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Abstract— Visible-infrared person re-identification (VI-ReID)
is challenging due to the large modality discrepancy between
visible and infrared images. Existing methods mainly focus on
learning modality-shared representations by embedding images
from different modalities into a common feature space, in which
some discriminative modality information is discarded. Different
from these methods, in this paper, we propose a novel Modality-
Specific Memory Network (MSMNet) to complete the missing
modality information and aggregate visible and infrared modality
features into a unified feature space for the VI-ReID task. The
proposed model enjoys several merits. First, it can exploit the
missing modality information to alleviate the modality discrep-
ancy when only the single-modality input is provided. To the best
of our knowledge, this is the first work to exploit the missing
modality information completion and alleviate the modality
discrepancy with the memory network. Second, to guide the
learning process of the memory network, we design three effec-
tive learning strategies, including feature consistency, memory
representativeness and structural alignment. By incorporating
these learning strategies in a unified model, the memory network
can be well learned to propagate identity-related information
between modalities and boost the VI-ReID performance. Exten-
sive experimental results on two standard benchmarks (SYSU-
MM01 and RegDB) demonstrate that the proposed MSMNet
performs favorably against state-of-the-art methods.

Index Terms— Visible-infrared person re-identification, modal-
ity discrepancy, modality-specific memory network, missing
modality information completion.

I. INTRODUCTION

PERSON re-identification (ReID) aims to match images
of a person captured from non-overlapping camera views
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[1], [2], [3]. It has gained increasing attention in computer
vision area for both research and application. Most existing
person ReID methods [4], [5], [6], [7], [8], [9] focus on
matching pedestrian images captured by visible cameras dur-
ing day time, which can be formulated as a single-modality
matching problem. However, it is difficult for visible cameras
to capture valid appearance characteristics of a person under
poor illumination environments, e.g., at night, which limits
the applicability of these methods in practical. To overcome
this limitation, many modern surveillance cameras can auto-
matically switch between visible and infrared modes when the
lighting conditions change significantly. Therefore, it becomes
essential to study the visible-infrared person re-identification
(VI-ReID) in real-world scenarios, which is a cross-modality
matching problem [10].

Compared to the widely studied conventional ReID task,
VI-ReID encounters the additional modality discrepancy prob-
lem resulting from the different wavelength ranges used in
the imaging process. Eventually, modality discrepancy leads
to a situation where the intra-class distance is larger than
the inter-class distance in VI-ReID. To overcome the modal-
ity discrepancy problem, various methods have been pro-
posed. These methods can be generally categorized into two
major categories: modality-shared feature learning methods
[11], [12], [13], [14], [15], [16] and modality information com-
pletion methods [17], [18]. The modality-shared feature learn-
ing methods try to embed images of different modalities into
a shareable feature space, then cross modality image retrieval
is achieved based on the sharable feature representation.
Wu et al. [10] propose a deep zero-padding framework
for modality-shared feature learning. Some recent studies
[12], [16], [19] exploit two-stream CNNs, including modality-
specific shallow layers and shared deeper layers to learn a
common feature space. However, since visible and infrared
images have quite different appearances, how to directly
embed images of different modalities into a shareable com-
mon feature space is still a difficult problem. Besides, the
discriminability of the feature representation of these methods
is limited for the reason that some discriminative modality
information, such as colors of visible images, is regarded
as redundant information. To address this limitation, the
modality information completion methods [17], [18] have been
proposed, and the goal is to make up the modality infor-
mation from one modality to another. D2RL [17] generates
multi-spectral images to compensate for the missing modal-
ity information by utilizing generative adversarial network
(GAN) [20]. Another representative work, cm-SSFT [18], tries
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Fig. 1. Comparison of modality-shared feature learning methods and our
method. Red circles refer to features of visible modality and green circles refer
to features of infrared modality. (a) Modality-shared feature learning methods
try to embed images from different modalities into a sharable feature space.
(b) The proposed method alleviates the modality discrepancy by completing
the missing modality information and aggregating features from both visible
and infrared modalities into a unified feature space.

to complete the missing modality information of each sample
based on the inter-modality and intra-modality affinity between
different samples. However, due to the uncertainty of image
generation, the generative model inevitably introduces noisy
generated samples, which are harmful for the missing modality
information completion. For cm-SSFT, it needs to utilize the
information of other query samples to obtain the missing
modality feature during the test stage, which is prohibited
in formal ReID test protocol. Thus, with the single modality
input only, it is difficult to complete the missing modality
information and bridge the modality discrepancy.

Based on the above discussions, the key challenge
in VI-ReID is how to bridge the modality discrepancy
between the visible and infrared modalities. Previous methods
[17], [18] have proven that an effective way to achieve
this goal is to complete the missing modality information.
Recently, Tang et al. [21] propose generalized deep transfer
networks (DTNs) to transfer label information across hetero-
geneous domains. On the basis of these insight, as shown in
Figure 1 (b), an intuitive idea is to design a memory network
by storing prototypical features of each modality as a bridge to
propagate information between visible and infrared modalities.
Each item in the memory network corresponds to prototypical
features of the visible/infrared modality. The missing modality
features can be reconstructed by retrieving items from the
other modality in the memory network. By aggregating the
original and missing modality features and obtaining a unified
feature space, the modality discrepancy can be well alleviated.
To make the memory network serve as a bridge between vis-
ible and infrared modalities and complete modality informa-
tion, We sum up the following three important characteristics
that should be considered. (1) Consistency. Given an input
visible (infrared) feature, we can reconstruct the corresponding
infrared (visible) feature from the memory network ideally.
That is, the reconstructed feature should be consistent with
the feature obtained from the backbone network. (2) Rep-
resentativeness. The memory items should be representative
enough for each modality, so that they can be used as the
proxy of each modality for modality information propagation.

(3) Alignment. The memory items from visible and infrared
modalities should be well aligned. That is, there should exist
a one-to-one correspondence between paired memory items
from different modalities. Only in this way can the memory
network be used as the bridge to reconstruct the missing
modality information.

Inspired by the above insights, we propose a novel
Modality-Specific Memory Network (MSMNet) to achieve
modality information completion for VI-ReID. Specifically,
we propose a memory network containing memory items
arranged in pairs: visible memory items and infrared memory
items. To complete the missing modality feature, take the
visible (infrared) feature as input, we calculate the similarity
with the visible (infrared) memory items. The similarity is
then used to aggregate infrared (visible) memory items to
obtain feature representations of infrared (visible) modality.
In this way, we can get the missing modality information and
leverage information from both visible and infrared modal-
ities even when the single-modality input is provided only.
To learn the memory network well, we introduce three learning
strategies to deal with the characteristics discussed above. For
the consistency characteristic, two modality discriminators
are adopted to make the reconstructed features from the
memory network consistent with features extracted from the
backbone network. For the representativeness characteris-
tic, we introduce a feature reconstruction loss. The feature
reconstruction loss encourages features can be reconstructed
by memory items from the same modality, thus making the
memory network save the prototypical representation. For the
alignment characteristic, we introduce a structural alignment
loss making the paired memory items from visible and infrared
modalities save the corresponding prototypical features. In this
way, memory items of two modalities can be well learned to
propagate identity-related information between modalities and
boost the VI-ReID performance.

The contributions of our method could be summarized into
three-fold:

• We introduce a novel Modality-Specific Memory Net-
work (MSMNet) to achieve missing modality information
completion for the VI-ReID task. To the best of our
knowledge, this is the first work by exploring the memory
network as the bridge to reduce the modality discrepancy
for VI-ReID task.

• To learn the memory network, we introduce three learning
strategies, including feature consistency, memory repre-
sentativeness, and structural alignment, to make paired
memory items representative and structural alignment
with each other. We conduct sufficient qualitative analysis
and also explain the insight of the proposed modality-
specific memory network.

• We achieve a new state-of-the-art on two standard
VI-ReID benchmarks and demonstrate the effectiveness
of our approach through extensive experiments.

II. RELATED WORK

In this section, we briefly overview methods that are related
to person ReID, visible-infrared person ReID and memory
network respectively.
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A. Person ReID
Person ReID aims to match images of a person captured

from non-overlapping visible camera views [1], [2], [3]. Exist-
ing person ReID works can be summarized to hand-crafted
descriptors [22], [23], [24], metric learning based methods
[4], [25], [26], [27], [28] and deep learning based methods
[5], [6], [7], [8], [29], [30], [31], [32]. In the early works based
on hand-crafted descriptors, Li et al. [22] extract local color
descriptors from patches and aggregate them using hierarchical
Gaussianization [33] to capture spatial information. In [24],
Liao et al.propose the local maximal occurrence (LOMO)
descriptor, which includes the color and SILTP histograms.
Metric learning based methods focus on proper loss functions,
like the contrastive loss [34] and the triplet loss [27]. In [28],
an improved triplet loss function is proposed to pull the
instances of the same identity closer, and push the instances
belonging to different identities farther from each other in the
learned feature space. Recently, with the advancement of deep
learning, person Re-ID has achieved inspiring performance.
Wang et al. [35] introduce the problem of learning person
ReID models from videos with weak supervision and present
a new co-person attention mechanism to utilize relationships
between videos with common person identities. Wu et al. [36]
propose a novel multi-level Context-aware Part Attention
(CPA) model to learn discriminative and robust local part
features. In [37], a novel online label co-refining frame-
work is proposed for robust Re-ID model learning. Among
these works based on deep learning, leveraging local features
extracted from human body parts has been the mainstream for
robust feature learning. Several works [5], [8], [9], [31], [32]
employ hand-crafted splitting, pose estimation models or
attention mechanisms to obtain part features and perform
part-level feature alignment. Sun et al. [5] uniformly partition
the feature map and learn part-level features by multiple
classifiers. Kalayeh et al. [9] extract several region parts with
human parsing methods and assemble final discriminative
representations with part-level features. Zhao et al. [8] and
Liu et al. [38] extract part-level features by designing modules
based on attention mechanisms. Although having achieved
great success in the conventional person ReID, these methods
are developed for visible modality and cannot perform well
for the VI-ReID task, which limits the applicability in poor
lighting surveillance scenarios.

B. Visible-Infrared Person ReID

Different from conventional person ReID, VI-ReID aims to
match visible and infrared person images captured by disjoint
cameras [10]. Current VI-ReID methods can be generally
categorized into two major categories: modality-shared feature
learning methods [10], [11], [12], [13], [14], [15], [16],
[39], [40], [41], [42] and modality information completion
methods [17], [18]. As for the modality-shared feature learning
methods, some methods mainly focus on designing an effective
feature extractor to extract modality shared and discrimi-
native representation [10], [11], [13], [41]. Wu et al. [10]
propose a deep zero-padding network to embed features in

a common space, and build the first large-scale VI-ReID
dataset named SYSU-MM01. Ye et al. [11] introduce a two-
stream network to handle the two modalities respectively
and a bi-directional dual-constrained top-ranking loss to
learn discriminative feature representations. Chen et al. [43]
introduce a structure-aware positional transformer network
to learn semantic-aware sharable modality features by uti-
lizing the structural and positional information. Recently,
Fu et al. [13] and Chen et al. [41] exploit the neural architec-
ture search technique to find the optimal network architecture
to minimize the modality discrepancy. Some image transla-
tion based methods adopt GAN to reduce the distribution
divergence of features of different modalities. Dai et al. [39]
introduce a cross-modality Generative Adversarial Network
(cmGAN) by exploiting a modality discriminator to reduce
the distribution divergence of visible and infrared features.
Wang et al. [44] propose an Alignment Generative Adversar-
ial Network (AlignGAN) by exploiting pixel alignment and
feature alignment jointly. Several studies [42], [45] try to
generate intermediate modality to further eliminate differ-
ences across different modalities. Li et al. [45] introduce an
auxiliary X modality and convert the cross-modality learn-
ing as an X-Infrared-Visible three-modality learning problem.
Wei et al. [42] propose a novel syncretic modality collabo-
rative learning (SMCL) model to bridge the cross modality
gap. Some other studies exploit two-stream CNNs with deep
metric learning [11], [12], [16], [40] or the attention mech-
anism [14], [15] to learn modality-shared feature represen-
tations. In [46], a novel bi-directional exponential angular
triplet loss is proposed to address the difficulty in learning
angularly discriminative feature embedding. Zhang et al. [47]
design a Angle metric space for solving VI-ReID prob-
lem and propose a cyclic projection network (CPN) for
implementing the Angular metric learning. Ye et al. [16]
introduce the hierarchical inter-modality metric learning tech-
nique to learn modality-shared embedding. Liu et al. [12]
propose the hetero-center triplet loss to constrain feature cen-
ters, which can effectively reduce inter-modality discrepancy.
Ye et al. [15], [48] design a dynamic dual-attentive aggrega-
tion module by mining both intra-modality part-level and
cross-modality graph-level contextual cues. However, the dis-
criminability of the feature representation of these methods is
limited for the reason that some discriminative information,
such as colors of visible images are regarded as redundant
information.

Recently, some modality information completion meth-
ods [17], [18] try to make up the modality information from
one modality to another to boost the VI-ReID performance.
Wang et al. [17] apply GANs to generate missing modality
information and extend the input of the feature extractor to
four dimensions. Lu et al. [18] try to complete the missing
modality information of each sample based on the inter-
modality and intra-modality affinity between different samples.
Different from existing methods, we propose a modality-
specific memory network as the bridge to complete the modal-
ity information and alleviate the modality discrepancy for the
VI-ReID task.
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Fig. 2. Overall architecture of our proposed Modality-Specific Memory Network (MSMNet), which consists of three parts: feature extraction, modality-specific
memory network and unified feature alignment. Given the input feature, the memory network is utilized to complete its corresponding missing modality feature.
Then, we aggregate the input feature and its missing modality feature to obtain a unified feature representation. ID-based classification loss and hetero-center
triplet loss are simultaneously adopted for unified feature alignment learning.

C. Memory Network
Memory network is a scheme to store information in

external memory and read the relevant contents from the
memory [49], [50]. It is first introduced by Weston et al. [49]
to reason with an additional memory component for the task
of question and answering. Miller et al. [51] further introduce
key-value paired memory structure where they address relevant
memory items by keys, and the corresponding values are
subsequently returned. Due to its high flexibility of storing
different knowledge in key-value pairs, the memory network
has been widely adopted in solving various vision problems
such as video object segmentation [52], [53], domain adapta-
tion [54], image colorization [55], anomaly detection [56], [57]
and video-based person ReID [53]. Seoung et al. [52] propose
a space-time memory network that stores the past frames with
object masks, then the current frame is segmented using the
mask information in the memory network. Vibashan et al. [54]
propose memory guided category-specific attention maps for
category-aware domain adaption. Wang et al. [58] develop a
structured and explicit memory architecture that allows agents
to access to its past percepts and explore environment lay-
outs for vision-language navigation. Lu et al. [59] integrate
a novel graph memory mechanism to efficiently adapt the
segmentation network to specific videos without catastrophic
inference or finetune. Chanho et al. [53] introcude the spatial
and temporal memories to refine frame-level person represen-
tions and to aggregate the refined frame-level features into a
sequence-level person representation. Inspired by these works,
our work utilizes the memory network for storing prototypical
features of each modality. By using the memory network as a
bridge, we can complete the missing modality information and
leverage information from both visible and infrared modalities
to obtain a unified feature space for VI-ReID task.

III. OUR APPROACH

In this section, we introduce the proposed Modality-Specific
Memory Network (MSMNet) in detail. We first give a brief
introduction of the feature extraction process in section III-A.

In section III-B, we describe each component of the memory
network and the process of modality information completion
in detail. Finally, we introduce the proposed learning strategies
for the memory network in Section III-C and the training and
inference process in section III-D.

A. Feature Extraction

Following previous works [12], [60], we adopt two-stream
CNNs to extract feature maps, where the first two con-
volutional blocks are different to capture modality-specific
low-level feature patterns and the parameters of the deep con-
volutional blocks are shared for two modalities. The architec-
ture of the feature extractor is shown in Figure 2. Given a pair
of images with the same identity, we can extract feature maps
FV

∈ RH×W×C for the visible image and FI
∈ RH×W×C

for the infrared image, where H, W, C are the height, width
and number of channels, respectively. Then FV and FI are
horizontally partitioned into K parts and each part is averagely
pooled to obtain the part feature vectors fV

k ∈ R1×C and
fI
k ∈ R1×C respectively, where k = 1, 2, · · · , K . To make

part features from two modalities discriminative, we add the
classification loss Lsid with two modality-specific classifiers:

Lsid = −

K∑
k=1

[
yV log P

(
fV
k ; θV

k

)
+ yI log P

(
fI
k ; θ I

k

)]
, (1)

where yV and yI denote the identity labels of fV
k and fI

k ,
and P

(
fV
k ; θV

k
)

and P
(
fI
k ; θ I

k
)

are probability predictions of
visible and infrared classifiers with parameters θV

k and θ I
k ,

respectively. The classification loss Lsid ensures that fV
k and

fI
k can maintain discriminative identity information of visible

modality and infrared modality respectively.

B. Modality-Specific Memory Network

To accurately memorize and propagate information between
visible and infrared modalities and further obtain the unified
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feature representation, we introduce a modality-specific mem-
ory network keeping prototypical features of each modality.
Given an input image, we can read from the memory network
to reconstruct its missing modality feature. For example, given
a visible image, we intend to reconstruct its corresponding
infrared feature. To achieve this goal, we introduce paired
modality-specific memory items, MV

k ∈ RC×N for visible
modality and MI

k ∈ RC×N for infrared modality, corre-
sponding to k-th part of visible and infrared images. Here,
N represents the number of memory items for each part
to model the part variation. The modality-specific memory
items are arranged in pairs, and individual items correspond
to prototypical features of visible or infrared modality.

1) Memory Read: Take visible feature fV
k as input, we intro-

duce how to read from the memory network and obtain the
reconstructed missing modality feature. To read the appropri-
ate infrared memory items, we first compute the similarity
between fV

k and each visible memory item:

sV
k,n =

fV
k · mV

k,n∥∥fV
k

∥∥
2 ·

∥∥∥mV
k,n

∥∥∥
2

, (2)

where mV
k,n represents the n-th memory item from MV

k and
n = 1, 2, · · · , N . Then, the matching probability is obtained
using the Softmax function as follows,

αV
k,n =

exp
(

sV
k,n/τ

)
∑N

n=1 exp
(

sV
k,n/τ

) , (3)

where τ is the temperature parameter. By calculating the
matching probability over all visible memory items, the read-
ing weight AV

k =

[
αV

k,1; αV
k,2; . . . ; αV

k,N

]
for fV

k can be

obtained. Based on the reading weight, the reconstructed
infrared feature for fV

k can be calculated by taking a weighted
aggregation of the infrared memory items:

f̂I
k =

N∑
n=1

αV
k,nmI

k,n, (4)

where f̂I
k is the reconstructed infrared feature based on fV

k and
the infrared memory items MI

k , and mI
k,n represents the n-th

memory item from MI
k .

The same procedure can be applied for the infrared feature
fI
k and we can get its corresponding reading weight AI

k by
calculating the similarity with MI

k . Its corresponding visible
feature f̂V

k can be also reconstructed as:

f̂V
k =

N∑
n=1

α I
k,nmV

k,n . (5)

Figure 3 illustrates the whole process of the memory read
operation.

2) Unified Feature Alignment: After obtaining the recon-
structed missing modality features, we add the reconstructed
missing modality features to the input features to obtain the
unified feature representation:

gV
k = h

(
fV
k + f̂I

k

)
, gI

k = h
(

fI
k + f̂V

k

)
, (6)

Fig. 3. Read operations for the modality-specific memory network and the
explanation of the structural alignment loss. Note that the two MV

k /MI
k in the

figure are the same.

where h (·) is a fusion layer consisting of a linear layer and a
batch normalization layer. By fusing the original features and
the reconstructed modality features, the visible and infrared
images are naturally embedded into a common feature space.
We adopt the cross-entropy loss and the hetero-center triplet
loss [12] simultaneously for unified feature alignment learning.
For the classification loss, we adopt modality-shared classifiers
to predict the identities:

Lid = −

K∑
k=1

[
yV log P

(
gV

k ; θk

)
+ yI log P

(
gI

k ; θk

)]
, (7)

where yV and yI denote the identity label of gV
k and gI

k ,
and P

(
gV

k ; θk
)

and P
(
gI

k ; θk
)

are probability predictions of
modality-shared classifiers with parameters θk .

3) Hetero-Center Triplet Loss: With the proposed modality-
specific memory network, we can reconstruct the missing
modality features and obtain the unified feature representations
gV

m,k and gI
m,k , respectively. Here m ∈ 1, 2, . . . , M represent

the m-th visible image and infrared image in the current mini-
batch. Notice that the subscript m is omitted for simplicity in
the other part of the paper. In order to alleviate the modality
discrepancy in the unified feature space, we adopt the hetero-
center triplet loss [12] to align gV

m,k and gI
m,k . First, for all

features in a mini-batch, the centers for the features of every
identity from each modality are computed as:

cV
i,k =

1
|Pi |

∑
gV

m,k∈Pi

gV
m,k,

cI
i,k =

1
|Qi |

∑
gI

m,k∈Qi

gI
m,k, (8)

where Pi denotes the visble image set with identity label i and
Qi denotes the infrared image set with identity label i in the
current mini-batch, and |·| denotes the number of images in
the set. Therefore, cV

i,k and cI
i,k denote the visible image center

and infrared image center for k-th part with identity label i .
The goal of hetero-center triplet loss is to make those features
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Fig. 4. The illustration of the hetero-center triplet loss, which aims at pulling
close those centers with the same identity label from different modalities,
while pushing away those centers with different identity labels regardless of
which modality it is from. Different colors denote different identities.

from the same identity close to each other, while those features
from different identities far from each other. Therefore, based
on the calculated centers, the hetero-center triplet loss is
defined as:

Lhc−tr i =

M∑
i=1

K∑
k=1

[
ρ +

∥∥∥cV
i,k

−cI
i,k

∥∥∥
2
− min

∗∈{V ,I}

∥∥∥cV
i,k − c∗

j,k

∥∥∥
2

]
+

+

M∑
i=1

K∑
k=1

[
ρ +

∥∥∥cI
i,k

−cV
i,k

∥∥∥
2
− min

∗∈{V ,I}

∥∥∥cI
i,k − c∗

j,k

∥∥∥
2

]
+

, (9)

where [·]+ indicates the max function max(0, ·), ρ is the
margin for the triplet loss, and c∗

j denotes an image cen-
ter with the different identity label j . For each identity,
Lhc−tr i concentrates on cross-modality positive pair and the
mined hardest negative pair in visible and infrared modalities.
The illustration of the hetero-center triplet loss is shown
in Figure 9.

The original triplet loss Ltr i with batch hard stategy [27]
computes the loss by comparison of the anchor to all the other
samples, which is too strict about constraining the pairwise
distance if there exist some outliers. These outliers would
form the adverse triplet and destroy other pairwise distances
in metric learning. Therefore, the center of each person is
adopted as the identity agent to compute triplet loss in [12].
In this way, we can relax the strict constraint by replacing the
comparison of the anchor to all the other samples with the
anchor center to all the other centers. Lhc−tr i also preserves
the property of handling both the intra-class and inter-class
variations simultaneously on visible and infrared modalities
in the common feature space. According to [12], the hetero-
center triplet loss can also reduce the computational cost
during training.

4) Initialization and Update of the Memory Network:
We set memory items MV

k and MI
k aas learnable parameters

and initialize them with Kaiming initialization. During the
training stage, the following proposed learning strategies can
guide the updating process of memory items through back-
propagation.

C. Memory Learning Strategies Designing

The proposed MSMNet explores a new way to utilize
both visible and infrared features to generate more discrim-
inative feature representation. However, with the loss func-
tions discussed above, it is not sufficient for learning the
memory network serving as the bridge to propagate modality
information. Firstly, if the reconstructed missing modality
features are inconsistent with the features obtained from the
backbone network, they will become interference information
for unified feature learning. Secondly, if the memory items
are not representative enough and do not save prototypical
features of each modality, the reconstructed missing modality
features cannot well represent the missing modality informa-
tion. Lastly, if there is no correspondence between visible and
infrared memory items, in Eq. (4) the reading weight AV

i
cannot be used for weighted aggregation of infrared memory
items. To deal with these problems, we design the following
three learning strategies for the memory network.

1) Feature Consistency: To make the features reconstructed
from the memory network consistent with features extracted
from the backbone network, we utilize two modality discrim-
inators DV and D I to classify the modality of reconstructed
features f̂∗k and f∗k :

Ladv =

K∑
k=1

[
logD∗

(
f̂∗k

)
+ log

(
1 −D∗

(
f∗k

))]
, (10)

where ∗ ∈ {V , I}. The modality discriminators DV and D I

are classifiers consisting of two fully connected layers stacked
with a Sigmoid function. To match the distribution of the
input and the reconstructed features from memory network,
we utilize the gradient reversal layer as proposed in [61].
The gradient reversal layer flips the gradient sign before
propagating the gradients back to the backbone network. The
discriminators DV and D I are trained to minimize Eq. (10)
while the backbone network is trained to maximize Eq. (10).
The adversarial training between the backbone network and
discriminator helps to reduce the distribution gap between
modality features reconstructed from the memory network and
those from the backbone network. Thus, the reconstructed
modality features f̂V

k and f̂I
k can well provide the missing

modality information.
2) Memory Representativeness: Since we expect the mem-

ory items to store prototypical features of each modality, they
should be representative enough for each modality. If each
input sample can be well reconstructed using memory items
from the same modality, then the memory items can be
used as the proxy of the modalities for modality information
propagation. Inspired by this, we propose a reconstruction
loss to make sure that we can reconstruct the input features
with memory items from the same modality. For example,
with the reading weight AV

k , we can reconstruct the input
feature fV

k from visible memory items MV
k . we first obtain

the reconstructed input features as follows:

f̃V
k =

N∑
n=1

αV
k,nmV

k,n, f̃I
k =

N∑
n=1

α I
k,nmI

k,n . (11)
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Then we minimize the Euclidean distance between the input
features and the reconstructed input features:

Lrec =

K∑
k=1

[∥∥∥fV
k − f̃V

k

∥∥∥
2
+

∥∥∥fI
k − f̃I

k

∥∥∥
2

]
. (12)

With the reconstruction loss, the modality-specific memory
items MV

k and MI
k are guided to save the representative

features of each modality.
3) Structural Alignment: As shown in Eq. (4), to reconstruct

the missing modality feature from the memory network by
using the single modality input and memory items from
the other modality, we utilize memory items from the same
modality as the bridge. For example, to reconstruct f̂I

i from
fV
i , the visible memory items are regarded as the bridge to

aggregate infrared memory items, as shown in Eq. (4). That
is, with the reading weight AV

k , the corresponding infrared
memory items in MI

k are aggregated. This process requires a
correspondence between visible and infrared memory items.
To achieve this goal, we introduce the following structural
alignment loss to align visible and infrared memory items:

Lalign =

K∑
k=1

[
DK L

(
AV

k ∥AI
k

)
+ DK L

(
AI

k ∥AV
k

)]
, (13)

where DK L (·) represents the KL divergence [62], and the
explanation of the structural alignment loss is shown in
Figure 3. With the proposed structural alignment loss, the
visible modality memory items save the visible prototypical
features in the same location where the infrared memory items
save the corresponding infrared prototypical features.

To sum up, the losses for memory network learning is
formulated as:

Lmem = λadvLadv + λrecLrec + λalignLalign, (14)

where λadv , λrec and λalign are hyper-parameters to balance
the contribution of each loss function. Through the above three
learning strategies, memory items of two modalities can be
well learned to serve as a bridge to propagate discriminative
information between visible and infrared modalities.

D. Training and Inference

For the VI-ReID task, our proposed MSMNet is trained by
minimizing the overall objective with identity labels as defined
in Eq. (15).

Lall = Lsid + Lid + Lhc−tr i + Lmem . (15)

During the testing stage, for each image from visible or
infrared modality, we concatenate the unified part features{
g∗

k
}K

k=1 in Eq. (6) together as its final representation:

g∗
=

[
g∗

1, g∗

2, · · · , g∗

K
]
, (16)

where ∗ ∈ {V , I} and [·] denotes the concatenation operator.
Finally, cross modality matching is conducted by computing
cosine similarities of feature vectors gV or gI between the
probe images and gallery images.

Fig. 5. The t-SNE visualization of original features and reconstructed
features. Different colors represent different identities. Here circle represent
original visible/infrared features and cross represent reconstructed modality
features.

1) The Insight of the Memory Network: In contrast to the
memory mechanism in MoCo [63], in which the goal is to
store more samples to increase the number of negative samples
during contrastive learning, our modality-specific memory has
the goal of aiding modality information completion by saving
all the potential visual patterns for visible/infrared modality
within the whole dataset and allowing access through the
memory read operation. Since the the potential visual patterns
are shared across training and test set, we can direct use the
memory items to reconstruct missing modality information
during the testing. The modality-specific memory items are
expected to reconstruct the initial features from the same
modality and save representative visual patterns of each
modality. To sum up, we intend to represent the feature
distriubution of each modality with K × N trainable mem-
ory items and further achieve missing modality information
reconstruction with these representative memory items.

We also alalyse the feature distribution of the reconstructed
feature representations using t-SNE, and results are shown
in Figure 5. Here circle represent original visible/infrared
features fV

k and fI
k and cross represent reconstructed modality

features f̂V
k and f̂I

k . The reconstructed visible/infrared features
are aligned with original visible/infrared features of the same
ID in the feature space.

IV. EXPERIMENTS

In this section, we first introduce implementation details
and datasets. Then, we conduct comprehensive experiments
to validate the effectiveness of the proposed modality-specific
memory network as well as each of its components. Finally,
we provide more analysis and visualization results to better
understand our method.

A. Datasets and Evaluation Protocol

1) SYSU-MM01: [10] is the first large-scale benchmark
for VI-ReID. This dataset consists of a total of 287,628
visible images taken by 4 visible cameras in the daytime, and
15,792 infrared images taken by 2 infrared cameras in the
dark environment. These images are captured in both indoor
and outdoor scenarios. The training set and the testing set
have 395 and 96 person identities, respectively. Following [10],
there are two testing modes: all-search and indoor-search. For
the all-search mode, the gallery set contains visible images
in both indoor and outdoor scenarios. For the indoor-search
mode, the gallery set merely contains visible images in the
indoor scenario. For both modes, there are also two settings:
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TABLE I
COMPARISONS WITH STATE-OF-THE-ART METHODS ON THE SYSU-MM01 DATASET. CM-SSFT∗ DENOTES THAT WE REPORT THE RESULTS OF

CM-SSFT UNDER THE SINGLE-QUERY SETTING [18] FOR FAIR COMPARISONS WITH OTHER METHODS.
RANK-K ACCURACY (%) AND MAP (%) ARE REPORTED

single-shot and multi-shot, where 1 or 10 images of a person
are randomly selected to form the gallery set.

2) RegDB: [68] is constructed by a dual-camera system
that includes a visible camera and a thermal-infrared camera.
It contains 412 persons, where each person has 10 images from
the visible camera and 10 images from the thermal-infrared
camera. Following [16], 2,060 images from 206 person iden-
tities are randomly chosen as the training set and the remaining
2,060 images from 206 identities make up the testing set.
There are two evaluation settings: Visible to Infrared and
Infrared to Visible. Taking Visible to Infrared for example,
it denotes using the visible images as the probe set and the
infrared images as the gallery set.

3) Evaluation Metrics: Following standard evaluation pro-
tocols for VI-ReID [10], [60], we adopt Cumulative Matching
Characteristic (CMC) and mean Average Precision (mAP) for
performance evaluation. The reported results on the SYSU-
MM01 dataset are an average performance of 10 times
repeated random probe/gallery splits [10], while that on the
RegDB dataset are an average performance of 10 trials with
different splits of training/testing sets [16], [17].

B. Implementation Details

Following the previous VI-ReID methods [12], [18],
we adopt ResNet50 [69] pretrained on ImageNet as our
backbone network. Following [12], [15], [60], we also set
the stride of the last convolutional block as 1. The number
of part features K is set to 6 and the number of memory
items N for each part is set to 20. We resize each person
image to the size of 384 × 144, and apply horizontal flipping
and random erasing [70] for data augmentation. For a mini-
batch, we randomly choose 8 identities and each identity has
4 visible and 4 infrared images. We use the Adam optimizer
to train our model for 120 epochs with a batch size of 64.
The learning rate is initialized to 3.5 × 10−4 and decayed to

its 0.1 and 0.01 at the 60-th and 90-th epochs. The hyper-
parameters λadv , λrec and λalign are set to be 1, 0.2 and 2,
respectively. We implement our model with PyTorch and train
it on one Geforce RTX 3090 GPU.

C. Comparison With State-of-the-Art Methods

In this section, we compare the proposed MSMNet with
the state-of-the-art VI-ReID methods on the SYSU-MM01
and RegDB datasets. The compared methods include image
translation based methods (cmGAN [39], AlignGAN [44],
JSIA-ReID [64]), intermediate modality generation based
methods (Xmodal [45], SMCL [42], MID [65]), deep
metric learning based methods (BDTR [11], TONE [16],
HCML [16], MCLNet [66]), modality-shared feature learning
with two-stream CNNs (DDAG [15], HAT [40], HCT [12]),
modality-shared feature learning with neural architecture
search technique (NFS [41], CM-NAS [13]) and modality
information completion methods (D2RL [17], cm-SSFT∗ [18]).
We directly use the original results from published papers for
comparison.

1) Results on the SYSU-MM01 Dataset: Table I shows the
performance of our method and previous methods on the
SYSU-MM01 dataset, which shows that MSMNet achieves
competitive performance compared with the state-of-the-arts.
Specifically, the proposed model achieves 73.46% Rank-1
accuracy and 69.58% mAP in the most challenging single-
shot and all search modes, improving the Rank-1 accuracy
by 2.88% and mAP by 1.34% over the best SOTA MPANet,
which verifies the superiority of the proposed method. Accord-
ing to the experimental results, we make the following obser-
vations. 1) Our method performs much better than the image
translation based methods. For example, compared with Align-
GAN [44], our method surpasses them by 31.06% in Rank-1
accuracy and 28.88% in mAP in the single-shot and all search
modes. Meanwhile, our MSMNet does not require a time-
consuming image generation process and avoids introducing
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TABLE II
COMPARISONS WITH STATE-OF-THE-ART METHODS ON THE REGDB DATASET.RANK-K ACCURACY (%) AND

MAP (%) ARE REPORTED. OUR METHOD ACHIEVES THE BEST PERFORMANCE

noisy generated samples. 2) Compared with the modality-
shared feature learning with two-stream CNNs, our method
exceeds HCT [12] by 11.78% in Rank-1 accuracy and 12.07%
in mAP in the single-shot and all search modes. The proposed
MSMNet can utilize information from visible and infrared
modalities and boost the VI-ReID performance. 3)For the
modality information completion method cm-SSFT, we com-
pare the performance of cm-SSFT with single query for fair
comparisons. The Rank-1 accuracy and mAP of our method
are 25.76% and 15.48% higher than cm-SSFT, which shows
the effectiveness of our modality-specific memory network for
modality information completion.

2) Results on the RegDB Dataset: The comparison results
on the RegDB Dataset are shown in Table II. The performance
of MSMNet outperforms existing state-of-the-art methods
by large margins under both evaluation settings. Specially,
on the visible-to-infrared setting, MSMNet makes a significant
improvement of 4.93% in Rank-1 accuracy and 5.27% in
mAP compared to the top-performing method HCT [12]. The
similar improvement also presents in the infrared-to-visible
mode, which shows that our method is robust to visible and
infrared query settings. Compared to the current best state-of-
the-art method CM-NAS [13] punlished in ICCV 2021, our
method outperforms CM-NAS by 11.44% in Rank-1 accuracy
and 8.32% in mAP on the visible-to-infrared setting, and
by 10.87% in Rank-1 accuracy and 8.35% in mAP on the
infrared-to-visible setting. In conclusion, the above results
clearly indicate that the proposed MSMNet leads a new state-
of-the-art performance on the RegDB dataset.

D. Ablation Studies

In this section, we perform extensive ablation studies to
investigate the effectiveness of the components of our model.
Results are evaluated on the SYSU-MM01 dataset in the all-
search and single-shot modes to analyze each component of
our method. The baseline model is based on HCT [12] with

TABLE III
PERFORMANCE COMPARISON WITH DIFFERENT COMPONENTS OF OUR

METHOD ON THE SYSU-MM01 DATASET IN THE
All-Search AND Single-Shot MODES

a few modifications, which the optimizer is set to Adam and
the learning rate is initialized to 3.5 × 10−4, while they use
SGD to optimize the model in their source code. We find that
such training strategy yields better results than in their paper.
The baseline model uses ResNet-50 as the backbone and uses
part features fV

k for visible images and fI
k for infrared images

without the proposed reconstructed missing modality features
and three losses. The results are shown in Table III.

1) Effectiveness of the Memory Network: We first evaluate
the effectiveness of the proposed modality-specific memory
network. The memory network is denoted as M in Table. III.
As shown in index-1 and index-2, compared with the baseline
model, when only the modality-specific memory network is
adopted, the performance is significantly improved by +3.47%
mAP and +4.36% in Rank-1 accuracy. This is because the
baseline model only considers the modality shared features,
and some identity-related information is regarded as redun-
dant information. In contrast, our proposed MSMNet adopts
modality-specific memory items serving as a bridge to prop-
agate identity-related information between two modalities to
boost the VI-ReID performance.

2) Effectiveness of the Structural Alignment: From index-2
and index-3, when the structural alignment loss is added, the
performance is greatly improved by +2.05% and up to 70.92%
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TABLE IV
PERFORMANCE OF DIFFERENT WAYS OF COMPLETING THE MISSING

MODALITY INFORMATION ON TWO DATASETS

Rank-1 accuracy. This shows that the correspondence between
memory items from visible and infrared modalities is of
significant importance to the learning of the memory network.
The structural alignment loss makes the paired memory items
from different modalities save the corresponding prototypical
features. When memory items are aligned with each other, the
designed memory read operation can retrive proper memory
items for the missing modality information completion.

3) Effectiveness of the Memory Representativeness: From
index-2 and index-4, when the reconstruction loss is added,
the performance is improved by +1.82% in Rank-1 accuracy
and +1.48% mAP. From index-3 and index-6, we can see
that when the structural alignment loss has been added,
the reconstruction loss can still improve +1.61% in Rank-1
accuracy and +1.42% mAP. This is because with the pro-
posed reconstruction loss, modality-specific memory items are
guided to reconstruct input features from the same modal-
ity and try to store prototypical features of each modality.
Thus, the learned modality-specific memory network would
be representative enough to serve as the proxy for modality
information reconstruction and further boost the performance.

4) Effectiveness of the Feature Consistency: From index-2
and index-5, we can see that the modality discriminators bring
in +1.01% Rank-1 accuracy and +0.92% mAP improvements.
The modality discriminators make the reconstructed features
from the memory network be consistent with the features
extracted from the backbone, and can alleviate the modality
discrepancy. From index-7, we can see that when the proposed
three losses work together, our method achieves the best
performance. The results demonstrate that each proposed loss
plays an important role in modality-specific memory network
learning and alleviating modality discrepancy.

5) Effectiveness of the Two Modality Discriminators:
(1) The two modality discriminators are designed to make the
features reconstructed from the memory network consistent
with features extracted from the backbone network. Take the
visible discriminator DV as an example. The reconstructed
visible modality feature f̂V

k tries to fool the discriminator
DV by approximating original visible feature fV

k . The visible
discriminator tries to distinguish the original visible feature
fV
k and the reconstructed visible feature f̂V

k as accurate as
possible. Finally, the reconstructed visible feature f̂V

k will
be eventually consistent with the original visible feature fV

k .
Similarly, D I is to make the reconstructed infrared feature
f̂I
k consistent with fI

k . (2) If we use a single discriminator
for both modalities, the origninal features fV

k , fI
k and the

reconstructed features f̂V
k , f̂I

k will be directly aligned with
a single discriminator D. As the result, the visible feature
fV
k and infrared feature fI

k will be directly aligned. That is,

TABLE V
PERFORMANCE OF USING ONE OR TWO MODALITY DISCRIMINATORS

Fig. 6. Parameter analyses of λadv , λrec , λalign and the number of memory
items N in Eq. (14) on the SYSU-MM01 dataset in the all-search and single-
shot modes.

Fig. 7. Hyperparameter evaluations about the part number K on the
SYSU-MM01 dataset.

the process of modality information completion could provide
little discriminative information. We conduct experiments to
show the effectiveness of two modality discriminators, and
the results are shown in Table V. From the results, we can
see that two modality discriminators perform the best, e.g.,
improve the mAP by 2.61% as compared to that of using one
discriminator on the SYSU-MM01 dataset. The use of one
discriminator for both modalities even has a negative impact
on performance.

6) Parameter Analysis: The proposed MSMNet involves
three trade-off parameters λadv , λrec and λalign in Eq. (14).
Here, λadv controls the relative importance of the feature
consistency, λrec controls the relative importance of memory
representativeness and λrec controls the relative importance of
memory structural alignment. We analyze the three hyperpa-
rameters on the SYSU-MM01 dataset in the all-search and
single-shot modes, and we keep the other hyperparameters at
the best choice when one hyperparameter varies. The Rank-1
and the mAP results of MSMNet with different λadv , λrec and
λalign are shown in Figure 6. We can see that our method is
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Fig. 8. Visualization of the distribution of learned representions from MSMNet and the baseline method by t-SNE. Different colors represent features of
different ideneities, and triangle and circle symbols refer to features of visible and infrared images, respectively. (a) Features extracted by the ResNet-50
pretrained on ImageNet. (b) Features extracted by the baseline model. (c) Features extracted by MSMNet without three learning strategies. (d) Features
extracted by the proposed MSMNet. It is obvious that the MSMNet better alleviates the modality discrepancy and improves the discriminability.

robust to the hyperparameters, and the most suitable parameter
setting is that λadv = 1, λrec = 0.2 and λalign = 2.

We also evaluate the influence of different number of mem-
ory items N in Figure 6 (d). From the results, we can observe
that the performance keeps improving before N arrives at 20,
and when N is greater than 20, the performance of the model
hardly changes. We conclude that 20 memory items are enough
to complete the missing modality information. And when N
is greater than 20, there are some duplicate memory items in
the memory network that cannot bring in further performance
improvements.

We perform hyperparameter evaluations about the part num-
ber K on the SYSU-MM01 dataset. The results are shown in
Figure 7. When K = 1, our model learns the global feature
for each image. From the results, we can observe that the
performance continues to grow until K = 6, which means that
it is enough to divide the image into six parts for discriminative
local feature learning.

E. Further Analysis

In this section, we provide more analysis and visualization
results to better understand our method.

1) The Superiority of Using the Memory Network: The
key challenge in VI-ReID is how to bridge the modality
discrepancy between visible and infrared modalities. An effec-
tive way to achieve this goal is to complete the missing
modality information. However, it is hard to infer the missing
modality information only with the single modality image as
input. Thus, we intend to use the memory network which
saves prototypical features of two modalities to provide the
missing modality information. To verify the superiority of
using memory networks, We replace the memory network with
learnable linear layers to complete the missing information
for comparison, which means f̂I

k = FC
(
fI
k
)

in Eq. 4 and
f̂V
k = FC

(
fV
k
)

in Eq. 5. The experiments are conducted in
the all-search and single-shot modes on the SYSU-MM01
dataset and on the visible-to-infrared setting on the RegDB
dataset. The comparison results are shown in Table IV, and
“Base” represents the baseline model. On both datasets, the
performance of using linear layers is better than that of the
baseline model, which proves the effectiveness of missing
modality information completion. Moreover, the proposed
MSMNet with memory network improves Rank-1 accuracy by

Fig. 9. The visualization of the correlation matrix between memory items in
MV

1 when the model is trained with and without the proposed three learning
strategies. The darker the color, the smaller the value. Best viewed in color.

6.50% as compared to that with learnable linear layers on the
SYSU-MM01 dataset, and boost the mAP by 3.41% compared
with using learnable linear layers on the RegDB dataset.
Therefore, our proposed modality-specific memory network
can effectively complete the missing modality information
completion for alleviating the modality discrepancy.

2) Visualization of Unified Feature Distributions: In order
to inspect the impact of the proposed method, we randomly
select 10 identities from the test set and visualize the distri-
butions of the learned features by t-SNE [71] in Figure 8.
As shown in Figure 8 (a), the features extracted by the
ResNet-50 pretrained on ImageNet have considerable modality
discrepancy and cannot perform well for the cross modality
matching. In Figure 8 (b), although most features extracted by
the baseline model can be clustered well, there are still some
identities that remain large inter-identity modality discrepancy,
such as the purple ones. In Figure 8 (c), with the proposed
memory network, the features are better clustered together
than the baseline model. In Figure 8 (d), the unified fea-
ture representations extracted by the proposed MSMNet well
alleviate the modality discrepancy and improves the discrim-
inability. The features of different identities are separated into
disjoint clusters with larger inter-class margins. Thus, with the
reconstructed missing modality features, the discriminability
of the unified feature representation obtained by MSMNet is
significantly improved.

3) The Non-Redundancy of Memory Items: To validate
the non-redundancy of N memory items in our method,
we compare the correlation matrix between memory items in
MV

1 when the model is trained with and without the proposed
three learning strategies, and the results are shown in Figure 9.
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Fig. 10. Top-5 retrieval results on the SYSU-MM01 dataset. The green
rectangles indicate correct retrieval results and red rectangles denote false
retrieval results (best viewed in color).

Fig. 11. Top-5 retrieval results on the RegDB dataset. The green rectangles
indicate correct retrieval results and red rectangles denote false retrieval results
(best viewed in color).

From the results, we can see that the correlation between mem-
ory items would be higher when the model is trained without
the proposed three learning strategies. We conclude that the
proposed feature consistency, memory representativeness, and
structural alignment strategies would make memory items
store diverse and representative modality features and force
the memory items to be different from each other. From the
parameter analysis result in Figure 6, we can also observe that
finding a suitable N is also helpful in reducing the redundancy
of N memory items. When N is greater than 20, there are some
duplicate memory items in the memory network that cannot
bring in further performance improvements.

4) Visualization of Retrieval Results: To better reflect the
effectiveness of our methods, we visualize the top-5 retrieval
results on two datasets. The ranking results on the SYSU-
MM01 dataset are shown in Figure 10 and ranking results
on the RegDB dataset are shown in Figure 11. The green

rectangles denote the correct retrieval results, and the red
rectangles denote the false retrieval results. It is obvious that
the proposed MSMNet can retrieve most correct images, which
illustrates the effectiveness of our method. Interestingly, in the
first line of Figure 10, some images are even difficult for
humans, but the proposed method can still retrieve the correct
results. It can also be observed that due to large pose and
viewpoint variations on the SYSU-MM01 dataset, different
pedestrians with similar pose or body shape are likely to be
identified as the same person, thus affecting the performance.
While for the RegDB dataset, since images captured by the
dual-camera system have achieved pose alignment, our method
can retrieve almost all the correct pedestrian images. The
visualization results prove that the proposed MSMNet can
effectively alleviate the modality discrepancy and retrieve
the correct pedestrian images in poor lighting surveillance
scenarios.

V. CONCLUSION

In this paper, we propose a Modality-Specific Memory
Network for the challenging VI-ReID. To alleviate the modal-
ity discrepancy between the visible and infrared modalities,
we design a modality-specific memory network as a bridge
to complete the missing modality information. To learn the
memory network, we introduce three learning strategies to
make paired memory items from two modalities representative
and structural alignment with each other. Extensive experi-
ments on two popular datasets demonstrate the superiority of
the proposed MSMNet, as well as the effectiveness of each
component of our method.
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