ AP(%)↑ AUC-Frame(%)↑ mTTA(s)↑
1 ✓ ✓ ✓ 0.855 0.559 0.702 2.18
2 ✓ ✓ ✓ 0.840 0.544 0.698 2.25
3 ✓ ✓ ✓ 0.851 0.542 0.705 2.50
4 ✓ ✓ ✓ ✓ 0.862 0.559 0.713 2.48
5 ✓ ✓ ✓ ✓ ✓ 0.868 0.561 0.726 2.51

B. Two-Stage versus Single-Stage Networks
The primary difference between two-stage and single-stage networks lies in their operational flow. Two-stage networks
initially perform object detection and subsequently conduct anomaly detection without reusing the features extracted during
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the object detection phase. Table 6 summarizes the impact of various components on the performance of the two-stage
model.

Experiment 1. In the first experiment, only bounding box (BBox) features and optical flow were utilized as input modalities,
with a Gated Recurrent Unit (GRU) module responsible for temporal feature extraction. This configuration achieved a high
anomaly detection score but exhibited a lower mean Time to Anomaly (mTTA) due to the synchronous nature of optical flow.
These results indicate that while optical flow effectively captures motion-related features, its performance is constrained by
its reliance on synchronized data.

Experiments 2 and 3. In the second and third experiments, optical flow was replaced with synchronous and asynchronous
event streams, respectively. Synchronous event streams were generated by aggregating events within fixed time windows
into event frames, which were then processed similarly to optical flow. However, this synchronous configuration resulted
in the lowest Area Under the Curve (AUC) and mTTA, as it negated the inherent asynchronous properties of event
streams. Conversely, asynchronous event streams, processed using an asynchronous Graph Neural Network (GNN),
significantly outperformed synchronous streams by leveraging motion-related information essential for anomaly detection.
The asynchronous approach maintained the temporal granularity of raw events, which is critical for identifying subtle
anomalies.

Experiment 4. The fourth experiment introduced an attention mechanism to focus on critical features, leading to further
improvements in detection performance. The attention module enhanced the model’s ability to identify anomalies by
selectively weighting more relevant object-level features. This underscores the importance of prioritizing specific regions
and features, especially in complex anomaly detection scenarios.

Experiment 5. In the fifth experiment, RGB features were incorporated alongside BBox and asynchronous event streams,
resulting in the highest overall performance improvement. Although RGB features had a limited direct impact on anomaly
detection, they indirectly enhanced performance by improving object detection accuracy. This demonstrates that RGB
features, while not directly influential in anomaly detection, play a supportive role by providing more accurate object
localization and detection in the initial stage.

Overall, these findings highlight the effectiveness of asynchronous event streams and attention mechanisms in enhancing
two-stage networks. Additionally, they acknowledge the indirect benefits of RGB features through improved object detection,
thereby contributing to more robust anomaly detection performance.

Figure 7. Examples from the Rush-Out dataset demonstrate the effectiveness of our approach. At a tunnel exit under intense backlighting,
a vehicle suddenly emerges from the tunnel edge. Leveraging the advantages of event data, our method enables rapid and accurate
anomaly detection in such challenging scenarios.

C. New Datasets
The ROL (Karim et al., 2023) and DoTA (Yao et al., 2022) datasets encompass a diverse range of traffic anomalies, including
scenarios both with and without the presence of autonomous vehicles. To specifically evaluate the low-latency capabilities
of our model, we identified and selected scenarios that best highlight this aspect. These scenarios are characterized by the
sudden appearance of pedestrians or vehicles, posing significant risks to autonomous vehicles. Such abrupt occurrences
typically result from the occlusion by large objects or the autonomous vehicle’s narrow field of view, causing fast-moving
entities to unexpectedly enter the vehicle’s sight and create hazardous situations. In these contexts, the low response latency
of our method is particularly advantageous.
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Table 7. Comparison of the proposed model with existing methods on the Rush-Out test dataset

Method AUC(%)↑ AP(%)↑ AUC-Frame(%)↑ mTTA(s)↑ mResponse(s)↓
ConvAE(Hasan et al., 2016) 0.789 0.502 0.612 1.03 1.88
ConvLSTMAE(Chong & Tay, 2017) 0.738 0.490 0.603 1.05 2.05
AnoPred(Liu et al., 2018) 0.790 0.521 0.616 1.14 1.92
FOL-IoU(Yao et al., 2022) 0.823 0.543 0.666 1.30 1.61
FOL-Mask(Yao et al., 2022) 0.835 0.553 0.681 1.35 1.54
FOL-STD(Yao et al., 2022) 0.845 0.561 0.689 1.32 1.48
FOL-Ensemble(Yao et al., 2022) 0.870 0.572 0.698 1.45 1.62
AM-Net(Karim et al., 2023) 0.879 0.579 0.710 1.48 1.55

OURs 0.887 0.592 0.755 1.71 1.29

To facilitate this evaluation, we curated the Rush-out1 dataset by extracting instances of dangerous driving scenarios
involving sudden outbursts of objects from the ROL and DoTA datasets. The Rush-out dataset comprises 1,084 videos, each
recorded at 20 frames per second (fps) with a resolution of 1280× 720. Table 7 presents a performance comparison on the
Rush-out dataset using the same baseline methods referenced in Table 5. Our proposed method surpasses the state-of-the-art
(SOTA) by 0.23 seconds in the mean Time to Anomaly (mTTA) metric and achieves a 0.19-second improvement in the
mean Response Time (mResponse) metric.

The Rush-out dataset predominantly features high-speed scenes where even a single frame can result in significant
displacement of an anomalous vehicle, thereby increasing the associated risk. Despite the heightened complexity of these
scenarios, our method consistently demonstrates superior performance in anomaly detection metrics.

Figure 7 and Figure 8 illustrate the results obtained on the Rush-out dataset. Specifically, Figure 8 depicts a scenario where
a vehicle abruptly emerges from the edge of a tunnel exit under strong backlighting conditions. The intense lighting induces
significant visual blurring, rendering traditional detection methods less effective for fast-moving objects. Our approach
leverages event streams, which are particularly robust under extreme lighting conditions, highlighting the unique advantage
of event cameras in complementing conventional RGB imagery. By utilizing this modality, our method reliably detects
rapidly emerging vehicles across consecutive frames, enabling early anomaly detection and timely alerts in such challenging
environments.

D. Qualitative Evaluation
Our model prioritizes rapid inference speed and minimal anomaly detection latency, which are crucial in scenarios where
fast-moving objects suddenly appear. Figure 8 presents typical instances of pedestrians or vehicles emerging unexpectedly.
By leveraging continuous event streams between consecutive video frames, our model performs inter-frame anomaly
detection, thereby effectively reducing detection latency.

Figure 8(a) illustrates a case where a boy suddenly runs out from behind a truck. In this scenario, the boy enters the field of
view mid-road due to a blind spot. Although the boy is not detected in the first frame, the continuous event stream between
the first and second frames enables the model to detect the boy in advance, assigning a high anomaly score and significantly
reducing detection latency.

Similarly, Figure 8(b) and Figure 8(c) depict vehicles abruptly emerging from the side. Due to their high speed, the model
utilizes event streams between frames for inter-frame anomaly detection, allowing for earlier identification of anomalies and
further reduction in detection latency.

Figure 9 showcases additional results of real-time traffic anomaly detection, where most cases involve abnormal vehicles or
pedestrians obstructing the autonomous vehicle’s path, leading to traffic anomalies.

In Figure 9(a), a turning vehicle increasingly approaches the autonomous vehicle, resulting in elevated anomaly scores. The
relative position between the abnormal vehicle and the autonomous vehicle is a key factor in this detection.

1https://www.filecad.com/7xga/rush-out.zip

16



When Every Millisecond Counts: Real-Time Anomaly Detection via the Multimodal Asynchronous Hybrid Network

(a) The boy suddenly rushed out from behind the truck on the left.

(b) A pickup truck suddenly rushed out from the right side of the field of vision.

(c) A pickup truck suddenly rushed out from the right side of the field of vision.

Figure 8. The anomaly detection results of suddenly rushing out of the scene, the objects moving at high speed in two consecutive frames
can use the characteristics of event streams to help detect abnormalities between two frames.

Figure 9(b) shows a cyclist suddenly changing lanes, creating a collision risk with the autonomous vehicle. The cyclist’s
irregular motion generates high anomaly scores, as these irregular movements produce numerous anomalous event streams
that are central to anomaly detection.

Finally, Figure 9(c) depicts a scenario where a normally moving vehicle on the right abruptly changes lanes, posing a
collision risk with the autonomous vehicle. The vehicle’s irregular lane change, combined with its decreasing distance from
the autonomous vehicle, is the primary factor for anomaly detection.

E. Failure Cases and Limitations
Our system’s performance relies heavily on the accuracy of the object detector. As shown in Figure 10, in Frame 25 and
Frame 30, blurry images and small objects led to complete detection failure, which in turn caused the anomaly detection
framework to fail. Although an object was detected in Frame 35 when it was very close to the ego vehicle, the attention
score was only 0.56 due to missing previous detections, preventing the GRU from building a robust temporal feature set.
These cases highlight that our approach is limited by the reliability of the object detector, and improvements in detection
accuracy are essential.
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(a) The vehicle ahead on the left makes a turn, progressively reducing its distance to the autonomous vehicle, posing a significant risk.

(b) A cyclist on the left changes lanes unexpectedly, creating a high risk of collision with the autonomous vehicle, which ultimately results
in a crash.

(c) A vehicle on the right, initially driving normally, suddenly changes lanes, decreasing its distance to the autonomous vehicle and leading
to a high anomaly risk.

Figure 9. Additional traffic anomaly scenarios for real-time anomaly detection primarily involve abnormal vehicles obstructing the
autonomous vehicle’s path, posing significant risks to its operation.
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Figure 10. Our approach is limited by the reliability of the object detector, and improvements in detection accuracy are essential.

F. Sensitivity Analysis
Our model remains robust across different settings. At the standard 0.5 IOU and 0.5 confidence thresholds, the model
achieves an AUC of 0.879. As shown in Figure 11, increasing these thresholds sharply reduces AUC by filtering out more
detection boxes, while lowering them causes a gradual decline as false positives are effectively down-weighted. Overall, the
AUC ranges from 0.65 to 0.879, confirming the stability of our configuration.

Figure 11. Sensitivity analysis of the model’s hyperparameters IOU threshold and target detection confidence threshold.
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G. Real-Time Anomaly Detection Methods
We compared our approach with several recent real-time video anomaly detection methods, including AED-MAE (Ristea
et al., 2024), EfficientAD (Batzner et al., 2024), and MOVAD (Rossi et al., 2024). AED-MAE is a state-of-the-art method
for surveillance videos that emphasizes detection speed, but relies on static background modeling, making it less suitable for
dynamic traffic environments. EfficientAD is designed for industrial anomaly detection and also operates at the frame level.
MOVAD is the first online real-time anomaly detection method specifically for autonomous driving. Our approach achieves
the best balance between accuracy and speed, meeting the unique requirements of the traffic domain. Results on ROL and
DoTA are shown in Table 8.

Table 8. Comparison with recent real-time anomaly detection methods on ROL and DoTA.
METHOD TYPE AUC-FRAME(%)↑ MTTA(S)↑ MRESPONSE(S)↓ FPS↑
DATASETS - ROL DOTA ROL DOTA ROL DOTA -

EFFICIENTAD FRAME 0.519 0.549 0.89 0.97 3.65 2.68 557
AED-MAE FRAME 0.571 0.652 1.01 1.35 3.36 2.79 1655
MOVAD FRAME 0.719 0.821 2.47 2.55 2.61 1.33 158
OURS OBJECT 0.736 0.823 2.80 2.78 2.35 1.21 579

H. Synthetic Event Data and Validation
Currently, mainstream traffic anomaly detection datasets do not contain real event (DVS) modality. To address this, we
employ the V2E (Video to Event) method to convert conventional video data into event streams, thereby supplementing the
event modality input. V2E effectively simulates core DVS sensor characteristics, including Gaussian threshold distribution,
temporal noise, leak events, and intensity-dependent bandwidth. Its fidelity has been validated on datasets such as N-Caltech
101, where V2E-generated data raised ResNet34 accuracy on real DVS from 81.69% to 83.36%, and up to 87.85% after
fine-tuning (compared to 86.74% using real data only).

Although the DSEC (Gehrig et al., 2021) dataset contains real event data in autonomous driving scenarios, it only covers
normal driving and lacks anomaly events, making it unsuitable for direct use in anomaly detection tasks. To further validate
the effectiveness of V2E-generated data, we generated a simulated DSEC+V2E dataset and conducted experiments on ROL
and DoTA. The results show that using DSEC+V2E versus DSEC alone leads to minimal changes in anomaly detection
performance (AUC, AP, mTTA, etc.), confirming that the V2E method can effectively supplement the event modality and
maintain model robustness. See Table 9.

Table 9. Performance comparison of DSEC and DSEC+V2E on the ROL and DoTA test sets.
METRICS AUC(%)↑ AUC-FRAME(%)↑ MTTA(S)↑ MRESPONSE(S)↓
DATASET ROL DOTA ROL DOTA ROL DOTA ROL DOTA

DSEC 0.841 0.857 0.697 0.794 2.24 2.18 1.66 1.79
DSEC+V2E 0.846 0.862 0.712 0.808 2.46 2.37 1.45 1.61

In summary, despite inherent differences between synthetic and real event data, our systematic experiments demonstrate the
effectiveness of V2E and the robustness of our detection model, laying the groundwork for future real event-based anomaly
detection datasets.

I. Deployment Feasibility and Hardware Adaptation
Our method can be deployed end-to-end on mainstream autonomous driving chips. For example, on Orin chips, the system
can process approximately 560k events per second under normal load, and up to 10M events/second at peak, with a total
computational cost of about 87.32 TFLOPs and 42W power consumption, which is within the chip’s capability. Although
two cameras (RGB + Event) are used, hardware synchronization limits timing errors to 78 microseconds, and the event
camera itself introduces only about 6ms delay, meeting real-time requirements. For resource-constrained chips, quantization
and other optimizations can further improve deployment efficiency.
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J. Computational Analysis
Our method requires only 8.732 MFLOPs per event and uses 23.5 GB of video memory. Under typical conditions in the
ROL dataset, with an average event rate of 560k events per second, this overhead is manageable. In high-speed driving
scenarios—where the event rate can rise to 1–10M events/s—the worst-case computational load is approximately 87.32
TFLOPs.

Current autonomous driving chips such as Atlan, Thor, and Orin can fully deploy our algorithm on-board, while chips like
Xavier and Parker, although sufficient for normal driving, might face challenges under extreme conditions. The specifications
of several representative chips are summarized in Table 10.

Table 10. Representative autonomous driving chip specifications.
CHIP ARCHITECTURE COMPUTE POWER

PARKER 2×DENVER 1 TOPS
XAVIER 4×ARM CORTEX A578 30 TOPS
ORIN NVIDIA CUSTOM CARMEL 254 TOPS
ATLAN ARM6412 × ARM CORTEX-A78 1000 TOPS
THOR AE (HERCULES) ARM NEOVERSE V2 2000 TFLOPS @ FP8

K. Extreme scenarios
We collected data on severe weather and low-light scenes from the ROL and DoTA datasets, and performed comparative
experiments with the two best-performing baseline methods. Benefiting from the advantages of event cameras in extreme
lighting scenarios, our method outperforms other methods by a large margin in these scenarios. See Table 11.

Table 11. Performance comparison in adverse weather or low-light scenarios.
METHOD AUC(%)↑ AP(%)↑ AUC-FRAME(%)↑ MTTA(S)↑ MRESPONSE(S)↓
STFE 0.631 0.397 0.582 1.26 3.12
TTHF 0.652 0.416 0.594 1.31 2.98
OURS 0.719 0.442 0.612 1.47 2.35
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