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Abstract

Adversarial attacks and distribution shift undermine reliability of deep classifiers.1

We revisit energy-based out-of-distribution (OOD) detection and propose a simple2

projection head that maps representations onto a learned data manifold and uses3

the squared norm of the projected vector as an energy score. The training is par-4

allel with classification loss on the classification head and soft energy separation5

loss on the projection head that pushes adversarial examples to high energy while6

keeping clean examples at low energy. On a CIFAR-10 (Krizhevsky [2009]) vari-7

ant with a held-out 10th class acting as OOD, our method detects both fast gra-8

dient sign (FGSM) and projected gradient descent (PGD) adversarial examples9

even when the classifier remains non-robust. We study design choices, including10

hinge versus softplus energy losses, regularization on the projected vector and the11

importance of normalization layer choice to align train and test statistics. Despite12

energy separation transferring across attacks, we find little OOD rejection of unre-13

lated images and highlight failure modes. Our work provides a critical analysis of14

energy-shaped projections and lays out open problems and possibilities for future15

research.16

1 Introduction17

Machine learning systems deployed in high-stakes applications must cope with unreliable data: in-18

puts may be perturbed by adversaries, drawn from shifted distributions, contain missing or biased19

values, or arise from human interaction. Standard training objectives optimize for accuracy, but of-20

fer no guarantees when inputs deviate from the training distribution. Recent work emphasizes OOD21

input detection as a complementary strategy to robust classification. Energy-based scores, derived22

from the log partition function, have been shown to distinguish OOD samples (Liu et al. [2020]).23

In this paper, we revisit energy-based detection for adversarial perturbations and present the24

energy-shaped manifold projection head. The method maps the last hidden representation z from25

a standard backbone to a lower- or the same-dimensional representation z′; the squared norm26

E = ∥z′∥2 is used as an energy score. The soft separation loss encourages low energy for clean27

examples and high energy for adversarial data while classification is trained in parallel. We imple-28

ment flexible loss functions (ReLU (hinge), softplus, and squared hinge) and add L2 regularization29

on z′ to prevent the magnitude explosion. Training uses FGSM for efficiency and separates gradients30

flowing through the energy and classification heads to the adversary, preventing energy awareness.31

Despite its simplicity, our energy head detects adversarial examples produced by stronger PGD32

attacks and does not react to natural OOD data, provided that batch-independent normalization is33

used, so that training and evaluation compute energies consistently. However, we also observe the34

limitations: the classification robustness does not transfer and the energy values can explode when35

the hinge loss is used without regularization.36
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Contributions. (i) We propose a projection head yielding an energy score E = ∥z′∥2. (ii) We37

introduce the soft energy separation loss with L2 regularization and analyze its stability. (iii) We38

implement FGSM training and FGSM+PGD-20 evaluation on CIFAR-9 with the 10th class as OOD,39

reporting AUROC and robust-after-rejection metrics. (iv) We demonstrate that batch-independent40

normalization is crucial for energy alignment between training and testing. (v) We demonstrate41

that our method does not mistake OOD for adversarial data. (vi) We report failure cases, such42

as non-transfer of classification robustness, and provide the details on head complexity and loss43

functions.44

2 Related Work45

Energy-based OOD detection. Liu et al. [2020] propose using the energy defined by the nega-46

tive log partition function as a score for OOD detection and show that it reduces the false positive47

rate by 18% compared to the softmax confidence. Their framework allows energy to be used as a48

parameter-free inference score or as a trainable cost function with square hinge loss. We adapt such49

an idea, but use the squared norm of a projection instead of the logit-based energy and train the50

projection head jointly with classification.51

Adversarial training and attacks. Adversarial training casts robustness as a saddle-point optimiza-52

tion problem and uses the inner maximization to generate worst-case perturbations. Madry et al.53

[2018] identify projected gradient descent (PGD) as a universal first-order adversary and demon-54

strate robust models on MNIST and CIFAR. The fast gradient sign method (FGSM) introduced by55

Goodfellow et al. [2015] provides an efficient way to generate adversarial examples by linearizing56

the loss around the input. Our training uses energy-blind FGSM, while evaluation includes FGSM57

and PGD-20. AutoAttack combines multiple attacks to reliably evaluate robustness and highlights58

that PGD may overestimate robustness; it recommends an ensemble of attacks as a minimal test.59

Normalization layers and dataset shift. Batch normalization (BN, Ioffe and Szegedy [2015])60

normalizes layer inputs using batch statistics to reduce internal covariate shift, improving training61

speed and acting as a regularizer. However, BN uses running estimates during evaluation, and62

mismatched statistics under distribution shift can harm performance. We find that using batch-63

independent normalization (e.g. instance normalization, Ulyanov et al. [2016]) is necessary to align64

energy distributions between train and test.65

Uncertainty and distribution shift. Robustness under distribution shift and OOD inputs is nec-66

essary for safe deployment. Ovadia et al. [2019] benchmark predictive uncertainty methods and67

show that calibration in the i.i.d. setting does not translate to calibration under shift and that evalu-68

ating uncertainty under shift is more meaningful. Our method complements this line by focusing on69

detection via energy scores rather than calibration.70

3 Method71

3.1 Architecture and Energy Score72

Let fθ denote the backbone mapping an input image x ∈ Rd to a representation z = fθ(x). We73

append a projection head fη that maps z to the same or lower dimensional vector z′ = fη(z) ∈ Rk.74

The classifier branch predicts the class probabilities from z via a linear layer and cross-entropy loss.75

The energy branch computes the score E(z′) = ∥z′∥22 that we aim to make small for clean inputs76

and large for adversarial ones. In practice, fη is a small multilayer perceptron.77

3.2 Energy Separation Loss78

Given a batch of clean examples {xi} and adversarial examples {xadv
i } generated on the fly, we79

compute energies Ei and Eadv
i as described above. We minimize the total loss80

L =
1

B

∑
i

[
CE(yi, fθ(xi))︸ ︷︷ ︸

classification

+λsep ℓsep
(
Ei, E

adv
i

)
+ λ2∥z′i∥22

]
, (1)

where CE is the cross-entropy loss and ℓsep encourages separation between clean and adversarial81

energies. We experiment with three variants:82
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• Hinge loss: ℓsep(E,Eadv) = max(0, ϵ − E) + max(0, Eadv − (ϵ + ∆)). This penalty83

leads to energy explosion in practice unless λ2 is tuned.84

• Softplus: ℓsep(E,Eadv) = softplus(ϵ−E) + softplus(Eadv − (ϵ+∆)), which is differ-85

entiable and alleviates gradient vanishing during training, making the joint training process86

more stable.87

• Squared hinge: ℓsep(E,Eadv) = c · max(0, ϵ − E)2 + c · max(0, Eadv − (ϵ + ∆))288

that behaves similarly to softplus, provided that c is small enough to prevent initial penalty89

explosion.90

We set ϵ as the maximum allowed value for clean energy and ∆ as a margin hyperparameter. Regu-91

larization on z′ prevents the projection from shrinking or exploding. During the adversarial example92

generation, we do not backpropagate through the energy branch, ensuring the attack is energy-blind93

and does not exploit our detector.94

3.3 Adversarial Training and Evaluation95

Adversarial training solves a saddle-point problem in which the inner maximization generates ad-96

versarial perturbations and the outer minimization updates the model parameters. We use FGSM97

for its efficiency and backpropagate only through the classification branch. The perturbations are98

constrained in the ℓ∞ norm ball with radius ε = 8/256.99

During evaluation, we generate adversarial examples using FGSM and 20-step PGD with step size100

α = 2/256, both with doubled maximal allowed perturbation of ε = 16/256. Following Croce101

and Hein [2020], we sweep the threshold on the energy score to calculate area under the ROC102

curve (AUROC). We also report robust-after-rejection accuracy: classification accuracy over all the103

examples that did not exceed ϵ+ ∆
2 . OOD experiments treat the 10th class in CIFAR-10 as unknown104

and evaluate whether the energy rejects these inputs.105

3.4 Normalization Alignment106

During preliminary experiments, we observed that energy distributions for clean and adversarial107

examples behave differently between training and evaluation, often collapsing or even reversing.108

Investigation revealed that our backbone used batch normalization layers that adapt to batch statistics109

during training but use running estimates at evaluation. When adversarial examples dominated the110

batch, the running statistics drifted and corrupted the energy. To remedy this, we use instance111

normalization to perform exactly the same calculations both in train and test time. Figure 1illustrates112

how using IN stabilizes energy distributions.113

Figure 1: Energy histograms with instance (left) and batch (right) normalization. Under BN, clean
and adversarial energies overlap. Using IN shifts adversarial energies higher and clean energies
lower, enabling separation. Softplus and squared hinge losses achieve stable separation, whereas the
hinge loss often causes uneven training and energy explosions unless regularization is used.

4 Experiments114

We implement our method in PyTorch (https://anonymous.4open.science/r/manifold-projection-115

layer-B1DD/). The backbone is a pre-classification head ResNet-18 trained on CIFAR-9, i.e.116
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CIFAR-10 without class 10 (”truck”); the removed class serves as OOD data. The images are117

normalized and no data augmentation is used. We train for 5 epochs with batch size 16 us-118

ing stochastic gradient descent with momentum 0.9 and learning rate 0.02. FGSM attacks use119

ε = 8/255. The hyperparameters λsep and λ2 are tuned to facilitate smooth joint training with-120

out energy explosion or any part of loss dominating the training regime; we typically set λsep = 1121

and λ2 = 5 · 10−3. For evaluation, we generate 9,000 adversarial examples for each attack type and122

compute accuracy on clean and adversarial examples, AUROC in adversarial and OOD detection,123

and robust-after-rejection accuracy at the rejection threshold ϵ+ ∆
2 .124

5 Results and Analysis125

Detection versus classification. Table 1 summarizes the results. Energy-shaped projections126

achieve high AUROC for both FGSM and PGD attacks (> 0.99), even when classification accu-127

racy on PGD examples is zeroed. This indicates that adversarial perturbations cause a predictable128

increase in the energy norm even if the classifier fails on the perturbed images. Energy separation129

therefore transfers to unseen attacks. However, the classification robustness does not transfer: a130

stronger adversary manages to nullify classification accuracy.131

Table 1: Detection performance on CIFAR-9 test set. AUROCadv and AUROCOOD are mea-
sured for adversarial vs clean and OOD vs clean detection tasks respectively; ACCclean and
ACCadv denote classification accuracy on clean and adversarial examples respectively; RAR is
robust-after-rejection accuracy at ϵ+ ∆

2 rejection threshold.
Adversary ACCclean ACCadv AUROCadv AUROCOOD RAR

FGSM 0.6886 0.7821 1 0.5522 0.6886
PGD-20 0.6886 0 0.9976 0.5522 0.6597

OOD detection. When evaluating on the held-out CIFAR class, energy scores for OOD images132

closely match those of clean in-distribution examples. The AUROC for OOD versus clean detection133

is around 0.55, indicating near-random performance. Therefore, while energy-shaped projections do134

not replace standard OOD detection mechanisms, they might be compatible with these, since OOD135

data is not mistaken for adversarial. Figure 2 provides ROC curves as an illustration.136

6 Limitations and Broader Impact137

Our study has several limitations. First, we evaluate on CIFAR-like data; the results may not general-138

ize to more complex domains or modalities. Second, training uses FGSM; while detection transfers139

to PGD, we have not evaluated energy-aware attacks or AutoAttack, which might circumvent our140

detector. Third, the projection head is tuned manually; automating its architecture and hyperparame-141

ters is left to future work. Finally, our method does not address distribution shift beyond adversarial142

perturbations: energy fails to detect unrelated OOD inputs. We encourage future work to evaluate143

compatibility of other OOD detection methods with energy-based projection heads.144

7 Conclusion145

We proposed an energy-shaped manifold projection head for adversarial detection. By training a146

projection head with a soft separation loss and regularizing the projected representation, we obtain147

a robust energy score that distinguishes adversarial inputs even when the classification robustness148

fails. Our experiments highlight the importance of normalization layer choice and show that softplus149

and squared hinge losses provide stable energy separation. At the same time, we report negative150

results: the method does not reject OOD data unrelated to the training distribution, and classification151

robustness does not improve. We hope our analysis and ablations will inspire further research into152

reliable detection mechanisms.153
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A Figures and Illustrations179

A.1 Threshold sweep and rejection.180

Figure 2 plots ROC curves for FGSM and PGD attacks. Energy-trained model is consistently good181

in adversarial detection, but is not suitable for OOD detection.

Figure 2: ROC curves for detecting adversarial examples using softplus energy loss. Performance
under PGD-20 is slightly worse than under FGSM but remains high.

182
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NeurIPS Paper Checklist183

1. Claims184

Question: Do the main claims made in the abstract and introduction accurately reflect the185

paper’s contributions and scope?186

Answer: [Yes]187

Justification: the abstract and introduction are based either on the experiments or prior188

work, both described later.189

Guidelines:190

• The answer NA means that the abstract and introduction do not include the claims191

made in the paper.192

• The abstract and/or introduction should clearly state the claims made, including the193

contributions made in the paper and important assumptions and limitations. A No or194

NA answer to this question will not be perceived well by the reviewers.195

• The claims made should match theoretical and experimental results, and reflect how196

much the results can be expected to generalize to other settings.197

• It is fine to include aspirational goals as motivation as long as it is clear that these198

goals are not attained by the paper.199

2. Limitations200

Question: Does the paper discuss the limitations of the work performed by the authors?201

Answer: [Yes]202

Justification: see the Limitations section.203

Guidelines:204

• The answer NA means that the paper has no limitation while the answer No means205

that the paper has limitations, but those are not discussed in the paper.206

• The authors are encouraged to create a separate ”Limitations” section in their paper.207

• The paper should point out any strong assumptions and how robust the results are to208

violations of these assumptions (e.g., independence assumptions, noiseless settings,209

model well-specification, asymptotic approximations only holding locally). The au-210

thors should reflect on how these assumptions might be violated in practice and what211

the implications would be.212

• The authors should reflect on the scope of the claims made, e.g., if the approach was213

only tested on a few datasets or with a few runs. In general, empirical results often214

depend on implicit assumptions, which should be articulated.215

• The authors should reflect on the factors that influence the performance of the ap-216

proach. For example, a facial recognition algorithm may perform poorly when image217

resolution is low or images are taken in low lighting. Or a speech-to-text system might218

not be used reliably to provide closed captions for online lectures because it fails to219

handle technical jargon.220

• The authors should discuss the computational efficiency of the proposed algorithms221

and how they scale with dataset size.222

• If applicable, the authors should discuss possible limitations of their approach to ad-223

dress problems of privacy and fairness.224

• While the authors might fear that complete honesty about limitations might be used by225

reviewers as grounds for rejection, a worse outcome might be that reviewers discover226

limitations that aren’t acknowledged in the paper. The authors should use their best227

judgment and recognize that individual actions in favor of transparency play an impor-228

tant role in developing norms that preserve the integrity of the community. Reviewers229

will be specifically instructed to not penalize honesty concerning limitations.230

3. Theory assumptions and proofs231

Question: For each theoretical result, does the paper provide the full set of assumptions and232

a complete (and correct) proof?233

Answer: [NA]234
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Justification: only the experimental results are reported.235

Guidelines:236

• The answer NA means that the paper does not include theoretical results.237

• All the theorems, formulas, and proofs in the paper should be numbered and cross-238

referenced.239

• All assumptions should be clearly stated or referenced in the statement of any theo-240

rems.241

• The proofs can either appear in the main paper or the supplemental material, but if242

they appear in the supplemental material, the authors are encouraged to provide a243

short proof sketch to provide intuition.244

• Inversely, any informal proof provided in the core of the paper should be comple-245

mented by formal proofs provided in appendix or supplemental material.246

• Theorems and Lemmas that the proof relies upon should be properly referenced.247

4. Experimental result reproducibility248

Question: Does the paper fully disclose all the information needed to reproduce the main249

experimental results of the paper to the extent that it affects the main claims and/or conclu-250

sions of the paper (regardless of whether the code and data are provided or not)?251

Answer: [Yes]252

Justification: section Experiments provides a link to the repository with the code along with253

the full experiment setup description in the paper itself for reproducibility.254

Guidelines:255

• The answer NA means that the paper does not include experiments.256

• If the paper includes experiments, a No answer to this question will not be perceived257

well by the reviewers: Making the paper reproducible is important, regardless of258

whether the code and data are provided or not.259

• If the contribution is a dataset and/or model, the authors should describe the steps260

taken to make their results reproducible or verifiable.261

• Depending on the contribution, reproducibility can be accomplished in various ways.262

For example, if the contribution is a novel architecture, describing the architecture263

fully might suffice, or if the contribution is a specific model and empirical evaluation,264

it may be necessary to either make it possible for others to replicate the model with265

the same dataset, or provide access to the model. In general. releasing code and data266

is often one good way to accomplish this, but reproducibility can also be provided via267

detailed instructions for how to replicate the results, access to a hosted model (e.g., in268

the case of a large language model), releasing of a model checkpoint, or other means269

that are appropriate to the research performed.270

• While NeurIPS does not require releasing code, the conference does require all sub-271

missions to provide some reasonable avenue for reproducibility, which may depend272

on the nature of the contribution. For example273

(a) If the contribution is primarily a new algorithm, the paper should make it clear274

how to reproduce that algorithm.275

(b) If the contribution is primarily a new model architecture, the paper should describe276

the architecture clearly and fully.277

(c) If the contribution is a new model (e.g., a large language model), then there should278

either be a way to access this model for reproducing the results or a way to re-279

produce the model (e.g., with an open-source dataset or instructions for how to280

construct the dataset).281

(d) We recognize that reproducibility may be tricky in some cases, in which case au-282

thors are welcome to describe the particular way they provide for reproducibility.283

In the case of closed-source models, it may be that access to the model is limited in284

some way (e.g., to registered users), but it should be possible for other researchers285

to have some path to reproducing or verifying the results.286

5. Open access to data and code287
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Question: Does the paper provide open access to the data and code, with sufficient instruc-288

tions to faithfully reproduce the main experimental results, as described in supplemental289

material?290

Answer: [Yes]291

Justification: section Experiments provides a link to the repository with the code along with292

the full experiment setup description in the paper itself for reproducibility.293

Guidelines:294

• The answer NA means that paper does not include experiments requiring code.295

• Please see the NeurIPS code and data submission guidelines296

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.297

• While we encourage the release of code and data, we understand that this might not298

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not299

including code, unless this is central to the contribution (e.g., for a new open-source300

benchmark).301

• The instructions should contain the exact command and environment needed to run302

to reproduce the results. See the NeurIPS code and data submission guidelines303

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.304

• The authors should provide instructions on data access and preparation, including how305

to access the raw data, preprocessed data, intermediate data, and generated data, etc.306

• The authors should provide scripts to reproduce all experimental results for the new307

proposed method and baselines. If only a subset of experiments are reproducible, they308

should state which ones are omitted from the script and why.309

• At submission time, to preserve anonymity, the authors should release anonymized310

versions (if applicable).311

• Providing as much information as possible in supplemental material (appended to the312

paper) is recommended, but including URLs to data and code is permitted.313

6. Experimental setting/details314

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-315

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the316

results?317

Answer: [Yes]318

Justification: also the parameters are provided in the repository.319

Guidelines:320

• The answer NA means that the paper does not include experiments.321

• The experimental setting should be presented in the core of the paper to a level of322

detail that is necessary to appreciate the results and make sense of them.323

• The full details can be provided either with the code, in appendix, or as supplemental324

material.325

7. Experiment statistical significance326

Question: Does the paper report error bars suitably and correctly defined or other appropri-327

ate information about the statistical significance of the experiments?328

Answer: [No]329

Justification: these are replaced with the metrics and plots of choice in the main text and330

the appendix.331

Guidelines:332

• The answer NA means that the paper does not include experiments.333

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-334

dence intervals, or statistical significance tests, at least for the experiments that support335

the main claims of the paper.336

• The factors of variability that the error bars are capturing should be clearly stated (for337

example, train/test split, initialization, random drawing of some parameter, or overall338

run with given experimental conditions).339

9



• The method for calculating the error bars should be explained (closed form formula,340

call to a library function, bootstrap, etc.)341

• The assumptions made should be given (e.g., Normally distributed errors).342

• It should be clear whether the error bar is the standard deviation or the standard error343

of the mean.344

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-345

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of346

Normality of errors is not verified.347

• For asymmetric distributions, the authors should be careful not to show in tables or348

figures symmetric error bars that would yield results that are out of range (e.g. negative349

error rates).350

• If error bars are reported in tables or plots, The authors should explain in the text how351

they were calculated and reference the corresponding figures or tables in the text.352

8. Experiments compute resources353

Question: For each experiment, does the paper provide sufficient information on the com-354

puter resources (type of compute workers, memory, time of execution) needed to reproduce355

the experiments?356

Answer: [No]357

Justification: the experiments can be reproduced in standard Google Colab computing en-358

vironment.359

Guidelines:360

• The answer NA means that the paper does not include experiments.361

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,362

or cloud provider, including relevant memory and storage.363

• The paper should provide the amount of compute required for each of the individual364

experimental runs as well as estimate the total compute.365

• The paper should disclose whether the full research project required more compute366

than the experiments reported in the paper (e.g., preliminary or failed experiments367

that didn’t make it into the paper).368

9. Code of ethics369

Question: Does the research conducted in the paper conform, in every respect, with the370

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?371

Answer: [Yes]372

Justification: we conform to the Code and legal requirements to our best.373

Guidelines:374

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.375

• If the authors answer No, they should explain the special circumstances that require a376

deviation from the Code of Ethics.377

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-378

eration due to laws or regulations in their jurisdiction).379

10. Broader impacts380

Question: Does the paper discuss both potential positive societal impacts and negative381

societal impacts of the work performed?382

Answer: [NA]383

Justification: the work describes specifically the technical impact; we expect no negative384

societal impact.385

Guidelines:386

• The answer NA means that there is no societal impact of the work performed.387

• If the authors answer NA or No, they should explain why their work has no societal388

impact or why the paper does not address societal impact.389
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• Examples of negative societal impacts include potential malicious or unintended uses390

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations391

(e.g., deployment of technologies that could make decisions that unfairly impact spe-392

cific groups), privacy considerations, and security considerations.393

• The conference expects that many papers will be foundational research and not tied394

to particular applications, let alone deployments. However, if there is a direct path to395

any negative applications, the authors should point it out. For example, it is legitimate396

to point out that an improvement in the quality of generative models could be used to397

generate deepfakes for disinformation. On the other hand, it is not needed to point out398

that a generic algorithm for optimizing neural networks could enable people to train399

models that generate Deepfakes faster.400

• The authors should consider possible harms that could arise when the technology is401

being used as intended and functioning correctly, harms that could arise when the402

technology is being used as intended but gives incorrect results, and harms following403

from (intentional or unintentional) misuse of the technology.404

• If there are negative societal impacts, the authors could also discuss possible mitiga-405

tion strategies (e.g., gated release of models, providing defenses in addition to attacks,406

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from407

feedback over time, improving the efficiency and accessibility of ML).408

11. Safeguards409

Question: Does the paper describe safeguards that have been put in place for responsible410

release of data or models that have a high risk for misuse (e.g., pretrained language models,411

image generators, or scraped datasets)?412

Answer: [NA]413

Justification: we expect no such risk.414

Guidelines:415

• The answer NA means that the paper poses no such risks.416

• Released models that have a high risk for misuse or dual-use should be released with417

necessary safeguards to allow for controlled use of the model, for example by re-418

quiring that users adhere to usage guidelines or restrictions to access the model or419

implementing safety filters.420

• Datasets that have been scraped from the Internet could pose safety risks. The authors421

should describe how they avoided releasing unsafe images.422

• We recognize that providing effective safeguards is challenging, and many papers do423

not require this, but we encourage authors to take this into account and make a best424

faith effort.425

12. Licenses for existing assets426

Question: Are the creators or original owners of assets (e.g., code, data, models), used in427

the paper, properly credited and are the license and terms of use explicitly mentioned and428

properly respected?429

Answer: [Yes]430

Justification: we credit the original prior work to our best.431

Guidelines:432

• The answer NA means that the paper does not use existing assets.433

• The authors should cite the original paper that produced the code package or dataset.434

• The authors should state which version of the asset is used and, if possible, include a435

URL.436

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.437

• For scraped data from a particular source (e.g., website), the copyright and terms of438

service of that source should be provided.439

• If assets are released, the license, copyright information, and terms of use in the pack-440

age should be provided. For popular datasets, paperswithcode.com/datasets has cu-441

rated licenses for some datasets. Their licensing guide can help determine the license442

of a dataset.443
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• For existing datasets that are re-packaged, both the original license and the license of444

the derived asset (if it has changed) should be provided.445

• If this information is not available online, the authors are encouraged to reach out to446

the asset’s creators.447

13. New assets448

Question: Are new assets introduced in the paper well documented and is the documenta-449

tion provided alongside the assets?450

Answer: [Yes]451

Justification: additionally, the code is anonymized to our best.452

Guidelines:453

• The answer NA means that the paper does not release new assets.454

• Researchers should communicate the details of the dataset/code/model as part of their455

submissions via structured templates. This includes details about training, license,456

limitations, etc.457

• The paper should discuss whether and how consent was obtained from people whose458

asset is used.459

• At submission time, remember to anonymize your assets (if applicable). You can460

either create an anonymized URL or include an anonymized zip file.461

14. Crowdsourcing and research with human subjects462

Question: For crowdsourcing experiments and research with human subjects, does the pa-463

per include the full text of instructions given to participants and screenshots, if applicable,464

as well as details about compensation (if any)?465

Answer: [NA]466

Justification: the experiments include no human subjects.467

Guidelines:468

• The answer NA means that the paper does not involve crowdsourcing nor research469

with human subjects.470

• Including this information in the supplemental material is fine, but if the main contri-471

bution of the paper involves human subjects, then as much detail as possible should472

be included in the main paper.473

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-474

tion, or other labor should be paid at least the minimum wage in the country of the475

data collector.476

15. Institutional review board (IRB) approvals or equivalent for research with human477

subjects478

Question: Does the paper describe potential risks incurred by study participants, whether479

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)480

approvals (or an equivalent approval/review based on the requirements of your country or481

institution) were obtained?482

Answer: [NA]483

Justification: the paper does not involve crowdsourcing nor research with human subjects.484

Guidelines:485

• The answer NA means that the paper does not involve crowdsourcing nor research486

with human subjects.487

• Depending on the country in which research is conducted, IRB approval (or equiva-488

lent) may be required for any human subjects research. If you obtained IRB approval,489

you should clearly state this in the paper.490

• We recognize that the procedures for this may vary significantly between institutions491

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the492

guidelines for their institution.493

• For initial submissions, do not include any information that would break anonymity494

(if applicable), such as the institution conducting the review.495
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16. Declaration of LLM usage496

Question: Does the paper describe the usage of LLMs if it is an important, original, or497

non-standard component of the core methods in this research? Note that if the LLM is used498

only for writing, editing, or formatting purposes and does not impact the core methodology,499

scientific rigorousness, or originality of the research, declaration is not required.500

Answer: [NA]501

Justification: only for the grammar purposes502

Guidelines:503

• The answer NA means that the core method development in this research does not504

involve LLMs as any important, original, or non-standard components.505

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what506

should or should not be described.507
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