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Abstract
A basic aspiration for interpretability research in
large language models is to ”localize” semanti-
cally meaningful behaviors to particular compo-
nents within the LLM. There are various heuris-
tics for finding candidate locations within the
LLM. Once a candidate localization is found, it
can be assessed by editing the internal representa-
tions at the corresponding localization and check-
ing whether this induces model behavior that is
consistent with the semantic interpretion of the
localization. The question we address here is:
how strong is the evidence provided by such ed-
its? To assess localization, we want to assess the
effect of the optimal intervention at a particular
location. The key new technical tool is a way of
adapting LLM alignment techniques to find such
optimal localized edits. With this tool in hand, we
give an example where the edit-based evidence
for localization appears strong, but where local-
ization clearly fails. Indeed, we find that optimal
edits at random localizations can be as effective as
aligning the full model. In aggregate, our results
suggest that merely observing that localized ed-
its induce targeted changes in behavior provides
little to no evidence that these locations actually
encode the target behavior.

1. Introduction
A basic goal of interpretability research for large language
models is to map semantically meaningful behavior to partic-
ular subcomponents of the model. Semantically meaningful
encompasses a wide range of things, e.g., “when asked for
directions to the Eiffle tower, the model gives directions
to Paris”, “the model responds truthfully”, or “the model
will refuse to response”. The aim is to find, e.g., neurons,
circuits, or regions of representation space that control these
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behaviors. If we could find such localizations, we could
use them as building blocks to understand complex model
behaviors. Many interpretability approaches can be under-
stood in terms of the following idealized template (e.g., Zou
et al., 2023; Arditi et al., 2024; Wang & Shu, 2023; Chen
et al., 2024; Wei et al., 2024; Li et al., 2024; Meng et al.,
2022; Vig et al., 2020; Geiger et al., 2021; Soulos et al.,
2019; Finlayson et al., 2021; Wang et al., 2022; Chan et al.,
2022; Hanna et al., 2024; Conmy et al., 2023; Todd et al.,
2023; Hendel et al., 2023):

1. We use some heuristic to find a candidate location in
the model that is conjectured to be responsible for a
particular behavior.

2. We then run the model with some set of inputs, and
collect the model’s internal representations for each
input.

3. Then, we edit each of these representations at the can-
didate location, and generate new outputs according to
the edited representations.

4. If the edit changes the model’s behavior in the manner
that would be expected from changing the target behav-
ior, we take this as evidence in support of localization.

For example, if editing a particular location in the network
shifts the model to give truthful answers, we may take this as
evidence that the location meaningfully encodes truthfulness
in some sense. Or, if editing a location causes the model
to act as though the Eiffel tower is in Rome, we may take
this as evidence that the location encodes the concept of the
Eiffel tower. The basic question in this paper is: how strong
is this evidence? That is, to what extent can we conclude
that a particular location in the model is responsible for a
particular behavior based on the success of editing at that
location?

Our core contribution is an example where editing-based
evidence appears very strong, but where localization clearly
fails. The example replicates the setup of Inference-Time-
Interference (ITI) (Li et al., 2024), where the target concept
is truthfulness, and the localization is in a small subset of 16
attention heads. Following ITI, we use logit-linear probing
to identify candidate heads. We then search for the optimal
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localized edit to apply at these heads. Remarkably, we find
that the optimal edit induces truthfulness behavior that is
essentially as good as finetuning the entire model to be
truthful. That is, the localized edit is as effective as can
possibly be expected. Intuitvely, this appears to be strong
evidence that the locations found by the heuristic (probing)
are indeed closely linked to the target concept (truthfulness).
However, we then show that this evidence is misleading.
We find that applying optimal edits to random heads are
just as effective as when applied to the localized heads.
Accordingly, the edit-based evidence provides no support
for the localization hypothesis.

A possible out here is that 16 attention heads is too many,
leaving us with significant leeway to induce any behavior
we want with editing. We further strengthen the example
by showing that it is possible to find a single head in the
model where editing at that head is as effective as finetuning
the entire model. This appears to be the strongest edit-
based evidence for localization possible. However, we show
that there are in fact multiple such heads. That is, there is
simply no single privileged location that can be identified
as responsible for the target behavior.

Our results suggest that the evidence provided by editing is
weak, and that the success of editing at a particular location
is not a reliable indicator of the location’s importance for
the target behavior. This seems to significantly constrain
what can be learned from interpretability methods. It also
points to the need for a more rigorous development of such
techniques, including both precise statements of what the
goals are, and well-grounded standards for evidence that
these goals have been met.

The technical development in this paper relies on finding
the optimal intervention at a specified location. To that end,
we develop a method for localizing LoRA type finetuning to
specific locations. This then allows us to frame the search
for optimal edits as a finetuning-type optimization problem.
This method may also be of independent interest.

2. Background and results from ITI
We replicate the setup of ITI (Li et al., 2024).

Dataset and Model Architecture We use TruthfulQA
(Lin et al., 2021) as our dataset. It contains 817 questions
that humans might answer incorrectly due to misconcep-
tions. Each question contains an average of 3.2 truthful
answers and 4.1 false answers. We use 60% of the ques-
tions for training, and the rest for validation and testing.

We use an Alpaca-7B (Taori et al., 2023) model that is fine-
tuned from the Llama-7B base model. The model consists
of L = 32 layers, each consisting of a Multi-head Attention
(MHA) layer, and a Multilayer Perceptron (MLP) layer. We

focus on the MHA layer, which has H = 32 attention heads,
with each head having dimension H = 128 (the hidden
dimension is DH = 4096).

Ignoring MLP and layer normalization, the computation at
layer l can be written as:

ol
h := Attnl

h(r
l) ∈ RD (2.1)

ol := [(ol
1)

T , . . . , (ol
H)T ]T ∈ RDH (2.2)

W l := [W l
1, . . . ,W

l
H ] ∈ RDH×DH (2.3)

rl+1 := rl +W lo = rl +

H∑
h=1

Whoh ∈ RDH (2.4)

where rl ∈ RDH is the residual stream before layer l, Attnlh
is the h-th attention module at layer l, with ol

h being its
output. ol is the concatenated head outputs. W l is the
project-out matrix, that applies H independent linear trans-
formations to the corresponding head outputs. Finally rl+1

is residual stream output after layer l.

Localization and intervention using activation statistics
To localize, we collect representations for positive and nega-
tive examples, and use probing to find where the truthfulness
concept is represented. To intervene, we find the direction
best separating activations for positive and negative exam-
ples, and apply this direction to the representation.

Each example is of the form, (x, y, xrandom), concatenating
a question x, a corresponding answer y, and another random
question xrandom. For positive examples, we use a truthful
response y = y+, and for negative examples, we use an
untruthful response y = y−. To collect the representations,
we feed the positive and negative examples through the
model, and collect the activations of the attention heads,
{ol

h}h∈[H],l∈[L], at the last token.

For each of the L ×H head locations, we train a logistic
regression probe on the D-dimensioanl activations to predict
whether it’s a positive or negative example. Then we pick
the attention heads with the highest probing accuracies as
the localized heads.

For the selected head at (l, h), we find the direction ul
h that

is “best” at separating the activations of positive and neg-
ative examples. There are several variants, but according
to (Li et al., 2024), the best option is the mass mean shift,
which is the difference between the average positive and
negative activations. Then we estimate the standard devia-
tion of activations along the direction to be σl

h, and use the
weighted direction θhh := σl

hu
l
h as the intervention vector,

which we add to the corresponding head during inference
autoregressively.
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More specifically, the applied intervention is:

rl+1
ITI := rl +W l(o+ αθl) (2.5)

= rl+1
orig + αW lθl = rl+1

orig + α

H∑
h=1

W l
hθ

l
h (2.6)

where θl is the concatenated intervention vectors across all
heads at layer l, and α is the intervention strength. This
intervention is repeated for each next token prediction au-
toregressively until the whole answer is completed.

Evaluation Metrics Since the goal is to assess model’s
generation quality, it’s natural to use truthfulness score and
informativeness score of generations as the evaluation met-
rics. They use GPT-judge models (Lin et al., 2021) to eval-
uate the model’s generations for truthfulness and informa-
tiveness, and use Info*Truth (the product of scalar truthful
and informative scores) as the main metric.

We also report other metrics as in the ITI paper: KL di-
vergence of the model’s next-token prediction distribution
post- versus pre-intervention, and multiple-choice accuracy
(MC) which is determined via comparing the conditional
probabilities of candidate answers given the question.

3. Editing Localized Heads Modifies the
Output as Expected

In ITI, the authors find that editing on 16 localized heads
(out of a total of 1024 heads) successfully steers model gen-
erations to be more truthful while still being informative.
They also find intervening on all attention heads doesn’t
make model generations more truthful than intervening just
at the localized heads. This seems to suggest that the truth-
fulness concept is indeed encoded in the localized heads.

We now strengthen this evidence further. Similar to Hase
et al. (2024), we check if interventions at random heads can
also make model generations more truthful. More specifi-
cally,

1. Randomly select 16 heads, and compute intervention
vectors θl’s accordingly.

2. Apply varying intervention strength α, collect model
generations, and compute scores for truthfulness and
informativeness using GPT-judge across all interven-
tion strengths.

3. Repeat for 16 times.

We find that interventions at the localized heads are more
effective than interventions at random heads. In fig. 1a
we report the Info*Truth score (average truthfulness score
times average informativeness score). We find that using

localized heads have significantly higher Truth*Info scores
than using random heads (p-value 1.6×10−8). In fact, using
random heads often doesn’t have noticeable effect on the
truthfulness at all, as shown in fig. 1b, fig. 1c .

(a) Info*Truth Scores

(b) Truth vs Info Scores

(c) KL vs MC Scores

Figure 1. Localized heads perform much better than random when
using ITI interventions. We observe better Truth*Info scores,
better truth-info score tradeoff, as well as better MC-KL tradeoff.

This appears to add further evidence that the localized heads
are “special” for the truthfulness concept. However, this
strong association could be because the intervention and
localization are “correlated”, since both use statistics of
the same activations (determined by the design of the data,
etc). E.g. for heads with very low probing accuracy, the
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estimated intervention vectors could be very noisy, and thus
the interventions could be less effective.

4. Finding “optimal” interventions
To test whether a particular behavior is localized to specific
location, we would like to assess the effect of the optimal
intervention at that location. In the case of our running ex-
ample, we want the localized edit to the representation space
that does the best job of steering the model’s generations to
be more truthful while maintaining informativeness. Then,
the questions are: what is the best we could hope to achieve?
(I.e., what is “optimal”?) And, (how) can we find a localized
edit that achieves it?

Fitting the alignment objective gives optimal
interventions

Figure 2. IPO interventions achieve much better performance than
using ITI. Using IPO interventions at localized heads give nearly
optimal info-truth tradeoff as well.

The key observation is that the dataset used to construct
positive and negative examples can be restructured as paired
“preference” data {(xi, y

+
i , y

−
i )}i, where xi is the question,

y+i is the truthful answer, and y−i is the untruthful answer.
Since the goal is to make model generations more truthful,
we can directly adopt contrastive alignment methods for
biasing the model towards the truthful answers. In this case,
we use the IPO (Azar et al., 2024) learning objective, where
the goal is to upweight probabilities for y+i and downweight
probabilities for y−i (up to some threshold):

argmaxϕ
∑
i

[
log

(
πϕ(y

+
i |xi)

π0(y
+
i |xi)

/
πϕ(y

−
i |xi)

π0(y
−
i |xi)

)
− τ−1

2

]2
where πϕ(.|x) is the model’s generation probability, π0(.|x)
is the original model’s generation probability, and τ decides
the threshold. Ideally, the optimized πϕ∗(.|x) should gener-
ate responses that are more truthful than the original model,
while minimally affecting the off-target aspects of the gen-
eration (in this case, the informativeness of the responses).

To test the effectiveness of IPO alignment, we finetune the
weights for project-out matrices W l’s defined in eq. (2.3)
using (rank 1) LoRA (Hu et al., 2021). The finetuned model
gives nearly perfect trade-off between truthfulness and in-
formativeness, that is far better than ITI interventions fig. 2.
This also suggests that ITI heuristics are very far from op-
timal, and contrasts with ITI results that intervening on all
heads doesn’t make model generations more truthful.

Now we treat this result as the overall best performance
that we can achieve with interventions. We want to see
if optimal interventions at localized heads can achieve the
same performance, and if random heads can achieve the
same performance.

Connect weight updates to representation editing

The connection to IPO lets us search for the best possible
update to the model’s weights. However, we are interested
in localized edits to model representations. To continue, we
need to connect the weight editing to representation editing.

Rank-1 LoRA Directly applying rank-1 LoRA to W l, we
can view the effect of adding in the modified LoRA weight
matrix as an edit to the representation as follows:

rl+1
LoRA := rl + (W l + bl(al)T )ol = rl+1

orig +
〈
al,ol

〉
bl,

(4.1)

where al, bl are the LoRA weights to optimize. Compar-
ing with eq. (2.5), we see that bl plays the role of the
added W lθl, and

〈
al,ol

〉
is the intervention strength but is

adapted to the representation o.1

This formulation connects weight edits to representation
edits. However, it doesn’t yet allow us to localize edits to
specific heads — while θl can be read as concatenation of
headwise intervention vectors, the projected W lθl have no
corresponding interpretions. Therefore, we can’t restrict the
edits to specific heads by imposing structure on bl’s.

Rank-1 LoRA with reparameterization We can make
more direct connections by reparameterizing bl with W lbl

(without changing expressiveness):

rl+1
LoRA-reparam := rl+1

orig +
〈
al,ol

〉
W lbl (4.2)

= rl+1
orig +

〈
al,ol

〉 H∑
h=1

W l
hb

l
h (4.3)

Here blh plays the role of the intervention vector θl
h, and al

decides the intervention strength adaptively.

1One could replace
〈
al,ol

〉
with a constant intervention

strength, but allowing the extra flexibility is closer to the ideal
of best-possible-localized-intervention.
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Now we have the algorithm to find the optimal interventions
for the chosen set of heads:

1. Finetune the model weights using reparameterized
LoRA with the IPO objective.

2. And, restrict bl to be nonzero only for the chosen set
of heads.

5. Optimal interventions at localized heads are
nearly optimal, but so are random heads

(a) Info*Truth Scores

(b) Truth vs Info Scores

Figure 3. Using IPO optimal localized interventions, randomly
selected heads perform nearly optimally for steering model gener-
ations. In particular, random heads are as good as the conjectured
localized heads. The random heads are the same as those in fig. 1b.

Optimal Edits at Conjectured Localization We can now
search for the best possible interventions at the localized
heads. Figure 2 shows the result. We find that the optimal
interventions strongly outperform the heuristic ITI inter-
ventions. Moreover, the localized interventions are about
as effective as full IPO alignment! This appears to be the
strongest edit-based evidence for localization that we could
hope for.

Optimal Edits at Random Localization Now, we apply
the same optimal edit procedure to 16 randomly selected

heads. Figure 3 shows the results. In short: the optimal in-
terventions at random heads are often just as effective as the
optimal interventions at the localized heads. Accordingly,
the fact that editing at the localized heads was effective at
steering generations provides no evidence that the truthful-
ness concept is localized to those heads.

Further, the random heads we use here are the same random
heads used in section 3. Using the ITI heuristic interven-
tion, the selected heads looked highly different from these
random heads. But we now see that this appears to be an
artifact of the suboptimal interventions and choice of metric,
rather than a meaningful difference in how the heads relate
to truthfulness.

6. Intervening a single head is just as effective

(a) Info*Truth Scores

(b) Truth vs Info Scores

Figure 4. Using a single-head is as effective, and there are multiple
of them!

It is now clear that edit-based evidence does not provide
strong evidence for localization in the 16 head setup. How-
ever, a possible way of saving localization would be to argue
that 16 heads is too many, giving too much leeway to in-
duce any behavior we want with editing. For example, if we
edited half the heads of the model, it would not be surprising
if we could make the model do anything we wanted. Accord-
ingly, we might hope that there is still a valid syllogism of
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the form “the localized edit is extremely constrainted” and
“edits at this location optimally control the target behavior”
implies “the target behavior is localized to this location”.

To test this, we now focus on the single head case. The
procedure is simple: we randomly sample 24 single heads,
one at a time, and search for optimal interventions. The
distribution of the best Truth*Info scores is shown in fig. 4a.
We find 5 single-heads that are as effective fig. 4b, and
none of them has high probing accuracy. Notice that, still,
none of these heads can be understood as localizing the
truthfulness concept. The reason is that there are multiple
distinct locations that work equally well! That is, even in the
extreme case of a very localized edit that replicates the target
behavior essentially optimally, we still cannot conclude that
there is evidence supporting localization.

7. Are the Probing-Localized Heads Anything
Special?

So far what we mean by localization, is that we can change
model generation on target concept by an edits at this loca-
tion. And our experiments show no evidence for this type
of localization, and probing-localized heads play no special
role.

So, are the probing-localized heads anything special at all?

Probing-localized heads seems special for MC scores
We do observe that these heads achieve slightly better
Multiple-Choice (MC) scores compared to randomly se-
lected heads (see fig. 5), although this advantage is not as
pronounced as with the ITI interventions (see fig. 1c). Thus,
these heads may be special in terms of changing model
probabilities on the given fixed dataset, which is what MC
measures.

The gap between what the model “knows” and what it
generates It’s important to note that the model’s probabil-
ities for fixed responses, do not directly correspond to what
the model actually generates. Even if the model assigns a
higher probability to a truthful response than an untruthful
one, it may still not generate the truthful response if the
fixed dataset is off-policy (i.e. both probabilities are low).
This highlights the well-known gap between what a model
”knows” (which is the motivation behind probing) and what
it ultimately generates (Joshi et al., 2023; Wang et al., 2020;
Kadavath et al., 2022; Saunders et al., 2022; Burns et al.,
2022).

Implications It’s possible that while probing-localized
heads are not special at all for controlling model generations
, they are special in changing what the model “knows”.
Though we caution that the results here are not rigorous
evidence for localization even in this sense. Even if there

Figure 5. Probing-localized heads seem somewhat special in MC
scores.

is a knowledge localization in some sense, it is clear that
this does not inform steering, and does not give a way of
monitoring model behavior (because changes in completely
unrelated locations can change the behavior). This points to
the need for making the goal of localization precise.

8. Discussion
The main idea in this paper is that to assess the localiza-
tion of a behavior we should study the effect of the optimal
intervention at the conjectured localization. The main ob-
stacle is that, in general, it is not clear how to define or find
the optimal intervention. To overcome this, we map the
problem of finding the optimal intervention to the problem
of finding the optimal weight update, which can be solved
using existing LLM alignment methods.

The main result is an example where, naively, the evidence
for localization appears strong, but when we use optimal
interventions, the evidence disappears.

The particular example—truthfulness and ITI-based
evidence—was selected simply because the data used to
define the heuristic happens to also allow us to set up a
contrastive alignment problem. The most limited read of
the results here is that ITI interventions do not provide evi-
dence for localization, and that truthfulness does not appear
to be localizable. However, the broader point is that by
giving an example where editing-based evidence doesn’t
support localization, we see that in general such edits—by
themselves—cannot provide evidence for localization. This
is true irrespective of the particular behavior or heuristic
being evaluated.

Thus far, we’ve been a bit vague about what localization
means. Editing does tautological evidence for localization
in the sense of “it’s possible to modify model behavior on
such-and-such a behavior by an edit at this location”. On
the opposite end, the strongest possible standard would be
to show that the location is unique, or at least necessary.
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This is the standard that would be required if our aim was,
e.g., to establish that LLM truthfulness can be monitored
by examining a small set of heads. Potentially, there are
interesting and useful notions of localization in between
these two extremes. However, we can see no useful sense of
localization that is consistent with the location being only
as good as a randomly selected alternative. As we have
seen, heuristic edit-based evaluation cannot even rule out
this case.

Our findings add to a growing body of work that assesses
the validity of interpretability results. Niu et al. (2024) argue
that the Knowledge Neuron thesis, which suggests that facts
are stored in MLP weights, is an oversimplification and does
not adequately explain the process of factual expression in
language models.Makelov et al. (2023) demonstrate that
subspace activation patching can lead to an illusory sense
of interpretability, as the effects may be achieved through
dormant parallel pathways rather than the hypothesized sub-
spaces. Most relevant to our work, Hase et al. (2024) find
that localization conclusions from causal tracing do not pro-
vide insight into which model MLP layer would be best to
edit to override an existing stored fact.

Overall, the results here point to the need for precise state-
ments of what the objectives are in interpretability. With
clear objectives, it may be possible to develop theoretically
grounded methods for evaluation. Precise, falsifiable, state-
ments and clear standards of evidence would suffice to pre-
vent the kind of failure we observe in this paper.
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A. Experiment Details
Dataset and Model Architecture We use the TruthfulQA
dataset (Lin et al., 2021) and the Alpaca-7B model (Taori
et al., 2023) for our experiments. The dataset contains 817
questions with truthful and untruthful answers. We turn
them into pairs, and use 60% for training (6560 paired data)
and the rest for validation and testing. The model consists
of 32 layers, each with 32 attention heads and a hidden
dimension of 4096.

Training Details We use IPO objective (Azar et al., 2024)
and use hyperparameter τ = 0.1, 0.2, 0.3, 0.4, 0.5. We train
for two epochs with a cosine scheduler, with a batch size
of 4. We use “paged adamw 32bit” optimizer. For training
with different numbers of heads, we find a smaller number
of heads benefit from a higher learning rate. For all-heads,
we use a learning rate of 1 × 10−4, and for 16 heads, we
use 5× 10−4. For single-head, we use 2× 10−3.

Evaluation Metrics We reuse code from ITI (Li et al.,
2024) for evaluation when possible. For GPT-judge models,
we follow (Lin et al., 2021) and finetune on truthfulness and
informativeness dataset using OpenAI API (OpenAI, 2020).
Our finetuned model achieves similar validation error as in
(Lin et al., 2021).
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