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Abstract
Visual generation has witnessed remarkable
progress in single-image tasks, yet extending
these capabilities to temporal sequences remains
challenging. Current approaches either build spe-
cialized video models from scratch with enormous
computational costs or add separate motion mod-
ules to image generators, both requiring learning
temporal dynamics anew. We observe that mod-
ern image generation models possess underuti-
lized potential in handling structured layouts with
implicit temporal understanding. Building on
this insight, we introduce GRID, which reformu-
lates temporal sequences as grid layouts, enabling
holistic processing of visual sequences while
leveraging existing model capabilities. Through
a parallel flow-matching training strategy with
coarse-to-fine scheduling, our approach achieves
up to 67× faster inference speeds while using
< 1

1000 of the computational resources compared
to specialized models. Extensive experiments
demonstrate that GRID not only excels in tem-
poral tasks from Text-to-Video to 3D Editing but
also preserves strong performance in image gen-
eration, establishing itself as an efficient and ver-
satile omni-solution for visual generation.

1. Introduction
Film strips demonstrate an elegant approach in visual arts:
by arranging temporal sequences into structured grids, al-
lowing time-based narratives to be displayed in layouts
while maintaining their narrative coherence and visual con-
nections. This organization does more than preserve chrono-
logical order - it enables efficient content manipulation,
comparison, and editing. Drawing inspiration from this in-
tuitive yet powerful organizational principle, we propose a
fundamental question: Can we directly reframe various
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temporal visual generation tasks as how to layout, where
key visual elements (such as multiple viewpoints or video
frames) are treated as grid “layout”?

To answer this, a natural starting point emerges from the
recent breakthroughs in text-to-image generation. For single
image generation, models like (Esser et al., 2024; Baldridge
et al., 2024; Betker et al., 2023) have demonstrated remark-
able capabilities in understanding and generating complex
spatial relationships. For temporal visual generation, current
approaches typically follow two distinct paths: (a) building
specialized video models from scratch (e.g., Sora), which
requires learning both spatial and temporal relationships
with prohibitive computational costs, (b) treating image
generators as single-frame producers and mainly train addi-
tional motion modules - while this avoids learning spatial
generation from scratch, it still requires learning temporal
dynamics entirely anew.

Guided by our layout-centric perspective, we argue that
the inherent capabilities of image generation models are
significantly underestimated. Modern image models already
possess implicit understanding of both spatial relationships
and basic temporal coherence, suggesting we might not
need to learn either aspect entirely from scratch. To validate
this hypothesis, we first test the ability of current image
generation models to handle grid-arranged layouts through
simple prompting (Figure 8). Our experiments reveal that
while these models show promising initial capabilities in
understanding structured layouts, they still fall short in two
fundamental aspects (detailed in Section A.1):

• Layout Control: They fail to maintain both consistent
grid structures and visual appearances across layouts.

• Motion Coherence: When given specific motion in-
structions (e.g., “rotate clockwise”), they cannot reli-
ably create sequential movements across layouts.

To address these, we introduce GRID, which reformulates
temporal sequences as grid layouts, allowing image gen-
eration models to process the entire sequence holistically
and learn both spatial relationships and motion patterns.

Building on this grid-based framework, we develop a par-
allel flow-matching training strategy that leverages large-
scale web datasets, where video frames are arranged in grid
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Grid: Omni Visual Generation

Figure 1: Different paradigms for temporal visual generation. (a) Motion-Scratch (e.g., SVD, AnimateDiff): learn
temporal dynamics from scratch while reusing pretrained image models. (b) Full-Scratch (e.g., Sora): learn everything from
scratch, requiring massive data and computational resources. (c) Zero-Scratch (GRID): reuse both spatial and temporal
capabilities through grid-based reformulation, leveraging pretrained models’ inherent understanding.

layouts. The model learns to simultaneously generate all
frames in these structured layouts through a base parallel
matching loss, achieving consistent visual appearances and
proper grid arrangements. This approach naturally utilizes
the models’ self-attention mechanisms to capture and main-
tain spatial relationships across the entire layout.

For precise motion control, we further incorporate dedi-
cated temporal loss and motion-annotated datasets during
fine-tuning. The temporal loss ensures smooth transitions
between adjacent frames, while the motion annotations help
learn specific patterns like “rotate clockwise”. These compo-
nents are balanced through a coarse-to-fine training schedule
to achieve both fluid motion and consistent spatial structure.

Through our carefully designed training paradigm, GRID
achieves remarkable efficiency gains, demonstrating a sub-
stantial 6-35× acceleration in inference speed compared
to specialized expert models, while requiring merely 1

1000
of the training computational resources. Our framework
exhibits exceptional versatility, achieving competitive or su-
perior performance across a diverse spectrum of generation
tasks, including Text-to-Video, Image-to-Video, and Multi-
view generations, with performance improvements of up
to 23%. Furthermore, we extend the capabilities of GRID
to encompass Video Style Transfer, Video Restoration, and
3D Editing tasks, while preserving its original strong image
generation capabilities for image tasks such as image editing
and style transfer. This unique combination of expanded
capabilities and preserved foundational strengths establishes
GRID as a omni-solution for visual generation.

Our main contributions are summarized as follows:

• Novel Grid-based Framework: We introduce a new

paradigm that reformulates temporal sequences as
grid layouts, enabling holistic processing of visual se-
quences through image generation models.

• Coarse-to-fine Training Strategy: We develop a par-
allel flow-matching strategy combining layout match-
ing and temporal coherence losses, with a coarse-to-
fine training schedule that evolves from basic layouts
to more precise motion control.

• Omni Generation: We demonstrate strong per-
formance across multiple visual generation tasks
while maintaining low computational costs. Our
method achieves results comparable to task-specific
approaches, despite using a single, efficient framework.

2. Layout Generation
Inspired by film strips that organize temporal sequences into
structured grids, we present GRID, a grid layout-driven
framework that reformulates multiple visual generation
tasks through grid-based representation. Our GRID con-
sists of three key components: 1) Grid Representation,
which enables layout-based video organization for com-
prehensive visual generation; 2) Parallel Flow Matching,
which ensures temporal coherence in successive grids; and
3) Coarse-to-fine Training, which enhances motion con-
trol capabilities. The framework architecture is illustrated
in Figure 2 (left).

2.1. Grid Representation

Existing text-to-image models, with inherent attention mech-
anisms, enable image manipulation and editing by generat-
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Figure 2: Pipeline Overview. Left: GRID arranges videos into grid layouts, with text annotations combining layout format
prefix and LLM-generated captions. The model is trained using LoRA fine-tuning on DIT blocks, incorporating both base
loss and temporal loss to capture inter-frame relationships. Right: Grid-based reformulation naturally extends model’s
built-in self-attention to include frame-wise self-attention, cross-frame attention, and text-to-frames cross-attention.

ing new content from partial image information and seman-
tic instructions, which inspires us to extend this capability to
temporal generation by introducing a novel input paradigm,
termed Grid Representation, that generates temporal content
from keyframe visuals and semantic instructions.

Consider a general visual generation task that transforms an
input condition ccontent (such as a text description T ) into
a sequence of images (I0, ..., If ). We propose a grid layout
specification clayout that arranges temporal frames into a
structured grid within a single image, where each cell (i, j)
contains a specific image Iij . As shown in Figure 2 (right),
when this grid structure is input into a conventional text-to-
image model, the model’s inherent attention mechanisms
naturally extend their functionality to process this spatial
arrangement as:

• Self-attention Expansion: The standard self-attention
mechanism (I, I) (yellow block) expands into two dis-
tinct components:

– Intra-frame attention (Ii, Ii): Maintains feature
learning within individual grid cells

– Cross-frame attention (Ii, Ij): Enables temporal
relationships between different grid cells

• Cross-attention Extension: The text-image cross-
attention (I, T ) (pink block) extends naturally to pro-
vide uniform text conditioning across all frame posi-
tions

Our approach demonstrates that thoughtful problem restruc-
turing can be more effective than architectural modifica-
tions. By reorganizing the input space into a grid represen-
tation, standard text-to-image models can naturally handle
temporal generation without architectural changes (see Ap-
pendix A.2 for detailed attention mechanism analysis). This

grid-based design offers two key advantages: First, it en-
ables parallel generation of all frames and eliminates the
error accumulation problems common in autoregressive ap-
proaches (Tian et al., 2024). Second, by leveraging the
inherent consistency priors within pretrained image genera-
tion models, our approach effectively transfers their learned
spatial consistency to temporal and multi-view coherence.
This crucial advantage avoids the need for extensive pre-
training on massive video datasets, as the grid representa-
tion naturally extends existing image-level understanding to
sequence generation. Additionally, through flexible layout
conditioning (clayout), our model shows strong generalization
capabilities beyond training constraints (Section A.5), sug-
gesting a promising solution to the fixed-length limitations
of existing methods. Additionally, our grid representation
supports diverse input types, including multi-view images
and multi-frame sequences, laying the foundation for a com-
prehensive omni-generation model that bridges image and
video domains.

2.2. Parallel Flow Matching

To fully leverage the potential of our grid representation,
we employ parallel flow matching (Esser et al., 2024) to
ensure temporal coherence across consecutive grids. For
each training sample I = (Iij), we generate a corresponding
text representation by integrating layout specifications with
content descriptions: c′ = [clayout, ccontent]. Here, clayout
encodes the spatial structure (e.g., a sequence arranged in
m × n grids), while ccontent captures the visual content as
well as the temporal relationships between frames.

Parallel Flow Evolution with Global Awareness. Our grid
representation integrates seamlessly with flow matching by
organizing temporal frames into a unified grid image I. This
enables parallel evolution of frames through the following
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process:

It = (1− t)I+ tϵ, t ∼ U(0, 1), ϵ ∼ N (0, I) (1)

Unlike autoregressive approaches that generate frames se-
quentially, our formulation allows all frames to evolve si-
multaneously from noise to target distribution through the
model’s native prediction process:

f : (It, t, c
′) → ϵ− I (2)

Each frame (Iij)t interacts with others within the grid, en-
abling mutual influence. This interaction naturally enforces
temporal consistency across all sequences.

2.3. Coarse-to-Fine Training

Training models for temporal understanding in grid rep-
resentation demands extensive video data to achieve key
capabilities like identity preservation and motion consis-
tency - essential features for video and multi-view genera-
tion that text-to-image models typically lack. This training
process faces two main challenges from mixed quality of
available data: the abundance of low-quality internet videos,
and high computational costs of processing high-resolution
footage. We tackle these limitations through a coarse-to-fine
training strategy that combines two key components: data
curriculum and loss dynamic. This dual approach optimizes
both training efficiency and model performance, enabling
effective use of diverse data sources while minimizing com-
putational overhead. Our strategy enhances the capabilities
of our flow-based framework without sacrificing training
efficiency.

Data Curriculum. Our training strategy follows a Coarse-
to-Fine approach, starting with foundational learning and
advancing to refinement:

• Coarse Phase: In the initial phase, we utilize large-
scale Internet datasets, including WebVid, TikTok,
and Objaverse, which are designed with uniform
clayout specifications. Although the content descrip-
tions (ccontent) are automatically generated by GLM-
4V-9B (Du et al., 2022) and may lack precise control
details, the vast scale and diversity of this data—albeit
at lower resolutions—provide a strong basis for devel-
oping robust spatial understanding and basic layout
structures.

• Fine Phase: Building on the foundational knowledge
from the coarse phase, we transition to training with
carefully curated, high-resolution samples. These sam-
ples are paired with detailed descriptions generated by
GPT-4 (OpenAI, 2023), offering explicit spatial and
temporal instructions. As shown in Figure 2, these
high-quality captions facilitate fine-grained control

over complex layout variations, enabling the model
to handle intricate spatial and temporal dynamics ef-
fectively.

Loss Formulation. Our training objective combines appear-
ance accuracy with temporal consistency through a weighted
sum:

Ltotal = Lbase + αLflow (3)

The base loss ensures accurate noise prediction at each
position using mean squared error:

Lbase = Et,ϵ[|ϵ− ϵθ(I, t, c
′)|2] (4)

The flow loss enforces smooth temporal transitions by pe-
nalizing inconsistent changes between adjacent positions.
For any position (i,j) in the grid, directional changes are:

∆ϵij =

{
ϵij − ϵi,j−1 within row
ϵi,0 − ϵi−1,n across rows

(5)

Similarly for predicted values:

∆ϵijθ =

{
ϵijθ − ϵi,j−1

θ within row
ϵi,0θ − ϵi−1,n

θ across rows
(6)

The flow loss then minimizes inconsistencies in these direc-
tional changes:

Lflow = Et,ϵ[|∆ϵ−∆ϵθ(I, t, c
′)|2] (7)

The weight α gradually increases from 0 to a preset upper
bound, allowing the model to first establish precise content
generation capabilities before focusing on temporal dynam-
ics. This staged evolution of the loss function complements
our data curriculum, enabling the model to effectively learn
both the spatial and temporal aspects of generation in a
coordinated manner.

2.4. Omni Inference

We propose an omni-inference framework designed to han-
dle a wide range of generation tasks using a reference-
guided grid layout initialization. The core idea of our ap-
proach is to unify different generation tasks by employing
a well-structured initialization process combined with con-
trolled grid noise injection. At the same time, we ensure
consistency with the reference through the use of a binary
mask.

Given a reference image Iref or key frames (I0, ..., Im−1),
we construct a grid structure I = (Iij)m×n. For single-
image expansion and frame interpolation tasks, we initialize
the grid as:

Iij =

{
Iref expansion
(1− j

n )Ii,0 +
j
nIi+1,0 interpolation

(8)
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Figure 3: Omni Inference Framework: By transforming temporal and view sequences into structured layout spaces, we
enable a pure image-based model FLUX to tackle diverse video and multi-view tasks (text/image-to-video generation, video
interpolation, and multi-view synthesis) through a unified pipeline without additional video-specific architectures.

The generation process requires both flexibility and refer-
ence consistency. To achieve this, we introduce controlled
grid noise injection instead of starting from pure noise:

IT = (1− T )I+ Tϵ, ϵ ∼ N (0, I) (9)

where T denotes the time. This noise injection enables di-
verse generation while retaining the initialization structure.

To maintain reference consistency during generation, we
employ a binary mask M ∈ {0, 1}m×n:

Mij =

{
0 if (i, j) contains reference frame
1 otherwise

(10)

This mask modulates the update process:

It = (1−M)⊙ Iref +M ⊙ It (11)

ensuring reference frames remain unchanged while allowing
other regions to evolve. The noise level T plays a key role in
balancing generation quality. A large T leads to pure noise
with poor reference consistency, while a small T yields near-
duplicates. Our experiments show T ∈ [0.8, 1.0] a good
balance between diversity and fidelity.

3. Experiments
3.1. Experimental Setup

Datasets We train our model separately for video gen-
eration and multi-view generation tasks, both following a
two-stage strategy: (1) For coarse-level training, we com-
bine video clips from WebVid (Bain et al., 2021), and Tik-
Tok (Jafarian & Park, 2022) arranged in 8×8 and 4×4 grid

layouts for video generation, and 30K sequences from Obja-
verse (Deitke et al., 2023) in 4×6 grids for multi-view gener-
ation. Each sequence is paired with automated captions and
GLM-generated annotations emphasizing spatial and tem-
poral relationships, using the sequence’s inherent attributes
(e.g., category labels) and visual content as queries. (2)
For fine-grained control, we construct high-quality datasets
of 1K sequences with structured annotations for each task.
We first manually create exemplar annotations to establish
a consistent format, then use these as few-shot examples
for GPT-4o to generate precise control instructions while
maintaining annotation consistency across the dataset.

Implementation Details We implement GRID based on
the FLUX-dev, initializing from its pretrained weights. For
video generation training, we adopt LoRA with ranks of 16-
256, training for 10K steps with batch size 4 across 8 A800
GPUs using AdamW optimizer (learning rate 1e-4). The
temporal loss weight α starts from 0 and gradually increases
to a maximum of 0.5. For multi-view generation, we train
on 30K sequences for 1.5K steps using LoRA rank 256 and
Ours-EF using LoRA rank 16. During inference, we use a
guidance scale of 3.5 and sampling step of 20.

Evaluation Protocol We evaluate our model on three dis-
tinct generation tasks: (1) Text-to-video generation on UCF-
101 dataset (Soomro et al., 2012), evaluated using FVD (Un-
terthiner et al., 2019) (I3D backbone) and IS (Xu et al.,
2018). We evaluate both 16-frame and 64-frame generation
settings; (2) Image-to-video generation on a randomly sam-
pled subset of 100 TikTok videos, measured by FVD and
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Figure 4: Multi-view generation results for static objects
(top six rows) and dynamic subjects (bottom six rows),
demonstrating consistent appearance and structure across
different viewpoints.

CLIPimg score; (3) Multi-view generation on Objaverse,
where we evaluate on 30 randomly selected objects with 24
frames per sequence at different viewpoints to assess 4D
generation capabilities. We compute FVD, CLIP metrics,
following (Liang et al., 2024).

3.2. Main Results

We compare our approach with several state-of-the-art
methods from well-established video/multyview generation
model series, all of which represent the current frontiers in
their respective domains.

Multi-view Generation We evaluate on the Objaverse
test set with 30 3D objects. As shown in Table 1, our
method achieves state-of-the-art performance on both text-
to-multiview and image-to-multiview tasks. For T2MV, we
improve CLIP-F to 0.9427 and reduce FVD to 324.3, while
achieving 67× faster inference (6m vs. 405m) compared

Figure 5: Text-to-Video Generation of driving scenes, show-
casing complex multi-vehicle scenarios which represent the
most challenging aspects of driving scene generation.

Figure 6: Image-to-Video Generation of dance sequences
from TikTok dataset. The leftmost column shows the input
reference image, followed by generated motion sequences.

to 4DFY. For I2MV, we achieve 0.9486 CLIP-F score with
35× speedup over STAG4D. Ours-EF (lora rank 16) also
demonstrates strong performance-speed trade-off.

Text-to-Video Generation As shown in Table 2, we
achieve competitive FVD of 721.6 for 64-frame genera-
tion. For 16-frame generation, our method achieves 6.7×
faster inference (7.2s vs 48s) compared to CogVideo, with
the efficiency gap widening to 5.5× for 64-frame tasks. Our
staged training shows clear progression: Stage1 achieves
FVD 455.3, improving to 401.1 with fine-grained annota-
tions, and further to 382.5 with Lflow.

Image-to-Video Generation We evaluate on the TikTok
dataset containing 100 diverse short videos. Our method
achieves breakthrough performance with FVD of 93.7 (23%
improvement) and CLIPimg score of 0.9709. Notably, our
approach requires only 160M parameters, compared to
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Table 1: Quantitative comparison of Multi-view Generation Results on Text-to-Multiview and Image-to-Multiview Tasks.
Inf Time indicates the whole time cost during inference.

Text-to-Multiview (T2MV) Image-to-Multiview (I2MV)

Method CLIP-F↑ CLIP-O↑ FVD↓ Inf Time↓ Method CLIP-F↑ CLIP-O↑ FVD↓ Inf Time↓

Animate124 0.7889 0.6005 411.6 180m STAG4D 0.8803 0.6420 475.4 210m
4DFY 0.8092 0.6163 390.4 405m 4DGen 0.8724 0.6397 525.2 130m
Ours-EF 0.9060 0.6189 355.6 6m Ours-EF 0.9392 0.6580 333.7 6m
Ours 0.9427 0.6247 324.3 6m Ours 0.9486 0.6554 350.6 6m

Table 2: Comprehensive Generation Results. Our model
achieves competitive quality with superior efficiency across
tasks. While existing methods are limited to 16-frame gener-
ation, our approach efficiently scales to 64-frame sequences
with linear time cost. Underlined and bold values indicate
best results among our variants and all methods, respectively.
Test Time shows average sampling time per sequence.

Text-to-Video (16-frame)

Method FVD↓ IS↑ Inf Time↓ Para↓
AnimateDiffv3 464.1 35.24 12s 419M
VideoCrafter2 424.2 32.00 15s 919M
OpenSora1.2 472.0 39.07 12s 1.5B
Cosmos 399.7 35.54 275s 7B

Ours(Stage1) 455.3 32.46 7.2s
160MOurs(Stage1+2) 401.1 36.56 7.2s

Ours(Full) 382.5 38.12 7.2s

Text-to-Video (64-frame)

Method FVD↓ IS↑ Inf Time↓ Para↓
OpenSora1.2 1000.5 37.11 66s 1.5B
CogVideo5b 740.1 34.82 132s 5B

Ours(Stage1) 1003.2 32.48 24s
160MOurs(Stage1+2) 994.6 36.47 24s

Ours(Full) 721.6 36.63 24s

Image-to-Video

Method FVD↓ CLIPimg ↑ Inf Time↓ Para↓
AnimateDiffv3 250.9 0.9229 12s 419M
CogVideo5b 122.5 0.9185 48s 5B

Ours(Stage1) 115.5 0.9598 7.2s
160MOurs(Stage1+2) 104.6 0.9695 7.2s

Ours(Full) 93.7 0.9709 7.2s

Table 3: Video Frame Interpolation Results on UCF101.
We evaluate our full model following standard settings. All
methods achieve comparable results, with our approach
matching state-of-the-art EMA-VFI on PSNR.

Metrics EMA-VFI UPR-Net VFIMamba Ours

PSNR↑ 35.48 35.47 35.45 35.48
SSIM↑ 0.9701 0.9700 0.9702 0.9700

>400M for motion modeling or >1B for full generation
in existing methods.

Video Frame Interpolation We evaluate on the UCF101
dataset for video frame interpolation (Zhang et al., 2023b;
Jin et al., 2023; Zhang et al., 2024). As shown in Table 3, our
approach achieves state-of-the-art PSNR of 35.48, match-
ing EMA-VFI. For SSIM, all methods perform comparably
around 0.970, with VFIMamba leading marginally.

3.3. Extension Capabilities

Beyond the primary generation tasks, we demonstrate
GRID’s strong zero-shot generalization capabilities across
diverse video and multi-view applications without any task-
specific training or architectural modifications. The layout-
based design enables natural adaptation to various down-
stream tasks through prompt engineering alone.

Video Motion Clone Our framework enables natural
video motion cloning through image redrawing without
additional training. As demonstrated in Figure 7, we trans-
form a cat video into videos featuring a fox, red panda,
and tiger, while faithfully preserving the original motion
patterns, temporal dynamics, and scene aesthetics.

Video Restoration Our architecture’s multi-scale process-
ing capability enables effective video restoration without
explicit training. Figure 13 shows our model’s performance
in recovering high-quality videos from severely degraded
inputs (with Gaussian blur and block masking).

3D Editing We demonstrate our model’s potential for
practical 3D appearance editing through an innovative vir-
tual try-on application. As shown in Figure 12, given an
uncolored 3D human walking sequence from multiple view-
points, our model can dress and style the figure through sim-
ple text prompts. This enables diverse appearance variations
- from adding hair to rendering outfits - while maintaining
consistent 3D structure and motion.

More results and applications are shown in Appendix A.7.
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Figure 7: Zero-shot video motion clone results. Our model
incorporates characteristics from different animals (fox, red
panda, tiger) while maintaining motion pattern.

4. Related Work
Text-to-Image Generation Diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020) have fundamen-
tally transformed image generation by employing iterative
denoising processes to synthesize high-quality outputs. Sub-
sequent advancements (Rombach et al., 2022; Podell et al.,
2023; Ramesh et al., 2022; Saharia et al., 2022) have re-
fined this paradigm leveraging latent spaces with signifi-
cantly reduced computational costs. Diffusion Transformers
(DiT) (Peebles & Xie, 2023) further advanced this area by
replacing the U-Net architecture with transformer-based de-
signs. This architectural shift improved training efficiency,
paving the way for more scalable and versatile generative
frameworks. Building on these, flow matching (Lipman
et al., 2022; Esser et al., 2024) reformulates the generation
process as a straight-path trajectory between data and noise
distributions. More recently, FLUX (BlackForest, 2024),
has combined the strengths of DiT and flow matching to

achieve efficient and high-quality image generation. These
models also integrate powerful language models (Raffel
et al., 2020) and joint text-image attention mechanisms.
This multimodal understanding has unlocked new possi-
bilities for instruction-following and creative applications.
Beyond generating high-quality images, text-to-image mod-
els demonstrate a strong spatial understanding that can be
naturally extended to temporal dimensions through layout
representations, enabling diverse downstream tasks.

Task-Specific Generation Diffusion-based approaches
have shown remarkable progress in generalized video gener-
ation tasks (Ho et al., 2022; Blattmann et al., 2023b; Zhang
et al., 2023a; Blattmann et al., 2023a; He et al., 2023; Zhou
et al., 2022; Wang et al., 2023a; Ge et al., 2023; Wang
et al., 2023c;b; Singer et al., 2022; Zhang et al., 2023a;
Zeng et al., 2023; Agarwal et al., 2025). Notable works like
VideoLDM (Blattmann et al., 2023b), Animatediff (Guo
et al., 2023), and SVD (Chai et al., 2023) advance temporal
modeling through specialized architectures. In the multi-
view domain, various approaches (Watson et al., 2022; Liu
et al., 2023a; Shi et al., 2023b; Long et al., 2024; Shi et al.,
2023a; Lu et al., 2024; Li et al., 2023; Liu et al., 2023b; Li
et al., 2024; Yang et al., 2024; Zhao et al., 2023; Yin et al.,
2023) focus on cross-view consistency through different
attention mechanisms and feature space alignments. Recent
4D generation methods (Ren et al., 2023; Liang et al., 2024;
Xie et al., 2024b; Sun et al., 2024; Wu et al., 2024) further
extend to joint spatial-temporal synthesis, though often fac-
ing efficiency challenges or requiring multi-step generation.
While these methods achieve remarkable results, they are
typically tailored to specific tasks, relying on specialized
architectures for image, video, or multi-view generation.
Additionally, methods like VideoPoet (Kondratyuk et al.,
2023) employ complex cross-modal alignment mechanisms
to bridge different generation modes. In contrast, our ap-
proach introduces layout generation, an omni framework
that transforms temporal and spatial generation into layout
representations. This enables seamless multi-modal gen-
eration, to address a wide range of tasks through straight-
forward modifications to input representations, without the
need for complex cross-modal alignment mechanisms.

5. Conclusion
We present GRID, an omni visual generation framework
through grid representation. Our two-stage training strategy
enables both robust generation and precise control, while
the temporal refinement mechanism enhances motion coher-
ence. Experiments demonstrate significant computational
efficiency gains while maintaining competitive performance
across tasks. The framework’s strong zero-shot generaliza-
tion capabilities further enable adaptation to diverse applica-
tions without task-specific training, suggesting a promising
direction for efficient visual sequence generation.
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Impact Statement
This paper introduces research aimed at advancing visual se-
quence generation through an efficient layout-based frame-
work. However, we must emphasize the potential risks
associated with this technology, particularly in facial ma-
nipulation applications (Xie et al., 2024a; Luo et al., 2024),
where our method could be misused to compromise identity
security. Nevertheless, recent advances in adversarial per-
turbation protection mechanisms (Wan et al., 2024) provide
solutions to help users protect their personal data against
unauthorized model fine-tuning and malicious content gen-
eration. Therefore, we call for attention to these risks and
encourage the adoption of defensive techniques to ensure
the protection of personal content while advancing the de-
velopment of generative AI technologies.
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A. Appendix
A.1. Why Flux? Zero-shot Analysis of Foundation Models

To better understand the layout capabilities of existing models before fine-tuning, we conducted a comprehensive zero-shot
evaluation comparing three state-of-the-art models: DALLE-3, Flux, and Imagen3. Figure 8 presents their generation results,
with each row corresponding to DALLE-3 (top), Flux (middle), and Imagen3 (bottom) respectively.

Figure 8: Zero-shot evaluation of foundation models on grid-based multi-view generation tasks before we begin to train.
Using the prompt ”a * from different angles in a mxn grid layout,” First row: Dalle3, Second row: Flux, Third row: Imagen3.

Our analysis reveals varying degrees of grid layout understanding across models. While all models demonstrate basic grid
comprehension, they exhibit different strengths and limitations. For motion control, we observe that precise directional
instructions (e.g., clockwise rotation) often result in random orientations across all models, indicating limited spatial-temporal
control capabilities.

In terms of grid structure accuracy, DALLE-3 shows inconsistent interpretation of specific layout requirements (e.g., 4×4 or
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4×6 grids), while Flux and Imagen3 demonstrate better adherence to specified grid configurations. Notably, Flux exhibits
superior understanding of spatial arrangements.

Content consistency across grid cells varies significantly. Both Imagen3 and DALLE-3 show noticeable variations in
object appearance across frames, while Flux maintains better consistency in object characteristics throughout the sequence.
This superior consistency, combined with its open-source nature, motivated our choice of Flux as the base model for our
framework.

A.2. Why is it Natural for GRID to Leverage Built-in Attention Mechanism

Video generation fundamentally requires three key capabilities: spatial understanding within frames, temporal consistency
between frames, and semantic control across the entire sequence. Traditional approaches tackle these requirements by
implementing separate attention modules, as shown in Figure 9(a). While this modular design directly addresses each
requirement, it introduces architectural complexity and potential inconsistencies between modules.

Figure 9: Comparison of attention mechanisms. (a) Traditional video diffusion models rely on three separate attention
modules to handle spatial understanding, semantic guidance, and temporal consistency respectively. (b) Through our grid
layout reformulation, FLUX’s unified self-attention naturally encompasses both inner-frame (Ii, Ii) and cross-frame (Ii, Ij)
relationships, while its global text-image attention (T, I) enables consistent control across all frames. This simplification
eliminates the need for specialized temporal modules while maintaining effective spatio-temporal understanding.

Our key insight is that these seemingly distinct requirements can be unified through spatial reformulation. By organizing
temporal sequences into grid layouts, we transform temporal relationships into spatial ones, allowing FLUX’s native
attention mechanism to naturally handle all requirements through a single, coherent process.

This unification works through two complementary mechanisms, as illustrated in Figure 9(b). First, the original image
self-attention (I, I) automatically extends across the grid structure. When processing grid cells containing different temporal
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frames, this self-attention naturally splits into inner-frame attention (Ii, Ii) and cross-frame attention (Ii, Ij). The inner-
frame component maintains spatial understanding within each frame, while the cross-frame component captures temporal
relationships - effectively handling both spatial and temporal coherence through a single mechanism.

Second, the text-image cross-attention (T, [Ii]
f
i=0) operates globally across all grid cells, enabling unified semantic control.

This global operation ensures that textual instructions consistently influence all frames, maintaining semantic coherence
throughout the sequence. The grid layout allows this semantic guidance to naturally incorporate both content and temporal
specifications, as the attention mechanism can reference the spatial relationships between grid cells.

This reformulation fundamentally changes how temporal information is processed. Rather than treating temporal relation-
ships as a separate problem requiring specialized mechanisms, we transform them into spatial relationships that existing
attention mechanisms are already optimized to handle. This approach not only simplifies the architecture but also provides
more robust temporal understanding, as it leverages the well-established capabilities of spatial attention mechanisms.

The elegance of this solution lies in its ability to achieve complex temporal processing without architectural modifications. By
thoughtfully restructuring the problem space, we enable standard attention mechanisms to naturally extend their capabilities,
demonstrating how strategic problem reformulation can be more powerful than architectural elaboration.

A.3. Comparison with Existing Approaches and Computational Efficiency Analysis

Current approaches to video generation can be categorized into two distinct paradigms, each with fundamental limitations
in terms of architectural design and computational requirements. We provide a detailed analysis of these approaches and
contrast them with our method:

Paradigm 1: Image Models as Single-Frame Generators Methods like SVD and AnimateDiff utilize pre-trained text-to-
image models as frame generators while introducing separate modules for motion learning. This approach presents several
fundamental limitations:

First, these methods require complex architectural additions for temporal modeling, introducing significant parameter
overhead without leveraging the inherent capabilities of pre-trained image models. For instance, AnimateDiff introduces
temporal attention layers that must be trained from scratch, while SVD requires separate motion estimation networks.

Second, the sequential nature of frame generation in these approaches leads to substantial computational overhead during
inference. This sequential processing not only impacts generation speed but also limits the model’s ability to maintain
long-term temporal consistency, as each frame is generated with limited context from previous frames.

Paradigm 2: End-to-End Video Architectures Recent approaches like Sora, CogVideo, and Huanyuan Video attempt to
solve video generation through end-to-end training of video-specific architectures. While theoretically promising, these
methods face severe practical constraints:

The computational requirements are particularly striking:

• CogVideo requires approximately 35M video clips and an additional 2B filtered images from LAION-5B and COYO-
700M datasets

• Open-Sora necessitates more than 35M videos for training

• These models typically demand multiple 80GB GPUs with sequence parallelism just for inference

• Training typically requires thousands of GPU-days, making reproduction and iteration challenging for most research
teams

Our Grid-based Framework: A Resource-Efficient Alternative In contrast, GRID achieves competitive performance
through a fundamentally different approach:

1. Architectural Efficiency: Our grid-based framework requires only 160M additional parameters while maintaining
competitive performance. This efficiency stems from:

• Treating temporal sequences as spatial layouts, enabling parallel processing
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• Leveraging existing image generation capabilities without architectural complexity

• Efficient parameter sharing across temporal and spatial dimensions

2. Data Efficiency: We achieve remarkable data efficiency improvements:

Data Reduction ≈ > 35M videos (previous methods)
< 35K videos (our method)

= 1000× (12)

This efficiency is achieved through:

• Strategic use of grid-based training that maximizes information extraction from each video

• Effective transfer learning from pre-trained image models

• Focused training on essential video-specific components

3. Computational Accessibility: Our approach enables high-quality video generation while maintaining accessibility for
research environments with limited computational resources:

• Training can be completed on standard research GPUs

• Inference requires significantly less memory compared to end-to-end approaches

• The model maintains strong performance across both video and image tasks

This comprehensive analysis demonstrates that our approach not only addresses the limitations of existing methods but also
achieves substantial improvements in computational efficiency while maintaining competitive performance. The significant
reductions in data requirements and computational resources make our method particularly valuable for practical applications
and research environments with limited resources.

A.4. Distinction from In-Context LoRA

Recent work IC-LoRA (Huang et al., 2024b;a) also utilizes grid-based layouts for image generation, which might superficially
appear similar to our approach. However, a careful analysis reveals fundamental differences in both theoretical foundation
and technical implementation.

Different Theoretical Foundations: The core principle of IC-LoRA is to use grid layouts as a prompt engineering technique,
where multiple images are arranged together to provide in-context examples for task adaptation. This is essentially an
extension of in-context learning from language models to visual domain. Their grid layout serves merely as a presentation
format for example-based learning.

In contrast, our approach fundamentally re-conceptualizes temporal sequences into spatial layouts. Rather than using grids
for example presentation, we treat them as an inherent representation of temporal information, where spatial relationships
in the grid directly correspond to temporal relationships in the sequence. This enables our model to learn and generate
temporal dynamics in a holistic manner.

Distinct Technical Objectives: IC-LoRA’s technical implementation focuses on task adaptation through example pairs.
Their method relies on LoRA-based fine-tuning and natural language prompts to define relationships between grid elements.
However, this approach has inherent limitations in handling temporal dynamics, as it treats each grid element independently
without explicit modeling of their temporal relationships.

Our method, on the other hand, is specifically designed for temporal sequence generation. We introduce parallel flow-
matching and dedicated temporal loss functions that explicitly model motion patterns and temporal coherence. This allows
our approach to capture and generate complex temporal dynamics that are beyond the capability of example-based methods
like IC-LoRA.

Different Application Scopes: While IC-LoRA excels at static, example-based generation tasks through prompt engineering,
it struggles with temporal sequence generation due to its fundamental design limitations. Our method, specifically designed
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for temporal modeling, naturally handles both static and dynamic visual generation tasks while maintaining precise control
over temporal dynamics.

This analysis demonstrates that despite the superficial similarity in using grid layouts, our approach represents a fundamen-
tally different direction in visual generation. We independently developed our method to address the specific challenges of
temporal sequence generation, resulting in distinct technical contributions that go beyond the capabilities of example-based
frameworks like IC-LoRA.

These crucial differences are evidenced by our method’s superior performance in temporal tasks and its ability to maintain
consistent motion patterns across sequences - capabilities that are fundamentally beyond the scope of IC-LoRA’s example-
based approach.

A.5. Inference Details

For extension tasks (style transfer, restoration, and editing), we modify the omni-inference framework to process full
sequences while maintaining temporal coherence. Unlike the reference-guided generation that requires partial initialization
and masking, these tasks operate on complete sequences with controlled noise injection for appearance modification.

Given an input sequence represented as a grid structure I = (Iij)m×n, we initialize the generation process with noise-injected
states:

IT = (1− T )I+ Tϵ, ϵ ∼ N (0, I) (13)

where T ∈ [0.8, 0.9] represents a lower noise level compared to the reference-guided generation. This lower T value helps
preserve the original temporal structure while allowing sufficient flexibility for appearance modifications.

A.6. Post-Processing Pipeline

For multi-view generation results, we employ a two-stage enhancement process. First, the generated sequences are processed
as video frames to ensure temporal consistency. Subsequently, we apply super-resolution using Real-ESRGAN (Wang et al.)
with anime-video-v3 weights, upscaling from 256×256 resolution to 1024×1024. This enhancement pipeline significantly
improves visual quality while maintaining temporal coherence.

Table 4 shows parts of our inference prompts for multyview generation. We basically follow this prompt format.

A.7. Potential Applications

Our framework demonstrates significant potential beyond its primary applications.

A.7.1. CREATIVE MULTI-VIEW GENERATION

As shown in Figure 10, our method exhibits remarkable flexibility in combining different conceptual elements to create
novel multi-view compositions. The grid-based layout allows for intuitive arrangement and manipulation of various visual
elements, enabling creative expressions that would be challenging for traditional approaches. This capability suggests
promising applications in creative design, artistic visualization, and content creation.

A.7.2. FLEXIBLE FRAME EXTENSION

Notably, our model demonstrates strong generalization capability in sequence length. Despite being trained on 4×4 (16-
frame) driving scenarios, the model can effectively generate 4×8 (32-frame) sequences by simply adjusting the clayout
prompt at inference time. As shown in Figure 11, the extended sequences maintain temporal consistency and visual quality
comparable to the original training length. This flexibility suggests that our layout-based approach naturally accommodates
variable-length generation without requiring explicit retraining, opening possibilities for dynamic content generation across
different temporal scales.

A.7.3. FUTURE EXTENSION TO VIDEO UNDERSTANDING

Our layout-based framework shows potential in transforming traditional video understanding tasks into image-domain
problems. Unlike conventional autoregressive approaches (Bai et al., 2024) that process frames sequentially, our method
arranges frames in a grid layout, enabling parallel processing and global temporal modeling. This approach could benefit
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Common Format A 24-frame sequence arranged in a 4x6 grid. Each frame captures a 3D model
of [subject] from a different angle, rotating 360 degrees. The sequence begins
with a front view and progresses through a complete clockwise rotation

Category Subject Description

Creative Fusion a skyscraper with knitted wool surface and cable-knit details
a mechanical hummingbird with clockwork wings and steampunk gears hover-
ing near a neon flower
a bonsai tree with spiral galaxies and nebulae blooming from its twisted branches
a phoenix crafted entirely from woven bamboo strips with intricate basketwork
details glowing from within
a jellyfish with a transparent porcelain bell decorated in blue-and-white patterns
and ink-brush tentacles
a coral reef made entirely of rainbow-hued blown glass with intricate marine
life formations
an urban street where buildings are shaped as giant functional musical instru-
ments including a violin apartment and piano mall
a butterfly with stained glass wings depicting medieval scenes catching sunlight
a floating city where traditional Chinese pavilions rest on clouds made of flowing
silk fabric in pastel colors
a lion composed of moving gears and pistons that transforms between mechani-
cal and organic forms
a garden where geometric crystal formations grow and branch like plants with
rainbow refractions
a tree whose trunk is a twisting pagoda with branches of miniature traditional
buildings and roof tile leaves
a phoenix-dragon hybrid creature covered in mirrored scales that create fractal
reflections
a celestial teapot with constellation etchings pouring a stream of stars and
nebulae
an origami landscape where paper mountains continuously fold and unfold to
reveal geometric cities and rivers
a sphere where traditional Chinese ink and wash paintings flow continuously
between day and night scenes

Natural Creatures a Velociraptor in hunting pose with detailed scales and feathers
a Mammoth with detailed fur and tusks
a chameleon changing colors with detailed scales
a white tiger in mid-stride with flowing muscles
a Pterodactyl with spread wings in flight pose
an orangutan showing intelligent behavior
a polar bear with detailed fur texture

Table 4: Prompt format for 360° object rotation generation. All prompts follow the same structural template, varying
only in the subject description. The subjects are categorized into creative fusion designs that combine different artistic
elements and concepts, and natural creatures that focus on realistic animal representations.
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various video understanding tasks: for video-text retrieval, the layout representation allows direct comparison between video
content and text embeddings across all frames simultaneously; for video question answering, it enables the model to attend
to relevant frames across the entire sequence without sequential constraints; for video tracking and other analysis tasks, it
avoids error accumulation common in traditional sequential processing. While we have not conducted specific experiments
in these directions, our framework’s ability to convert temporal relationships into spatial ones through layouts offers a
promising alternative to conventional video understanding paradigms, potentially enabling more efficient and effective
multi-modal video analysis.

A.7.4. MAINTAINED IMAGE GENERATION ABILITY

Our framework preserves the original Flux model’s image generation capabilities while extending its functionality to handle
video sequences. As demonstrated in Figure 14, the model maintains high-quality performance on various image generation
tasks such as text-to-image synthesis, image editing, and style transfer. This preservation of original capabilities alongside
newly acquired video generation abilities creates a versatile model that can seamlessly handle both single-image and
multi-frame tasks. The ability to maintain original image generation quality while adding new functionality demonstrates
the effectiveness of our training approach and the robustness of the layout-based framework.

A.8. Limitations

Our approach faces two primary limitations. First, the grid-based layout design inherently constrains frame resolution due
to limitations of the based Text-to-Image models when processing multiple frames simultaneously. Second, our training
strategy, based on lora finetuning, shows limitations in text-to-video generation tasks that significantly deviate from the base
model’s capabilities. Combined with our relatively small training dataset, this makes it challenging to achieve competitive
performance in open-world video generation scenarios requiring complex motion understanding.

A.9. Multyview Camera Parameters

Building upon the dataset opensourced by Diffusion4D (Liang et al., 2024), Table 5 presents camera trajectory parameters,
which serve as the foundation for consistent 4D content generation and subsequent reconstruction tasks.

Our camera configuration follows precise mathematical relationships, with cameras positioned at 15-degree intervals along a
circle of radius 2 units in the horizontal plane. The systematic progression of coordinate bases ensures optimal coverage
while maintaining consistent inter-frame relationships. Each camera’s orientation is defined by orthogonal basis vectors,
with the Y vector consistently aligned with the negative Z-axis to establish stable up-direction reference.
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Frame X Vector Y Vector Z Vector Origin
1 [1.0, 0.0, 0.0] [-0.0, 0.0, -1.0] [-0.0, 1.0, 0.0] [0.0, -2.0, 0.0]
2 [0.96, 0.27, -0.0] [0.0, -0.0, -1.0] [-0.27, 0.96, -0.0] [0.54, -1.93, 0.0]
3 [-0.92, 0.4, -0.0] [0.0, 0.0, -1.0] [-0.4, -0.92, -0.0] [0.8, 1.83, 0.0]
4 [-0.99, 0.14, -0.0] [0.0, 0.0, -1.0] [-0.14, -0.99, -0.0] [0.27, 1.98, 0.0]
5 [-0.99, -0.14, 0.0] [-0.0, 0.0, -1.0] [0.14, -0.99, -0.0] [-0.27, 1.98, 0.0]
6 [-0.92, -0.4, 0.0] [-0.0, 0.0, -1.0] [0.4, -0.92, -0.0] [-0.8, 1.83, 0.0]
7 [-0.78, -0.63, 0.0] [-0.0, -0.0, -1.0] [0.63, -0.78, 0.0] [-1.26, 1.55, 0.0]
8 [-0.58, -0.82, -0.0] [0.0, 0.0, -1.0] [0.82, -0.58, 0.0] [-1.63, 1.15, 0.0]
9 [-0.33, -0.94, -0.0] [0.0, -0.0, -1.0] [0.94, -0.33, 0.0] [-1.88, 0.67, 0.0]

10 [-0.07, -1.0, -0.0] [0.0, 0.0, -1.0] [1.0, -0.07, 0.0] [-2.0, 0.14, 0.0]
11 [0.2, -0.98, 0.0] [0.0, -0.0, -1.0] [0.98, 0.2, 0.0] [-1.96, -0.41, 0.0]
12 [0.46, -0.89, 0.0] [0.0, -0.0, -1.0] [0.89, 0.46, 0.0] [-1.78, -0.92, 0.0]
13 [0.85, 0.52, 0.0] [-0.0, 0.0, -1.0] [-0.52, 0.85, 0.0] [1.04, -1.71, 0.0]
14 [0.68, -0.73, -0.0] [-0.0, 0.0, -1.0] [0.73, 0.68, 0.0] [-1.46, -1.37, 0.0]
15 [0.85, -0.52, -0.0] [0.0, 0.0, -1.0] [0.52, 0.85, 0.0] [-1.04, -1.71, 0.0]
16 [0.96, -0.27, 0.0] [-0.0, -0.0, -1.0] [0.27, 0.96, -0.0] [-0.54, -1.93, 0.0]
17 [1.0, -0.0, 0.0] [0.0, 0.0, -1.0] [0.0, 1.0, 0.0] [-0.0, -2.0, 0.0]
18 [0.68, 0.73, 0.0] [0.0, 0.0, -1.0] [-0.73, 0.68, 0.0] [1.46, -1.37, 0.0]
19 [0.46, 0.89, -0.0] [-0.0, -0.0, -1.0] [-0.89, 0.46, 0.0] [1.78, -0.92, 0.0]
20 [0.2, 0.98, -0.0] [-0.0, -0.0, -1.0] [-0.98, 0.2, 0.0] [1.96, -0.41, 0.0]
21 [-0.07, 1.0, 0.0] [-0.0, 0.0, -1.0] [-1.0, -0.07, 0.0] [2.0, 0.14, 0.0]
22 [-0.33, 0.94, 0.0] [-0.0, -0.0, -1.0] [-0.94, -0.33, 0.0] [1.88, 0.67, 0.0]
23 [-0.58, 0.82, 0.0] [-0.0, 0.0, -1.0] [-0.82, -0.58, 0.0] [1.63, 1.15, 0.0]
24 [-0.78, 0.63, -0.0] [0.0, -0.0, -1.0] [-0.63, -0.78, 0.0] [1.26, 1.55, 0.0]

Table 5: Camera Parameters for 24 Frames
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Figure 10: Creative multy-view concept generation.
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Figure 11: We only train our model using 4×4 datasets, but when at inference, we directly change prompt to ask to layout
4×8 grid. The model has not trained on these kind of dataset, but show a zero-shot generalization ability.

Figure 12: Zero-shot 3D editing with attribute control. Our model generates diverse variations by modifying appearance
attributes through text prompts while preserving motion patterns.

21



1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Grid: Omni Visual Generation

Figure 13: Video restoration from degraded inputs. Left: Input sequences with Gaussian blur and block masking. Right:
Restored high-quality outputs maintaining temporal consistency.
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Figure 14: Demonstration of maintained image generation capabilities. Our model preserves high-quality single-image gen-
eration performance across diverse scenarios including: basic objects, nature scenes, character interactions, indoor/outdoor
environments, artistic styles, and lighting effects. Each image is generated from text prompts testing different aspects of the
model’s generation abilities.
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