
LoRA-Gen: Specializing Large Language Model via Online LoRA Generation

Yicheng Xiao 1 * Lin Song 2 * Rui Yang 3 Cheng Cheng 4 Yixiao Ge 2 Xiu Li 1 † Ying Shan 2

Abstract

Recent advances have highlighted the benefits of
scaling language models to enhance performance
across a wide range of NLP tasks. However,
these approaches still face limitations in effec-
tiveness and efficiency when applied to domain-
specific tasks, particularly for small edge-side
models. We propose the LoRA-Gen frame-
work, which utilizes a large cloud-side model to
generate LoRA parameters for edge-side mod-
els based on task descriptions. By employing
the reparameterization technique, we merge the
LoRA parameters into the edge-side model to
achieve flexible specialization. Our method facil-
itates knowledge transfer between models while
significantly improving the inference efficiency
of the specialized model by reducing the in-
put context length. Without specialized train-
ing, LoRA-Gen outperforms conventional LoRA
fine-tuning, which achieves competitive accuracy
and a 2.1x speedup with TinyLLaMA-1.1B in
reasoning tasks. Besides, our method delivers a
compression ratio of 10.1x with Gemma-2B on
intelligent agent tasks.

1. Introduction
The principle of scaling laws (Kaplan et al., 2020) demon-
strates that increasing the size of Large Language Mod-
els (LLMs) can significantly improve cross-task general-
ization. However, due to the constraints of their enor-
mous size, generic LLMs struggle to achieve a good bal-
ance between efficiency and effectiveness when address-
ing domain-specific tasks or preferences. Consequently,
research has been shifted towards developing more special-
ized, compact language models optimized for specific tasks
and capable of local deployment on edge devices (Fu et al.,

*Equal contribution 1Tsinghua University 2ARC Lab, Tencent
PCG 3The University of Hong Kong 4Xi’an JiaoTong University.
Correspondence to: Xiu Li <li.xiu@sz.tsinghua.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

40 60 80 100 120 140

Latency (ms)

39

40

41

42

43

44

A
cc

ur
ac

y
(%

)

LoRA-Gen

1-shot
3-shot
5-shot

Qwen-1.5B
LoRA
MixLoRA
LoRAMoE
LoRA-Gen

Figure 1. Accuracy-latency curves comparison with various few-
shot numbers on ARC-c task. Best view in color. Base model is
Qwen-1.5B.

2023; Grangier et al., 2024; Shen et al., 2024). This emerg-
ing approach addresses the critical need for more adaptable
and resource-efficient AI solutions across academic and
industrial domains. Many approaches utilize parameter-
efficient fine-tuning techniques (Houlsby et al., 2019; Li
& Liang, 2021; Lester et al., 2021; Hu et al., 2021), partic-
ularly LoRA (Hu et al., 2021), to train on specific datasets
for specialization. However, this method may encounter
the issue of catastrophic forgetting, which can result in a
decrease in performance on other unseen tasks (Feng et al.,
2024; Huang et al., 2023a).

To alleviate knowledge forgetting in specialized training,
recent approaches (Dou et al., 2024; Gao et al., 2024a;
Yang et al., 2024b; Li et al., 2024a), leverage the flexi-
bility of the Mixture of Experts (MoE) for LoRA train-
ing. Specifically, as shown in Figure 2(b), they integrate
a group of multiple LoRA components as experts within
the language model, allowing the language model to con-
trol the selection of LoRA components during token gen-
eration. However, these methods introduce additional in-
ference costs due to the extra experts and control units.
LoRAHub (Huang et al., 2023b), on the other hand, pre-
trains a set of task-specific LoRA components and employs
a manually designed parameter-free optimization method
for selection. Nevertheless, the effectiveness of above men-
tioned approaches is limited by their model scale, resulting

1

LoRA-Gen: Specializing Large Language Model via Online LoRA Generation

System prompt User
Input

Assistant Output

Specialized LM

Task LoRA

(a) Vanilla LoRA Paradigm (b) LoRA-MoE Paradigm (c) LoRA-Gen for Specialized LM

System prompt User
Input

Assistant Output Assistant Output

System prompt

User
Input

General LM +

General LM

LoRA

…

LoRA-MoE

General

LM
+ Reparameterize

Multiple Invocation

LoRA
Generator

Figure 2. Comparison of different LoRA-based fine-tuning strategies.(a) Vanilla LoRA is fine-tuned on the target task and then merged
into the source model. (b) LoRA-MoE introduces additional LoRA experts to improve the generalization performance. (c) Our LoRA-
Gen presents a task-specific LoRA generator that customizes a specialized LM for edge-side users.

Method
Context Compression Reparameterized Training Free Knowledge

for Unseen Tasks Model for Unseen Tasks Transfer
(Fast Inference) (w/o Additional Params.) (High Flexibility) (High Accuracy)

ICL (Dong et al., 2022) ✗ ✗ ✔ ✗
LoRA (Hu et al., 2021) ✗ ✔ ✗ ✗
LoRA-MoE (Dou et al., 2024) ✗ ✗ ✔ ✗
LoraHub (Huang et al., 2023b) ✗ ✔ ✗ ✗
AutoCompressors (Chevalier et al., 2023) ✔ ✗ ✔ ✗
LoRA-Gen ✔ ✔ ✔ ✔

Table 1. Characteristics comparison with other counterparts. ICL indicates the in-context learning.

in constrained performance and generalization capabilities
on unseen tasks. Therefore, this paper explores a new per-
spective: utilizing a large cloud-side model to generate pa-
rameters for a smaller edge-side model to achieve better
specialization.

To achieve it, we propose a new LoRA generation frame-
work, termed LoRA-Gen. As shown in Figure 2(c), our
method can be divided into two parts: Online LoRA gen-
eration and Specialized LM. The former is used to gen-
erate LoRA parameters based on the task-defined system
prompt, while the latter facilitates efficient batch inference
for user input. Specifically, a fine-tuned large language
model and a mixture of LoRA experts are deployed in the
cloud. The cloud-side language model generates a set of
meta tokens based on the given system prompt. Each meta
token corresponds to a transformer layer in the edge-side
language model, utilizing these tokens to control the com-
position of parameters from the LoRA experts. Similarly to
vanilla LoRA, the combined parameters are further merged
into the edge-side LM through reparameterization, result-
ing in an efficient specialized model.

As shown in Table 1, our LoRA-Gen offers four ad-
vantages over previous methods: i) Context compression
for unseen tasks: LoRA-Gen dynamically compresses the

task-specific system prompt (e.g., task descriptions, few-
shot samples, and chat templates) into the LoRA weights,
which significantly reduces the context length for the
specialized models. ii) Reparameterized model: Unlike
LoRA-MoE (Dou et al., 2024), our approach employs repa-
rameterization techniques to merge the generated LoRA
weights into the original parameters, thereby avoiding ad-
ditional inference costs. iii) Training free for unseen tasks:
Our method does not require any additional training, in-
cluding few-shot tuning, when specializing the model for
unseen tasks. It only necessitates a single-turn inference
on the system prompt to obtain the specialized model pa-
rameters, which simplifies model deployment. iv) Knowl-
edge Transfer: LoRA-Gen allows the cloud side and edge
side to utilize different models, enabling the injection of
knowledge from the large cloud model into the edge model
through reparameterization, which enhances performance
effectively as shown in Figure 1.

We conduct extensive experiments to validate the effec-
tiveness of LoRA-Gen on various commonsense reasoning
tasks as well as an agent benchmark. The results demon-
strate that our method balances both performance and ef-
ficiency, showing significant advantages across eight lan-
guage datasets. For the edge-side model of TinyLLaMA-
1.1B, LoRA-Gen outperforms vanilla LoRA fine-tuning

2

LoRA-Gen: Specializing Large Language Model via Online LoRA Generation

by a remarkable margin with only 16% sequence length,
+1.3% on harmonic-mean of accuracy, and 2.1x speedup.
Moreover, for the Gemma-2B model, LoRA-Gen demon-
strates competitive performance on unseen agent tasks. Ad-
ditionally, since it does not require the input of agent def-
initions during inference, it achieves a remarkable 10.1x
compression ratio.

2. Related Work
2.1. Parameter-Efficient Fine-Tuning

Given the billions of parameters in LLMs and the limita-
tions of current hardware, fully fine-tuning LLMs in the tra-
ditional manner is often impractical. To address this, sev-
eral parameter-efficient fine-tuning (PEFT) methods have
been developed. Adapter-based approaches (Mahabadi
et al., 2021; Zhou et al., 2024b; Zhang et al., 2024) in-
volve inserting trainable adapter layers into various blocks
of pre-trained models. Soft prompt methods (Li & Liang,
2021; Liu et al., 2022) adjust a small trainable prefix vec-
tor to adapt LLMs to new tasks. Unlike these methods,
LoRA (Hu et al., 2021) minimizes the number of train-
able parameters for downstream tasks by freezing the pre-
trained models and tuning only additional rank decomposi-
tion layers. This method approximates weight adjustments
during fine-tuning without incurring extra costs during in-
ference. Building on this, AdaLoRA (Zhang et al., 2023)
dynamically adjusts the parameter budget among weight
matrices, while DoRA (Liu et al., 2024c) fine-tunes both
the magnitude and directional components decomposed
from pre-trained weights. VeRA (Kopiczko et al., 2024)
further reduces the number of trainable parameters by uti-
lizing shared low-rank layers and learnable scaling vectors.

2.2. LoRA Meets Mixture of Experts

Leveraging its lightweight nature, LoRA is utilized in Mix-
ture of Experts (MoE) architectures to enhance perfor-
mance. MoLoRA (Zadouri et al., 2023) incorporates LoRA
adapters as experts on top of pre-trained models and uses
a router layer to integrate these experts. MOELoRA (Liu
et al., 2024b) applies this framework to various medical
domain tasks, though it requires task type input for the
router. LoRAMoE (Dou et al., 2024) introduces multi-
ple LoRA experts into the feed-forward block to mitigate
knowledge forgetting during the instruction-tuning phase.
LoraHub (Huang et al., 2023b) allows a dynamic assem-
bling of LoRA modules on various tasks and even unseen
tasks by combining adapted LoRA modules. Additionally,
MoLA (Gao et al., 2024a) proposes layer-specific experts,
allocating a varying number of LoRA experts to different
layers to boost performance.

2.3. Context Compression

With the rise of in-context learning (Wei et al., 2022) and
agentic pipelines (Yang et al., 2024a), LLMs often need
to process thousands of tokens, potentially exceeding their
maximum context length. Unlike methods that extend the
context window of LLMs, context compression offers an
efficient way to reduce the input prompt length. There are
two primary methods of context compression: hard prompt
and soft prompt. Selective-Context (Li, 2023) and Jiang
et al. (2023) exemplify hard prompt methods by removing
low-information content at the lexical level (e.g., sentences,
words, or tokens) to shorten the prompt. On the other
hand, gisting (Mu et al., 2023), AutoCompressors (Cheva-
lier et al., 2023), ICAE (Ge et al., 2024), and 500xCom-
pressor (Li et al., 2024b) represent soft prompt methods
that compress input prompts into a small number of special
tokens. In contrast to these approaches, we propose com-
pressing the context into rank-decomposition layers using
LoRA methods.

3. Methodology
In this section, we first review LoRA-based Mixture of
Experts fine-tuning paradigm and then elaborate on our
LoRA-Gen, which generates task-specific LoRA weights
according to the system prompt for edge-side language
models.

3.1. Revisiting Mixture of LoRA Experts

LoRA (Hu et al., 2021) improves the efficiency of fine-
tuning by significantly reducing the number of trainable
parameters. Formally, it updates the weight matrix W ∈
Rd′×d′′

by using a low-rank approximation via two decom-
position matrices A ∈ Rd′×r and B ∈ Rr×d′′

with a low
rank r (r ≪ min(d′, d′′)) as follow:

W̃ = W +AB. (1)

Trainable low-rank decomposition matrices can capture the
underlying patterns of downstream tasks under the guid-
ance of the task-specific direction (Hu et al., 2021). More-
over, another effective approach, the Mixture of Experts
(MoE) (Jacobs et al., 1991; Jordan & Jacobs, 1994), treats
multiple networks as experts and seeks to take advantage
of their strengths in a hybrid framework. This method
aims to combine the advantages of different models, result-
ing in improved generalization and overall performance.
Typically, a MoE layer consists of n experts, denoted as
{Ei}ni=1 with a router R as the gate for expert allocation.
Given hidden states {hj}sj=1 of a sequence with the length
of s, the output of the MoE can be formulated as:

h′
j =

n∑
i=1

Ri(hj)Ei(hj) (2)

3

LoRA-Gen: Specializing Large Language Model via Online LoRA Generation

Considering the efficiency of LoRA and the strong perfor-
mance of MoE, (Li et al., 2024a; Dou et al., 2024; Gao
et al., 2024a; Yang et al., 2024b) integrate LoRA into the
MoE plugin, boosting the fine-tuning performance by uti-
lizing a mixture of LoRA experts, effectively blending the
strengths of both methods.

3.2. Online LoRA Generation

Overview. The mixture of LoRA experts has showcased
reasonable performance in fine-tuning for specific tasks.
However, there remains a gap in its effectiveness for multi-
task learning and the generalization to unseen tasks. Ad-
ditionally, most LoRA-MoE (Li et al., 2024a; Dou et al.,
2024) methods require calculating the expert routing for
each token individually, which significantly increases the
computational complexity. To address these challenges, we
propose a new framework, termed LoRA-Gen that gener-
ates task-aware LoRA via an online large language model
with system prompts (including few-shot samples, task de-
scription, role specification and the conversation format) as
presented in Figure 3. In the following, we elaborate on our
LoRA generation method and the reparameterization of the
edge-side language model.

Cloud-side LM & Meta Token. In adherence to meta-
learning (Hospedales et al., 2021; Finn et al., 2017), we
construct a unified representation of the task-related in-
formation to achieve generalization capabilities for vari-
ous tasks, relying on cloud-side LM to facilitate this pro-
cess. Specifically, given a series of few-shot samples or
task-specific system prompts, the cloud-side LM appends
L special tokens ⟨meta⟩ behind them and transfers the in-
herent knowledge into these tokens with causal masks in a
single forward pass. We define these tokens as meta tokens
{Tmeta

i }Li=1, where L represents the number of layers of
the edge-side language model. Each meta token is associ-
ated with a transformer layer in the edge-side LM.

LoRA Expert Pool. Our initial attempt is to generate
LoRA parameters directly through a continuous projection
on the meta token. However, the expansive parameter space
poses optimization challenges, making the model suscepti-
ble to overfitting and hindering generalization, whose anal-
ysis refers to Table 9. Therefore, similar to the previous
works (Dou et al., 2024), we adopt an alternative solution
by introducing the discrete MoE mechanism. Specifically,
as shown in Figure 3, we construct a LoRA expert pool
of n experts, whose weights are defined as {Ei}ni=1. Each
LoRA expert contains three LoRA blocks, corresponding
to the gate linear layer, up linear layer and down linear
layer in FFN of the edge-side model, respectively. Differ-
ent from the LoRAHub (Huang et al., 2023b), these experts
are trained in an end-to-end manner.

Routing Module. To control the composition of experts,
we propose a routing module using meta tokens. Unlike
the token-wise LoRA-MoE (Dou et al., 2024), our MoE is
layer-wise. We apply an individual MoE for each trans-
former layer in the edge-side LM, and all tokens in a se-
quence use the same composition. For simplicity, the rout-
ing module consists of two linear projections with a Batch
Normalization (BN) layer. Incorporating a BN layer can
further increase the diversity of router output, promoting
the utilization of a wider range of experts. In formal, the
router Ri ∈ Rn of i-th layer of edge-side LM can be for-
mulated as:

Ri = BN(f2 ◦ ς ◦ f1(Tmeta
i)), (3)

where f1, f2 are the linear transform and ς denotes the
SiLU (Elfwing et al., 2018) activation function. We attempt
to increase selection randomness and balance expert loads,
by using Gumbel-Softmax (Jang et al., 2016), which can be
formulated as:

Gumbel-Softmax(Ri
t) =

eR
i
t+g∑n

j=1 e
Ri

j+g
, (4)

where g ∼ Gumbel(0, 1). (5)

Nevertheless, the Gumbel-softmax strategy shows a sig-
nificant reduction in generalization performance, which is
reported in experiments of Section 4.4, To this end, fol-
lowing (Li et al., 2024a; Dou et al., 2024), we adopt a
KeepTOP-K strategy to select experts in a deterministic
manner:

Gi
t =

R̃i

t∑K
j=1 R

i
j

R̃i
t ∈ TOP-K(R̃i)

0 else
, (6)

where TOP-K(R̃i) = {Ri
t}Kt=1, R̃

i
t =

eR
i
t∑n

j=1 e
Ri

j

, (7)

where Gi
t represents the the gate score of t-th experts for

i-th decoder layer of the edge-side language model. Con-
sequently, we generate task-specific LoRA weights as:

θi =

n∑
j=1

GiEj . (8)

where the θi indicates the generated LoRA weights for i-th
decoder layer.

Reparametrization. As the same as LoRA, we use the
reparameterization strategy to merge the generated LoRA
parameters into the FFN layers of the edge-side model. In
contrast to the LoRA-MoE, our method is cost-free dur-
ing inference, which needs no additional components in the
specialized edge-side LM.

4

LoRA-Gen: Specializing Large Language Model via Online LoRA Generation

Cloud-side LM

Routing Module

System Prompt:
• Few-shot samples
• Task Description
• Tools Definition
• In/Out-put Format Expert 1

Meta Token × 𝐿

Expert 2 Expert 3 Expert 𝑛

𝑔𝑎𝑡𝑒

𝐿𝑖𝑛𝑒𝑎𝑟𝑔𝑎𝑡𝑒 𝐿𝑖𝑛𝑒𝑎𝑟𝑢𝑝

+ +×

+

𝐿𝑖𝑛𝑒𝑎𝑟𝑑𝑜𝑤𝑛

+

+

… 0.42

0.27
0.31

0.00
…

Norm Layer

…

LoRA Expert Pool × 𝐿

𝑢𝑝𝑑𝑜𝑤𝑛

Router× 𝐿
Norm Layer

Multi-head Attention Layer

× 𝐿

User Inputs

Assistant Outputs

SiLU

Expert 1 Expert 2 Expert 3 Expert 𝑛

Assemble

Task-specific LoRA× 𝐿

Auxiliary Loss

In Training Stage…

(a) LoRA Generator (b) Edge-side Specialized LM

Reparameterize

……

Figure 3. Overview of our proposed LoRA-Gen. Given the system prompts by users, a large language model first generates meta tokens
autoregressively. With a routing module, we obtain the gates of all experts in the online LoRA pool. After assembling, we produce the
specialized LoRA in the cloud side and deploy it to the edge-side language model by merging the LoRA weights.

3.3. Training Target

Auxiliary Loss. Balanced load of MoE structure is es-
sential for capability of generalization and stability (Jacobs
et al., 1991). Without constraints, the routing module tends
to select a fixed small set of experts, leaving other experts
unused and causing load imbalance. To mitigate this issue,
we introduce a soft constraint with the coefficient of vari-
ation as the auxiliary loss, encouraging a more balanced
usage of the available experts. Formally, the constraint can
be formulated as:

Lcv = α(
σ(G)

µ(G)
)2, (9)

where σ and µ represent the standard deviation and mean of
the gates assigned to each expert within a batch, separately.
The coefficient α is to balance the auxiliary objective and
the main objective.

Total Loss. The total loss is consist of the language mod-
eling loss and auxiliary loss as follows:

Ltotal = Lcv + LLM , (10)

where LLM is the Cross Entropy loss of language modeling
in causal LMs.

4. Experiments
We conduct extensive experiments to evaluate the effec-
tiveness of our LoRA-Gen and compare it to the widely
adopted LoRA-based fine-tuning method on commonsense
reasoning tasks in a fair experimental setting. Further-
more, we assess the generalization capacity and system
prompt compression performance of LoRA-Gen on an
agent dataset, GPT4Tools (Yang et al., 2024a).

4.1. Datasets and Metrics.

Reasoning Tasks. Following (Dou et al., 2024; Li et al.,
2024a), we select eight widely-used benchmarks to as-
sess the reasoning ability of LoRA-Gen across various
knowledge domains ranging from natural science to daily
life. One classification task: BoolQ (Clark et al., 2019).
Five question-answering tasks: ARC-c (Clark et al., 2018),
ARC-e (Clark et al., 2018), OpenBookQA (Mihaylov et al.,
2018), PIQA (Bisk et al., 2020) and SocialQA (Sap et al.,
2019). One science completion task: Hellaswag (Zellers
et al., 2019) and a fill-in-the-blank task: Winogrande (Sak-
aguchi et al., 2020).

Agent Dataset. We utilize the GPT4Tools (Yang et al.,
2024a) which provides a benchmark to evaluate the ability

5

LoRA-Gen: Specializing Large Language Model via Online LoRA Generation

of LLM to use tools, to assess the effectiveness of LoRA-
Gen in the deployment of intelligent agents. GPT4Tools
constructs a tool-related instructional dataset, including
positive samples, negative samples, and context samples.
It consists of 71k instruction-response pairs with 21 tools
in the training set and 652 items in the test set with 8 novel
tools absent from the training set.

Metrics. The performance of all commonsense reason-
ing benchmarks is measured with the accuracy metric in
all datasets. To further evaluate the performance in multi-
task learning, we utilize two metrics: the average accu-
racy (AVE.) and the harmonic mean (HAR.) of all results.
For GPT4Tools, we measure the performance of method
from five aspect: successful rate of thought (SRt), suc-
cessful rate of action (SRact), successful rate of arguments
(SRargs), successful Rate (SR) and IoU according to (Yang
et al., 2024a).

4.2. Implementation Details

We deploy LLaMA3-8B (Grattafiori et al., 2024) as the
cloud-side LM during online task-specific LoRA parame-
ters generation. We finetune the q and v projection layers
of the LLM with a LoRA adapter. The number of experts
is 8 and we set K in the routing function TOP-K to 2 by
default. The coefficient α for auxiliary loss Lcv is set 0.01.
All the latencies are measured on the same GPU with 40GB
of memory. More details can be viewed in the Appendix.

4.3. Main results

Reasoning Tasks. We first evaluate the performance of
LoRA-Gen in the reasoning scenario as shown in Ta-
ble 2. We divide eight commonly used datasets into two
parts, one as the multi-task learning set, including ARC-c,
ARC-e, OpenBookQA, BoolQ, SocialQA and the other as
an unseen test set, including Hellaswag, Winogrande and
PIQA. We randomly sample to construct multi-shot train-
ing data. As shown in Table 2, LoRA-Gen consistently
achieves comparable performance while exhibiting lower
latency compared to other fine-tuning methods across var-
ious backbone models. Additionally, As shown in Ta-
ble 4, based on the same LLM, our method achieves abso-
lute gains of 1.5% over AutoCompressors (Chevalier et al.,
2023), while maintaining much higher efficiency. The re-
sults underscore the advantage of using LoRA-Gen, which
balances effectiveness and efficiency across both seen and
unseen tasks.

Intelligent Agent Scenario. We evaluate the perfor-
mance of LoRA-Gen with edge-side model Gemma-2B on
the GPT4Tools benchmark (Yang et al., 2024a). The re-
sults in Table 3 present a comparison of successful rates,
intersection-over-union (IoU), average performance, and

compression ratio (speedup). One key advantage of LoRA-
Gen is to compress the tools definition within the system
prompt into the generated LoRA parameters via a single-
turn inference. It significantly reduces the context length
with a compression ratio of 10.1x, which maintains com-
parable performance of 91.5% average score. On the other
hand, our method without training on GPT4Tools boosts
original Gemma-2B by 4.9% in average score, which
shows the effective generalization of our method. In con-
trast, removing the tool definitions in the vanilla LoRA
setting leads to a marked reduction in performance (SR:
-26.1%, IoU: -9.7%). Furthermore, benefiting from knowl-
edge injection from the cloud-side language model, it sur-
passes the baseline by 3.1 points while maintaining a 10.1x
compression ratio. The results highlight the strengths of
LoRA-Gen in effectiveness and efficiency, attributed to its
inference-time specialization and generalization ability to
unseen tools, making it well-suited for tasks with extensive
prefix descriptions.

4.4. Ablation study

Number of Experts in Online Expert Pool. As shown
in Table 5, we present the performance of different num-
bers of experts in the cloud-side LoRA pool. Performance
generally improves with an increasing number of experts.
With 4 experts, the AVE. is 56.4%, and the HAR. is 52.3
%. Increasing the number of experts to 12 yields slight im-
provements, with the AVE. rising to 57.3% and the HAR.
to 53.1%. However, the best performance is achieved with
8 experts, where both AVE. (58.7%) and HAR. (53.6%)
reach their peak values. This may indicate that 8 experts
strike the best balance between multi-task learning and un-
seen generalization.

Effectiveness of Balanced Load Strategy. Ensuring a
balanced load of experts can significantly improve the ro-
bustness and stability of the model. We initially conduct
an ablation study to assess the impact of the absence of
auxiliary losses on model performance. Without the auxil-
iary loss, the AVE. decreases by 1.2 points. Subsequently,
we summarize the impact of different values of the coeffi-
cient for auxiliary loss as shown in Table 6. As the aux-
iliary loss coefficient decreases, a significant improvement
in both performance metrics is observed. Reducing the co-
efficient from 0.1 to 0.01 yields further gains, resulting in
an average (AVE) of 58.7% and a harmonic mean (HAR) of
53.6%, thereby achieving an optimal balance between the
auxiliary strategy and the primary objective function. In
addition, we investigate the strategy of the router function.
As illustrated in Table 8, we compare two routing strategies
employed for online experts within the cloud-side LoRA
pool. Compared to Gumbel-softmax, KeepTOP-K strat-
egy exhibits a notable improvement, attaining an AVE of

6

LoRA-Gen: Specializing Large Language Model via Online LoRA Generation

Method Seen Tasks Unseen Tasks AVE. ↑ HAR. ↑ Latency
ARC-c ARC-e OBQA BoolQ SIQA HellaS WinoG PIQA (ms) ↓

TinyLlaMA-1.1B 34.2 66.9 27.4 58.8 46.0 45.8 60.7 73.9 51.7 46.7 44.5
+LoRA 33.6 67.6 28.6 71.9 51.5 44.5 61.9 75.1 54.3 48.5 44.5
+LoRAMoE 35.2 68.8 28.6 73.2 52.1 45.4 62.0 74.1 54.9 49.3 55.9
+MixLoRA 33.5 67.7 28.4 73.3 51.4 44.9 62.3 74.6 54.5 48.6 100.1
+LoRA-Gen 35.8 69.1 30.4 73.6 49.6 45.5 62.6 74.1 55.1 49.8 21.2

Qwen-1.5B 41.9 73.1 29.0 73.3 50.6 49.0 65.3 76.2 57.3 51.9 56.3
+LoRA 43.3 73.9 31.2 77.6 54.9 48.8 66.5 76.9 59.1 53.9 56.3
+LoRAMoE 43.9 73.7 29.8 77.3 53.4 48.7 66.3 76.9 58.8 53.2 65.7
+MixLoRA 43.4 73.8 31.8 78.2 54.6 48.9 66.4 76.5 59.2 54.2 141.9
+LoRA-Gen 44.3 74.3 33.4 79.6 53.6 49.1 67.4 76.9 59.8 55.0 26.7

Gemma-2B 50.3 81.5 33.8 73.4 49.3 55.6 71.5 78.7 61.8 57.0 87.3
+LoRA 49.9 78.2 36.0 80.9 56.8 55.4 71.7 79.2 63.5 59.2 87.3
+LoRAMoE 50.9 82.0 38.8 78.4 55.2 54.0 72.9 79.3 63.9 60.0 101.8
+MixLoRA 52.3 79.4 38.6 75.6 59.1 54.1 72.7 78.2 63.8 60.2 177.7
+LoRA-Gen 51.2 81.9 39.0 76.2 55.6 56.0 71.6 79.5 63.9 60.2 36.1

Table 2. Comparison of the performance with 5-shot samples on various commonsense reasoning benchmarks. Seen tasks indicate that
the datasets are part of the training set, while unseen tasks are not. AVE denotes the average accuracy of 8 tasks while HAR is the
harmonic mean. The latency scores of various methods are all calculated on ARC-c. Latency is measured on a Nvidia A100 GPU.

Method W/ Training W/ Tools
SRt SRact SRargs SR IoU Average Compress

Definiton Score ↑ Ratio ↑
Gemma-2B ✗ ✔ 86.3 77.6 77.7 65.0 89.7 79.3 1x+LoRA ✔ ✔ 99.4 79.6 93.8 78.2 91.0 88.4
+LoRA ✔ ✗ 98.0 60.9 83.2 52.1 81.3 75.1
+LoRA-Gen ✗ ✗ 94.1 86.8 79.7 73.3 86.9 84.2 10.1x
+LoRA-Gen ✔ ✗ 98.6 88.0 93.4 84.0 93.6 91.5

Table 3. Performance of different fine-tuning strategies with Gemma-2B (Team et al., 2024) on test set of GPT4Tools (Yang et al.,
2024a). W/ Training denotes Gemma-2B is fine-tuning on the training set of GPT4Tools with vanilla LoRA or our LoRA-Gen. Gray
rows indicate scenarios where the system prompt does not contain tools definitions, typically constituting 91% of the input context.

Method HellaS WinoG PIQA AVE. ↑ Latency
(ms)↓

AutoCompressors 44.7 62.4 73.3 60.1 11.4ms
LoRA-Gen 46.3 63.7 74.9 61.6 7.54ms

Table 4. Comparison with AutoCompressors (Chevalier et al.,
2023) in unseen tasks based on OPT-2.7B.

58. 7% and a HAR of 53. 6%. We consider that an over-
abundance of randomness may affect expert ability to learn
specific tasks during the optimization process.

Effectiveness of Meta Token. We attempt to utilize the
cloud-side large language model to generate LoRA param-
eters in a single forward pass directly instead of meta to-
kens. Specifically, we directly transform the output to-
kens of LLM to the LoRA weights space with a feedfor-
ward neural network and get the i-th layer generated LoRA
weights ∈ R3×2×d×r, where d is the hidden dimension and
r denotes the low rank of LoRA. As indicated by the exper-
imental results in Table 9, this approach exhibits compara-
ble performance to that achieved through meta tokens on

the seen tasks, while the results on the unseen tasks are sig-
nificantly lower than those obtained with meta tokens, trail-
ing by 11.1%. Generating LoRA parameters directly leads
to pronounced overfitting to the training domain, caused
by the large parameter space, thereby limiting its ability to
generalize to unseen tasks.

Effectiveness of Knowledge Transfer. As depicted
in Table 7, we compare the performance of the base-
line model and our LoRA-Gen across different few-shot
samples. Remarkably, LoRA-Gen with just a 1-shot
sample surpasses the baseline with 5-shot samples by
3.5% on HAR. We attribute this to the use of LLaMA3-
8B (Grattafiori et al., 2024) as the cloud model, which
transfers a portion of its knowledge to the edge-side lan-
guage model via reparameterization.

4.5. Qualitative Study in Agent Scenario

We deploy LoRA-Gen within Gemma-2B and conduct case
studies and visualizations. As illustrated in Figure 4,
LoRA-Gen removes the 26 tools description from input

7

LoRA-Gen: Specializing Large Language Model via Online LoRA Generation

Receive

Generate a real image of a carton-
style image based on the pose of
the girl

Processing time: 3.84s

Receive

[Tools Definition] + Generate a
real image of a carton-style
image based on the pose of the
girl

Processing time: 12.4s

image/ksxwfehm.png

image/ksxwfehm.png

LoRA-Gen

Processing time: 5.4s

[Task Description]
I want you to act as a poet, crafting
verses that resonate deeply with
the soul……Whether the tone is
joyful, melancholic, or
contemplative, your poem should
paint vivid images and capture the
emotions you wish to convey.

Poem Subject: love

A whisper in the wind, a touch
so light,\nA spark ignites,
banishing the night.\nLove's
gentle hand, a warm
embrace,\nA smile that lights up
every space.\n\n……treasure to
cherish, forevermore.\nA
beacon of hope, a guiding
star,\nLove's gentle light,
shining near and far.

Receive

⌛

[Task Description] +
Poem Subject: love

Love, a whisper on the
wind,\nA melody that softly
spins,\nA tapestry of threads so
fine,\nWoven with dreams, and
hopes divine.\n\nA touch that
sets the soul alight,\nA
beacon …… For love's
embrace, a timeless art,\nA
masterpiece, that sets the heart.✅ ❎ ✅ ✅

⌛

⌛ ⌛Processing time: 9.2s

Baseline LoRA-Gen Baseline

[Task Description]
I want you to act as a poet, crafting
verses that resonate deeply with
the soul……Whether the tone is
joyful, melancholic, or
contemplative, your poem should
paint vivid images and capture the
emotions you wish to convey.

[Tools Definition]

Specialized LM is Ready

General LM is Ready General LM is Ready

Specialized LM is Ready

Figure 4. Visualization comparison between LoRA-Gen and baseline, Gemma-2B (Team et al., 2024). LoRA-Gen compresses the tools
definition and task description into the generated LoRA parameters, effectively specializing the language model to reduce processing
times while maintaining comparable performance. The detailed LM outputs and system prompt can be accessed in the Appendix.

Number AVE. HAR.

4 56.4 52.3
12 57.3 53.1
8 58.7 53.6

Table 5. Number of Experts in
LoRA pool.

Coefficient AVE. HAR.

0.1 57.1 52.0
0.005 56.8 50.5
0.01 58.7 53.6

Table 6. Coefficient of auxil-
iary loss.

Few-shot AVE. HAR.

3-shot† 55.5 49.3
5-shot† 56.0 49.9
1-shot‡ 58.7 53.6

Table 7. † is baseline and ‡ in-
dicates LoRA-Gen.

Strategy AVE. HAR.

GumbleTOP-K 56.4 52.3
KeepTOP-K 58.7 53.6

Table 8. Routing strategy for
online experts.

LoRA Generation Seen AVE. Unseen AVE.

Direct 52.4 61.0
Meta-Token 52.0 72.1

Table 9. Different LoRA generation manner.

of the model, significantly reducing inference time and
achieving a 3.2x speedup compared to the baseline. The
limited generalization of the baseline model results in in-
correct tool selection, thereby highlighting the effective-
ness of our method. Additionally, in the open text gen-
eration scenario, LoRA-Gen accelerates reasoning time by
compressing the task definition while achieving compara-
ble results. The corresponding generation results are de-
tailed in the appendix.

5. Conclusion
In this paper, we propose an online LoRA generation
framework, called LoRA-Gen, which utilizes a cloud-side

language model to generate task-specific LoRA parameters
for edge-side models. Our strategy offers four advantages
over previous methods: context compression for unseen
tasks, a reparameterized language model, inference-time
specialization, and knowledge transfer. Extensive exper-
iments show that LoRA-Gen achieves competitive results
and an impressive speedup on common-sense reasoning
tasks. Additionally, our method achieves a compression ra-
tio of 10.1x on zero-shot agent tasks, indicating its potential
applicability to more scenarios. We believe our method-
ological approach can inspire future LLM-based research.

Acknowledgement
This work was partly supported by Shenzhen Key Lab-
oratory of next generation interactive media innova-
tive technology (No:ZDSYS20210623092001004) and Na-
tional Natural Science Foundation of China (No.62293544,
62425117).

8

LoRA-Gen: Specializing Large Language Model via Online LoRA Generation

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Bai, J., Bai, S., Yang, S., Wang, S., Tan, S., Wang, P., Lin,

J., Zhou, C., and Zhou, J. Qwen-vl: A frontier large
vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966, 2023.

Bisk, Y., Zellers, R., Le bras, R., Gao, J., and Choi, Y. Piqa:
Reasoning about physical commonsense in natural lan-
guage. Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 7432–7439, Jun 2020.

Brooks, T., Holynski, A., and Efros, A. A. Instructpix2pix:
Learning to follow image editing instructions. In Pro-
ceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pp. 18392–18402, 2023.

Chevalier, A., Wettig, A., Ajith, A., and Chen, D. Adapting
language models to compress contexts. In EMNLP, pp.
3829–3846. Association for Computational Linguistics,
2023.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T.,
Collins, M., and Toutanova, K. Boolq: Exploring the
surprising difficulty of natural yes/no questions. In Pro-
ceedings of the 2019 Conference of the North, Jan 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B.,
Sun, X., Xu, J., and Sui, Z. A survey on in-context learn-
ing. arXiv preprint arXiv:2301.00234, 2022.

Dou, S., Zhou, E., Liu, Y., Gao, S., Shen, W., Xiong, L.,
Zhou, Y., Wang, X., Xi, Z., Fan, X., et al. Loramoe: Al-
leviating world knowledge forgetting in large language
models via moe-style plugin. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1932–1945,
2024.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted
linear units for neural network function approximation
in reinforcement learning. Neural networks, 107:3–11,
2018.

Feng, W., Hao, C., Zhang, Y., Han, Y., and Wang, H.
Mixture-of-loras: An efficient multitask tuning for large

language models. arXiv preprint arXiv:2403.03432,
2024.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional conference on machine learning, pp. 1126–1135.
PMLR, 2017.

Fu, Y., Peng, H., Ou, L., Sabharwal, A., and Khot, T.
Specializing smaller language models towards multi-
step reasoning. In International Conference on Machine
Learning, pp. 10421–10430. PMLR, 2023.

Gao, C., Chen, K., Rao, J., Sun, B., Liu, R., Peng, D.,
Zhang, Y., Guo, X., Yang, J., and Subrahmanian, V.
Higher layers need more lora experts. arXiv preprint
arXiv:2402.08562, 2024a.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S.,
DiPofi, A., Foster, C., Golding, L., Hsu, J., Le Noac’h,
A., Li, H., McDonell, K., Muennighoff, N., Ociepa, C.,
Phang, J., Reynolds, L., Schoelkopf, H., Skowron, A.,
Sutawika, L., Tang, E., Thite, A., Wang, B., Wang, K.,
and Zou, A. A framework for few-shot language model
evaluation, 07 2024b. URL https://zenodo.org/
records/12608602.

Ge, T., Hu, J., Wang, L., Wang, X., Chen, S., and Wei,
F. In-context autoencoder for context compression in a
large language model. In ICLR. OpenReview.net, 2024.

Grangier, D., Katharopoulos, A., Ablin, P., and Hannun, A.
Specialized language models with cheap inference from
limited domain data. arXiv preprint arXiv:2402.01093,
2024.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
e-prints, pp. arXiv–2407, 2024.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A.
Meta-learning in neural networks: A survey. IEEE trans-
actions on pattern analysis and machine intelligence, 44
(9):5149–5169, 2021.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp.
2790–2799. PMLR, 2019.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. Lora: Low-rank
adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

9

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602

LoRA-Gen: Specializing Large Language Model via Online LoRA Generation

Huang, C., Liu, Q., Lin, B. Y., Pang, T., Du, C., and Lin, M.
Lorahub: Efficient cross-task generalization via dynamic
lora composition. arXiv preprint arXiv:2307.13269,
2023a.

Huang, C., Liu, Q., Lin, B. Y., Pang, T., Du, C., and Lin, M.
Lorahub: Efficient cross-task generalization via dynamic
lora composition. arXiv preprint arXiv:2307.13269,
2023b.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton,
G. E. Adaptive mixtures of local experts. Neural com-
putation, 3(1):79–87, 1991.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Jiang, H., Wu, Q., Lin, C.-Y., Yang, Y., and Qiu, L.
Llmlingua: Compressing prompts for accelerated in-
ference of large language models. arXiv preprint
arXiv:2310.05736, 2023.

Jordan, M. I. and Jacobs, R. A. Hierarchical mixtures of
experts and the em algorithm. Neural computation, 6(2):
181–214, 1994.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kopiczko, D. J., Blankevoort, T., and Asano, Y. M. Vera:
Vector-based random matrix adaptation. In ICLR. Open-
Review.net, 2024.

Labs, B. F. Flux. https://github.com/
black-forest-labs/flux, 2023.

Lester, B., Al-Rfou, R., and Constant, N. The power
of scale for parameter-efficient prompt tuning. arXiv
preprint arXiv:2104.08691, 2021.

Li, D., Ma, Y., Wang, N., Cheng, Z., Duan, L., Zuo, J.,
Yang, C., and Tang, M. Mixlora: Enhancing large lan-
guage models fine-tuning with lora based mixture of ex-
perts. arXiv preprint arXiv:2404.15159, 2024a.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing
continuous prompts for generation. arXiv preprint
arXiv:2101.00190, 2021.

Li, Y. Unlocking context constraints of llms: Enhancing
context efficiency of llms with self-information-based
content filtering. arXiv preprint arXiv:2304.12102,
2023.

Li, Z., Su, Y., and Collier, N. 500xcompressor: Generalized
prompt compression for large language models. arXiv
preprint arXiv:2408.03094, 2024b.

Liu, H., Tam, D., Muqeeth, M., Mohta, J., Huang, T.,
Bansal, M., and Raffel, C. Few-shot parameter-efficient
fine-tuning is better and cheaper than in-context learn-
ing. In NeurIPS, 2022.

Liu, H., Yuan, Y., Liu, X., Mei, X., Kong, Q., Tian, Q.,
Wang, Y., Wang, W., Wang, Y., and Plumbley, M. D. Au-
dioldm 2: Learning holistic audio generation with self-
supervised pretraining. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 2024a.

Liu, Q., Wu, X., Zhao, X., Zhu, Y., Xu, D., Tian, F., and
Zheng, Y. When MOE meets llms: Parameter efficient
fine-tuning for multi-task medical applications. In SI-
GIR, pp. 1104–1114. ACM, 2024b.

Liu, S.-Y., Wang, C.-Y., Yin, H., Molchanov, P., Wang,
Y.-C. F., Cheng, K.-T., and Chen, M.-H. Dora:
Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024c.

Mahabadi, R. K., Henderson, J., and Ruder, S. Com-
pacter: Efficient low-rank hypercomplex adapter layers.
In NeurIPS, pp. 1022–1035, 2021.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? a new dataset for open
book question answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, Jan 2018.

Mu, J., Li, X., and Goodman, N. D. Learning to compress
prompts with gist tokens. In NeurIPS, 2023.

Podell, D., English, Z., Lacey, K., Blattmann, A., Dock-
horn, T., Müller, J., Penna, J., and Rombach, R. Sdxl:
Improving latent diffusion models for high-resolution
image synthesis. arXiv preprint arXiv:2307.01952,
2023.

Sakaguchi, K., Le Bras, R., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, pp. 8732–8740, Jun 2020.

Sap, M., Rashkin, H., Chen, D., LeBras, R., and Choi, Y.
Socialiqa: Commonsense reasoning about social inter-
actions. Cornell University - arXiv,Cornell University -
arXiv, Apr 2019.

Shen, J., Tenenholtz, N., Hall, J. B., Alvarez-Melis, D., and
Fusi, N. Tag-llm: Repurposing general-purpose llms for
specialized domains. arXiv preprint arXiv:2402.05140,
2024.

10

https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux

LoRA-Gen: Specializing Large Language Model via Online LoRA Generation

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin,
C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahri-
ari, B., Ramé, A., et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Wang, J., Pu, J., Qi, Z., Guo, J., Ma, Y., Huang, N., Chen,
Y., Li, X., and Shan, Y. Taming rectified flow for in-
version and editing. arXiv preprint arXiv:2411.04746,
2024.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain-
of-thought prompting elicits reasoning in large language
models. In NeurIPS, 2022.

Xiao, Y., Luo, Z., Liu, Y., Ma, Y., Bian, H., Ji, Y., Yang, Y.,
and Li, X. Bridging the gap: A unified video comprehen-
sion framework for moment retrieval and highlight de-
tection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 18709–
18719, 2024a.

Xiao, Y., Song, L., Wang, J., Song, S., Ge, Y., Li, X., Shan,
Y., et al. Mambatree: Tree topology is all you need in
state space model. Advances in Neural Information Pro-
cessing Systems, 37:75329–75354, 2024b.

Xiao, Y., Song, L., Chen, Y., Luo, Y., Chen, Y., Gan, Y.,
Huang, W., Li, X., Qi, X., and Shan, Y. Mindomni: Un-
leashing reasoning generation in vision language models
with rgpo. arXiv preprint arXiv:2505.13031, 2025a.

Xiao, Y., Song, L., Yang, R., Cheng, C., Xu, Z., Zhang, Z.,
Ge, Y., Li, X., and Shan, Y. Haploomni: Unified sin-
gle transformer for multimodal video understanding and
generation. arXiv preprint arXiv:2506.02975, 2025b.

Yang, R., Song, L., Li, Y., Zhao, S., Ge, Y., Li, X., and
Shan, Y. Gpt4tools: Teaching large language model to
use tools via self-instruction. Advances in Neural Infor-
mation Processing Systems, 36, 2024a.

Yang, R., Song, L., Xiao, Y., Huang, R., Ge, Y., Shan,
Y., and Zhao, H. Haplovl: A single-transformer base-
line for multi-modal understanding. arXiv preprint
arXiv:2503.14694, 2025.

Yang, S., Ali, M. A., Wang, C.-L., Hu, L., and Wang, D.
Moral: Moe augmented lora for llms’ lifelong learning.
arXiv preprint arXiv:2402.11260, 2024b.

Zadouri, T., Üstün, A., Ahmadian, A., Ermiş, B., Locatelli,
A., and Hooker, S. Pushing mixture of experts to the
limit: Extremely parameter efficient moe for instruction
tuning. arXiv preprint arXiv:2309.05444, 2023.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sen-
tence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, Jan 2019.

Zhang, Q., Chen, M., Bukharin, A., Karampatziakis, N.,
He, P., Cheng, Y., Chen, W., and Zhao, T. Adalora:
Adaptive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv:2303.10512, 2023.

Zhang, R., Han, J., Liu, C., Zhou, A., Lu, P., Qiao, Y., Li,
H., and Gao, P. Llama-adapter: Efficient fine-tuning of
large language models with zero-initialized attention. In
ICLR. OpenReview.net, 2024.

Zhou, C., Yu, L., Babu, A., Tirumala, K., Yasunaga, M.,
Shamis, L., Kahn, J., Ma, X., Zettlemoyer, L., and
Levy, O. Transfusion: Predict the next token and dif-
fuse images with one multi-modal model. arXiv preprint
arXiv:2408.11039, 2024a.

Zhou, H., Tang, L., Yang, R., Qin, G., Zhang, Y., Hu,
R., and Li, X. Uniqa: Unified vision-language pre-
training for image quality and aesthetic assessment.
arXiv preprint arXiv:2406.01069, 2024b.

11

LoRA-Gen: Specializing Large Language Model via Online LoRA Generation

6. Appendix
6.1. Training details

The models are trained with eight NPUs (64GB memory
per device) by default. We set betas and momentum of the
AdamW optimizer with (0.9, 0.999) and 0.9, respectively.
During training, we utilize a Cosine Scheduler with an ini-
tial learning rate of 2× 10−5 and weight decay of 0.1. The
details are shown in Table 10

Hyper-parameters LoRA-Gen

optimizer AdamW
learning rate 2e-5
warm steps 50
weight decay 0.1
optimizer momentum β1, β2=0.9, 0.999
batch size 64
epoch 4
max length 2048
LoRA attention dimension (r) 16
LoRA scaling alpha (α) 16
LoRA drop out 0.05

Table 10. Fine-tuning configuration.

6.2. Detailed Assistant Output

The definition of tools follows GPT4Tools (Yang et al.,
2024a), encompassing vision foundation models (Xiao
et al., 2024b), generative models (Podell et al., 2023),
and application-specific models (Brooks et al., 2023; Xiao
et al., 2024a). Task description for the role play in the
qualitative study of the main text can be seen in Table 14.
To strengthen LoRA-Gen’s ability to compress and process
instructions in the system prompt, we modify the Alpaca
dataset, using GPT-4 to generalize specific problems into
instruction sets, which are subsequently used as training
data.

6.3. Statistical Significance

The standard errors of different tasks are shown in Ta-
ble 11, all statistics are calculated with the open-sourced
lm-evaluation-harness project (Gao et al., 2024b). Ad-
ditionally, we have re-evaluated our method 4 times on
GPT4Tools with a variation of about 0.65% in average
score.

6.4. Training Data.

Table 12 outlines the data scale for each reasoning task.
Moreover, we process the Alpaca dataset through GPT-4,
resulting in a filtered and abstracted set of 37,658 training
samples.

6.5. Efficiency Comparison

Table 13 presents the efficiency Comparison among dif-
ferent approaches. MixLoRA† indicates the method with-
out specific optimization. All metrics are measured on an
Nvidia GPU. FLOPs are measured using an input of 100
tokens and an instruction of 200 tokens, while memory and
latency are evaluated in training mode with a batch size of
8 per GPU.

6.6. More Potential Application

Our current validation focuses on LLMs, and future work
will explore its applicability to multimodal large mod-
els (Yang et al., 2025; Bai et al., 2023) and unified sys-
tems (Xiao et al., 2025a; Zhou et al., 2024a; Xiao et al.,
2025b) for understanding and generation. In addition, we
plan to enrich more models as tools by incorporating ad-
vanced image generation and editing models (Labs, 2023;
Wang et al., 2024), as well as speech recognition and syn-
thesis models (Liu et al., 2024a).

12

LoRA-Gen: Specializing Large Language Model via Online LoRA Generation

Method ARC-c ARC-e OBQA BoolQ SIQA HellaS WinoG PIQA

TinyLLaMA 0.0146 0.0089 0.0219 0.0076 0.0112 0.0050 0.0134 0.0100
Qwen 0.0145 0.0089 0.0229 0.0071 0.0113 0.0050 0.0132 0.0098
Gemma 0.0146 0.0089 0.0218 0.0075 0.0112 0.0050 0.0135 0.0096

Table 11. Standard error on language model benchmarks..

Method ARC-c ARC-e OBQA BoolQ SIQA HellaS WinoG PIQA

Train 1120 2250 4957 9427 33410 39905 9248 16100
Test 1171 2380 500 3270 1954 10042 1267 1838

Table 12. The data size of tasks used in our experiments.

Method Training Mode Inference Mode
FLOPs Memory Latency FLOPs Memory Latency

+LoRA 4.736E+11 37096MiB 0.85s 4.708E+11 11208MiB 0.19s
+LoRAMoE 4.742E+11 26326MiB 1.19s 4.742E+11 11286MiB 0.22s
+MixLoRA† 5.061E+11 30844MiB 2.17s 5.048E+11 11828MiB 1.08s
+LoRA-Gen 1.667E+12 39603MiB 2.84s 1.552E+11 10932MiB 0.11s

Table 13. Efficiency Comparison.

Task description of role play:
I want you to act as a poet, crafting verses that resonate deeply with the soul. Your task is to create a poem that
not only evokes emotions but also possesses the power to move and inspire those who read it. The subject matter
will be provided by the user, and your words should be carefully chosen to express the essence of that theme in a
way that touches hearts and stirs deep feelings. Aim for beauty in your language—let your choice of words carry
both meaning and emotion, so that each line speaks to the reader on a profound level. Whether the tone is joyful,
melancholic, or contemplative, your poem should paint vivid images and capture the emotions you wish to convey.

Edge-side model with LoRA-Gen answer:
A whisper in the wind, a touch so light,\A spark ignites, banishing the night.\Love’s gentle hand, a warm
embrace,\A smile that lights up every space.\\Two souls entwined, a tapestry of dreams,\Where laughter dances
and love softly gleams.\A bond unbreakable, a trust so deep,\In each other’s eyes, secrets they keep.\\Through
storms and sunshine, hand in hand they roam,\Building castles of hope, a love that calls them home.\A silent
language, spoken in the heart,\A symphony of feelings, a work of art.\\For love is a journey, a path to explore,\A
treasure to cherish, forevermore.\A beacon of hope, a guiding star,\Love’s gentle light, shining near and far.

The baseline answer:
Love, a whisper on the wind,\A melody that softly spins,\A tapestry of threads so fine,\Woven with dreams,
and hopes divine.\\A touch that sets the soul alight,\A beacon in the darkest night,\A warmth that melts the
coldest fear,\A solace, ever drawing near.\\It blooms in laughter, shared and bright,\In silent moments, bathed in
light,\A gentle hand, a knowing glance,\A shared embrace, a sacred dance.\\Love’s strength endures, a steadfast
guide,\Through storms and calm, it cannot hide,\A constant echo, soft and deep,\A promise whispered, secrets to
keep.\\So let us cherish every breath,\This precious gift, beyond all death,\For love’s embrace, a timeless art,\A
masterpiece, that sets the heart. \\\Let me know if you’d like me to explore a specific aspect of love, or if you
have a particular style or tone in mind.

Table 14. Detailed supplement to the visualization results in the main text.

13

	Introduction
	Related Work
	Parameter-Efficient Fine-Tuning
	LoRA Meets Mixture of Experts
	Context Compression

	Methodology
	Revisiting Mixture of LoRA Experts
	Online LoRA Generation
	Training Target

	Experiments
	Datasets and Metrics.
	Implementation Details
	Main results
	Ablation study
	Qualitative Study in Agent Scenario

	Conclusion
	Appendix
	Training details
	Detailed Assistant Output
	Statistical Significance
	Training Data.
	Efficiency Comparison
	More Potential Application

