
Improving Deep Ensembles without Communication

Konstantinos Pitas
Statify Team

Inria Grenoble Rhône-Alpes
pitas.konstantinos@inria.fr

Michael Arbel
Thoth Team

Inria Grenoble Rhône-Alpes
michael.arbel@inria.fr

Julyan Arbel
Statify Team

Inria Grenoble Rhône-Alpes
julyan.arbel@inria.fr

Abstract

Ensembling has proven to be a powerful technique for boosting model performance,
uncertainty estimation, and robustness in supervised deep learning. We propose to
improve deep ensembles by optimizing a tighter PAC-Bayesian bound than the most
popular ones. Our approach has a number of benefits over previous methods: 1) it
requires no communication between ensemble members during training to improve
performance and is trivially parallelizable, 2) it results in a simple soft thresholding
gradient update that is much simpler than alternatives. Empirically, we outperform
competing approaches that try to improve ensembles by encouraging diversity. We
report test accuracy gains for MLP, LeNet, and WideResNet architectures, and for
a variety of datasets.

1 Introduction

Ensembling combines predictions from multiple trained models. In the deep learning setting, it has
proven effective at improving model accuracy as well as capturing predictive uncertainty, outper-
forming Bayesian approaches for the same number of posterior samples [Arbel et al., 2023]. To be
effective, each ensemble member has to capture useful features from the data distribution. Usually
this is enforced by encouraging the ensemble to be diverse, that is different ensemble members should
capture different features.

In standard deep ensembles [Lakshminarayanan et al., 2017], which remain the gold standard for most
tasks, each ensemble member is initialized with a different random set of weights. Each ensemble
member is then trained independently (typically with standard SGD) and some diversity is induced by
chance since each ensemble member converges to a different minimum and the predictive functions
of different minima are empirically diverse [Fort et al., 2019]. We propose a method that improves
deep ensembles by leveraging the diversity effect of different initializations, while also biasing the
minima to have desirable generalization properties. To achieve this, we diverge significantly from the
existing literature.

• Existing approaches try to improve ensembles by promoting diversity through continuous
communication between the training procedures of the different ensemble members [Ortega
et al., 2022, D’Angelo and Fortuin, 2021, Ramé and Cord, 2021, Masegosa, 2020, Wenzel
et al., 2020]. Enforcing diversity intuitively requires computing some mean prediction with
respect to which the ensemble members are pushed away. This introduces memory costs and

Workshop on Advancing Neural Network Training at 37th Conference on Neural Information Processing Systems
(WANT@NeurIPS 2023).

Figure 1: Left: Our approach allows us to train each ensemble member without communication
with other ensemble members. We only aggregate the ensemble members for the validation and
testing stages. The predictions of each ensemble member on unlabeled data are forced to be different
from its predictions on the training set. Our regularisation together with the different initialization
of each member encourages the ensemble to be diverse. Right: Value of the regularization term
partial derivative for different inputs. Consider a single training xt and unlabeled xu sample: non-
zero gradient steps, ie ∂

∂w [R(w)] ̸= 0, are taken only when ∂p(yt;xt;w)
∂w ≈ 0 and ∂fa(xu;w)

∂w ̸= 0.
Intuitively, we achieve regularization by fitting all classes or a random class a for each unlabeled
sample, as long as this does not interfere with fitting the labels on the training set.

hinders parallelization. Requiring constant communication also complicates the distributed
learning setting where one would wish to train each ensemble locally by different agents.

• Existing diversity objectives are hard to optimize. For example, some approaches use
adversarial training which is known to be difficult to tune [Ramé and Cord, 2021]. Others
push ensembles to be diverse in weight space which interacts non-trivially with function
space, the space we are interested in [D’Angelo and Fortuin, 2021]. We believe that such
approaches make convergence difficult and thus often fail to materialize gains in test metrics.

We take into account all the above intuitions. We propose a regularization method that does not
require communication between different ensemble members to improve test performance, except
for the final validation (and testing) step. We encourage each ensemble member to optimize a novel
PAC-Bayes bound, which incorporates unlabeled data. Our regularization encourages each ensemble
member to generalize well. However, at the same time, we use a different seed for each ensemble
member to increase diversity.

Intuitively, our regularizer fits either all classes or a random class for each unlabeled sample, as long
as this does not interfere with fitting the labels on the training set. Our approach is a heuristic inspired
by a Bayesian interpretation of neural networks. However, we completely avoid injecting additional
stochasticity into our training procedure, making our objective easy to optimize. The beneficial
properties of our approach, as well as the proposed regulariser, are illustrated in Figure 1. The final
ensemble yields consistent improvements over standard ensembles and other approaches.

2 Background

A number of approaches have been proposed to improve upon standard deep ensembles.

Wenzel et al. [2020] propose to induce diversity by training on different random initializations as well
as different choices of hyperparameters such as the learning rate and the dropout rates in different
layers. Ensemble members can be trained independently, and the approach results in consistent gains
over standard ensembles. However, the ensemble size increases quadratically.

Much closer to our approach are methods that explicitly promote diversity, while retaining the
same number of ensemble members. Masegosa [2020], Ortega et al. [2022] propose to optimize a
second-order PAC-Bayes bound so as to enforce diversity. In practice, this means estimating the mean
log-likelihood of a true label across different ensemble members and “pushing” the different members
to estimate a different value for their own likelihood. The authors show improvements for small-scale
experiments but cannot improve on large-scale settings. Ramé and Cord [2021] propose to use a
discriminator that forces the latent representations of each ensemble member just before the final
classification layer to be diverse. They show consistent improvements for large-scale settings in terms

2

of test accuracy and other metrics, for the same number of ensemble members. Yashima et al. [2022]
push the latent representations just before the classification layer to be diverse by leveraging Stein
Variational Gradient Descent (SVGD). They show improvements in robustness to non-adversarial
noise. However, they do not show improvements over Ramé and Cord [2021] in other metrics.

The method closest to our approach is the very recently proposed Agree to Disagree algorithm
[Matteo et al., 2023]. This constructs an ensemble greedily by forcing each new member to disagree
with previous members on unlabeled data. Crucially, this approach has however been evaluated only
on OOD tasks.

The above methods exhibit all the shortcomings we previously described: 1) they require con-
stant communication between ensembles to improve ensembles by promoting diversity, 2) they
achieve negligible and/or inconsistent gains which we hypothesize is due to difficult-to-tune training
procedures.

One can also approach ensembles as performing approximate Bayesian inference [Wilson and
Izmailov, 2020]. One would hope that the regularizing effect of the Bayesian inference procedure
would improve the resulting ensembles. Unfortunately, approximate Bayesian inference approaches
are typically outperformed by standard deep ensembles [Ashukha et al., 2019]. In particular, to
achieve the same misclassification or negative log-likelihood error, MCMC approaches typically
require many more ensemble members than standard ensembles.

3 Second order ensembles

We start our analysis by modeling our predictor using the linearized Laplace approximation [Immer
et al., 2021]. This turns the neural network into a Gaussian process with some mean and covariance
structure [Immer et al., 2021, Khan et al., 2019]. Instead of optimizing a stochastic objective, we
propose to instead enforce the mean and the covariance to have some desired values in appropriate
regions of the input space, thus potentially avoiding having to deal with excessive variance in the
gradients.

3.1 Notations and definitions

We denote the learning sample (X,Y) = {(xi, yi)}ni=1 ∈ (X × Y)n, that contains n input-output
pairs, and use the generic notation Z for an input-output pair (X,Y). Observations (X,Y) are
assumed to be sampled randomly from a distribution D. Thus, we denote (X,Y) ∼ Dn the i.i.d
observation of n elements. We consider loss functions ℓ : F × X × Y → R, where F is a set of
predictors f : X → Y . We also denote the risk Lℓ

D(f) = E(x,y)∼Dℓ(f,x, y) and the empirical
risk L̂ℓ

X,Y (f) = (1/n)
∑

i ℓ(f,xi, yi). For each ensemble member, we consider two probability
measures: the prior π ∈ M(F) and the posterior ρ̂ ∈ M(F). Here,M(F) denotes the set of all
probability measures on F . We encounter cases where we make predictions using the posterior
predictive distribution Ef∼ρ̂[p(y|x, f)]. We will use two loss functions, the non-differentiable
zero-one loss ℓ01(f,x, y) = I(argmaxj f(x)j ̸= y), and the negative log-likelihood, which is a
commonly used differentiable surrogate ℓnll(f,x, y) = − log(p(y|x, f)), where we assume that the
outputs of f are normalized to form a probability distribution.

Consider the Evidence Lower Bound (ELBO) objective

−Ef∼ρ̂L̂ℓnll
X,Y (f)−

1

λn
KL(ρ̂∥π), (1)

for some λ > 0. Catoni [2007] shows that the ELBO is minimized at the probability density given by

π(f)e−λnL̂ℓnll
X,Y (f)/Ef∼π

[
e−λnL̂ℓnll

X,Y (f)
]
. We use the Laplace approximation to the posterior in our

experiments. This is equivalent to approximating L̂ℓnll
X,Y (f) using a second-order Taylor expansion

around a minimum wρ̂, such that L̂ℓnll

X,Y (fw) ≈ L̂ℓnll
X,Y (fwρ̂

)+(w−wρ̂)
⊤ 1

2∇∇L̂
ℓnll
X,Y (fw)|w=wρ̂

(w−
wρ̂). Assuming a Gaussian prior π = N (0, σ2

πI), the Laplace approximation to the posterior ρ̂ is
again a Gaussian:

ρ̂ = N
(
wρ̂, H̃

−1)
,

3

where H̃ = λH + 1
σ2
π
I and H = n∇∇L̂ℓnll

X,Y (fw)|w=wρ̂
is the network Hessian. This Hes-

sian is generally infeasible to compute in practice for modern deep neural networks, such that
many approaches employ approximations. Specifically, we will use the Empirical Fisher F =∑n

i=1∇w log p(yi; f,xi)∇w log p(yi; f,xi)
⊤, where the labels yi are the ground-truth labels.

3.2 Out-of-sample performance

We now present the following result which links the out-of-sample performance of a linearized
Bayesian neural network to increased variance in new data.

Theorem 1. For posterior w ∼ ρ̂ = N
(
wρ̂, H̃

−1)
and assuming ∥wρ̂∥2 to be bounded, the

out-of-sample performance satisfies the following bound

E(y,x)∼D [− lnEw∼ρ̂ [p(y|x, f(x;w))]]︸ ︷︷ ︸
Bayes Risk

⪅Ew∼ρ̂

[
Lℓnll
(y,x)∼D(f(x;w))

]
︸ ︷︷ ︸

Gibbs Risk

− cE(y,x)∼D

[
tr(Jwρ̂

(x)⊤H̃
−1Jwρ̂

(x))
]

︸ ︷︷ ︸
Variance

,
(2)

for some constant c > 0, and where the bound ⪅ is up to an approximation, and Jwρ̂
(x) is the

network Jacobian.

We describe briefly the three terms in the above theorem. The Bayes Risk term is how we evaluate a
Bayesian neural network on new data. We take multiple samples from the posterior, compute the
average likelihood for each class and then make a prediction. The Gibbs Risk term is the data fitting
term we typically use at training time for Bayesian neural networks, all expectations are outside the
log-likelihood. This term furthermore captures a notion of “flatness”, typically seen in Bayesian and
PAC-Bayesian objectives [Foret et al., 2020]. The flatter we are the simpler our function is on training
data. The Variance term captures something quite different, the variance on new data. The higher the
variance, the higher the uncertainty and the tighter the upper bound is on out-of-sample performance.
Note also that the Variance term does not require labels.

Differences from the Masegosa bound

This result is based on a tighter version of Jensen’s inequality first introduced in Masegosa [2020].
However crucially, Masegosa [2020] use an objective that requires training all ensemble members
jointly with the aim of increasing the ensemble diversity. By contrast, we optimize our objective for
each ensemble member individually thus requiring no communication between different ensemble
members.

3.3 Second order regularization

We first explore how one could avoid dealing with a stochastic neural network at training time.
Instead of optimizing a stochastic objective, one can simply fit the mean f(x;wρ̂) on the labels y for

the training set Zt and maximize tr(Jwρ̂
(x)H̃

−1Jwρ̂
(x)⊤) on unlabeled data Zu. We then avoid

dealing with a stochastic neural network during inference time. Specifically, a general strategy that we
will follow is that for each ensemble member i ∈ {1, · · · ,K}, we optimize a deterministic objective
of the form L(wρ̂; ·) = L̂ℓnll

Zt
(f(x;wρ̂i))+R(wρ̂i), where R(wρ̂i) is a regularization term enforcing

an appropriate out-of-sample variance. We then construct an ensemble as EK = {wρ̂1
, · · · ,wρ̂K

}
using the minima obtained by our deterministic objectives. This can be seen as equating each
ensemble member with the mean from the approximate Bayesian posterior. We thus use the Bayesian
formulation only implicitly, while hoping that the mean captures the desired properties. We finally
make predictions using 1

K

∑
wρ̂∈EK

p(y|x, f(x;wρ̂)).

We propose two different optimization strategies.

Strategy 1: Second-order (SO). For unlabeled samples Zu, we compute the full Jacobian with
respect to the network outputs Jwρ̂

(x). We compute the matrix of variances of all network outputs

4

Figure 2: Left: On a toy regression dataset (Section 4.1), and for an ensemble of 20 MLPs with 3
hidden layers, our objective yields increased uncertainty away from the training data, compared with
standard deep ensembles. Middle: Improvement of the best of SO/SO+ over Standard ensembles
for classification on real datasets (Section 4.2). Our approach yields consistent improvements for all
datasets. Right: Additional memory cost of SO and SO+. All methods increase linearly the required
memory with the number of classes. However, in the Standard and SO+ methods, we only increase
the parameters of the final classification layer. In the SO method, we instead need to compute a full
Jacobian per sample instead of a gradient.

Jwρ̂
(x)H̃

−1Jwρ̂
(x)⊤ and sum over all diagonal elements a. We then optimize

LSO (wρ̂;Zt, Zu, β) ≜ L̂ℓnll

Zt
(f(x;wρ̂))− β

∑
x,y∈Zu

∑
a

[
Jwρ̂

(x)⊤H̃
−1Jwρ̂

(x)
]
a
, (3)

where β is the regularization strength. See Algorithm 1 in Appendix A. There are several costs
associated with this objective as it requires the computation of the full network Jacobian per unlabeled
sample: 1) our memory costs increase by a factor of |Y|, where |Y| is the number of classes, see right
panel of Figure 2; 2) there are increased computational costs associated with computing Jacobians
and gradients per sample. Most deep learning libraries are optimized to compute gradient information,
on the batch and not the individual sample level.

We manage to alleviate costs 1) described above through the following batching strategy.

Strategy 2: Randomized second-order (SO+). For each unlabeled sample (x, ·) ∈ Zu, we compute
the gradient with respect to some random network output fax(x;w) where ax ∼ Cat(|Y|, 1/|Y|).
We then optimize

LSO+ (wρ̂;Zt, Zu, β) ≜ L̂ℓnll
Zt

(f(x;wρ̂))− β
∑

x,y∈Zu

[
Jwρ̂

(x)⊤H̃
−1Jwρ̂

(x)
]
ax

. (4)

By sampling some random class ax for which to compute the gradient per sample, we avoid
incurring the ×|Y| cost associated with computing the full Jacobian. We decrease the memory cost
correspondingly. The drawback is that we further approximate our estimate of the variance, thus
possibly converging to worse solutions. See Algorithm 2 in Appendix A.

3.4 Heuristic gradient and batching

The regularization terms considered in the previous section require computing a gradient with respect
to the parameters when learning the model. However, such gradients involve differentiating w.r.t. to
the Hessian, which requires third-order derivatives and is therefore infeasible in practice for large
models. One could replace the Hessian with the Fisher matrix which would result in second-order
derivatives and is still expensive. Instead, we propose to use cheaper regularization vector fields
when updating the model’s parameters. We construct these vector fields by using an ansatz inspired
by the expression of the gradient of the regularization terms. In the case of the SO term, the diagonal
Empirical Fisher approximation to the Hessian, the vector field takes the following form:

Γ(w)j = −2λ
∑
i

Ai(Zt)
−2

 ∑
xt,yt∈Zt

U(xt,w)i,j
∂ log p(yt; f)

∂wi

 ∑
xu∈Zu

∑
a

(
∂fa(xu;w)

∂wi

)2

+ 2
∑
i

Ai(Zt)
−1

∑
xu∈Zu

∑
a

(
Va(xu,w)i,j

∂fa(xu;w)

∂wi

)
,

(5)

5

where Ai(Zt) =
1
σ2
π
+λ

∑
xt,yt∈Zt

∂ log p(yt|f)
∂wi

, and U and Va are matrices to be chosen. For specific
choices of U and Va, the vector field Γ recovers the gradient of the SO term introduced in the previous
section. Instead of computing these exact derivatives, we choose U and Va to be diagonal and to
contain only first-order derivatives. Specifically, they take the following form:

U(xt;w)i,i = ϕ

[
∂ log p(yt; f)

∂wi

]2
, Va(xu;w)i,i = χ

[
∂fa(xu,w)

∂wi

]2
. (6)

and we restrict
∑

i to
∑

i=j . We discuss this choice, as well as the effect of the parameters ϕ, χ
and provide more details on the derivation in Appendix C. Unless stated otherwise we will use
ϕ = 1, χ = 1. For this choice our regulariser has a simple and intuitive effect which we plot in
Figure 1. Consider a single training xt and unlabeled sample xu, and a single weight w: i) Non-zero
gradient steps, ie ∂

∂w [R(w)] ̸= 0, are taken only when ∂p(y;xt;w)
∂w ≈ 0 and ∂fa(xu;w)

∂w ̸= 0, i.e. our
regulariser is activated as long as this does not interfere with fitting the labels on the training set. ii)
− ∂

∂w [R(w)] and ∂fa(xu;w)
∂w have the same sign. Intuitively, this means that our regulariser (when

activated) encourages that we fit all classes (SO) or a random class a (SO+) for each unlabeled
sample (we move in the direction that maximizes the corresponding logit).

We finally see that it is easy to parallelize the above by substituting with Bt a minibatch of training
data, and Bu a minibatch of unlabeled data. We need to compute ∂ log p(yt;f)

∂wi
per training sample

(xt, yt). We also need to compute ∂fa(xu;w)
∂wi

per unlabeled sample (xu, ·) and per output a. Since
Equation (22) is per weight j, the full gradient can be computed with simple multiplications and
additions, and is vectorisable. Finally on the computational side, per-sample gradient estimation and
Jacobian estimation is possible in both PyTorch and JAX.

4 Experiments

In this section, we present a number of experiments that investigate whether the proposed regularizers
improve deep ensembles.

4.1 Toy regression example

We created a toy 1d regression dataset with input x ∈ [0, 10] and output distributed as y ∼
N (sin(x), 1), a training set of size |Zt| = 80 and an unlabeled set of size |Zu| = 100. For the
regression architecture, we used an MLP with 3 hidden layers each with 100 neurons. We fit the train-
ing set with an ensemble of 20 networks using the Standard Ensemble approach of Lakshminarayanan
et al. [2017] which enforces diversity with different random seeds and with our SO objective. We then
plot the resulting predictive mean as well as a ±2σ confidence interval in the left panel of Figure 2.
We see that both the Standard and the SO ensembles fit the training data equally well. However, the
SO ensemble has a significantly higher uncertainty away from training data.

4.2 Classification on real datasets

We train ensembles on 4 different datasets, CIFAR-10, CIFAR-100, Fashion MNIST and SVHN. We
used 3 different architectures, the WideResNet22 architecture, as well as an MLP, and the LeNet
architecture. For the MLP we used 3 hidden layers with 784, 500 and 300 neurons. The training
dataset size was 40000 samples. For all architectures, we used 10000 samples for testing and
1000 samples for validation. The remaining samples were used as a pool for unlabeled data. This
dataset split was first proposed in Alayrac et al. [2019]. The dataset split is especially difficult for
CIFAR-100 as very few labeled samples would be available per class for the 1000 training sample
case, and in the 100 sample case, some classes would have no training samples. Hyperparameter
optimization was done using the Optuna Bayesian Optimizer. We compare with Standard ensembles
[Lakshminarayanan et al., 2017] (trained with independent seeds), Masegosa ensembles [Masegosa,
2020] which optimize diversity in function space, DICE ensembles [Ramé and Cord, 2021] which is
currently the SOTA method in diverse ensemble training, and Agree to Disagree (A2D) ensembles
[Matteo et al., 2023]. Unless stated otherwise, the ensemble size for all methods is 10 ensemble
members, which is one of the most common sizes used in practice. We also experiment with the

6

Table 1: WideResNet22 ablations. SO/SO+ often improves over standard ensembles. When it
doesn’t improve up standard ensembles SO has typically almost the same test metrics as standard
ensembles. We highlight the cases where SO strictly improves upon standard ensembles. Hyperpa-
rameter optimization was done using random search.

Dataset / Aug Method Acc ↑ ECE ↓ TACE ↓ Brier ↓ NLL ↓
CIFAR-10 Standard40K 84.52 0.04 0.01 0.86 0.73
/ no augmentation SO40K@1K 85.29 0.04 0.01 0.86 0.57

SO40K@5K 84.42 0.04 0.011 0.84 0.59
SO+40K@1K 85.90 0.04 0.011 0.87 0.59
A2D40K 85.34 0.04 0.013 0.86 0.72
Masegosa40K 83.07 0.27 0.05 0.44 0.78

CIFAR-100 Standard40K 51.30 0.14 0.004 0.57 2.66
/ no augmentation SO40K@1K 47.85 0.08 0.003 0.43 2.18

SO40K@5K 49.66 0.03 0.002 0.39 1.93
SO+40K@1K 54.14 0.17 0.004 0.64 2.95
A2D40K 51.64 0.16 0.004 0.60 2.96
Masegosa40K 49.67 0.11 0.003 0.23 1.96

FMNIST Standard40K 92.66 0.03 0.006 0.94 0.31
/ no augmentation SO40K@1K 92.49 0.018 0.004 0.91 0.22

SO40K@5K 92.67 0.03 0.006 0.95 0.38
A2D40K 92.37 0.03 0.006 0.60 0.45
Masegosa40K 93.02 0.31 0.059 0.47 0.53

SVHN Standard40K 95.72 0.016 0.003 0.95 0.25
/ no augmentation SO40K@1K 95.68 0.014 0.003 0.95 0.24

SO40K@5K 95.60 0.01 0.003 0.95 0.26
A2D40K 93.17 0.13 0.024 0.68 0.34
Masegosa40K 95.63 0.33 0.065 0.49 0.55

CIFAR-10 Standard40K 91.67 0.031 0.006 0.92 0.39
/ flip + crops SO+40K@1K 91.24 0.033 0.007 0.92 0.39

ν-ens40K@1K 91.87 0.033 0.007 0.93 0.40

CIFAR-100 Standard40K 66.38 0.12 0.003 0.74 2.20
/ flip + crops SO+40K@1K 66.33 0.13 0.003 0.75 2.30

ν-ens40K@1K 65.74 0.12 0.003 0.73 2.11

standard setup of augmentations for CIFAR-10 and CIFAR-100. Specifically, we augment the training
set with random flips and crops.

We expect our approach to improve testing accuracy as well as the calibration of predictions. We thus
evaluate the final ensembles on test Accuracy, the Expected Calibrations Error (ECE), the Thresholded
Calibration Error (TACE), the Brier score, as well as the test Negative Log-Likelihood (NLL). It is
folk wisdom that calibration can be traded for accuracy when using the ECE and the TACE. As a
consequence, we also find the Pareto optimal Stiglitz [1981] ensemble in terms of both accuracy and
calibration. Specifically we find the ensemble that minimizes (1−Accuracy)2 + (TACE)2. When
the TACE is not available, which can happen due to binning, we use the ECE instead. We include a
short description of Pareto optimality in Appendix D.

For SO we use all the remaining samples as a pool for training time. Sweeping through the entire
unlabeled set would be unfeasible. Instead, we simply sample at each iteration an unlabeled batch
of the same size as the training batch, and take a gradient step. Since SO+ is much more memory
efficient than SO, we select an unlabeled set and we sweep through all of it at each epoch. We present
the results in Tables 1 and 2. See also Table 1 in Appendix F.

SO/SO+ improve both accuracy and calibration. We often see significant improvements with
our approach over both Standard ensembles and the other diversity approaches in all setups (see the
middle panel of Figure 2). We gain up to 6.38% in test Accuracy depending on the architecture and

7

Table 2: LeNet - MLP ablations. SO/SO+ often improves over standard ensembles. When it doesn’t
improve up standard ensembles SO has typically almost the same test metrics as standard ensembles.
Note that accuracy can be traded off for calibration, as such we consider that a method is better than
the other only if it improves upon both metrics. We highlight the cases where SO strictly improves
upon standard ensembles. Hyperparameter optimization was done using random search.

Dataset / Model Method Acc ↑ ECE ↓ TACE ↓ Brier ↓ NLL ↓
CIFAR-10 Standard40K 71.25 0.10 0.02 0.77 1.41
/ LeNet SO40K@1K 71.36 0.11 0.024 0.79 2.25
/ no augmentation SO40K@5K 71.63 0.10 0.023 0.77 1.41

SO+40K@1K 70.60 0.11 0.025 0.79 2.13
A2D40K 71.34 0.06 0.016 0.70 0.94
Masegosa40K 68.97 0.17 0.03 0.39 1.00

CIFAR-10 Standard40K 55.84 0.21 0.04 0.71 2.55
/ MLP SO40K@1K 56.00 0.23 0.041 0.74 3.09
/ no augmentation SO40K@5K 55.61 0.22 0.040 0.72 2.71

SO+40K@1K 56.23 0.22 0.04 0.73 2.94
A2D40K 54.14 0.20 0.041 0.68 2.74
Masegosa40K 53.04 0.04 0.019 0.40 1.35

CIFAR-100 Standard40K 36.38 0.23 0.005 0.49 4.44
/ LeNet SO40K@1K 37.28 0.11 0.003 0.35 2.81
/ no augmentation SO40K@5K 36.74 0.12 0.004 0.36 2.86

SO+40K@1K 37.46 0.11 0.003 0.35 2.8
A2D40K 35.92 0.12 0.0041 0.35 2.96
Masegosa40K 34.70 0.05 0.003 0.23 2.75

CIFAR-100 Standard40K 27.43 0.23 0.006 0.38 4.33
/ MLP SO40K@1K 28.25 0.18 0.005 0.33 3.79
/ no augmentation SO40K@5K 27.68 0.19 0.005 0.33 3.78

SO+40K@1K 27.75 0.23 0.005 0.38 4.25
A2D40K 28.02 0.06 0.0032 0.21 3.11
Masegosa40K 26.66 0.12 0.004 0.24 3.44

FMNIST Standard40K 92.50 0.039 0.006 0.039 0.49
/ LeNet SO40K@1K 92.19 0.022 0.005 0.91 0.24
/ no augmentation SO40K@5K 92.43 0.03 0.006 0.94 0.31

A2D40K 91.95 0.05 0.009 0.91 0.61
Masegosa40K 91.69 0.29 0.055 0.49 0.53

FMNIST Standard40K 89.35 0.029 0.005 0.89 -
/ MLP SO40K@1K 89.31 0.021 0.004 0.88 -
/ no augmentation SO40K@5K 89.48 0.05 0.009 0.9355 0.52

A2D40K 88.44 0.02 0.006 0.87 0.33
Masegosa40K 89.50 0.27 0.056 0.50 0.58

SVHN Standard40K 87.98 0.04 0.01 0.90 -
/ LeNet SO40K@1K 87.90 0.04 0.01 0.90 -
/ no augmentation SO40K@5K 88.10 0.045 0.009 0.92 -

A2D40K 86.11 0.03 0.011 0.85 0.98
Masegosa40K 86.21 0.26 0.047 0.45 0.70

SVHN Standard40K 82.13 0.01 0.008 0.76 0.66
/ MLP SO40K@1K 82.52 0.04 0.01 0.82 0.77
/ no augmentation SO40K@5K 82.10 0.053 0.012 0.83 0.89

A2D40K 83.10 0.03 0.008 0.81 0.68
Masegosa40K 78.66 0.23 0.041 0.41 0.91

8

dataset. We are Pareto optimal in 12 out of 18 cases and are optimal in terms of test accuracy in 12
out of 18 cases. The rest of the “wins" are split among the other approaches.

SO/SO+ is much easier to optimize than alternatives. One particular advantage is that when
we do not improve upon other methods, we typically do not hurt performance significantly. This
is in stark contrast with DICE. We had difficulties getting DICE to converge on cases other than
MLP/LeNet for CIFAR-10. After correspondence with the authors, we believe that it is difficult to
find the hyperparameters for which DICE works. It is folk wisdom that adversarial objectives are
in general difficult to tune. We also observe that Masegosa and A2D ensembles typically underfit.
In some cases though they do improve upon Standard Ensembles. We emphasize that in the A2D
case, we replicated the results on the M/F-Dominoes and M/C-Dominoes datasets from the original
paper. This means that the underfitting we report is not due to our implementation, but inherent in the
algorithm.

SO/SO+ does not require communication between ensemble members. We trained each ensemble
member independently and only evaluated the complete ensemble at the end of training for validation
and testing.

SO+ can scale to moderate dataset sizes. We used SO+ to scale to 20K unlabeled samples per
epoch for the MLP architecture, 10K unlabeled samples for the LeNet architecture, and 1-5K samples
for the WideResNet22 architecture. We note that in principle one can scale to larger sets, as each
ensemble member is trained independently and with stochastic batches.

SO/SO+ improve ensembles even when using data augmentation. Regularization gains in the low
data regime often vanish or are greatly reduced when we apply data augmentation. In Tables 1 and 2,
we see that augmentations improve the standard deep ensembles and that SO/SO+ provide further
improvements.

5 Limitations

We introduced a number of approximations so as to obtain a tractable regulariser. These could mean
that our results are suboptimal compared to what could be achieved with less restrictive modeling. We
managed to scale our approach to moderate dataset sizes. However, our approach incurs an increase
in computational time. Also the number of training classes increases linearly our memory cost.

6 Conclusion

We introduced SO and SO+, two novel objectives that improve deep ensembles by leveraging
unlabeled data. SO and SO+ do not require communication between the different ensemble members
during training, beat consistently other approaches both in terms of accuracy and calibration, and
avoid the stability issues of other objectives. A key question is if we can obtain a more principled
regulariser and whether it can result in improved results. In future work, we will also try to make our
approach even more scalable.

9

References
J.-B. Alayrac, J. Uesato, P.-S. Huang, A. Fawzi, R. Stanforth, and P. Kohli. Are labels required for

improving adversarial robustness? Advances in Neural Information Processing Systems, 32, 2019.

J. Arbel, K. Pitas, M. Vladimirova, and V. Fortuin. A primer on bayesian neural networks: Review
and debates. arXiv preprint arXiv:2309.16314, 2023.

A. Ashukha, A. Lyzhov, D. Molchanov, and D. Vetrov. Pitfalls of in-domain uncertainty estimation
and ensembling in deep learning. In International Conference on Learning Representations, 2019.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

O. Catoni. PAC-Bayesian supervised classification: the thermodynamics of statistical learning,
volume 56 of Monograph Series. Institute of Mathematical Statistics Lecture Notes, 2007.

F. D’Angelo and V. Fortuin. Repulsive deep ensembles are Bayesian. Advances in Neural Information
Processing Systems, 34:3451–3465, 2021.

L. Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization for efficiently
improving generalization. In International Conference on Learning Representations, 2020.

S. Fort, H. Hu, and B. Lakshminarayanan. Deep ensembles: A loss landscape perspective. arXiv
preprint arXiv:1912.02757, 2019.

J. Heek, A. Levskaya, A. Oliver, M. Ritter, B. Rondepierre, A. Steiner, and M. van Zee. Flax: A
neural network library and ecosystem for JAX, 2023. URL http://github.com/google/flax.

A. Immer, M. Korzepa, and M. Bauer. Improving predictions of Bayesian neural nets via local
linearization. In International Conference on Artificial Intelligence and Statistics, pages 703–711.
PMLR, 2021.

M. E. E. Khan, A. Immer, E. Abedi, and M. Korzepa. Approximate inference turns deep networks
into Gaussian processes. Advances in neural information processing systems, 32, 2019.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Citeseer, 2009.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. Advances in neural information processing systems, 30, 2017.

A. Masegosa. Learning under model misspecification: Applications to variational and ensemble
methods. Advances in Neural Information Processing Systems, 33:5479–5491, 2020.

P. Matteo, J. Martin, F. François, and K. Sai Praneeth. Agree to disagree: Diversity through
disagreement for better transferability. In International Conference on Learning Representations.
ICLR, 2023.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images
with unsupervised feature learning. arxiv, 2011.

L. A. Ortega, R. Cabañas, and A. Masegosa. Diversity and generalization in neural network ensembles.
In International Conference on Artificial Intelligence and Statistics, pages 11720–11743. PMLR,
2022.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

10

http://github.com/google/jax
http://github.com/google/flax
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

A. Ramé and M. Cord. DICE: Diversity in deep ensembles via conditional redundancy adversarial
estimation. In International Conference on Learning Representations, 2021.

J. E. Stiglitz. Pareto optimality and competition. The Journal of Finance, 36(2):235–251, 1981.

F. Wenzel, J. Snoek, D. Tran, and R. Jenatton. Hyperparameter ensembles for robustness and
uncertainty quantification. Advances in Neural Information Processing Systems, 33:6514–6527,
2020.

A. G. Wilson and P. Izmailov. Bayesian deep learning and a probabilistic perspective of generalization.
Advances in neural information processing systems, 33:4697–4708, 2020.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. arxiv, 2017.

S. Yashima, T. Suzuki, K. Ishikawa, I. Sato, and R. Kawakami. Feature space particle inference for
neural network ensembles. In International Conference on Machine Learning, pages 25452–25468.
PMLR, 2022.

11

7 Pseudocode

We provide the pseudocode algorithms for the SO and SO+ strategies described in the main text.

Algorithm 1 Pseudocode for the SO algorithm
Input: Temperature λ, regularisation coefficient β, prior variance σ2

π, training data Zt, unlabeled
data Zu, number of ensemble members K
Output: Ensemble EK = {wρ̂1

, . . . ,wρ̂K
}

EK ← {}
for i in {1, . . . ,K} do

wρ̂ ← Random Initialization
while not converged do

Draw labeled samples Bt and unlabeled samples Bu

Compute Empirical Fisher matrix F←
∑

(xt,yt)∈Bt
∇wρ̂

log p(yt; f,xt)∇wρ̂
log p(yt; f,xt)

⊤

Compute the diagonal approximation to the Hessian H̃← λdiag(F) + 1
σ2
π
I

Compute the Empirical Risk L̂ℓnll
Bt

(f(x;wρ̂))
Compute the heuristic gradient

ΓSO(w)j = −2λAj(Zt)
−2

 ∑
xt,yt∈Zt

ϕ

[
∂ log p(yt; f)

∂wj

]3 ∑
xu∈Zu

∑
a

(
∂fa(xu;w)

∂wj

)2

+ 2Aj(Zt)
−1

∑
xu∈Zu

∑
a

(
χ

[
∂fa(xu,w)

∂wj

]3)
,

where Aj(Zt) =
1
σ2
π
+ λ

∑
xt,yt∈Zt

(
∂ log p(yt;f)

∂wj

)2
and ϕ = χ = 1.

Update with gradient g = ∇wρ̂
L̂ℓnll
Bt

(f(x;wρ̂))− βΓSO(wρ̂)
end while
EK ← EK ∪ {wρ̂}

end for

12

Algorithm 2 Pseudocode for the SO+ algorithm
Input: Temperature λ, regularisation coefficient β, prior variance σ2

π, training data Zt, unlabeled
data Zu, number of ensemble members K
Output: Ensemble EK = {wρ̂1

, . . . ,wρ̂K
}

EK ← {}
for i in {1, . . . ,K} do

wρ̂ ← Random Initialization
while not converged do

Draw labeled samples Bt and unlabeled samples Bu

Compute Empirical Fisher matrix F←
∑

(xt,yt)∈Bt
∇wρ̂

log p(yt; f,xt)∇wρ̂
log p(yt; f,xt)

⊤

Compute the diagonal approximation to the Hessian H̃← λdiag(F) + 1
σ2
π
I

∀(xu, ·) ∈ Bu sample ax ∼ Cat(|Y|, 1/|Y|)
Compute the Empirical Risk L̂ℓnll

Bt
(f(x;wρ̂))

Compute the heuristic gradient

ΓSO+(w)j = −2λAj(Zt)
−2

 ∑
xt,yt∈Zt

ϕ

[
∂ log p(yt; f)

∂wj

]3 ∑
xu∈Zu

(
∂fax(xu;w)

∂wj

)2

+ 2Aj(Zt)
−1

∑
xu∈Zu

(
χ

[
∂fax(xu,w)

∂wj

]3)
,

where Aj(Zt) =
1
σ2
π
+ λ

∑
xt,yt∈Zt

(
∂ log p(yt;f)

∂wj

)2
and ϕ = χ = 1.

Update with gradient g = ∇wρ̂
L̂ℓnll
Bt

(f(x;wρ̂))− βΓSO+(wρ̂)
end while
EK ← EK ∪ {wρ̂}

end for

13

8 Motivating the optimization objective through a PAC-Bayes bound

We now prove Theorem 1 which indicates an appropriate way to choose wρ̂ such as to ensure good
out-of-sample performance.

Theorem 2. For posterior w ∼ ρ̂ = N
(
wρ̂, H̃

−1)
and assuming ∥wρ̂∥2 to be bounded, the

out-of-sample performance satisfies the following bound

E(y,x)∼D [− lnEw∼ρ̂ [p(y|x, f(x;w))]]︸ ︷︷ ︸
Bayes Risk

⪅Ew∼ρ̂

[
Lℓnll
(y,x)∼D(f(x;w))

]
︸ ︷︷ ︸

Gibbs Risk

− cE(y,x)∼D

[
tr(Jwρ̂

(x)⊤H̃
−1Jwρ̂

(x))
]

︸ ︷︷ ︸
Variance

,
(7)

for some constant c > 0, and where the bound ⪅ is up to an approximation, and Jwρ̂
(x) is the

network Jacobian.

Proof. The proof is based on the following theorem that links generalization with a variance of the
posterior predictive.

Theorem 3. Masegosa [2020] Any distribution ρ̂ in the space of distributionsM satisfies that,

E(y,x)∼D [− lnEw∼ρ̂ [p(y|x, f(x;w))]] ≤ Ew∼ρ̂

[
Lℓnll
(y,x)∼D(f(x;w))

]
−V(ρ̂) (8)

where V(ρ̂) is a variance term defined as

V(ρ̂) = E(y,x)∼D

[
1

2maxw p(y|x;w)
Ew∼ρ̂

[
(p(y|x,w)−Ew∼ρ̂ (p(y|x,w)))2

]]
. (9)

Let us assume as in Masegosa [2020] that the model likelihood is bounded:

Assumption 1. Masegosa [2020] There exists a constant C < ∞ such that ∀x ∈ X ,
maxy,w p(y|x;w) ≤ C.

Note that this assumption holds for the classification setting with C = 1.

The first term in the RHS of (8) is the common data fitting term when optimizing a supervised
classification objective. As such we will focus on the second “variance” term V(ρ̂).

We use a linearization of the neural network outputs, such that

flin(x;w) = f(x;wρ̂) + Jwρ̂
(x)⊤(w −wρ̂). (10)

Then for posterior w ∼ ρ̂ = N
(
wρ̂, H̃

−1)
the outputs of the linearized network have the following

distribution

flin(x) ∼ p(flin(x)|x, X, Y) = N (f(x;wρ̂),Jwρ̂
(x)⊤H̃

−1Jwρ̂
(x))

We use the cross-entropy loss. We take a first order approximation to the loss. Then for the flin
predictor and the variance term V(ρ̂) we have that

V(ρ̂) ≥ 1

2
E(y,x)∼D

[
Ew∼ρ̂

[
(p(y|x,w)−Ew∼ρ̂ (p(y|x,w)))2

]]
≈ 1

2
E(y,x)∼D

[
Eflin(x)∼p(flin(x)|x,X,Y)

[
(p(y|flin(x))−Eflin(x)∼p(flin(x)|x,X,Y) [p(y|flin(x))])2

]]
≈ 1

2
E(y,x)∼D

[
Jf (x)⊤

[
Jwρ̂

(x)⊤H̃
−1Jwρ̂

(x)
]
Jf (x)

]
(11)

where Jf (x)i = ∂p(y;f)
∂fi

∣∣∣
f=f(x;wρ̂)

. The first inequality follows from the inequality p(y;x,w) ≤ 1.

The second line is obtained using the first-order approximation of f(x,w) (f(x;w) ≈ flin(x;w).

14

Such an approximation is controlled by the variance of w which is of order 1/N . Finally, the last
line results from the application of the delta method which also holds with an error of order 1/N .

We now deal with this Jacobian term which is the only one dependent on the labels y.

V(ρ̂) ⪆
1

2
E(y,x)∼D

[
Jf (x)⊤

[
Jwρ̂

(x)⊤H̃
−1Jwρ̂

(x)
]
Jf (x)

]
=

1

2
Ex∼D(x)Ey∼D(y|x)

[
tr(Jwρ̂

(x)⊤H̃
−1Jwρ̂

(x)Jf (x)Jf (x)⊤)
]

=
1

2
Ex∼D(x)

[
tr(Jwρ̂

(x)⊤H̃
−1Jwρ̂

(x)Ey∼D(y|x)
[
Jf (x)Jf (x)⊤

]
)
]

=
1

2
Ex∼D(x)

[
tr(Jwρ̂

(x)⊤H̃
−1Jwρ̂

(x)Ey∼D(y|x)
[
yy⊤(Jf (x)y)2

]
)
]

(12)

In the final line we have used both a one-hot encoding y and an integer encoding y of the label.
The substitution holds because Jf (x)i is non zero only for i = y. In the above we note that 1)
yy⊤(Jf (x)y)2 is diagonal as the label y is a one-hot vector 2) For a model with finite weights,
where ∥wρ̂∥22 is bounded, we can assume that (Jf (x)y)2 ≥ c, where c is a positive constant. This is
because the minimum for the cross-entropy loss is achieved at infinity for one of the input logits. We
then get

V(ρ̂) ⪆
1

2
Ex∼D(x)

[
tr(Jwρ̂

(x)⊤H̃
−1Jwρ̂

(x)cI)
]

=
c

2
Ex∼D(x)

[
tr(Jwρ̂

(x)⊤H̃
−1Jwρ̂

(x))
]
.

(13)

9 Deriving the diversity encouraging vector field

Heuristic 1. For the Empirical Fisher F approximation to the Hessian, for a weight wj , and given
training data Zt and unlabeled data Zu, we propose the following diversity encouraging vector fields

ΓSD(w)j = −2λAj(Zt)
−2

 ∑
xt,yt∈Zt

ϕ

[
∂ log p(yt; f)

∂wj

]3 ∑
xu∈Zu

∑
a

(
∂fa(xu;w)

∂wj

)2

+ 2Aj(Zt)
−1

∑
xu∈Zu

∑
a

(
χ

[
∂fa(xu,w)

∂wj

]3)
,

and

ΓSD+(w)j = −2λAj(Zt)
−2

 ∑
xt,yt∈Zt

ϕ

[
∂ log p(yt; f)

∂wj

]3 ∑
xu∈Zu

(
∂fax(xu;w)

∂wj

)2

+ 2Aj(Zt)
−1

∑
xu∈Zu

(
χ

[
∂fax(xu,w)

∂wj

]3)
,

where Aj(Zt) =
1
σ2
π
+ λ

∑
xt,yt∈Zt

(
∂ log p(yt;f)

∂wj

)2
and ϕ, χ ∈ R.

Proof. First note how naively taking the gradient of
∑

xu,yu∈Zu

∑
a

[
Jwρ̂

(xu)H̃
−1Jwρ̂

(xu)
⊤
]
a

without approximating H (which is part of H̃) will result in third-order derivatives which are
prohibitively expensive to compute. We thus propose to approximate H with the diagonal of the
Empirical Fisher diag(F).

We write down the form of the diagonal elements of the Empirical Fisher F assuming also that we
keep only the diagonal elements, and we only have one training sample (xt, yt). We get

Fa =

(
∂ log p(yt; f)

∂wa

)2

. (14)

15

Since H̃ ≈ λdiag(F) + 1
σ2
π
I, we get

H̃a ≈ λ

(
∂ log p(yt; f)

∂wa

)2

+
1

σ2
π

. (15)

Finally, the variance for each output of the linearized network and a single unlabeled sample (xu, ·) is[
Jwρ̂

(xu)H̃
−1Jwρ̂

(xu)
⊤
]
a

≈
∑
i

(λ(∂ log p(yt; f)

∂wi

)2

+
1

σ2
π

)−1(
∂fa(xu;w)

∂wi

)2
 .

(16)

We now sum over the different outputs fa∑
a

[
Jwρ̂

(xu)H̃
−1Jwρ̂

(xu)
⊤
]
a

≈
∑
a

∑
i

(λ(∂ log p(yt; f)

∂wi

)2

+
1

σ2
π

)−1(
∂fa(xu;w)

∂wi

)2
 .

(17)

We now take the partial derivative with respect to a weight wj . We get

∂

∂wj

∑
a

[
Jwρ̂

(xu)H̃
−1Jwρ̂

(xu)
⊤
]
a

≈ ∂

∂wj

∑
i

(λ(∂ log p(yt; f)

∂wi

)2

+
1

σ2
π

)−1∑
a

(
∂fa(xu;w)

∂wi

)2

= −
∑
i

(
λ

(
∂ log p(yt; f)

∂wi

)2

+
1

σ2
π

)−2(
2λ

(
∂ log p(yt; f)

∂wi

∂2 log p(yt; f)

∂wi∂wj

))∑
a

(
∂fa(xu;w)

∂wi

)2

+
∑
i

(
λ

(
∂ log p(yt; f)

∂wi

)2

+
1

σ2
π

)−1

2
∑
a

(
∂fa(xu;w)

∂wi

∂2fa(xu;w)

∂wi∂wj

)
.

(18)
We note how the above has the following general form

Γ(w)j ≜ −2λ
∑
i

Ai(xt, yt)
−2

(
U(xt;w)i,j

∂ log p(yt; f)

∂wi

)∑
a

(
∂fa(xu;w)

∂wi

)2

+ 2
∑
i

Ai(xt, yt)
−1
∑
a

(
Va(xu;w)i,j

∂fa(xu;w)

∂wi

)
,

(19)

where Ai(xt, yt) = 1
σ2
π
+ λ

(
∂ log p(yt;f)

∂wi

)2
and the matrices U and Va are to be chosen. For the

choices U = ∂2 log p(yt;f)
∂wi∂wj

and Va = ∂2fa(xu;w)
∂wi∂wj

we recover the true gradient of the self-diversity
term. However, we note that the final gradient is still expensive to compute.

Instead, we make the choice

U(xt;w)i,i = ϕ

[
∂ log p(yt; f)

∂wi

]2
, Va(xu;w)i,i = χ

[
∂fa(xu;w)

∂wi

]2
, (20)

and we restrict
∑

i to
∑

i=j . This results in

Γ(w)j = −2λAj(Zt)
−2ϕ

[
∂ log p(yt; f)

∂wj

]3∑
a

(
∂fa(xu;w)

∂wj

)2

+ 2Aj(Zt)
−1
∑
a

χ

[
∂fa(xu,w)

∂wj

]3
,

(21)

16

where ϕ, χ ∈ R.

For an unlabeled dataset Zu and training dataset Zt we finally get

Γ(w)j = −2λ
∑

xt,yt∈Zt

ϕ

(
∂ log p(yt; f)

∂wj

)3

A(Zt)
−2

∑
xu∈Zu

∑
a

(
∂fa(xu;w)

∂wj

)2

+A(Zt)
−12

∑
xu∈Zu

∑
a

χ

(
∂fa(xu; f)

∂wj

)3

.

(22)

where A(Zt) = 1
σ2
π
+ λ

∑
xt,yt∈Zt

(
∂ log p(yt;f)

∂wj

)2
and ϕ, χ ∈ R. We use Equation (22) as the

ΓSO(w) diversity vector field, while ΓSO+(w) results from restricting
∑

a to
∑

a=ax
.

We now discuss our choices for χ and ϕ. We plot in Figure 3 the final vector field −(−Γ(w)j) for
λ≫ 1 and 1≫ σ2

π > 0 which are realistic ranges for the temperature and the prior, a single training
sample (xt, yt), a single unlabeled sample (xu, ·), a single weight wj , as well as a single output
dimension a. We first notice that ϕ has a very small effect on the final gradient, inducing a slight
asymmetry. In principle, we could also set ϕ = 0 without any significant loss in our approximation.
The most significant difference comes from the sign of χ. For χ > 0 the regulariser encourages our
predictor to fit random labels on the unlabeled data. This is because −(−Γ(w)j) and ∂fa(xu;f)

∂wj
have

the same sign. Note how ∂fa(xu;f)
∂wj

is the direction that maximizes the logit of class a. When χ < 0

we get the opposite effect. We now encourage the probabilities for all classes (or a random class in
the case of SO+) to be low for unlabeled data.

We ran small-scale experiments where choices other than ϕ = 1 and χ = 1 did not yield promising
results. We thus selected ϕ = 1 and χ = 1 for our final regularizer.

Motivating the choices U(xt;w)i,i and Va(xu;w)i,i

We chose

U(xt;w)i,i = ϕ

[
∂ log p(yt; f)

∂wi

]2
, Va(xu;w)i,i = χ

[
∂fa(xu;w)

∂wi

]2
. (23)

Consider the nonlinear least squares problem L(w) = 1
2 (f(x;w) − y)2 then the Hessian can be

written as
∇2L(w) = ∇wf(x;w)∇wf(x;w)⊤ + r∇2

wf(x;w)

where r = f(x;w)− y is the residual. As such for the square loss both ∇wf(x;w)∇wf(x;w)⊤

and ∇2
wf(x;w) provide some information on the curvature. This is our motivation for using

∇wf(x;w)∇wf(x;w)⊤ as a source of curvature information in the place of ∇2
wf(x;w). This

resulted in exploring Va(xu;w)i,i = χ
[
∂fa(xu;w)

∂wi

]2
.

Similarly, it is interesting to explore U(xt;w)i,i = ϕ
[
∂ log p(yt;f)

∂wi

]2
as we have already approximated

second-order derivates of the loss with squares of the first-order derivatives when approximating the
Hessian with the Fisher. Both of the above are heuristics, and as we are forcing the corresponding
matrix entries to have a positive sign we explored χ, ϕ ∈ R which change this sign.

10 Pareto optimality

In multi-objective optimization, the Pareto front (also called Pareto frontier or Pareto curve) is the
set of all Pareto efficient solutions. Consider A a set of criterion vectors in Rm. Assume that the
preferred directions of criteria values is known. A point a′′ ∈ Rm is preferred to (strictly dominates)
another point a′ ∈ Rm, written as a′′ ≻ a′, when a′′ improves all available criteria jointly compared
to a′. The Pareto frontier is thus written as:

P (A) = {a′ ∈ A : {a′′ ∈ A : a′′ ≻ a′, a′ ̸= a′′} = ∅}.

17

Figure 3: We plot−(−Γ(w)j) with ϕ, χ ∈ {−1, 0, 1} for λ≫ 1 and 1≫ σ2
π > 0 which are realistic

ranges for the temperature and the prior, a single training sample (xt, yt), a single unlabeled sample
(xu, ·), a single weight wj , as well as a single output dimension a. We first notice that ϕ has a very
small effect on the final gradient, inducing a slight asymmetry. The most significant difference comes
from the sign of χ. For χ > 0 the regulariser encourages our predictor to fit random labels on the
unlabeled data. This is because −(−Γ(w)j) and ∂fa(xj ;f)

∂wj
have the same sign (where we either

select a at random in SO+ or we optimize over all a in SO). Note how ∂fa(xj ;f)
∂wj

is the direction that
maximizes the logit of class a. When χ < 0 we get the opposite effect. We now encourage the logits
for all classes (or a random class) to be low for unlabeled data.

The ideal point is the point that optimizes all criteria in the best possible way. In our case we use
a = [1−Acc,TACE] as our criterion vector with a ∈ (0, 1)2. Our ideal point is then a⋆ = [0, 0] the
point where both the misclassification rate and the TACE are 0. Intuitively this predictor makes both
perfect and perfectly calibrated predictions. In the absence of other criteria, the point closest to the
ideal point argmina∈P (A) ∥a− a⋆∥22 is often considered the optimal one. We use the phrase “Pareto
optimal” in this sense. Note that alternatively one can refer to all points on the Pareto front as optimal
with the point closest to the ideal point referred to as the knee point.

11 Experimental setup

We run our experiments on a combination of NVIDIA A100 and V100 GPUs, on our local cluster.
The total computation time, including hyperparameter tuning and training, was approximately 1600
GPU hours. Hyperparameter tuning was done over a single random seed per each ensemble member
due to the computational cost.

In the following list, we include the libraries and datasets that we used together with their correspond-
ing licenses

• PyTorch package [Paszke et al., 2019]: Modified BSD Licence
• MNIST-10 dataset [Deng, 2012]: MIT Licence
• CIFAR-10 dataset [Krizhevsky and Hinton, 2009]: MIT Licence
• CIFAR-100 dataset [Krizhevsky and Hinton, 2009]: MIT Licence
• SVHN dataset [Netzer et al., 2011]: -
• FashionMnist dataset [Xiao et al., 2017]: MIT Licence
• JAX [Bradbury et al., 2018]: Apache License 2.0
• flax [Heek et al., 2023]: Apache License 2.0

18

12 More experiments

We include here experiments on the CIFAR-10 and CIFAR-100 datasets, for the MLP and LeNet
architectures and the case of data augmentation. We use random flips and crops as is the standard for
these two datasets. We observe similar results to the main text. We achieve the best test accuracy in
all experiments. At the same time we are Pareto optimal in 3 out of 4 cases.

Computational and Memory Cost Our memory cost increases linearly with the number of classes
for the SO algorithm. For the SO+ algorithm, the additional memory cost is constant. At the same
time, the computation time for the SO algorithm roughly increased roughly by a factor of 2. For the
SO+ algorithm, we sometimes observed an increase by a factor of 10. This is potentially because we
need to estimate per sample and per output gradients potentially degrading parallelization.

13 Effect of Ensemble Size

19

Figure 4: The effect of the ensemble size on CIFAR10/ CIFAR100/ FMNIST/ SVHN and LeNet/
MLP/ ResNet22 in the small data regime. In most cases SO ensembles achieve better test accuracy
with fewer ensemble members than Standard ensembles.

20

	Introduction
	Background
	Second order ensembles
	Notations and definitions
	Out-of-sample performance
	Second order regularization
	Heuristic gradient and batching

	Experiments
	Toy regression example
	Classification on real datasets

	Limitations
	Conclusion
	Pseudocode
	Motivating the optimization objective through a PAC-Bayes bound
	Deriving the diversity encouraging vector field
	Pareto optimality
	Experimental setup
	More experiments
	Effect of Ensemble Size

