
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DECENTRALIZED ATTENTION FAILS CENTRALIZED
SIGNALS: RETHINKING TRANSFORMERS FOR MEDI-
CAL TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Accurate analysis of Medical time series (MedTS) data, such as Electroen-
cephalography (EEG) and Electrocardiography (ECG), plays a pivotal role in
healthcare applications, including the diagnosis of brain and heart diseases.
MedTS data typically exhibits two critical patterns: temporal dependencies
within individual channels and channel dependencies across multiple channels.
While recent advances in deep learning have leveraged Transformer-based models
to effectively capture temporal dependencies, they often struggle with modeling
channel dependencies. This limitation stems from a structural mismatch: MedTS
signals are inherently centralized, whereas the Transformer’s attention is decen-
tralized, making it less effective at capturing global synchronization and unified
waveform patterns. To address this mismatch, we propose CoTAR (Core Token
Aggregation-Redistribution), a centralized MLP-based module tailored to replace
the decentralized attention. Instead of allowing all tokens to interact directly, as in
attention, CoTAR introduces a global core token that acts as a proxy to facilitate
the inter-token interaction, thereby enforcing a centralized aggregation and redis-
tribution strategy. This design not only better aligns with the centralized nature
of MedTS signals but also reduces computational complexity from quadratic to
linear. Experiments on five benchmarks validate the superiority of our method in
both effectiveness and efficiency, achieving up to a 12.13% improvement on the
APAVA dataset, with merely 33% memory usage and 20% inference time com-
pared to the previous state-of-the-art. Code and all training scripts are available in
https://anonymous.4open.science/r/TeCh-24

1 INTRODUCTION

Medical time series (MedTS) data are temporal sequences of physiological data used to monitor a
subject’s health status (Badr et al., 2024), such as Electroencephalography (EEG) for neurological
assessment (Arif et al., 2024; Jafari et al., 2023) and Electrocardiography (ECG) for cardiac diagno-
sis (Xiao et al., 2023; Wang et al., 2023). Accurate classification of MedTS facilitates early anomaly
detection, timely diagnosis, and personalized treatment (Liu et al., 2021; Murat et al., 2020). This
requires adequate modeling for two critical patterns: temporal dependencies within individual chan-
nels and channel dependencies across multiple channels, as illustrated in Figure 1 (a). Temporal
dependencies reflect the intrinsic signal dynamics over time within each channel, such as oscillatory
rhythms and event-related potentials for EEG (Niedermeyer & da Silva, 2005b), and P&T wave
for ECG (Goldberger et al., 2000b). In contrast, channel dependencies capture the interactions and
entanglements among multiple channels, such as functional connectivity for EEG (Stam, 2005) and
the biophysical geometry of the heart for ECG (Macfarlane et al., 2005).

Previous deep-learning methods have achieved remarkable performance by focusing on modeling
temporal dependencies, using architectures such as recurrent neural networks (RNNs) (Roy et al.,
2019; Alhagry et al., 2017), convolutional neural networks (CNNs) (Wang et al., 2024a; Lawhern
et al., 2018), or CNN–attention hybrids (Miltiadous et al., 2023a). However, each of these meth-
ods has limitations: RNNs suffer from sequential bottlenecks and difficulty capturing long-term
dependencies, while CNNs are limited by local receptive fields and struggle with global temporal
context. In contrast, Transformer (Vaswani et al., 2017) employs a decentralized attention mecha-
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nism, where each token can directly interact with all other tokens, which enables global receptive
fields, allowing it to capture long-range and complex temporal dependencies effectively. This makes
Transformer-based models deliver state-of-the-art MedTS classification performance (Wang et al.,
2024b; Mobin et al., 2025). Despite their success in modeling temporal dependencies, Transformers
face fundamental challenges when applied to modeling channel dependencies in MedTS. As illus-
trated in Figure 1 (b), MedTS signals typically originate from a centralized biological source.
For example, EEG rhythms emerge from thalamo–cortical circuits synchronizing cortical neurons
into coherent scalp oscillations (Schaul, 1998; Scherg et al., 2019a), and ECG waveforms arise when
impulses from the sinoatrial node propagate uniformly across the heart’s conduction network (Ri-
eta & Alcaraz, 1999a; AlGhatrif & Lindsay, 2012b). In contrast, Transformer’s attention operates
as a decentralized graph (Figure 1 (c)): every token attends equally to every other token (Vaswani
et al., 2017). This uniform treatment of inter-channel interactions overlooks the inherent central
coordination present in MedTS data. As a result, the attention mechanism tends to dilute the prin-
cipal, centrally driven patterns—such as the cardiac pacemaker rhythms—and thus fails to capture
the global synchronization and unified waveform features that are essential for accurate modeling of
channel dependencies in MedTS.

Figure 1: (a): Illustration of Temporal dependencies within each channel, and channel dependencies
across channels. (b): Interaction between channels in EEG/ECG signals is centrally controlled by
the brain/heart. (c): Attention module is a decentralized structure, where each token attends to all
other tokens equally. (d): The proposed Core Token Aggregation-Redistribution (CoTAR) module
operates in a centralized manner, with a core token as a proxy.

To address this mismatch between the centralized nature of MedTS and the decentralized structure
of attention, we ask: can we maintain the benefits of attention (flexible, dynamic cross-channel inter-
action) while renovating it to reflect the centralized organization of MedTS? Inspired by star-shaped
architectures in distributed systems—where a central server mediates all communication for im-
proved efficiency and robustness (Roberts & Wessler, 1970; Guo et al., 2019)—we propose CoTAR
(Core Token Aggregation-Redistribution): a lightweight, MLP-based module that seamlessly re-
places the conventional attention. Instead of pairwise token interactions, CoTAR introduces a global
core token that first aggregates information from all tokens and then redistributes it into each token,
enabling centralized and flexible communication (Figure 1 (d)). This architecture not only better
mirrors the central coordination inherent in signals like EEG and ECG, but also reduces the com-
putational complexity of token interaction from quadratic to linear. This shift enables significant
gains in scalability and efficiency, particularly for long or high-dimensional sequences common in
medical applications (Arif et al., 2024; Jafari et al., 2023).

With CoTAR, we propose TeCh, a unified CoTAR-based framework that adaptively captures
Temporal dependencies, Channel dependencies, or both, by tuning the tokenization strategy (Tem-
poral, Channel, or Dual). Such flexibility is particularly desirable in real-world medical time series,
where not all datasets simultaneously exhibit strong temporal and inter-channel patterns.

We conduct extensive experiments across five MedTS datasets, including three EEG datasets and
two ECG datasets. Results show that Tech not only achieves the best performance across all datasets
but also introduces significantly lower resource consumption, highlighting its superior effectiveness,
efficiency, and potential for broader real-world applications.
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2 RELATED WORK

Medical Time Series. Medical time series (MedTS) are time series data collected from the human
body, used for disease diagnosis (Liu et al., 2021; Xiao et al., 2023), health monitoring (Badr et al.,
2024), and brain-computer interfaces (BCIs) (Musk et al., 2019; Altaheri et al., 2023). MedTS in-
clude EEG (Tang et al., 2021), ECG (Xiao et al., 2023), EMG (Xiong et al., 2021), and EOG (Jiao
et al., 2020), each offering crucial information for medical applications. For example, EEG and
ECG data are critical in assessing brain and heart health (Tang et al., 2021; Xiao et al., 2023). Such
MedTS are characterized by temporal dependencies within each channel and channel dependencies
between channels. Temporal dependencies include oscillatory rhythms and event-related potentials
for EEG (Niedermeyer & da Silva, 2005b), P wave and T wave for ECG (Goldberger et al., 2000b).
While the channel dependencies consist of functional connectivity for EEG (Stam, 2005), biophysi-
cal geometry of the heart for ECG (Macfarlane et al., 2005). Accurate modeling of these two patterns
presents unique challenges. Recently, deep learning methods have significantly advanced the field
of MedTS classification by providing precise temporal dependencies modeling using RNNs (Roy
et al., 2019; Alhagry et al., 2017), CNNs (Lawhern et al., 2016), and Transformer (Wang et al.,
2024b; Mobin et al., 2025), but the channel dependencies remain underexplored (Li et al., 2024; Fan
et al., 2025; Kim et al., 2025).

Transformers for Time Series. Transformer-based models have been extensively adopted for time
series analysis, with growing attention to both temporal and channel dependencies. For example, In-
former (Zhou et al., 2021) proposes the Temporal embedding that aggregates values across channels
as a token to model temporal dependencies. Autoformer (Wu et al., 2021) utilizes seasonal and trend
decomposition to capture disentangled temporal information. PatchTST (Nie et al., 2023) splits the
series from one channel into multiple patches, which improves the extraction of long-term temporal
variations. iTransformer (Liu et al., 2024) embeds the whole series of a channel into the Variate em-
bedding, which maintains its complete context, thereby enhancing channel dependencies modeling.
Finally, Leddam (Yu et al., 2024) introduces a dual attention module to capture both temporal and
channel dependencies.

Though the effective extraction of temporal dependencies has been addressed in MedTS using Tem-
poral embedding and Transformer (Wang et al., 2024b; Mobin et al., 2025), the mismatch between
the current decentralized attention structure and the centrally organized MedTS fails the Trans-
former in channel dependencies modeling. To address this, we propose a centralized MLP-based
Core Token Aggregation-Redistribution (CoTAR) module, which delivers higher channel depen-
dencies modeling ability while introducing only Linear complexity. By replacing attention using
CoTAR, we propose a framework that can adaptively model Temporal dependencies or Channel
dependencies or both (denoted as TeCh) by tuning the tokenization strategy (Temporal, Channel, or
Dual), whose effectiveness and efficiency are validated on five benchmarks.

3 PRELIMINARIES

Subject-Independent Setting. Medical time series (MedTS) data exhibit a hierarchical struc-
ture—spanning subjects (individuals), sessions (recordings per visit), trials (repeated measure-
ments), and samples (short segments used for diagnosis model training) (Wang et al., 2024a). In
clinical diagnosis tasks, the goal is to predict disease status at the subject level using tools such as
deep models trained on MedTS samples. To ensure clinically meaningful evaluations, we adopt the
‘Subject-Independent’ protocol (Wang et al., 2024c;b), which splits the dataset by subjects. Each
subject—and all associated samples—appears exclusively in either the training, validation, or test
set. This setting better reflects real-world deployment, where models must generalize to unseen
patients, therefore providing a practical comparison.

Problem Formulation. Consider an input MedTS sample X ∈ RT×C , where T denotes the number
of timestamps and C represents the number of channels. Our objective is to learn a function that can
predict the corresponding label Ŷ ∈ RK . Here, K denotes the number of classes, such as various
disease types or different stages of one disease.
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4 METHOD

4.1 ATTENTION vs CORE TOKEN AGGREGATION-REDISTRIBUTION

Figure 2: Illustration of attention and Core Token Aggregation-Redistribution (CoTAR). Attention
is organized in a decentralized way where each token directly interacts with all tokens, introducing a
Quadratic complexity. CoTAR first aggregates a core token and then redistributes it across channels
to facilitate centralized channel interaction, bringing only Linear complexity.

The standard Attention. Transformer has demonstrated strong performance in many domains due
to its ability to capture complex inter-token relationships, benefiting from the attention mechanism.
Formally, for an input embedding O ∈ RS×D (where S is the number of tokens and D the embed-
ding dimension), as in Figure 2 (a), attention operates via:

Q = OWQ + bq, K = OWK + bk, V = OWV + bv,

A =Softmax(
QKT

√
D

)V, Q,K, V,A ∈ RS×D. (1)

As mentioned before, such a decentralized structure does not fit the centrally controlled MedTS
data. Besides, its quadratic complexity stemmed from the matrix multiplications between Query
and Key, making it inefficient for long and high-dimensional MedTS (Albuquerque et al., 2019).

Core Token Aggregation-Redistribution (CoTAR).. To better match the MedTS and break the
scalability bottleneck of attention, we borrow insight from the star-shaped centralized system in
software engineering. Traditional peer-to-peer structure lets the clients communicate directly with
each other, which is time- and resource-consuming. So a more reliable and efficient way is to set a
server to aggregate and exchange the information between clients (Roberts & Wessler, 1970; Guo
et al., 2019). Motivated by this, we propose the Core Token Aggregation-Redistribution (CoTAR),
a plug-in module that can seamlessly replace attention, as shown in Figure 2 (b). CoTAR first
projects the token of each channel, aggregates global context across channels into a core vector, and
redistributes it back to every token. Given input O ∈ RS×D, where S denotes the number of tokens
and D the hidden dimension, CoTAR performs aggregation and redistribution as follows:

Õ = GELU(OW1 + b1)W2 + b2, W1 ∈ RD×D, b1 ∈ RD, W2 ∈ RD×Dc , b2 ∈ RDc ,

Ow = Softmax(Õ, dim = 0), Õ ∈ RS×Dc , Ow ∈ RS×Dc ,

C̃o = Sum(Õ ⊙Ow, dim = 0), C̃o ∈ RDc ,

Co = Repeat(C̃o, time = S, dim = 0), Co ∈ RS×Dc ,

OCo = Concat([O,Co], dim = 1), OCo ∈ RS×(D+Dc),

A = GELU(OCoW3 + b3)W4 + b4, W3 ∈ R(D+Dc)×D, W4 ∈ RD×D, b3, b4 ∈ RD. (2)
Dc is the dimension of core token, C̃o is the obtained core token by aggregating information across
all channels, and A ∈ RS×D is the final output. CoTAR employs a centralized structure that first
gets the global core token by aggregating information from all channels. Then the core token is
redistributed into each token. This realizes an indirect interaction between channels using the core
token as a proxy (like the brain/heart in EEG/ECG). And since each token only needs to interact with
a single core token, it only brings Linear complexity. Thus, CoTAR delivers higher effectiveness
with lower resource consumption.
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Figure 3: Overview of TeCh. MedTS signals X ∈ RT×C are embedded into Temporal embedding
and Channel embedding. Then, each embedding is processed using Transformer encoders, with
attention replaced by CoTAR. The final output representation from each branch is averaged across
channels and added, then projected to the final predicted logits Ŷ ∈ RK .

4.2 OVERVIEW OF TECH

The proposed Tech framework is illustrated in Figure 3. The raw MedTS is embedded into Temporal
and Channel embedding, each is processed using a set of Transformer Encoders (M for Temporal
and N for Channel, M and N are tunable to match with data, and the Temporal or Channel branch
will be removed if M = 0 or N = 0); the learned representations are average across channels, fused
and projected to the final output Ŷ ∈ RK .

Adaptive Dual Tokenization. Existing methods mainly rely on Temporal embedding that treats
single or multiple timestamps across channels as a token, favoring temporal dependencies modeling
while hindering channel dependencies extraction (Liu et al., 2024; Yu et al., 2024). So we take a
balanced adaptive consideration of both patterns by using Adaptive Dual Tokenization.

Specifically, we form a temporal token by aggregating one or multiple timestamps across channels:

Ei,: =vec(X(i−1)L:iL,:)Wt + bt +W tpos
i,: ,

i = 1, . . . , P, P = ⌈T/L⌉ ,
Wt ∈ RLC×D, bt ∈ RD, W tpos ∈ RP×D. (3)

where vec : Rm×n → Rmn flattens a 2D tensor into a 1D tensor, L is a predefined hyperparameter
that decides the granularity, W tpos is the classical position embedding (Vaswani et al., 2017). This
will result in Temporal embedding E ∈ RP×D. Then, following iTransformer (Liu et al., 2024),
we form a channel token by aggregating the whole series across all timestamps of a channel:

Hj,: = X⊤
:,jWc + bc +W cpos

j,: , j = 1, . . . , C,

Wc ∈ RT×D, bc ∈ RD, W cpos ∈ RC×D. (4)

This will result in Channel embedding H ∈ RC×D. By embedding the whole series of each channel
as a token, the unique semantic information of each individual channel is well-retained. Such a
channel-centric token is proven to be effective in modeling multivariate correlations (Qiu et al.,
2024; Wang et al., 2024d; Han et al., 2024).

In the real world, not all signals simultaneously exhibit strong temporal and inter-channel patterns.
Thereby, our Adaptive Dual Tokenization strategy can better match with them by tuning M and N .

Classification Paradigm. After Adaptive Dual Tokenization, the Temporal embedding E and Chan-
nel embedding H are processed using M and N standard Transformer Encoders with attention re-
placed by CoTAR, respectively. Then the learned Temporal representation Ote ∈ RP×D from the
Temporal embedding is averaged across channels into Õte ∈ RD. Similarly, the learned Channel
representation Och ∈ RC×D from the Channel embedding is averaged into Õch ∈ RD. Notably,
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if we set M = 0 or N = 0, this will remove the Temporal or Channel branch, and Õte = 0 or
Õch = 0. The final predicted logits are obtained via:

Ŷ = (Õte + Õch)Wy + by, Wy ∈ RD×K , by ∈ RK . (5)

With the Adaptive Dual Tokenization strategy, our Tech can adaptively model temporal dependen-
cies or channel dependencies or both, and CoTAR allows for more effective and efficient token
correlation extraction. These innovations make Tech a powerful, stable, and scalable framework for
MedTS classification.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

We compare our Tech with 10 Transformer-based baselines across five MedTS datasets, including
3 EEG datasets, 2 ECG datasets. Our method is evaluated under the Subject-Independent setting,
where training, validation, and test sets are split based on subjects. Additionally, we also conduct
extensive experiments on two human activity recognition (HAR) datasets to test the generalizability.

Table 1: The information of utilized datasets, including the number of subjects, samples, classes,
sample channels, and timestamps (TS).

Dataset #-Subject #-Sample #-Class #-Channel #-TS

ADFTD 88 69,752 3 19 256
APAVA 23 5,967 2 16 256
TDBrain 72 6,240 2 33 256
PTB 198 64,356 2 15 250
PTB-XL 17,596 191,400 5 12 250
FLAPP 8 13123 10 6 100
UCI-HAR 30 10,299 6 9 128

Datasets. (1) APAVA (Escudero et al., 2006) is an EEG dataset where each sample is assigned a
binary label indicating whether the subject has Alzheimer’s disease. (2) TDBrain (van Dijk et al.,
2022) is an EEG dataset with a binary label assigned to each sample, indicating whether the sub-
ject has Parkinson’s disease. (3) ADFTD (Miltiadous et al., 2023b;a) is an EEG dataset with a
three-class label for each sample, categorizing the subject as Healthy, having Frontotemporal De-
mentia, or Alzheimer’s disease. (4) PTB (PhysioBank, 2000) is an ECG dataset where each sample
is labeled with a binary indicator of Myocardial Infarction. (5) PTB-XL (Wagner et al., 2020) is
an ECG dataset with a five-class label for each sample, representing various heart conditions. (6)
FLAAP (Kumar & Suresh, 2022) is a smartphone-based HAR dataset that records accelerometer
and gyroscope data for activity pattern recognition. (7) UCI-HAR (Anguita et al., 2013) com-
prises accelerometer and gyroscope data collected via waist-mounted smartphones, widely used
for evaluating HAR models. Table 1 provides critical information, such as subjects, channels, and
timestamps. The data preprocessing and dataset split follow Medformer (Wang et al., 2024b).

Baselines. We compare with 10 cutting-edge time series Transformer-based methods: Auto-
former (Wu et al., 2021), FEDformer (Zhou et al., 2022), Informer (Zhou et al., 2021), iTrans-
former (Liu et al., 2024), MTST (Zhang et al., 2024), Nonformer (Liu et al., 2022), PatchTST (Nie
et al., 2023), Reformer (Kitaev et al., 2019), vanilla Transformer (Vaswani et al., 2017), and Med-
former (Wang et al., 2024b) (state-of-the-art Transformer-based MedTS classification model).

Implementation. We employ six evaluation metrics: accuracy, precision (macro-averaged), re-
call (macro-averaged), F1 score (macro-averaged), AUROC (macro-averaged), and AUPRC (macro-
averaged). The training process is conducted with five random seeds (42-46) to compute the mean
and standard deviation. All experiments are run on an NVIDIA RTX 4090 GPU. The results of all
baselines on the five MedTS datasets are directly taken from Medformer (Wang et al., 2024b). And
the results on the two HAR datasets are reproduced using the official code from Medformer (Wang
et al., 2024b). We save the model with the best F1 score on the validation set.
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Table 2: Results on five MedTS datasets. The training, validation, and test sets are distributed
based on subject IDs. The best is Bolded and second is Underlined.

Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC Avg

ADFTD
(3-Classes)

Autoformer 45.25±1.48 43.67±1.94 42.96±2.03 42.59±1.85 61.02±1.82 43.10±2.30 46.60±1.87
FEDformer 46.30±0.59 46.05±0.76 44.22±1.38 43.91±1.37 62.62±1.75 46.11±1.44 48.70±1.04
Informer 48.45±1.96 46.54±1.68 46.06±1.84 45.74±1.38 65.87±1.27 47.60±1.30 50.21±1.41
iTransformer 52.60±1.59 46.79±1.27 47.28±1.29 46.79±1.13 67.26±1.16 49.53±1.21 51.38±1.27
MTST 45.60±2.03 44.70±1.33 45.05±1.30 44.31±1.74 62.50±0.81 45.16±0.85 47.39±1.19
Nonformer 49.95±1.05 47.71±0.97 47.46±1.50 46.96±1.35 66.23±1.37 47.33±1.78 50.61±1.17
PatchTST 44.37±0.95 42.40±1.13 42.06±1.48 41.97±1.37 60.08±1.50 42.49±1.79 45.73±1.37
Reformer 50.78±1.17 49.64±1.49 49.89±1.67 47.94±0.69 69.17±1.58 51.73±1.94 51.69±1.59
Transformer 50.47±2.14 49.13±1.83 48.01±1.53 48.09±1.59 67.93±1.59 48.93±2.02 50.26±1.62
Medformer 53.27±1.54 51.02±1.57 50.71±1.55 50.65±1.51 70.93±1.19 51.21±1.32 51.80±1.39
TeCh 54.54±0.70 53.02±0.87 49.25±1.01 48.84±1.72 68.67±1.05 50.62±1.26 50.82±1.10

APAVA
(2-Classes)

Autoformer 68.64±1.82 68.48±2.10 68.77±2.27 68.06±1.94 75.94±3.61 74.38±4.05 70.72±2.63
FEDformer 74.94±2.15 74.59±1.50 73.56±3.55 73.51±3.39 83.72±1.97 82.94±2.37 77.21±2.49
Informer 73.11±4.40 75.17±6.06 69.17±4.56 69.47±5.06 70.46±4.91 70.75±5.27 71.02±4.71
iTransformer 74.55±1.66 74.77±2.10 71.76±1.72 72.30±1.79 85.59±1.55 84.39±1.57 76.40±1.73
MTST 71.14±1.59 79.30±0.97 65.27±2.28 64.01±3.16 68.87±2.34 71.06±1.60 69.10±2.07
Nonformer 71.89±3.81 71.80±4.58 69.44±3.56 69.74±3.84 70.55±2.96 70.78±4.08 70.03±3.80
PatchTST 67.03±1.65 78.76±1.28 59.91±2.02 55.97±3.10 65.65±0.28 67.99±0.76 65.22±1.68
Reformer 78.70±2.00 82.50±3.95 75.00±1.61 75.93±1.82 73.94±1.40 76.04±1.14 77.52±2.32
Transformer 76.30±4.72 77.64±5.95 73.09±5.01 73.75±5.38 72.50±6.60 73.23±7.60 74.42±5.04
Medformer 78.74±0.64 81.11±0.84 75.40±0.66 76.31±0.71 83.20±0.91 83.66±0.92 79.06±0.78
TeCh 86.86±1.09 86.85±1.29 86.10±1.00 86.30±1.06 94.02±0.52 93.79±0.56 88.65±1.10

TDBrain
(2-Classes)

Autoformer 87.33±3.79 88.06±3.56 87.33±3.79 87.26±3.84 93.81±2.26 93.32±2.42 89.02±3.28
FEDformer 78.13±1.98 78.52±1.91 78.13±1.98 78.04±2.01 86.56±1.86 86.48±1.99 80.81±1.79
Informer 89.02±2.50 89.43±2.14 89.02±2.50 88.98±2.54 96.64±0.68 96.75±0.63 91.81±1.67
iTransformer 74.67±1.06 74.71±1.06 74.67±1.06 74.65±1.06 83.37±1.14 83.73±1.27 77.14±1.12
MTST 76.96±3.76 77.24±3.59 76.96±3.76 76.88±3.83 85.27±4.46 82.81±5.64 79.85±3.95
Nonformer 87.88±2.48 88.86±1.84 87.88±2.48 87.78±2.56 97.05±0.68 96.99±0.68 91.74±1.62
PatchTST 79.25±3.79 79.60±4.09 79.25±3.79 79.20±3.77 87.95±4.96 86.36±6.67 81.60±4.01
Reformer 87.92±2.01 88.64±1.40 87.92±2.01 87.85±2.08 96.30±0.54 96.40±0.45 90.02±1.58
Transformer 87.17±1.67 87.99±1.68 87.17±1.67 87.10±1.68 96.28±0.92 96.34±0.81 89.68±1.40
Medformer 89.62±0.81 89.68±0.78 89.62±0.81 89.62±0.81 96.41±0.35 96.51±0.33 90.81±0.60
TeCh 93.21±0.61 93.39±0.58 93.21±0.61 93.20±0.61 98.68±0.19 98.72±0.17 95.07±0.29

PTB
(2-Classes)

Autoformer 73.35±2.10 72.11±2.89 63.24±3.17 63.69±3.84 78.54±3.48 74.25±3.53 69.03±3.33
FEDformer 76.05±2.54 77.58±3.61 66.10±3.55 67.14±4.37 85.93±4.31 82.59±5.42 76.40±3.30
Informer 78.69±1.68 82.87±1.02 69.19±2.90 70.84±3.47 92.09±0.53 90.02±0.60 80.45±1.87
iTransformer 83.89±0.71 88.25±1.18 76.39±1.01 79.06±1.06 91.18±1.16 90.93±0.98 84.63±1.02
MTST 76.59±1.90 79.88±1.90 66.31±2.95 67.38±3.71 86.86±2.75 83.75±2.84 76.13±2.17
Nonformer 78.66±0.49 82.77±0.86 69.12±0.87 70.90±1.00 89.37±2.51 86.67±2.38 79.75±1.25
PatchTST 74.74±1.62 76.94±1.51 63.89±2.71 64.36±3.38 88.79±0.91 83.39±0.96 75.02±1.68
Reformer 77.96±2.13 81.72±1.61 68.20±3.35 69.65±3.88 91.13±0.74 88.42±1.30 79.18±2.17
Transformer 77.37±1.02 81.84±0.66 67.14±1.80 68.47±2.19 90.08±1.76 87.22±1.68 78.52±1.35
Medformer 83.50±2.01 85.19±0.94 77.11±3.39 79.18±3.31 92.81±1.48 90.32±1.54 84.02±1.94
TeCh 85.96±2.52 89.92±0.74 79.43±4.13 81.97±4.07 94.57±0.70 94.36±0.66 89.94±2.37

PTB-XL
(5-Classes)

Autoformer 61.68±2.72 51.60±1.64 49.10±1.52 48.85±2.27 82.04±1.44 51.93±1.71 57.53±1.88
FEDformer 57.20±9.47 52.38±6.09 49.04±7.26 47.89±8.44 82.13±4.17 52.31±7.03 56.83±7.08
Informer 71.43±0.32 62.64±0.60 59.12±0.47 60.44±0.43 88.65±0.09 64.76±0.17 67.84±0.35
iTransformer 69.28±0.22 59.59±0.45 54.62±0.18 56.20±0.19 86.71±0.10 60.27±0.21 64.44±0.23
MTST 72.14±0.27 63.84±0.72 60.01±0.81 61.43±0.38 88.97±0.33 65.83±0.51 68.70±0.50
Nonformer 70.56±0.55 61.57±0.66 57.75±0.72 59.10±0.66 88.32±0.36 63.40±0.79 66.78±0.62
PatchTST 73.23±0.25 65.70±0.64 60.82±0.76 62.61±0.34 89.74±0.19 67.32±0.22 69.90±0.40
Reformer 71.72±0.43 63.12±1.02 59.20±0.75 60.69±0.18 88.80±0.24 64.72±0.47 68.04±0.52
Transformer 70.59±0.44 61.57±0.65 57.62±0.35 59.05±0.25 88.21±0.16 63.36±0.29 66.73±0.36
Medformer 72.87±0.23 64.14±0.42 60.60±0.46 62.02±0.37 89.66±0.13 66.39±0.22 69.28±0.30
TeCh 73.53±0.07 65.92±0.52 60.61±0.59 62.44±0.27 90.03±0.12 67.19±0.25 69.95±0.30

5.2 MAIN RESULT

Table 2 presents the results under the Subject-Independent setup. Our Tech consistently outperforms
Medformer (the previous state-of-the-art) across all six metrics on four datasets, achieving up to
12.13% improvement in the average of all metrics on the APAVA dataset. Even in the challenging
case of ADFTD, Tech remains comparable to Medformer (Avg: 51.80 vs. 50.82). Aggregated
across all six metrics on these five MedTS datasets, Tech achieves an overall 4.59% performance
gain over Medformer, which is remarkable. In Table 3, Tech substantially outperforms Medformer
across all metrics on both datasets, with an average improvement of 4.23%. Since HAR tasks
involve multi-sensor channels and fine-grained activity classes, these consistent and significant gains
indicate that Tech generalizes better to noisy, high-variation, multi-channel time series inputs. In
terms of robustness, Tech also outperforms Medformer, as reflected in the lower average std across
all datasets (0.86 vs. 0.96, a 10.42% reduction). These results demonstrate that Tech is both more
effective and more robust than Medformer.
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Table 3: Results of two HAR datasets. To evaluate the performance of our method on general time
series, we test it on two human activity recognition (HAR) datasets: FLAAP and UCI-HAR, which
exhibit potential channel correlations inherently. The best is Bolded and second is Underlined.

Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC Avg

FLAAP
(10-Classes)

Autoformer 38.93±1.01 38.22±1.31 37.40±1.17 33.51±1.14 74.12±0.35 35.77±0.91 42.99±0.98
FEDformer 59.51±9.03 59.84±8.10 58.57±8.97 57.73±9.99 89.75±5.37 60.88±9.63 64.38±8.52
Informer 72.87±0.89 73.20±0.97 72.76±0.92 72.59±0.96 95.91±0.24 77.57±1.21 77.48±0.86
iTransformer 75.15±0.48 75.09±0.53 75.14±0.47 74.91±0.51 96.64±0.14 80.81±0.60 79.62±0.46
MTST 70.57±0.54 71.09±0.73 70.97±0.73 70.61±0.57 94.56±0.18 73.28±0.99 75.18±0.62
Nonformer 74.85±1.76 75.19±1.37 74.51±1.85 74.39±1.80 96.43±0.27 79.29±1.90 79.11±1.49
PatchTST 56.34±0.31 56.36±0.63 55.29±0.32 55.58±0.45 89.24±0.11 58.92±0.36 61.95±0.36
Reformer 71.13±1.64 71.20±1.81 70.57±1.66 70.54±1.79 95.16±0.42 73.80±2.09 75.40±1.57
Transformer 76.36±1.21 76.53±1.25 76.23±0.98 76.05±1.16 96.65±0.11 80.70±0.63 80.42±0.89
Medformer 76.44±0.64 76.61±1.13 76.63±1.36 76.25±0.65 95.44±0.26 81.12±1.60 80.41±0.94
TeCh 80.60±0.30 80.29±0.24 80.36±0.32 80.23±0.24 97.67±0.10 86.18±0.31 84.22±0.25

UCI-HAR
(6-Classes)

Autoformer 41.86±2.46 49.62±11.48 44.30±2.55 32.69±2.60 83.72±2.53 58.56±4.67 51.79±4.38
FEDformer 76.89±9.59 75.66±9.46 77.56±9.79 75.03±9.77 95.16±4.66 83.28±8.14 80.37±8.89
Informer 88.33±1.26 88.28±1.20 88.47±1.20 88.20±1.29 98.36±0.14 94.20±0.33 89.81±0.77
iTransformer 92.41±0.63 92.24±0.63 92.33±0.67 92.39±0.64 99.07±0.07 96.01±0.39 93.74±0.47
MTST 90.99±0.84 90.96±0.79 90.92±0.85 90.83±0.88 98.21±0.11 96.14±0.59 93.17±0.51
Nonformer 91.04±0.58 90.98±0.60 91.14±0.56 91.01±0.60 99.02±0.09 96.07±0.37 93.37±0.47
PatchTST 87.67±0.39 88.37±0.43 87.97±0.37 88.02±0.38 98.50±0.09 93.86±0.40 90.56±0.34
Reformer 88.70±1.14 88.82±1.03 88.82±1.13 88.59±1.19 98.68±0.26 94.60±1.07 91.53±0.80
Transformer 89.36±1.74 89.33±1.70 89.49±1.69 89.33±1.75 98.87±0.23 95.58±0.68 91.83±1.13
Medformer 89.62±0.81 89.70±0.18 89.80±0.14 89.62±0.81 98.11±0.06 94.80±0.72 91.61±0.45
TeCh 94.15±0.96 94.27±0.96 94.30±0.97 94.26±0.98 99.32±0.05 96.74±0.18 95.02±0.35

5.3 ABLATION STUDY

Model Efficiency Analysis. Since CoTAR introduces only Linear complexity compared to the
Quadratic complexity of attention, our Tech achieves higher performance with significantly lower
resource consumption, as in Figure 4 (a). Compared to Medformer, Tech delivers 8% better accuracy
while using just 33% of the memory usage and 20% of the inference time.

Figure 4: (a): Efficiency and Effectiveness analysis of TeCh and other baselines on APAVA dataset
with batch size B = 128. ‘#’ stands for ‘former’ to save space. (b): Robustness of attention
and CoTAR to noise when using Channel or Temporal embedding. We consistently increase the
intensity β (the standard deviation) of Gaussian random noise from 0.0 to 20.0 on the last channel
of the PTB dataset. F1-Score is used to quantify the change.

Robustness Analysis. To test the robustness of attention and CoTAR, we introduce noise progres-
sively during training by adding perturbations to the last channel of the PTB dataset. This formulated
as X̂:,C = X:,C + β · noise, where X:,C , X̂:,C ∈ R1×T is the last channel, noise ∈ R1×T is Gaus-
sian noise with mean 0 and standard deviation 1, β ∈ R1 controls the noise intensity. Then, the
processed sample X̂:,C is embedded into Channel embedding (Liu et al., 2024) or Temporal embed-
ding (Wang et al., 2024b). Figure 4 (b) reveals that attention is highly sensitive to noise. This is
because attention is a decentralized structure, which means each channel can be directly influenced
by the corrupted, noisy channel. In contrast, our CoTAR employed a centralized strategy, which pre-
vents the noisy channel from directly interfering with others, therefore enhancing the robustness to
noise. Meanwhile, compared to Temporal embedding, which is a more common practice in previous
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Table 4: Ablation result of the proposed Dual Tokenization strategy. We include a general Human
Activity dataset, UCI-HAR, to test its generalizability. (i) w/o: No tokenization is performed and
directly uses the raw series as input-without representation learning, a single linear projection as
classifier. (ii) Temporal: Only Temporal embedding is used. (iii) Channel: Only Channel embedding
is used. (iv) Dual: Both Temporal and Channel embedding are used. The best is Bolded

ADFTD APAVA TDBrain PTB UCI-HAR
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

w/o 33.79±0.64 32.67±0.53 50.68±0.86 50.13±0.88 53.79±1.21 53.77±1.20 72.62±1.30 64.84±2.05 54.22±0.47 51.72±0.47
Temporal 53.78±0.72 49.10±1.60 55.93±5.06 53.71±5.56 93.21±0.61 93.20±0.61 74.74±0.55 62.90±1.15 91.56±0.63 91.52±0.62
Channel 47.06±1.35 32.92±0.90 75.68±1.80 73.54±2.49 67.58±1.04 67.54±1.06 85.96±2.52 81.97±4.07 92.98±0.44 93.00±0.48

Both 54.54±0.70 48.84±1.72 86.86±1.09 86.30±1.06 89.79±0.96 89.77±0.97 84.15±2.06 79.11±3.43 94.15±0.96 94.26±0.98

Table 5: Ablation result of the proposed ‘Core Token Aggregate-Redistribut’ (CoTAR) module. (i)
w/o: No Token interaction is performed, which means directly removing the CoTAR module. (ii)
Attention: Replacing CoTAR with the Attention module. (iii) CoTAR: baseline with the CoTAR
module. The best is Bolded.

ADFTD APAVA TDBrain PTB UCI-HAR
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

w/o 53.32±0.67 47.26±0.53 83.31±0.95 81.99±1.18 92.69±0.75 92.67±0.76 85.28±2.32 80.82±3.69 92.40±0.19 92.55±0.21
Attention 52.77±1.00 48.65±1.22 83.42±1.60 82.09±0.28 90.40±2.18 90.35±2.23 85.74±1.45 81.93±2.22 93.13±0.59 93.21±0.60
CoTAR 54.54±0.70 48.84±1.72 86.86±1.09 86.30±1.06 93.21±0.61 93.20±0.61 85.96±2.52 81.97±4.07 94.15±0.96 94.26±0.98

work (Mobin et al., 2025; Wang et al., 2024b), Channel embedding delivers higher robustness and
classification performance. This aligns with general time series analysis, where Channel embedding
is more suitable for modeling channel dependencies, as it can better preserve the unique context of
each channel, even when noise is entangled (Liu et al., 2024; Wang et al., 2024d).

Ablation Study on ‘Adaptive Dual Tokenization’. The results in Table 4 demonstrate the ef-
fectiveness of the proposed Adaptive Dual Tokenization design. When skipping the representation
learning phase (the w/o setting), the performance significantly deteriorates across all datasets, high-
lighting the necessity of structured token embedding. Temporal tokenization excels on TDBrain,
while Channel tokenization excels on PTB. And combining both yields an 11% improvement of
Accuracy and a 13% improvement of F1-Score on APAVA. Moreover, Dual tokenization also excels
on the UCI-HAR dataset, a well-known benchmark for Human Activity (HAR) tasks. Since HAR
tasks involve multi-sensor channels and fine-grained activity classes, the significant gains of Dual
Tokenization indicate that by simultaneously capturing both patterns, Tech can generalize to noisy,
high-variation, multi-channel time series. These findings confirm that the Adaptive Dual Tokeniza-
tion strategy enables Tech to better align with the unique characteristics of each dataset, providing
more versatile modeling of Temporal dependencies or Channel dependencies, or both.

Ablation Study on ‘Core Token Aggregate-Redistribute’. Table 5 provides a comprehensive
ablation study validating the effectiveness of the proposed Core Token Aggregate-Redistribute (Co-
TAR) module, which yields consistent performance gains across all five datasets and both metrics.
Moreover, CoTAR also demonstrates competitive or lower standard deviations, indicating higher
robustness. These results suggest that CoTAR not only captures richer inter-token dependencies
through core-token centric redistribution but also leads to more stable and generalizable representa-
tions, thereby justifying its architectural necessity.

6 CONCLUSION

Existing Transformer models suffer from the mismatch between the centralized nature of medical
time series (MedTS) and the decentralized structure of the attention module. This work proposes the
Core Token Aggregation-Redistribution (CoTAR) module, which models inter-token relationships
in a centralized way using a core token as a proxy, to replace attention seamlessly. Beyond being
more effective in channel dependencies modeling, it also reduces complexity from quadratic to
linear. Based on CoTAR, our Tech framework can adaptively capture temporal dependencies or
channel dependencies, or both, and achieves superior performance and efficiency on three EEG
and two ECG datasets. This work demonstrates the effectiveness of introducing domain-specific
inductive biases into deep learning architectures for MedTS analysis and paves the way for more
effective and scalable solutions.
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A DATA AUGMENTATION BANKS

In the embedding stage, we apply data augmentation to the input time series. We utilize a bank
of data augmentation techniques to enhance the model’s robustness and generalization. During the
forward pass in training, each time series will pick one augmentation from available augmentation
options with equal probability. The data augmentation methods include temporal flipping, channel
shuffling, temporal masking, frequency masking, jittering, and dropout, and can be further expanded
to include more choices. We provide a detailed description of each technique below.

Temporal Flippling We reverse the MedTS data along the temporal dimension. The probability of
applying this augmentation is controlled by a parameter prob, with a default value of 0.5.

Channel Shuffling We randomly shuffle the order of MedTS channels. The probability of applying
channel shuffling is controlled by the parameter prob, also set by default to 0.5.

temporal masking We randomly mask some timestamps across all channels. The proportion of
timestamps masked is controlled by the parameter ratio, with a default value of 0.1.

Frequency Masking First introduced in (Zhang et al., 2022) for contrastive learning, this method
involves converting the MedTS data into the frequency domain, randomly masking some frequency
bands, and then converting it back. The proportion of frequency bands masked is controlled by the
parameter ratio, with a default value of 0.1.

Jittering Random noise, ranging from 0 to 1, is added to the raw data. The intensity of the noise is
adjusted by the parameter scale, which is set by default to 0.1.

Dropout Similar to the dropout layer in neural networks, this method randomly drops some values.
The proportion of values dropped is controlled by the parameter ratio, with a default setting of 0.1.

B DATA PREPROCESSING

We obtain all the well-preprocessed datasets from Medformer (Wang et al., 2024b)(https://
github.com/DL4mHealth/Medformer).

B.1 APAVA PREPROCESSING

The Alzheimer’s Patients’ Relatives Association of Valladolid (APAVA) dataset1, referenced in the
paper (Escudero et al., 2006), is a public EEG time series dataset with 2 classes and 23 subjects,
including 12 Alzheimer’s disease patients and 11 healthy control subjects. On average, each subject
has 30.0± 12.5 trials, with each trial being a 5-second time sequence consisting of 1280 timestamps
across 16 channels. Before further preprocessing, each trial is scaled using the standard scaler.
Subsequently, we segment each trial into 9 half-overlapping samples, where each sample is a 1-
second time sequence comprising 256 timestamps. This process results in 5,967 samples. Each
sample has a subject ID to indicate its originating subject. For the training, validation, and test
set splits, we employ the subject-independent setup. Samples with subject IDs {15,16,19,20} and
{1,2,17,18} are assigned to the validation and test sets, respectively. The remaining samples are
allocated to the training set.

B.2 TDBRAIN PREPROCESSING

The TDBrain dataset2, referenced in the paper (van Dijk et al., 2022), is a large permission-
accessible EEG time series dataset recording brain activities of 1274 subjects with 33 channels. Each
subject has two trials: one under eye open and one under eye closed setup. The dataset includes a
total of 60 labels, with each subject potentially having multiple labels indicating multiple diseases
simultaneously. In this paper, we utilize a subset of this dataset containing 25 subjects with Parkin-
son’s disease and 25 healthy controls, all under the eye-closed task condition. Each eye-closed trial
is segmented into non-overlapping 1-second samples with 256 timestamps, and any samples shorter

1https://osf.io/jbysn/
2https://brainclinics.com/resources/
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than 1 second are discarded. This process results in 6,240 samples. Each sample is assigned a sub-
ject ID to indicate its originating subject. For the training, validation, and test set splits, we employ
the subject-independent setup. Samples with subject IDs {18,19,20,21,46,47,48,49} are assigned to
the validation set, while samples with subject IDs {22,23,24,25,50,51,52,53} are assigned to the test
set. The remaining samples are allocated to the training set.

B.3 ADFTD PREPROCESSING

The Alzheimer’s Disease and FronTotemporal Dementia (ADFTD) dataset3, referenced in the pa-
pers (Miltiadous et al., 2023b;a), is a public EEG time series dataset with 3 classes, including 36
Alzheimer’s disease (AD) patients, 23 Frontotemporal Dementia (FTD) patients, and 29 healthy
control (HC) subjects. The dataset has 19 channels, and the raw sampling rate is 500Hz. Each
subject has a trial, with trial durations of approximately 13.5 minutes for AD subjects (min=5.1,
max=21.3), 12 minutes for FD subjects (min=7.9, max=16.9), and 13.8 minutes for HC subjects
(min=12.5, max=16.5). A bandpass filter between 0.5-45Hz is applied to each trial. We downsam-
ple each trial to 256Hz and segment them into non-overlapping 1-second samples with 256 times-
tamps, discarding any samples shorter than 1 second. This process results in 69,752 samples. For
the training, validation, and test set splits, we employ the subject-independent setup by allocating
60%, 20%, and 20% of total subjects with their corresponding samples into the training, validation,
and test sets, respectively.

B.4 PTB PREPROCESSING

The PTB dataset4, referenced in the paper (PhysioBank, 2000), is a public ECG time series recording
from 290 subjects, with 15 channels and a total of 8 labels representing 7 heart diseases and 1 health
control. The raw sampling rate is 1000Hz. For this paper, we utilize a subset of 198 subjects,
including patients with Myocardial infarction and healthy control subjects. We first downsample the
sampling frequency to 250Hz and normalize the ECG signals using standard scalers. Subsequently,
we process the data into single heartbeats through several steps. We identify the R-Peak intervals
across all channels and remove any outliers. Each heartbeat is then sampled from its R-Peak position,
and we ensure all samples have the same length by applying zero padding to shorter samples, with
the maximum duration across all channels serving as the reference. This process results in 64,356
samples. For the training, validation, and test set splits, we employ the subject-independent setup.
Specifically, we allocate 60%, 20%, and 20% of the total subjects, along with their corresponding
samples, into the training, validation, and test sets, respectively.

B.5 PTB-XL PREPROCESSING

The PTB-XL dataset5, referenced in the paper (Wagner et al., 2020), is a large public ECG time
series dataset recorded from 18,869 subjects, with 12 channels and 5 labels representing 4 heart
diseases and 1 healthy control category. Each subject may have one or more trials. To ensure consis-
tency, we discard subjects with varying diagnosis results across different trials, resulting in 17,596
subjects remaining. The raw trials consist of 10-second time intervals, with sampling frequencies
of 100Hz and 500Hz versions. For our paper, we utilize the 500Hz version, then we downsample
to 250Hz and normalize using standard scalers. Subsequently, each trial is segmented into non-
overlapping 1-second samples with 250 timestamps, discarding any samples shorter than 1 second.
This process results in 191,400 samples. For the training, validation, and test set splits, we employ
the subject-independent setup. Specifically, we allocate 60%, 20%, and 20% of the total subjects,
along with their corresponding samples, into the training, validation, and test sets, respectively.

3https://openneuro.org/datasets/ds004504/versions/1.0.6
4https://physionet.org/content/ptbdb/1.0.0/
5https://physionet.org/content/ptb-xl/1.0.3/
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C IMPLEMENTATION DETAILS

C.1 IMPLEMENTATION DETAILS OF ALL BASELINES

We implement all the baselines based on the Medformer (Wang et al., 2024b), which integrates
all methods under the same framework and training techniques to ensure a strict fair compari-
son. The compared 10 baseline time series transformer methods are Autoformer (Wu et al., 2021),
FEDformer (Zhou et al., 2022), Informer (Zhou et al., 2021), iTransformer (Liu et al., 2024),
MTST (Zhang et al., 2024), Nonformer (Liu et al., 2022), PatchTST (Nie et al., 2023), Reformer (Ki-
taev et al., 2019), Medformer (Wang et al., 2024b), and vanilla Transformer (Vaswani et al., 2017).

For Medformer, we directly reproduced its result using their official implementations. For all other
methods, we employ 6 layers for the encoder, with the self-attention dimension D set to 128 and
the hidden dimension of the feed-forward networks set to 256. The optimizer used is Adam, with a
learning rate of 1e-4. The batch size is set to {32,32,128,128,128} for the datasets APAVA, TDBrain,
ADFD, PTB, and PTB-XL, respectively. Training is conducted for 100 epochs, with early stopping
triggered after 10 epochs without improvement in the F1-Score on the validation set. We save
the model with the best F1 score on the validation set and evaluate it on the test set. We employ
six evaluation metrics: Accuracy, Precision (macro-averaged), Recall (macro-averaged), F1-Score
(macro-averaged), AUROC (macro-averaged), and AUPRC (macro-averaged). Each experiment is
run with 5 random seeds and fixed training, validation, and test sets to compute the average results
and standard deviations.

Autoformer Autoformer (Wu et al., 2021) employs an auto-correlation mechanism to replace self-
attention for time series forecasting. Additionally, they use a time series decomposition block to
separate the time series into trend-cyclical and seasonal components for improved learning. The raw
source code is available at https://github.com/thuml/Autoformer.

FEDformer FEDformer (Zhou et al., 2022) leverages frequency domain information using the
Fourier transform. They introduce frequency-enhanced blocks and frequency-enhanced attention,
which are computed in the frequency domain. A novel time series decomposition method replaces
the layer norm module in the transformer architecture to improve learning. The raw code is available
at https://github.com/MAZiqing/FEDformer.

Informer Informer (Zhou et al., 2021) is the first paper to employ a one-forward procedure instead of
an autoregressive method in time series forecasting tasks. They introduce ProbSparse self-attention
to reduce complexity and memory usage. The raw code is available at https://github.com/
zhouhaoyi/Informer2020.

iTransformer iTransformer (Liu et al., 2024) questions the conventional approach of embedding
attention tokens in time series forecasting tasks and proposes an inverted approach by embedding
the whole series of channels into a token. They also invert the dimension of other transformer
modules, such as the layer norm and feed-forward networks. The raw code is available at https:
//github.com/thuml/iTransformer.

MTST MTST (Zhang et al., 2024) uses the same token embedding method as Crossformer and
PatchTST. It highlights the importance of different patching lengths in forecasting tasks and designs
a method that can take different sizes of patch tokens as input simultaneously. The raw code is
available at https://github.com/networkslab/MTST.

Nonformer Nonformer (Liu et al., 2022) analyzes the impact of non-stationarity in time series
forecasting tasks and its significant effect on results. They design a de-stationary attention module
and incorporate normalization and denormalization steps before and after training to alleviate the
over-stationarization problem. The raw code is available at https://github.com/thuml/
Nonstationary_Transformers.

PatchTST PatchTST (Nie et al., 2023) embeds a sequence of single-channel timestamps as a patch
token to replace the attention token used in the vanilla transformer. This approach enlarges the
receptive field and enhances forecasting ability. The raw code is available at https://github.
com/yuqinie98/PatchTST.
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Reformer Reformer (Kitaev et al., 2019) replaces dot-product attention with locality-sensitive hash-
ing. They also use a reversible residual layer instead of standard residuals. The raw code is available
at https://github.com/lucidrains/reformer-pytorch.

Transformer Transformer (Vaswani et al., 2017), commonly known as the vanilla trans-
former, is introduced in the well-known paper ”Attention is All You Need.” It can also be
applied to time series by embedding each timestamp of all channels as an attention token.
The PyTorch version of the code is available at https://github.com/jadore801120/
attention-is-all-you-need-pytorch.

Medformer Medformer (Wang et al., 2024b) is a multi-granularity patching transformer specifi-
cally designed for medical time-series classification. It constructs patch tokens at multiple temporal
resolutions to capture both fine-grained local dependencies and long-range contextual patterns. This
design improves the model’s ability to handle heterogeneous temporal dynamics in physiological
signals. The raw code is available at https://github.com/DL4mHealth/Medformer.

C.2 IMPLEMENTATION DETAILS OF OUR TECH

Our Tech is trained with a unified batch size (B = 128) and dimension of core token Dc = 1
4D

across all datasets. The selection of other critical hyperparameters is listed in Table 6. We present
the pseudo-code of the proposed CoTAR module in Algorithm 1.

Table 6: Critical hyperparameters for TeCh by dataset. We listed the model dimension (D), patch
length of Temporal embedding (L), number of temporal encoders (M ), number of channel encoders
(N ), and learning rate (lr).

Dataset D L M N lr

ADFTD 128 1 6 6 3e−5
APAVA 256 1 6 6 1e−4
TDBRAIN 128 6 6 0 1e−4
PTB 256 1 0 3 1e−4
PTB-XL 128 8 5 0 1e−4
UCI-HAR 256 12 5 6 1e−4
FLAAP 512 1 6 0 1e−4

Algorithm 1 Pseudo-Code of Core Token Aggregation-Redistribution (CoTAR).

Require: Input tensor: O ∈ RS×D.
Require: Parameters: Linear mapping layers Lin1,Lin2,Lin3,Lin4, dimension of core token Dc.
Require: Definition: Lin1 : RD → RD, Lin2 : RD → RDc ,
Require: Definition: Lin3 : RD+Dc → RD, Lin4 : RD → RD.

1: Õ ← Lin2(GELU(Lin1(O))), Õ ∈ RS×Dc , ▷ First MLP to obtain core representation
2: Ow ← Softmax(Õ, dim = 0), Ow ∈ RS×Dc , ▷ Attention-like weights across channels

3: C̃o
d
=

∑S
i=1 Õ

i,d ⊙Oi,d
w , C̃o ∈ RDc , ▷ Weighted sum across channels to get core token

4: Co ← Repeat(C̃o, N times), Co ∈ RS×Dc , ▷ Repeat to align the channel dimension of input
5: OCo ← [O;Co], OCo ∈ RS×(D+Dc), ▷ Concatenate along last dimension
6: A← Lin4(GELU(Lin3(OCo))), A ∈ RS×D. ▷ Fuse information through second MLP
7: Return A ∈ RS×D

C.3 FULL ABLATION RESULTS

To save space in the main text, we only present the ablation result of five representative datasets. We
provide the full results on all datasets in Table 7 and Table 8.
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Table 7: Full ablation result of the proposed Dual Tokenization strategy. (i) w/o: No tokenization is
performed and directly uses the raw series as input-without representation learning, a single linear
projection as classifier. (ii) Temporal: Only Temporal embedding. (iii) Channel: Only Channel
embedding. (iv) Dual: Both Temporal and Channel. The best is Bolded

ADFTD APAVA TDBrain PTB PTB-XL FLAAP UCI-HAR
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

w/o 33.79±0.64 32.67±0.53 50.68±0.86 50.13±0.88 53.79±1.21 53.77±1.20 72.62±1.30 64.84±2.05 30.95±0.13 20.61±0.51 28.54±2.34 25.08±1.33 54.22±0.47 51.72±0.47
Temporal 53.78±0.72 49.10±1.60 55.93±5.06 53.71±5.56 93.21±0.61 93.20±0.61 74.74±0.55 62.90±1.15 73.53±0.07 62.44±0.27 80.60±0.30 80.23±0.24 91.56±0.63 91.52±0.62
Channel 47.06±1.35 32.92±0.90 75.68±1.80 73.54±2.49 67.58±1.04 67.54±1.06 85.96±2.52 81.97±4.07 69.18±0.21 54.76±0.47 77.48±0.13 77.06±0.17 92.98±0.44 93.00±0.48

Both 54.54±0.70 48.84±1.72 86.86±1.09 86.30±1.06 89.79±0.96 89.77±0.97 84.15±2.06 79.11±3.43 73.15±0.09 62.13±0.16 78.03±0.31 77.86±0.30 94.15±0.96 94.26±0.98

Table 8: Full ablation result of the proposed ‘Core Token Aggregate-Redistribut’ (CoTAR) module.
(i) w/o: No Token interaction is performed, which means directly removing the CoTAR module. (ii)
Attention: Replacing CoTAR with the Attention module. (iii) CoTAR: baseline with the CoTAR
module. The best is Bolded.

ADFTD APAVA TDBrain PTB PTB-XL FLAAP UCI-HAR
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

w/o 53.32±0.67 47.26±0.53 83.31±0.95 81.99±1.18 92.69±0.75 92.67±0.76 85.28±2.32 80.82±3.69 72.25±0.38 59.48±0.59 74.48±0.46 74.00±0.53 92.40±0.19 92.55±0.21
Attention 52.77±1.00 48.65±1.22 83.42±1.60 82.09±0.28 90.40±2.18 90.35±2.23 85.74±1.45 81.93±2.22 72.01±0.22 60.96±0.21 77.16±0.76 76.87±0.77 93.13±0.59 93.21±0.60
CoTAR 54.54±0.70 48.84±1.72 86.86±1.09 86.30±1.06 93.21±0.61 93.20±0.61 85.96±2.52 81.97±4.07 73.53±0.07 62.44±0.27 80.60±0.30 80.23±0.24 94.15±0.96 94.26±0.98

C.4 COMPARISON WITH CUTTING-EDGE TEMPORAL MODELS

To position TeCh within the broader landscape beyond current MedTS classifiers and relative to
general time-series backbones exhibiting partial similarity, we present a comparative analysis that
maps overlaps and distinctions between recent backbones and TeCh.

(i) Methods employed a dual-dependencies modeling. We select two representative works:
GAFormer (ICLR24) (Xiao et al., 2024) and Leddam (ICML24) Yu et al. (2024). GAFormer en-
hances token representations with group-aware embeddings for series clustering; Leddam intro-
duces learnable decomposition into inter-series dependencies and intra-series variations; TeCh uti-
lizes Adaptive Dual Tokenization (Temporal/Channel/Dual). Though all capture dual dependencies
(temporal and inter-channel), GAFormer and Leddam target forecasting and are Transformer-based,
thus decentralizing inter-channel interactions via attention, whereas TeCh uses a centralized CoTAR
to better align with MedTS’ biologically centralized sources (brain/heart). TeCh focuses on MedTS
classification with physiological interpretability and linear complexity, while GAFormer/Leddam
primarily focus on time series forecasting with quadratic attention costs. Consequently, GAFormer
and Leddam are well-suited for broad forecasting scenarios; TeCh’s centralized communication is
more appropriate for MedTS channel dependencies. This is validated in our comparative result in
Table 9. (Since there is no official implementation of GAFormer, and the information in the paper is
not enough to reproduce, we take Leddam as baseline for its high reproducibility.)

(ii) Methods employed global or auxiliary tokens. We select two representative works: CATS
(ICML24) (Lu et al., 2024) and TimeXer (NIPS24) (Wang et al., 2024e). They both employ
global/auxiliary tokens that are parameter-initialized and learned jointly with the model, remain-
ing largely input-agnostic while aggregating/redistributing information (often tied to exogenous-
variable modeling). In contrast, TeCh’s core token is generated adaptively from each input (subject)
via CoTAR, making it data-conditional and thus better suited to MedTS heterogeneity where the
“central source” differs across individuals. Moreover, TimeXer and CATS still operate within de-
centralized quadratic attention, while TeCh enforces centralized communication and achieves linear
complexity. Additionally, TimeXer focuses on forecasting with exogenous variables and CATS
constructs auxiliary time series to aid prediction, whereas TeCh targets MedTS classification with
physiologically aligned central coordination. This dynamic, per-input core token mitigates the risk
of poorer generalization from pre-defined global/aux tokens in clinical settings, as validated in Ta-
ble 9. (Since there is no official implementation of CATS, and the information in the paper is not
enough to reproduce, we take TimeXer as baseline for its high reproducibility.)

Table 9: We compare our Tech with two representative models in general time series analysis that
are similar to ours in certain respects. (i) Leddam (Yu et al., 2024): like GAFormer (Xiao et al.,
2024) and our Tech, all employ a dual-dependency modeling structure. (ii) TimeXer (Wang et al.,
2024e): like CATS (Lu et al., 2024) and our Tech, all employ global or auxiliary tokens to aggregate
and redistribute information. The best is Bolded.

ADFTD APAVA TDBrain PTB PTB-XL
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Leddam 53.14±0.67 46.64±0.80 75.92±1.78 74.08±2.38 71.27±0.88 71.22±0.97 83.84±1.61 78.76±2.77 67.41±0.38 51.84±0.58
TimeXer 52.96±0.50 43.41±0.85 72.44±0.43 70.09±0.86 72.48±1.57 72.56±1.45 83.32±0.72 78.43±0.99 66.14±0.18 50.00±0.30

Tech (Ours) 54.54±0.70 48.84±1.72 86.86±1.09 86.30±1.06 93.21±0.61 93.20±0.61 85.96±2.52 81.97±4.07 73.53±0.07 62.44±0.27
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Table 10: To further validate the generalizability of Tech, we further conduct a five-fold cross-
validation based on the subject ID. We ensure that the classes within each dataset are balanced. We
select the second-best Medformer as the baseline. The best is Bolded.

ADFTD APAVA TDBrain PTB PTB-XL
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Medformer 53.41±3.05 49.03±3.97 68.01±9.13 66.63±9.71 82.92±9.03 81.13±9.16 83.30±5.46 72.46±5.17 71.76±0.66 61.10±0.70
Tech (Ours) 55.05±2.43 49.82±2.82 80.66±6.53 79.62±6.79 87.06±6.71 86.00±6.62 89.48±3.18 84.59±2.84 73.65±0.41 62.79±0.52

C.5 FIVE-FOLD CROSS VALIDATION RESULT

To mitigate the bias of a fixed subject-independent split, we further performed a five-fold cross-
validation based on subject IDs, ensuring balanced class distributions. As shown in Table 10, TeCh
consistently surpasses Medformer across all datasets. For example, on APAVA, TeCh improves
Accuracy and F1-Score by +12.6% and +13.0%, while on PTB, the gains reach +6.2% and +12.1%,
respectively. TeCh also yields lower standard deviation (e.g., 9.71 vs. 6.79 on APAVA F1-Score),
indicating greater robustness. These results confirm that TeCh generalizes more effectively across
subjects and remains robust to inter-subject noise, benefiting from CoTAR’s centralized aggregating-
redistributing mechanism.

C.6 CENTRALIZATION ANALYSIS

To formally quantify the degree of centralization in a multivariate time series J ∈ RS×T , where S
is the number of channels, and T is the length, we introduce two complementary metrics:

(1) Spectral Centralization Index (SCI):

SCI(X) =
λmax

(
1

T−1 (X− X̄)(X− X̄)⊤
)

Tr
(

1
T−1 (X− X̄)(X− X̄)⊤

) , X̄ =
1

T
X1T .

(2) Dynamic Influence Centralization (DIC):
Let Z = [x1,x2, . . . ,xT−1], Y = [x2,x3, . . . ,xT ],

estimate A = Y Z†, where xt is the t-th column of X.

DIC(X) =
maxi si − s̄

s̄
, s̄ =

1

S

∑
i

si, si =
∑
j

|Aji|. (6)

SCI measures spatial dominance as the energy concentration in the principal component of the co-
variance matrix (Jolliffe & Cadima, 2016), while DIC captures temporal dominance as the nor-
malized imbalance of out-strengths in a first-order vector autoregressive model (Seth et al., 2015;
Valente et al., 2008). As shown in Table 11, EEG and ECG datasets exhibit significantly higher
centralization values than general-purpose datasets (Energy: ETTh2, ETTm2 (Zhou et al., 2021),
Climate: Weather (Wu et al., 2021)). This confirms that MedTS possesses inherently centralized
structures, where a few dominant channels or physiological processes govern the global dynamics.
In contrast, energy and climate datasets are more decentralized. These results quantitatively validate
our hypothesis and explain why TeCh’s centralized aggregating–redistributing design is particularly
effective for MedTS.

Table 11: Quantitative comparison of the centralized property across datasets. Beyond MedTS,
we also include three general multivariate time series datasets for comparison. We measure central-
ization using: (1) Spectral Centralization Index (SCI), the ratio of the largest eigenvalue to total
variance, and (2) Dynamic Influence Centralization (DIC), the normalized out-strength imbalance
of a first-order VAR model. Higher values indicate stronger centralized behavior.

EEG ECG Energy Climate
Metric/Dataset ADFTD APAVA TDBrain PTB PTB-XL ETTh2 ETTm2 Weather

SCI 0.918 0.520 0.616 0.622 0.652 0.397 0.296 0.381
DIC 0.668 0.731 0.747 0.825 0.777 0.241 0.119 0.342
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Figure 5: T-SNE visualization of the core token generated by CoTAR and other tokens. We visualize
the embedding space of both temporal and channel.

C.7 VISUALIZATION OF CORE TOKEN

In Figure 5, we visualized the core token generated by CoTAR and other embeddings across both
temporal and channel spaces. Interestingly, in both embedding spaces, the core token consistently
occupies a central position, suggesting that it captures a latent global physiological state integrating
information across sensors (channel dimension) and across time (temporal dimension).

In the temporal space, this behavior reflects cross-temporal integration, which aggregates patterns
over time into a stable representation of the system’s evolving state. For EEG, such temporal aggre-
gation resembles slow cortical dynamics, in which distributed neuronal populations maintain low-
frequency coherence (e.g., alpha or beta bands) to stabilize perception and working-memory states
(Niedermeyer & da Silva, 2005a; Buzsáki, 2006; Scherg et al., 2019b). For ECG, it parallels the
beat-to-beat coordination within the cardiac cycle: the sinus node’s rhythmic discharge orchestrates
each P–QRS–T sequence, and the consistent temporal integration of these cycles ensures stable and
regular cardiac pacing (AlGhatrif & Lindsay, 2012a; Goldberger et al., 2000a). Thus, the core token
can be interpreted as a latent summary of temporal coherence in both neural and cardiac dynamics.

In the channel space, such centralization mirrors spatial integration across sensors. For EEG, this
aligns with the global workspace and hub-based integration observed in frontoparietal networks
that unify activity from distributed cortical regions (Dehaene & Changeux, 2011; Sporns, 2010).
For ECG, it reflects pacemaker synchronization across myocardial conduction pathways, where a
central excitation orchestrates coherent activation throughout the heart (Rieta & Alcaraz, 1999b;
AlGhatrif & Lindsay, 2012a).

Together, these observations indicate that CoTAR’s centralized proxy learns physiologically inter-
pretable representations of both temporal and spatial coordination, effectively mirroring the central-
ized integration mechanisms that underlie real biological systems.
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