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Abstract

Adversarial attacks and distribution shift undermine reliability of deep classifiers.
We revisit energy-based out-of-distribution (OOD) detection and propose a sim-
ple projection head that maps representations onto a learned data manifold and
uses the squared norm of the projected vector as an energy score. The training is
parallel with classification loss on the classification head and soft energy separa-
tion loss on the projection head that pushes adversarial examples to high energy
while keeping clean examples at low energy. On a CIFAR-10 (Krizhevsky [2009])
variant with a held-out 10th class acting as OOD, our method detects fast gradi-
ent sign (FGSM), projected gradient descent (PGD), and AutoAttack (AA) ad-
versarial examples even when the classifier remains non-robust. We study design
choices, including hinge versus softplus energy losses, regularization on the pro-
jected vector, and the importance of normalization layer choice to align train and
test statistics. Despite energy separation transferring across attacks, we find little
OOD rejection of unrelated images and highlight failure modes. Our work pro-
vides a critical analysis of energy-shaped projections and outlines open problems
and possibilities for future research.

1 Introduction

Machine learning systems deployed in high-stakes applications must cope with unreliable data: in-
puts may be perturbed by adversaries, drawn from shifted distributions, contain missing or biased
values, or arise from human interaction. Standard training objectives optimize for accuracy, but of-
fer no guarantees when inputs deviate from the training distribution. Recent work emphasizes OOD
input detection as a complementary strategy to robust classification.

In this paper, we revisit energy-based detection for adversarial perturbations and present the
energy-shaped manifold projection head. The method maps the last hidden representation z from
a standard backbone to a lower- or the same-dimensional representation z’; the squared norm
E = ||2'||? is used as an energy score. The soft separation loss encourages low energy for clean
examples and high energy for adversarial data while classification is trained in parallel. We imple-
ment flexible loss functions (ReLU (hinge), softplus, and squared hinge) and add L, regularization
on 2’ to prevent the magnitude explosion. Training uses FGSM for efficiency and separates gradients
flowing through the energy and classification heads to the adversary, preventing energy awareness.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Reliable ML from
Unreliable Data.



Despite its simplicity, our energy head detects adversarial examples produced by stronger (PGD,
AA) attacks and does not react to natural OOD data, provided that batch-independent normalization
is used, so that training and evaluation compute energies consistently. However, we also observe the
limitations: the classification robustness does not transfer and the energy values can explode when
the hinge loss is used without regularization.

Contributions (i) We propose a projection head yielding an energy score E = |[|2/||%. (ii) We
introduce the soft energy separation loss with Lo regularization and analyze its stability. (iii) We
implement FGSM training and FGSM+PGD-20+AA evaluation on CIFAR-9 with the 10th class
as OOD, reporting AUROC and robust-after-rejection metrics. (iv) We demonstrate that batch-
independent normalization is crucial for energy alignment between training and testing. (v) We
demonstrate that our method does not mistake OOD for adversarial data. (vi) We report failure
cases, such as non-transfer of classification robustness, and provide the details on head complexity
and loss functions.

2 Related Work

Energy-based OOD detection. Liu et al. [2020] propose using the energy defined by the nega-
tive log partition function as a score for OOD detection and show that it reduces the false positive
rate by 18% compared to the softmax confidence. Their framework allows energy to be used as a
parameter-free inference score or as a trainable cost function with square hinge loss. We adapt such
an idea, but use the squared norm of a projection instead of the logit-based energy and train the
projection head jointly with classification.

Adversarial training and attacks. Adversarial training casts robustness as a saddle-point optimiza-
tion problem and uses the inner maximization to generate worst-case perturbations. Madry et al.
[2018] identify projected gradient descent (PGD) as a universal first-order adversary and demon-
strate robust models on MNIST and CIFAR. The fast gradient sign method (FGSM) introduced by
Goodfellow et al. [2015] provides an efficient way to generate adversarial examples by linearizing
the loss around the input. Our training uses energy-blind FGSM, while evaluation includes FGSM,
PGD-20, and AutoAttack. AutoAttack (AA, Croce and Hein [2020]) combines multiple attacks to
reliably evaluate robustness and highlights that PGD may overestimate robustness; it recommends
using an ensemble of attacks instead.

Normalization layers and dataset shift. Batch normalization (BN, Ioffe and Szegedy [2015])
normalizes layer inputs using batch statistics to reduce internal covariate shift, improving training
speed and acting as a regularizer. However, BN uses running estimates during evaluation, and
mismatched statistics under distribution shift can harm performance. We find that using batch-
independent normalization (e.g. instance normalization, Ulyanov et al. [2016]) is necessary to align
energy distributions between train and test.

Uncertainty and distribution shift. Robustness under distribution shift and OOD inputs is nec-
essary for safe deployment. Ovadia et al. [2019] benchmark predictive uncertainty methods and
show that calibration in the i.i.d. setting does not translate to calibration under shift and that evalu-
ating uncertainty under shift is more meaningful. Our method complements this line by focusing on
detection via energy scores rather than calibration.

3 Method

3.1 Architecture and Energy Score

Let fy denote the backbone mapping an input image € RY to a representation z = fy(x). We
append a projection head f,, that maps z to the same or lower dimensional vector 2’ = f, (z) € R¥.
The classifier branch predicts the class probabilities from 2 via a linear layer and cross-entropy loss.
The energy branch computes the score F(z’) = ||2’||3 that we aim to make small for clean inputs
and large for adversarial ones. In practice, f;, is a small multilayer perceptron.



3.2 Energy Separation Loss

Given a batch of clean examples {z;} and adversarial examples {21V} generated on the fly, we
compute energies F; and E*4V as described above. We minimize the total loss

L= % Z [CE<yi7 f0($1)> +Asep sep (Ei> E?dv) + )‘2HZ£H§} ) (D
i classification
where CE is the cross-entropy loss and /., encourages separation between clean and adversarial
energies. We experiment with three variants:

* Hinge loss: lsp(E, B*YY) = max(0,€¢ — E) + max(0, E*Y — (e + A)). This penalty
leads to energy explosion in practice unless Ag is tuned.

* Softplus: /s, (E, E*V) = softplus(e — E) + softplus(E*dY — (e + A)), which is differ-
entiable and alleviates gradient vanishing during training, making the joint training process
more stable.

* Squared hinge: (y.,(E, E*V) = ¢ max(0,e — E)? + ¢ - max(0, B2V — (¢ + A))?
that behaves similarly to softplus, provided that c is small enough to prevent initial penalty
explosion.

We set € as the maximum allowed value for clean energy and A as a margin hyperparameter. Regu-
larization on 2’ prevents the projection from shrinking or exploding. During the adversarial example
generation, we do not backpropagate through the energy branch, ensuring the attack is energy-blind
and does not exploit our detector.

3.3 Adversarial Training and Evaluation

Adversarial training solves a saddle-point problem in which the inner maximization generates ad-
versarial perturbations and the outer minimization updates the model parameters. We use FGSM
for its efficiency and backpropagate only through the classification branch. The perturbations are
constrained in the ¢, norm ball with radius € = 8/256.

During evaluation, we generate adversarial examples using FGSM (e = 16/256), 20-step PGD (¢ =
16/256) with step size o« = 2/256, and AutoAttack (¢ = 8/256). Then, we calculate area under the
ROC curve (AUROC). We also report robust-after-rejection accuracy: classification accuracy over
all the examples that did not exceed € + %. OOD experiments treat the 10th class in CIFAR-10 as
unknown and evaluate whether the energy rejects these inputs.

3.4 Normalization Alignment

During preliminary experiments, we observed that energy distributions for clean and adversarial
examples behave differently between training and evaluation, often collapsing or even reversing.
Investigation revealed that our backbone used batch normalization layers that adapt to batch statistics
during training but use running estimates at evaluation. When adversarial examples dominated the
batch, the running statistics drifted and corrupted the energy. To remedy this, we use instance
normalization to perform exactly the same calculations both in train and test time. Figure | illustrates
how using IN stabilizes energy distributions.

4 Experiments

We  implement our method in  PyTorch  (https://github.com/ArtMGreen/
manifold-projection-layer). The backbone is a pre-classification head ResNet-18 trained on
CIFAR-9, i.e. CIFAR-10 without class 10 ("truck”); the removed class serves as OOD data. The
images are normalized and no data augmentation is used. We train for 5 epochs with batch size 16
using stochastic gradient descent with momentum 0.9 and learning rate 0.02. FGSM attacks use
¢ = 8/255. The hyperparameters Asp, and Ay are tuned to facilitate smooth joint training without
energy explosion or any part of loss dominating the training regime; we typically set Agep = 1 and
Ao = 5-1073. For evaluation, we generate 9,000 adversarial examples for each attack type and
compute accuracy on clean and adversarial examples, AUROC in adversarial and OOD detection,
and robust-after-rejection accuracy at the rejection threshold € + %.
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5 Results and Analysis

Detection versus classification Table 1 summarizes the results. Energy-shaped projections
achieve near-perfect AUROC for both FGSM and PGD attacks (> 0.99) and high AUROC un-
der AutoAttack (> 0.84), even when the classification accuracy on the examples is zeroed. This
indicates that adversarial perturbations cause a predictable increase in the energy norm even if the
classifier fails on the perturbed images. Therefore, energy separation transfers to unseen attacks,
but the classification robustness does not: a stronger adversary manages to nullify classification
accuracy.

Table 1: Detection performance on CIFAR-9 test set. AUROC,q, and AUROCpop are mea-
sured for adversarial vs clean and OOD vs clean detection tasks respectively; ACCglean and
ACC,q4y denote classification accuracy on clean and adversarial examples respectively; RAR is
robust-after-rejection accuracy at € + % rejection threshold.

Adversary  ACCgean ACC,qy AUROC,3, AUROCoop RAR

FGSM 0.6886 0.7821 1 0.5522 0.6886
PGD-20 0.6886 0 0.9976 0.5522 0.6597
AutoAttack  0.6886 0 0.8427 0.5522 0.525

OOD detection When evaluating on the held-out CIFAR class, energy scores for OOD images
closely match those of clean in-distribution examples. The AUROC for OOD versus clean detection
is around 0.55, indicating near-random performance. Therefore, while energy-shaped projections do
not replace standard OOD detection mechanisms, they might be compatible with these, since OOD
data is not mistaken for adversarial. Figure 2 provides ROC curves as an illustration.

6 Limitations and Broader Impact

Our study has several limitations. First, we evaluate on CIFAR-like data; the results may not general-
ize to more complex domains or modalities. Second, training uses FGSM; while detection transfers
to PGD and AutoAttack, we have not evaluated energy-aware attacks, which might circumvent our
detector. Third, the projection head is tuned manually; automating its architecture and hyperparame-
ters is left to future work. Finally, our method does not address distribution shift beyond adversarial
perturbations: energy is not designed detect unrelated OOD inputs. We encourage future work to
evaluate compatibility of other OOD detection methods with energy-based projection heads.

7 Conclusion

We proposed an energy-shaped manifold projection head for adversarial detection. By training a
projection head with a soft separation loss and regularizing the projected representation, we obtain
a robust energy score that distinguishes adversarial inputs even when the classification robustness
fails. Our experiments highlight the importance of normalization layer choice and show that softplus
and squared hinge losses provide stable energy separation. At the same time, we report negative
results: the method does not reject OOD data unrelated to the training distribution, and classification
robustness does not improve. We hope our analysis and ablations will inspire further research into
reliable detection mechanisms.
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A Figures and Illustrations

A.1 Energy drift under batch-dependent normalization
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Figure 1: Energy histograms with instance (left) and batch (right) normalization. Under BN, clean
and adversarial energies overlap. Using IN shifts adversarial energies higher and clean energies
lower, enabling separation.

A.2 Threshold sweep and rejection
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Figure 2: ROC curves for FGSM (left), PGD (right), and AA (bottom) attacks. Performance under
FGSM and PGD-20 is close to perfect. Performance under AutoAttack is not perfect anymore but
remains high. Energy-trained model is consistently good in adversarial detection, but is not suitable
for OOD detection.
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Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
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* We recognize that providing effective safeguards is challenging, and many papers do
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Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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* The answer NA means that the paper does not use existing assets.
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curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]
Justification: additionally, the code is anonymized to our best.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA|
Justification: the experiments include no human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: only for the grammar purposes
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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