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Abstract

Concept-based explanations have become a popular choice for explaining deep
neural networks post-hoc because, unlike most other explainable AI techniques,
they can be used to test high-level visual “concepts” that are not directly related to
feature attributes. For instance, the concept of “stripes” is important to classify an
image as a zebra. Concept-based explanation methods, however, require practition-
ers to guess multiple candidate concept image sets, which can often be imprecise.
Addressing this limitation, in this paper, we frame concept image set creation as
an image generation problem. However, since naively using a generative model
does not result in meaningful concepts, we devise a reinforcement learning-based
preference optimization algorithm that fine-tunes the vision-language generative
model from approximate textual descriptions of concepts. Through a series of
experiments, we demonstrate the capability of our method to articulate complex,
abstract concepts that are otherwise challenging to craft manually.

1 Introduction

In an era where black box deep neural networks (DNNs) are becoming seemingly capable of
performing general enough tasks, our ability to explain their decisions post-hoc has become even
more important before deploying them in the real world. Humans utilize high-level concepts as a
medium for providing and perceiving explanations. In this light, post-hoc concept-based explanation
techniques, such as Testing with Concept Activation Vectors (TCAV) [1], have gained great popularity.
Their ability to use abstractions that are not necessarily feature attributes or some pixels in test images
helps with communicating these high-level concepts with humans. For instance, as demonstrated in
TCAV, the concept of stripes is important to explain why an image is classified as a zebra.

Although concept-based XAI methods are a good representation, their requirement to create col-
lections of candidate concept sets necessitate the human to know which concepts to test for. This
is typically done by guessing what concepts might matter and manually extracting such candidate
concept tests from existing datasets. While the stripe-zebra analogy is attractive as an example, where
it is obvious that stripes is important to predict zebras, in most applications, we cannot guess what
concepts to test for, limiting the usefulness of concept-based methods in testing real-world systems.
Additionally, even if a human can guess a few concepts, it does not encompass most concepts a DNN
has learned because the DNN was trained without any human intervention. Therefore, it is important
to automatically find human-centric concepts that matter to the DNN’s decision-making process.

As attempts to automatically discover and create such concept sets, several work has focused
on segmenting the image and using these segments as potential concepts, either directly [2] or
through factor analysis [3, 4]. In such methods, which we call as retrieval methods, because
the extracted concept set is already part of the test images, it is difficult for them to imag-
ine new concepts that do not have a direct pixel-level resemblance to the original image class.
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Figure 1: Our algorithm, RLPO, grad-
ually updates stable diffusion weights
(black arrows) while selecting the poten-
tial text prompts (a). Each step in this
update process provides an explanation
at a different level of abstraction.

For instance, it is arguable if some patches of zebra—
instead of stripes—qualify as high-level concepts to ex-
plain the zebra class.

By departing from existing concept set creation practices
of human handcrafting and retrieval, we redefine concept
set creation as a concept generation problem. Modern gen-
erative models such as stable diffusion (SD) can produce
noise-free, realistic images. Nevertheless, since a gen-
erative model can generate arbitrary images, we need to
guide it to produce what we desire by using text prompts.
One obvious approach is to engineer long, descriptive text
prompts to generate concepts. However, engineering such
prompts is not realistic. Therefore, to automate prompting,
we extract keywords related to the image using an image-
to-text model (we call them seed prompts). We propose
a reinforcement learning-based preference optimization
(RLPO) algorithm that guides the generative model to au-
tomatically generate meaningful concepts based on these
seed prompts. Preferences are solely decided by the expla-

nation score—not by a human—that the deep RL (DRL) algorithm is trying to optimize.

2 Preliminaries and Related Work

Testing with Concept Activation Vectors (TCAV): The TCAV score quantifies the importance
of a “concept” for a specific class in a DNN classifier [1]. Here, a concept is defined broadly as
a high-level, human-interpretable idea such as stripes, sad faces, etc. A concept (e.g., stripes), c,
is represented by sample images, Xc (e.g., images of stripes). For a given set of test images, Xm

(e.g., zebra images), that belongs to the same decision class (e.g., zebra), m, TCAV scores (TS) is
defined as the fraction of test images for which the model’s prediction increases in the direction of the
concept. By decomposing the DNN under test as f(x) = f2(f1(x)), where f1(x) is the activation at
layer l, TCAV score is computed as,

TSc,m =
1

|Xm|
∑
Xm

I
(

∂output
∂activations

· (c direction) > 0

)
=

1

|Xm|
∑

xi∈Xm

I
(

∂f(xi)

∂f1(xi)
· v > 0

)
(1)

Here, I is the indicator function that counts how often the directional derivative is positive. Concept
activations vector (CAV), v, is the normal vector to the hyperplane that separates activations of
concept images, {f1(x);x ∈ Xc}, from activations of random images, {f1(x);x ∈ Xr}.
ACE [2] introduced a way to automatically find relevant concepts by extracting them from the input
class. It uses image segmentation of multiple sizes to get a pool of segments and then grouped them
based on similarity to compute TCAV scores. Though the ACE concepts are human understandable,
they are very noisy. EAC [5] extracts concepts through segmentation. CRAFT [3] introduced a
recursive strategy to detect and decompose concepts across layers. Lens [4] elegantly unified concept
extraction and importance estimation as a dictionary learning problem. However, since all these
methods obtain concepts from test images, the concepts they generate tend to be very similar to the
actual class. In contrast, we generate concepts from a generative model. Under generative models,
LCDA [6] simply queries an LLM to get attributes but does not generate concepts.

Deep Q Networks (DQN): DQN [7] is a DRL algorithm that combines Q-learning with deep
neural networks. It is designed to learn optimal policies in environments with large state and action
spaces by approximating the Q-value function using a neural network. A separate target network,
Qtarget(s, a

′, θ′), Here a′ is argmaxQ(snext, a) which is a copy of the Q-network with parameters
θ′, is updated less frequently to provide stable targets for Q-value updates,

Q(st, at)← Q(st, at) + α
(
r(st, at) + γmax

a′
Qtarget(st+1, a

′)−Q(st, at)
)
. (2)
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Here, st is the state at step t, at is the action taken in state st, and rt is the reward received after
taking action at. The parameters α and γ are learning rate and discount factor, respectively. DQNs
are used for controlling robots [8, 9, 10], detecting failures [11], etc.

Direct Preference Optimization (DPO): DPO [12] is a technique used to ensure models, such
as large language models, learn to align its outputs with human preference by asking which of its
generated output is preferred. In this study, preference is provided using TCAV score and it is used to
align a text-to-image model to generates concepts with respect to DNN under test.

3 Methodology: Explainable Concept Generation

Algorithm 1 The RLPO algorithm.
1: Input: Set of test images, f(·)
2: Run pre-processing and get the seed prompts

(action space)
3: for each episode do
4: for each time step t do
5: Execute at by picking a keyword
6: Generate image groups G1 & G2

7: Evaluate TCAV scores TS1 & TS2

8: Update SD based on better score
9: Compute reward

10: end for
11: end for
12: Output: Set of concept images

Our objective is generating concept images, C,
that provide a higher TCAV score, TSc,m. To
this end, we leverage the state-of-the-art text-to-
image generative models to generate high qual-
ity explainable concepts. However, because the
search space of potential text prompts is too
large, we use DRL to search for text that are
relevant. Our algorithm, named reinforcement
learning-based preference optimization (RLPO),
picks a seed prompt using RL and optimizes
stable diffusion weights to generate images that
have a preference for higher TCAV scores. As
summarized in Fig. 1 and Algorithm 1, we de-
scribe this process in the rest of this section.
This work help engineers and other users of
DNNs to obtain high-level visual explanations

of under which conditions the neurons are activated in a DNN, making it a useful diagnostic tool.

Notation: Our framework contains multiple machine learning models. First, we have a pre-trained
neural network classifier that we want to explain, which is indicated by f(·). We then have a
generative neural network, g(·), whose purpose is generating concept image sets, given some text
prompts. In this paper, we use Stable Diffusion (SD) v1-5 as the generator as it is a state-of-the-art
generative model that can generate realistic images. If the weights of the SD model are w, for a
small constant λ, we augment it as w + λab, where A and B are low-rank matrices that we fine-tune
using DPO [12]. The core search algorithm that we train contains a DQN which is denoted by h(·).
We use off-the-shelf visual question answering (VQA) to generate the action space (seed prompts)
for the DQN. There is also a linear classification model that we train to extract explainable concept
directions using TCAV.

3.1 The Deep Reinforcement Learning Formulation

Our objective of using DRL is automatically controlling text prompts used in the text-to-image
generative model. As text prompts, we start with a list of keywords, K, that have the potential to
generate meaningful concept images after many DRL episodes. How we extract these keywords
automatically will be discussed in detail in Section 3.2. We would like to highlight that these keywords
act as seeds and they do not directly impact the accuracy of the DRL algorithm although good seeds
will make the policy learning faster. We setup our RL state-action at iteration t as follows:

• Action at: Selecting a keyword, kt ∈ K, that best influences concept image generation

• State st: Concept images generated from the keyword prompt, kt−1.

Our objective in DRL is to learn a policy, π : s→ a, that takes actions (i.e., picking seed prompt)
leading to explainable states (i.e., correct concept images) from proxy states (i.e., somewhat correct
concept images). This traversal is illustrated in Fig. 1 and formally defined as explainable states
definition 1 and proxy state defination 2 in Appendix 1. In practice, we set the threshold η (used
in defination 1 and 2) to a relatively large number, such as 0.7, to ensure that we look at highly
meaningful concepts.
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Prompt = “zoo”

Timestep:

Predicted label:

0

“Oxcart”

10
“Sorrel”

20
“Ox”

30
“Tiger” (56%)

40
“Tiger” (72%)

Figure 2: Different levels of abstractions for the class “Tiger.” The generated image begins as a
random image and gradually transition to images with tiger features.

In DQN, in relation to Eq. 2, we learn a policy that iteratively maximizes the Q(s, a) value by using
the update rule,

Q∗(s, a) = Es′∼P (·|s,a)[ξtr(s, a) + γmax
a′∈A

Qtarget(s
′, a′)], (3)

where,

• Reward rt: Reward rt is proportional to the TCAV score computed at state st on action
at, adjusted by a monotonically increasing scaling factor ξt. This factor is used to scale the
reward over time t Since the g(.) is getting optimized at each timestep t. The scaling factor
is updated as ξt+1 ← min(1, ξt + k). Therefore, the expected cumulative adjusted reward
is R(π) = E[

∑T
t=0 ξt · rt(st, at)].

3.2 Extracting the Action Space (Seed Prompts)

Since a generative model can generate arbitrary images, if we provide good starting point for
optimization then the convergence to explainable states would be faster. In this paper, to extract
seed prompts for a particular class we make use of the off-the-shelf VQA model followed by several
preprocessing steps.

We start by splitting each test image into 9 patches. These patch from the test images are then
passed to the VQA model to extract relevant and useful information about the corresponding class.
In this study, we choose BLIP [13] as our VAQ model. We posed a set of targeted questions to the
VQA model, aiming to gain insights into the class-specific features represented in the patches. The
questions are designed to probe various aspects of the image patches, helping the model focus on
class-defining attributes. We then remove stop words and duplicates from the generated responses
using lemmantizing and perform a cross-similarity check using CLIP between all the unique words
and further filtered words which are more than 95% similar. To further select most relevant keywords
to the class images, we perform a VLM check using class images and the extracted keyword to get
the softmax score of how much the keyword and image are related. This score is then averaged over
all the class images and this average is use to sort the keywords. Now, from the sorted keywords, we
select top 20 keywords as our RL action space.

3.3 Optimizing the States

At time t, the policy picks the seed prompt kt, which is then used by the generative model, g(kt;wt),
with model weights w, to generate 2Z number of images. We randomly divide the generated images
into two groups: Xc1,t = {xc1,t,i}Zi=1 and Xc2,t = {xc2,t,i}Zi=1. Let the TCAV scores of each group
be TSc1,m,t and TSc2,m,t. Since our objective is to find concepts that generate a higher TCAV score,
concept images that have a higher score is preferred. Unlike in the classical preference optimization
setting our optimization comes from TCAV scores (e.g., Xc1,t ≻ Xc2,t). If the generative model
at time t is not capable of generating concepts that are in an explainable state (measured based on
threshold η), max(TSc1,m,t, TSc2,m,t) ≤ η, we then perform preference update on SD’s weights.
Following Low-Rank Adaptation (LoRA) [14], we only learn auxiliary weights a and b at each time
step, and update the weights as wt+1 ← wt + λab.

As the DRL agent progresses over time, the states become more relevant as it approaches explainable
states (Fig. 2), thus the same action yields increasing rewards over time. To accommodate this,
with reference to the rewards defined in Section 3.1, we introduce a parameter ξ which starts at
0.1 and incrementally rises up to 1 as the preference threshold, η, is approached. Different actions
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Figure 3: The figure shows the concepts identified RLPO and where they are located in the class image
(“zebra”) for GoogleNet. As highlighted the “stripes” concept are located near zebra, the “running”
concept, showing trees are highlighting in background of the input image, and the “mud” concept
highlighting the grass and soil in the input image. The concepts are ordered in their importance
(TCAV score) with “stripes” being the highest and “mud” being the lowest for the selected class.

may result in different explainable states, reflecting multiple concepts inherent to the f(·). Some
actions might take longer to reach an explainable state. Also, it is possible for different actions to
lead to the same explainable state. As the goal is to optimize all states to achieve a common target,
DQN progressively improves action selection to expedite reaching these states. Thus, DRL becomes
relevant as it optimizes over time to choose the actions that are most likely to reach an explainable
state efficiently.

4 Experiments

We performed our concept-based XAI method on GoogleNet [15] trained on ImageNet classes. We
conducted experiments on an NVIDIA GeForce RTX 4090 GPU.

4.1 What kind of concepts can RLPO generate?

Novel concepts. As illustrated in observed that the Fig. 3, as hypothesized, generative model

Table 1: Accuracy and Odds1 calculated based on
the responses for ours and retrieval based method,
respectively, from the human survey.

Laymen Expert
(n=26) (n=24)

Accuracy (Retrieval) 93.46% 89.55%
Accuracy (Ours) 8.46% 34.55%
Odds (Retrieval) 14.29 8.57

Odds (Ours) 0.09 0.53

can generate new concepts that a human would
not typically think of but leads activations of
the DNN to trigger. To validate this hypoth-
esis, we conducted a survey to see if humans
can think of these concepts as important for the
neural network to understand a certain class (Ta-
ble 1). We presented a random class image fol-
lowed by two concepts, one generated by our
method and another from a previous retrieval
based method [4, 3]. We also provide options
from the top priority concepts from both method
and we discovered that while most participants
could recognize retrieval-based concepts, only
those with domain-specific knowledge could identify generated concepts. This indicates that most
people can only identify retrieval concepts a small subset of what f(.) learns during training.

Multiple concepts. Because the RL algorithm explores various various explainable states, we
can obtain multiples concepts with varying TCAV scores. Fig. 3 shows the top three class-level
concepts identified by our method for the “zebra” class on GoogleNet. Further, the image on the left
highlights where these concepts are located in the class image. This is obtained by using ClipSeg [16],
a transformer-based segmentation models which can take image prompts, Xc, and highlights in

1Odds: Odds describe how many times an event is expected to happen compared to how many times it is not.
They are often used in gambling, sports betting, and statistics. The odds of an event with probability p (where p
is the probability of the event happening) are calculated as: p

1−p
.
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Table 2: Novel concepts: TSc,m (TCAV score), CS (Cosine similarity), ED (Euclidean distance),
RCS, and RED (CS and ED with ResNet50 embedding)

Methods Concepts TSc,m(↑) CS (↓) ED (↑) RCS (↓) RED (↑)
EAC [5] C 1.0 0.76± 0.03 7.21± 0.63 0.67± 0.14 6.34± 2.16

Lens [4]
C1 1.0 0.77± 0.02 7.17± 0.34 0.50± 0.18 9.70± 3.20
C2 1.0 0.72± 0.04 8.02± 0.87 0.42± 0.10 10.90± 2.80
C3 1.0 0.69± 0.05 8.45± 0.96 0.45± 0.05 11.03± 2.17

CRAFT [3]
C1 1.0 0.76± 0.04 7.37± 0.62 0.57± 0.16 8.80± 3.20
C2 1.0 0.72± 0.02 8.25± 0.39 0.50± 1.90 9.90± 3.40
C3 1.0 0.73± 0.04 7.98± 0.79 0.44± 0.07 10.80± 1.90

RLPO (Ours)
C1 1.0 0.52± 0.04 10.48± 0.50 0.04± 0.01 16.80± 1.40
C2 1.0 0.49± 0.02 10.65± 0.20 0.02± 0.02 17.20± 0.80
C3 1.0 0.49± 0.02 10.74± 0.30 0.03± 0.01 17.60± 4.40

Class Images Anchors GradCam

Tiger Class

Polica Van 
Class

RLPO (Ours)

Figure 4: Comparison of concepts identified by different methods and our method.

a test image, x ∈ Xm, which part resembles the input prompt. Fig. 4 shows how our method
identifies multiple concepts with importance, when compared to other methods like Anchors [17]
and GradCam [18]. Table 2 highlights how concepts generated by our method are different from one
extracted from the dataset.
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Figure 5: Combined actions (multiple
keywords) count over training time.

Abstract concepts. In Fig. 2, we observe the progression
of output images generated by the SD when preference
optimization is applied for the initial prompt “zoo,” which
was decided by the DQN, on the tiger class. These abstrac-
tions gives us hint about what the model prefers when it is
looking for tiger, starting from a four-legged orange furred
animal, to black and white stripes with orange furred an-
imal, to black and white stripes with orange furred and
whiskers. Though we obtain concepts with various abstrac-
tions by changing threshold η, currently it is not possible
for our method to decide on a threshold η to get a particular
level of abstraction.

Complex concepts. The RL algorithm is capable of in-
tegrating multiple concepts to identify complex concept

combinations. In this scenario, RL episodes conclude either when a concept, formed through sequen-
tial actions, achieves a TCAV score of 1, or when a maximum of four actions have been taken. This
upper limit prevents the agent from lingering indefinitely within a single episode, ensuring there is no
stagnation in the optimization of the generative model. As shown in Fig. 5, we observe that during
training with multiple combination, the RL agent starts taking multiple actions initially, but as the
training progresses it limits to taking one or two action combination because it starts getting good
scores as over time the less number action generates better results.
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4.2 Are the generated concepts reliable?

After finding the relationship between generated concepts and input images, it is important to
validate the importance of the identified concepts. To do that, we applied c-deletion to the class

1.265
2.525 2.905

Figure 6: C-deletion. Removing concepts
over time to measure the reliability. Colored
values indicate the cumulative avg. accuracy
over time (the lower the better as it indicates
important concepts are removed sooner.)

images for each identified concept. We tested it with,
1) traditional c-deletion, where we gradually delete
concept segments based on decreasing order of TCAV
importance and 2) on a modified c-deletion, which
stops deleting after removing the concept we test.
The results for the c-deletion, original and clipped
are shown in the Fig. 6.

5 Limitations and Conclusions

The process of navigating an infinitely large concept
space and generating explainable concepts from tex-
tual inputs presents several challenges, particularly
when dealing with complex, high-level concepts. We

showed how DRL and preference optimization can be combined to efficiently navigate this space.
However, RLPO also suffers from several limitations. First, this analysis cannot be performed real-
time since generating images from SD, learning the DQN, and fine-tuning the SD with preferences
takes some time. Also, the concepts that our algorithm generates can be diverse as it tries to reveal
the concepts inherent to the f(·), making it less domain-specific. Despite the challenges, our results
show how to leverage the strengths of visual representations and adaptive learning to provide intuitive
and effective solutions for understanding complex, high-level concepts in black-box neural networks.
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Appendix

1 Definitions

Definition 1. Explainable states: States that have a concept score TSc,m ≥ η for a user-defined
threshold η ∈ [0, 1] for concept c and class m is defined as an explainable state.

Definition 2. Proxy states: States that have a concept score TSc,m < η for the threshold η ∈ [0, 1]
for concept c and class m is defined as a proxy state.

2 The Rationales Behind Design Choices

Before presenting the algorithm in detail, we provide the rationale for design choices, which are
validated through ablation studies and comparisons in the Experiments section.

Rationale 1: Why concept generation is a better idea. Let us denote the set of human-interpretable
concepts that the NUT has learned be CN . If we use concept-based explanation the traditional
way [1, 19], then the end users need to manually guess what concepts to test for. Automatically
retrieving the concept set by segmenting test images [5] also results in a limited concept set. In
contrast, a SOTA generative model can generate high quality images.

Rationale 2: Why a deep RL-controlled VLM fine-tuning for generating concepts is a better
idea. “A picture is worth a thousand words but words flow easier than paint.”

As the saying goes, “a picture is worth a thousand words,” it is much easier for people to explain and
understand high-level concepts when images are used instead of language. For instance, we need a
long textual description such as “The circles are centered around a common point, with alternating
red and white colors creating a pattern” to describe a simple image of a dart board (i.e., Target Co.
logo). Therefore, we keep our ultimate concept representation as images. However, controlling a
generative model from visual inputs is much harder. However, since human language can be used as
a directed and easier way to seed our thought process, as the saying goes, “words flow easier than
paint,” we control the use of text prompts. Since the vastness of the search space cannot be handled
by most traditional search strategies, we resort to a DQN for controlling text. Since simple text alone
cannot generate complex, high-level visual concepts, in each DQN update step, we use preference
optimization to further guide the search process to guide towards more preferred outcome, allowing
the DQN to focus on states similar to the target. This approach improves our starting points for each
DQN episode, enabling more efficient search and incremental progress towards the desired target.

Neural network's 
internal concepts

Generated
concepts

Human-defined
concepts

Retrieved concepts

*Human-defined concepts
*Retrieved concepts
*Generated concepts
*Neural network's internal concepts

Figure 7: We can generate concepts that encompass both human-defined and retrieved concepts. Note
that retrieved concepts are very similar to class images, making them less useful as concepts.
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3 The Effects of RLPO-based Concept Space Traversal

As depicted in Fig. 7, we can formalize the notion that a generative model can encompass concepts
pre-defined by a human or retrieved through segmentation as follows.
Theorem 1. Let the set of human-interpretable concepts that the NUT has learned be CN , and the
concept sets human collected, retrieved though segmentation, and generated using a generative model
be CH , CR, and CG, respectively. Then, |CG∩CN | ≥ |CH ∩CN | ≥ 0 and |CG∩CN | ≥ |CR∩CN | ≥ 0.

Proof sketch. CH ⊆ CG and CR ⊆ CG =⇒ |CH ∩ CN | ≥ 0 and |CR ∩ CN | ≥ 0

We now formalize what concepts the DQN has learned, with reference to Fig. 1.
Theorem 2. When traversing in the concept space, with each reinforcement learning step,

1. Case 1: Moving from a proxy state towards an explainable state monotonically increases
the reward.

2. Case 2: Moving from an explainable state towards the target class does not increase the
reward.

Proof sketch. Obtain the rewards before and after η and compute the difference in reward for each
segment.

Property 1. As ξ escalates, the reward function proportionally amplifies, particularly enhancing the
significance of outcomes near tη .

Theorem 2 characterizes the how TCAV scores (i.e., proportional to rewards) are increased up to
η. As a result, as shown in Theorem 3, if the generator moves close to the image class, then the
explainer generates images similar to the class. Therefore, by varying η we can generate concepts
with different levels of abstractions.
Theorem 3. As we go closer to the concept class, |CG ∩ CN | becomes larger for generated concepts
CG and NUT’s internal concepts, CN .

Proof sketch. Measure the sensitivity difference between Sc1,m,t and Sc2,m,t as t→∞.

4 Additional Experiments

Few more examples on concepts identified by our method on goldfish and zebra class is shown in
Fig. 8.

Class Images Anchors GradCam

Goldfish 
Class

Zebra Class

RLPO (Ours)

Figure 8: Comparison of concepts identified by different methods and our method.
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4.1 Ablation study

Table 3: Comparison between search strategies
Method Entropy (↑) ANC (↑) CV (↓)

RL (Ours) 2.80 0.43 0.46
0.25 Greedy 2.40 0.21 0.96
0.5 Greedy 1.95 0.15 1.67

0.75 Greedy 1.85 0.15 1.77

An RL algorithm was used because of the
large state-action space. For this study, we
chose DQN as our RL algorithm because of
its ability to effectively traverse through small
(20 actions) and discrete action space (unique
keywords). We assess the effectiveness of RL
by disabling preference optimization step. As
shown in Table 3, on GoogleNet, compared to
ϵ-greedy methods, our RL setup exhibits a higher entropy, higher average normal count (ANC) and
lower coefficient of variance (CV), indicating that it is able to explore the space more broadly by
picking diverse keywords.

5 Application

We discussed how RLPO can be used as a diagnostic tool for the engineers. As a specific application,
we see what concepts are removed and added as well as how the concept importance changes when
we fine-tune ResNet50 on ImageNet to improve accuracy (Fig. 9).

Figure 9: Concept-shift analysis pre-post fine-tuning plot
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