
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON CHARACTERIZING AND MITIGATING IMBALANCES
IN MULTI-INSTANCE PARTIAL LABEL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-Instance Partial Label Learning (MI-PLL) is a weakly-supervised learn-
ing setting encompassing partial label learning, latent structural learning, and
neurosymbolic learning. Unlike supervised learning, in MI-PLL, the inputs to
the classifiers at training-time are tuples of instances x. At the same time, the
supervision signal is generated by a function σ over the (hidden) gold labels of
x. In this work, we make multiple contributions towards addressing a problem
that hasn’t been studied so far in the context of MI-PLL: that of characterizing
and mitigating learning imbalances, i.e., major differences in the errors occurring
when classifying instances of different classes (aka class-specific risks). In terms
of theory, we derive class-specific risk bounds for MI-PLL, while making minimal
assumptions. Our theory reveals a unique phenomenon: that σ can greatly impact
learning imbalances. This result is in sharp contrast with previous research on su-
pervised and weakly-supervised learning, which only studies learning imbalances
under the prism of data imbalances. On the practical side, we introduce a technique
for estimating the marginal of the hidden labels using only MI-PLL data. Then,
we introduce algorithms that mitigate imbalances at training- and testing-time, by
treating the marginal of the hidden labels as a constraint. We demonstrate the
effectiveness of our techniques using strong baselines from neurosymbolic and
long-tail learning, suggesting performance improvements of up to 14%.

1 INTRODUCTION

The need to reduce labeling costs motivates the study of weakly-supervised learning settings (Zhou,
2017; Zhang et al., 2022). Our work aligns with this objective, focusing on multi-instance partial
label learning (MI-PLL) (Wang et al., 2023b). MI-PLL is particularly appealing, as it encompasses
three well-known learning settings: partial label learning (PLL) (Cour et al., 2011; Cabannes et al.,
2020; Lv et al., 2020; Seo & Huh, 2021; Wen et al., 2021; Xu et al., 2021; Yu et al., 2022; Wang
et al., 2022; Hong et al., 2023), where each training instance is associated with a set of candidate
labels, latent structural learning (Steinhardt & Liang, 2015; Raghunathan et al., 2016; Zhang et al.,
2020), i.e., learning classifiers subject to a transition function σ that constraints their outputs, and
neurosymbolic learning (Manhaeve et al., 2018; Wang et al., 2019b; Dai et al., 2019; Tsamoura
et al., 2021; Huang et al., 2021; Li et al., 2023a), i.e., training neural classifiers subject to symbolic
background knowledge. An example (adapted from (Manhaeve et al., 2018)) is illustrated below:
Example 1.1 (MI-PLL example). We aim to learn an MNIST classifier f , using only samples of
the form (x1, x2, s), where x1 and x2 are MNIST digits and s is the maximum of their gold labels,
i.e., s = σ(y1, y2) = max{y1, y2} with yi being the label of xi. The gold labels are hidden during
training. We will refer to the yi’s and s as hidden and partial labels, respectively.

MI-PLL has been a topic of active research in NLP (Steinhardt & Liang, 2015; Raghunathan et al.,
2016; Peng et al., 2018; Wang et al., 2019a; Gupta et al., 2021). Recently, it has received renewed
attention in neurosymbolic learning, as it offers multiple benefits over architectures that approximate
the neural classifiers and σ via end-to-end neural models, such as (i) the ability to reuse the latent
models (Peng et al., 2018; Mihaylova et al., 2020), (ii) higher accuracy (Wu, 2022; Huang et al.,
2021), and (iii) higher explainability and generalizability. Practical applications of MI-PLL in the
neurosymbolic learning literature include visual question answering (Huang et al., 2021), video-text
retrieval (Li et al., 2023b), and fine-tuning language models (Zhang et al., 2023; Li et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

MNIST classes

Pe
r-

cl
as

s
ac

cu
ra

cy

Figure 1: Accuracy of the classifier from
Example 1.1. Blue, red and green curves
show accuracy at 20, 40 and 100 epochs.
Learning converges in 100 epochs.

For the first time, we address an unexplored topic in the
context of MI-PLL: that of characterizing and mitigating
learning imbalances, i.e., major differences in the errors
occurring when classifying instances of different classes
(aka class-specific risks).

Existing works in supervised (Menon et al., 2021; Cao
et al., 2019) and weakly-supervised learning (Wang et al.,
2022; Hong et al., 2023) study imbalances under the prism
of long-tailed (aka imbalanced) data: data in which in-
stances of different classes occur with very different fre-
quencies, (He & Garcia, 2009; Horn & Perona, 2017; Buda
et al., 2018). However, those results cannot characterize
learning imbalances in MI-PLL. This is because transition
function σ may cause learning imbalances even when the
hidden or the partial labels are uniformly distributed. Fig-
ure 1 demonstrates this phenomenon by showing the per-class classification accuracy across different
training epochs when an MNIST classifier is trained as in Example 1.1 and the hidden labels are
uniform. Hence, to formally characterise imbalances in MI-PLL, we need to account for σ.

On the practical side, mitigating learning imbalances has received considerable attention in supervised
and weakly-supervised learning with the proposed techniques (typically referred to as long-tail
learning) operating at training- (Cao et al., 2019; Tan et al., 2020; 2021; Chawla et al., 2002; Buda
et al., 2018) or at testing-time (Kang et al., 2020; Peng et al., 2022; Menon et al., 2021).

However, there are two main reasons that make previous practical algorithms on long-tail leaning not
appropriate for MI-PLL. First, they rely on (good) approximations of the marginal distribution of
the hidden labels. While approximating r may be easy in supervised learning (Menon et al., 2021)
as the gold labels are available, in our setting the gold labels are hidden from the learner. Second,
the state-of-the-art for training-time mitigation (Wang et al., 2022; Cao et al., 2019; Tan et al., 2020;
2021; Chawla et al., 2002; Buda et al., 2018; Hong et al., 2023) is designed for settings in which a
single instance is presented each time to the learner and hence, they cannot take into account the
correlations among the instances. The above gives rise to a second challenge: developing techniques
for mitigating learning imbalances in MI-PLL.

Contributions. We start by providing class-specific error bounds in the context of MI-PLL. Comple-
mentary to previous work in supervised learning (Cao et al., 2019) and standard single-instance PLL
(Cour et al., 2011), our theory shows that σ can have a significant impact on learning imbalances,
see Theorem 3.1. Our analysis extends the theoretical analysis in (Wang et al., 2023b), by provid-
ing stricter risk bounds for the underlying classifiers, making also minimal assumptions, and the
theoretical analysis in (Cour et al., 2011) that provides class-specific error bounds for standard PLL.

On the practical side, we first propose a statistically consistent technique for estimating the marginal
of the hidden labels given partial labels. We further propose two algorithms that mitigate imbalances
at training- and testing-time. The first algorithm assigns pseudo-labels to training data based on
a novel linear programming formulation of MI-PLL, see Section 4.2. The second algorithm uses
the hidden label marginals to constrain the model’s prediction on testing data, using a robust semi-
constrained optimal transport (RSOT) formulation (Le et al., 2021), see Section 4.3. Our empirical
analysis shows that our techniques can improve the accuracy over strong baselines in neurosymbolic
learning (Xu et al., 2018; Wang et al., 2023b) and long-tail learning (Menon et al., 2021; Hong et al.,
2023) by up to 14%, manifesting that the straightforward application of state-of-the-art to MI-PLL
settings is either impossible (Wang et al., 2022) or problematic (Hong et al., 2023).

2 PRELIMINARIES

Our notation is summarized in Table 7 and 8 and builds upon (Wang et al., 2023b).

Data and models. For an integer n ≥ 1, let [n] := {1, . . . , n}. Let also X be the instance space and
Y = [c] be the output space. We use x, y to denote elements in X and Y. The joint distribution of
two random variables X,Y over X× Y is denoted as D, with DX , DY denoting marginals of X and
Y . Vector r = (r1, . . . , rc) denotes DY , where rj := P(Y = j) is the probability of occurrence (or

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ratio) of label j ∈ Y in D. We consider scoring functions of the form f : X→ ∆c, where ∆c is the
space of probability distributions over Y, e.g., f outputs the softmax probabilities (or scores) of a
neural classifier. We use f j(x) to denote the score of f(x) for class j ∈ Y. A scoring function f
induces a classifier [f] : X→ Y, whose prediction on x is given by argmaxj∈[c] f

j(x). We denote
by F the set of scoring functions and by [F] the set of induced classifiers. The zero-one loss is given
by L(y′, y) := 1{y′ ̸= y}. The zero-one risk of f is given by R(f) := E(X,Y)∼D[L([f](X), Y)].
The risk of f for class j is defined as the probability of f mispredicting an instance of that class, i.e.,
Rj(f) := P([f](x) ̸= j|Y = j) . We refer to that risk as the class-specific one.

Multi-Instance PLL. We set x = (x1, . . . , xM) and denote by y = (y1, . . . , yM) the corresponding
gold labels. Let σ : YM → S be a transition function. Space S = {a1, . . . , acS} is referred to as the
partial label space, where |S| = cS ≥ 1. We assume that σ is known to the learner, a common assump-
tion in neurosymbolic learning (Dai et al., 2019; Li et al., 2023a). Let TP be a set of mP partially la-
beled samples of the form (x, s) = (x1, . . . , xM , s). We refer to s as a partial label. Each partially la-
beled sample is formed by drawing M i.i.d. samples (xi, yi) from D and setting s =: σ(y1, . . . , yM).
The distribution of samples (x, s) is denoted by DP. We set [f](x) := ([f](x1), . . . , [f](xM)).
The zero-one partial loss subject to σ is defined as Lσ(y, s) := L(σ(y), s) = 1{σ(y) ̸= s}, for any
y ∈ YM and s ∈ S. Learning aims to finding the classifier f with the minimum zero-one partial risk
subject to σ given by RP(f ;σ) := E(X1,...,XM ,S)∼DP

[Lσ(([f](X)), S)].

Vectors and matrices. A vector v is diagonal if all of its elements are equal. We denote by ei the
one-hot vector, where the i-th element equals to 1. We denote the all-one and all-zero vectors by 1n

and 0n, and the identity matrix of size n × n by In. Let A ∈ Rn×m be a matrix. We use Ai,j to
denote the value of the (i, j) cell of A and vi to denote the i-th element of v. The vectorization of A
is given by vec(A) := [a1,1, . . . , an,1, . . . , a1,m, . . . , an,m]T and its Moore–Penrose inverse by A†.
If A is square, then the diagonal matrix that shares the same diagonal with A is denoted by D(A).
For matrices A and B, A⊗B and ⟨A,B⟩ denote their Kronecker and Frobenius inner products.

3 THEORY: CHARACTERIZING LEARNING IMBALANCES IN MI-PLL

This section theoretically characterizes learning imbalances in MI-PLL by providing class-specific
risk bounds, see Proposition 3.1. These bounds measure the difficulty of learning instances of each
class in Y, indicating that, unlike supervised learning, learning imbalances in MI-PLL arise not only
from label distribution imbalances but also from the partial labeling process σ. Unlike prior work
(Wang et al., 2023b), our analysis relies solely on the i.i.d. assumption (see Section 2). To ease the
presentation, we focus on M = 2. Nevertheless, our analysis directly generalizes for M > 2.

Our theory is based on a novel non-linear program formulation that allows us to compute an upper
bound of each Rj(f). The first key idea (K1) to that formulation is a rewriting of RP(f ;σ) and
Rj(f). To start with, given the transition σ, the zero-one partial risk can be expressed as

RP(f ;σ) = ∑
(i,j)∈Y2

rirj

(
∑

(i′,j′)∈Y2

1{σ(i, j) ̸= σ(i′, j′)} Hii′(f)Hjj′(f)

)
(1)

probability of the label pair (i, j) the partial label is misclassified

conditional probability that the labels i and j are (mis)classified as i′ and j′

where H(f) is an c × c matrix defined as H(f) := [P([f](x) = j|Y = i)]i∈[c],j∈[c]. Equation (1)
is a straightforward rewriting of RP(f ;σ), see Section 2. To derive (1), we enumerate all the 4-ary
vectors (i, j, i′, j′) ∈ Y4, where i, j are the gold hidden labels and i′, j′ are the predicted labels, so
that the predicted labels lead to a wrong partial label, i.e., σ(i, j) ̸= σ(i′, j′). The risk RP(f ;σ) is the
sum of the probabilities of those wrong predictions, with Hii′(f)Hjj′(f) encoding the probability
of occurrence of the vectors (i, j, i′, j′). Now, let h(f) = vec(H(f)) be the vectorization of
H(f). The partial risk RP(f ;σ) in (1) is a quadratic form of h(f). Therefore, there is a unique
symmetric matrix Σσ,r in Rc2×c2 that depends only on σ and r such that (1) can be rewritten
as RP(f ;σ) = h(f)TΣσ,rh(f). Furthermore, for each j ∈ Y, let Wj be the matrix defined by
(1c − ej)e

T
j and wj be its vectorization. We can rewrite the class-specific risk as

Rj(f) = wT
j h(f) (2)

The second key idea (K2) to forming a non-linear program for computing class-specific risk bounds
is to upper bound the class-specific risk Rj(f) of a model f with the model’s partial risk RP(f ;σ).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The latter can be minimized with partially labeled data TP. Putting (K1) and (K2) together, the worst
class-specific risk of f for class j ∈ Y is given by the optimal solution to the program below:

max
h

wT
j h(f)

s.t. h(f)TΣσ,rh(f) = RP(f ;σ) (partial risk)
h(f) ≥ 0 (positivity)

(Ic ⊗ 1T
c)h(f) = 1c (normalization)

(3)

Let’s analyze (3). The optimization objective states that we aim to find the worst possible class-
specific risk as expressed in (2). The first constraint specifies the partial risk of the model. The
second one asks the (mis)classification probabilities to be non-negative. The last constraint, where
(Ic ⊗ 1T

c)h(f) represents the row sums of matrix H(f), requires the classification probabilities to
sum to one. Let Φσ,j(RP(f ;σ)) denote the optimal solution to program (3). Formally, we have:
Proposition 3.1 (Class-specific risk bound). For any j ∈ Y, we have that Rj(f) ≤ Φσ,j(RP(f ;σ)).

Characterizing learning imbalance. Proposition 3.1 suggests that the worst risk associated with
each class in Y is characterized by two factors. The first one is the model’s partial risk RP(f ;σ),
which is independent of the specific class. The second factor is σ, as σ impacts on the mapping Φσ,j

from the model’s partial risk to the class-specific risk. Therefore, the learning imbalance can be
assessed by comparing the growth rates of Φσ,j . We use this approach below to analyze Example 1.1.
Example 3.2 (Cont’ Example 1.1). Let D and DP be defined as in Section 2. Consider the two cases:

CASE 1 The marginal of the hidden label Y is uniform. The left-hand side of Figure 2 shows the risk
bounds for different classes obtained via solving program (3). The bounds are presented
as functions of different values of RP(f ;σ). In this plot, the curve for class “zero” (resp.

“nine”) has the steepest (resp. smoothest) slope, suggesting that f will tend to make more
(resp. fewer) mistakes when classifying instances of that class. In other words, class “zero"
is the hardest to learn, as also shown to be the case in reality, see Figure 1.

CASE 2 The marginal of the partial label S is uniform. Similarly, the right-hand side Figure 2 plots
the corresponding risk bounds, suggesting that the class “zero" is now the easiest to learn.

Figure 2: Class-specific upper bounds obtained via (3). (left) DY is
uniform. (right) DPS

is uniform.

Obtaining the label ratio r.
Computing the program (3)
requires knowing the transi-
tion σ and the label distribu-
tion r. While σ is assumed
to be given, r may be un-
known in practice. To cir-
cumvent this, in Section 4.1,
we present a technique for
estimating r using only par-
tially labeled data TP.

Computable bounds for
Rj(f). Via Proposition 3.1,
we could further derive a bound for Rj(f) that can be computed using an MI-PLL dataset. This can
be done by using standard learning theory tools (e.g., VC-dimension or Rademacher complexity)
to show that, given a fixed confidence level δ ∈ (0, 1), the partial risk RP(f ;σ) will not exceed a
generalization bound R̃P(f ;σ,TP, δ) with probability 1− δ. An example is shown below.
Proposition 3.3. Let d[F] be the Natarajan dimension of [F]. Given a confidence level δ ∈ (0, 1), we
have that Rj(f) ≤ Φσ,j(R̃P(f ;σ,TP, δ)) with probability 1− δ for any j ∈ [c], where

R̃P(f ;σ,TP, δ) = R̂P(f ;σ,TP) +

√
2 log(emP/2d[F] log(6Mc2d[F]/e))

mP/2d[F] log(6Mc2d[F]/e)
+

√
log(1/δ)

2mP
(4)

The first term in the right-hand side of (4) denotes the empirical partial risk of classifier f , the second
one upper bounds the Natarajan dimension of f (Shalev-Shwartz & Ben-David, 2014), and the third

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

term quantifies the confidence level or the probability that the generalization bound holds, which is
typical in learning theory. Proposition 3.3 shows how fast the risk of f for class j ∈ Y decreases
when training using partial labels. A further discussion on our bounds and Example 3.2 is in B.2.

Comparison to previous work. The most relevant work to ours is (Wang et al., 2023b), which first
establishes the learnability for MI-PLL. Our result extends (Wang et al., 2023b) in three ways: (i) we
bound the class-specific risks Rj(f) instead of bounding the total risk R(f); (ii) our bounds do not
rely on M -unambiguity, in contrast to those in (Wang et al., 2023b); and (iii) the program (3) leads to
tighter bounds for R(f). Before proving (iii), let us first recapitulate M -unambiguity:
Definition 3.4 (M -unambiguity from (Wang et al., 2023b)). A transition σ is M -unambiguous if for
any two diagonal label vectors y and y′ ∈ YM such that y ̸= y′, we have that σ(y′) ̸= σ(y).

Let us illustrate (iii) from above. By relaxing the constraints in (3), we can recover Lemma 1 from
(Wang et al., 2023b) (which is the key to proving Theorem 1 from (Wang et al., 2023b)). In particular,
if we: (1) drop the the positivity and normalization constraints from (3) and (2) replace the partial risk
constraint by a more relaxed inequality h(f)TD(Σσ,r)h(f) ≤ RP(f ;σ), we obtain the following:
Proposition 3.5. If σ is M -unambiguous, then the risk of f can be bounded by

R(f) ≤
√

wT(D(Σσ,r))†wRP(f ;σ) =
√

c(c− 1)RP(f ;σ) (5)

which coincides with Lemma 1 from (Wang et al., 2023b) for M = 2, where w := ∑c
j=1 rjwj .

4 ALGORITHMS: MITIGATING IMBALANCES IN MI-PLL

Section 3 sends a clear message: MI-PLL is prone to learning imbalances that may be exacerbated
due to σ. We now propose a portfolio of techniques for addressing learning imbalances. Our first
contribution, see Section 4.1, is a statistically consistent technique for estimating r, assuming access
to partial labels only. We then move to training-time mitigation, see Section 4.2 and testing-time
mitigation, see Section 4.3. Our marginal estimation algorithm requires only the i.i.d. assumption;
the algorithms in Section 4.2 and 4.3 work even when the i.i.d. assumption fails. Our mitigation
algorithms enforce the class priors to a classifier’s predictions. This is a common idea in long-tail
learning. The intuition is that the classifier will tend to predict the labels that appear more often in the
training data. Enforcing the priors, gives more importance to the minority classes at training-time (see
Section 4.2) and encourages the model to predict minority classes at testing-time (see Section 4.3).

4.1 ESTIMATING THE MARGINAL OF THE HIDDEN LABELS

We begin with our technique for estimating r using only partially labeled data TP. Let us first
introduce our notation. We denote the probability of occurrence (or ratio) of the j-th partial label
aj ∈ S by pj := P(S = aj) and set p = (p1, . . . , pcS). We also denote the set of all label vectors
that map to s under σ by σ−1(s). In terms of Example 1.1, σ−1(s = 1) = {(0, 1), (1, 0), (1, 1)}. To
estimate r, we rely on the observation that in MI-PLL, pj equals the probability of the label vectors
in σ−1(aj), namely pj = ∑(y1,...,yM)∈σ−1(aj) ∏M

i=1 ryi
, which is a polynomial of r. We use Pσ to

refer to the system of polynomial equations [pj]Tj∈[cS] = [∑(y1,...,yM)∈σ−1(aj)
]Tj∈[cS].

Example 4.1. Consider CASE (2) from Example 3.2. Assume that the marginals of the partial
labels are uniform. Then, we can obtain r via solving the following system of polynomial equations:
[r20, r

2
1 + 2r0r1, . . . , r

2
9 + 2∑8

i=0 rir9]
T = [1/10, 1/10, . . . , 1/10]T. The first equation denotes the

probability a partial label to be zero, which is 1/10 (uniformity). Due to σ, this can happen only when
y1 = y2 = 0. Under the independence assumption, the above implies that r20 = 1/10. Analogously,
the second and the last polynomials denote the probabilities a partial label to be one and nine.

Let Ψσ be the function mapping each rj ∈ Y to its solution in Pσ , assuming p is known. In practice,
p is unknown, but can be estimated by the empirical distribution of a partially labeled dataset TP of
size mP, namely p̄j := ∑mP

k=1 1{sk = aj}/mP. As the p̄j’s can be noisy, the system of polynomials
could become inconsistent. Therefore, instead of solving the polynomial equation as in Example
4.1, we find an estimate r̂, so that its induced prediction for the partial label ratio p̂ := Ψσ(r̂) best
fits to the empirical probabilities p̄j’s by means of cross-entropy. Since this requires optimizing
over the probability simplex ∆c, we reparametrize the estimated ratios r̂ by softmax(u), leading to
Algorithm 1. We provide a theoretical guarantee for the consistency of Algorithm 1 in Appendix C.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 LABEL RATIO SOLVER

Input: partial labels {sk}mP

k=1, transition
function σ, step size t, iterations Niter
Initialize: logit u← 1c; p̄j , for j ∈ [cS]
for N = 1, . . . , Niter do

r̂← softmax(u)
for each j ∈ [cS] do

p̂j ← ∑
(y1,...,yM)∈σ−1(aj)

∏M
i=1 r̂yi

ℓ← ∑cS
j=1 p̄j log p̂j

Backpropagate ℓ to update u

return softmax(u)

Algorithm 2 CAROT
Input: model’s raw scores P ∈ Rc×n, ratio
estimates r̂ ∈ Rc, entropic reg. parameter η >
0, margin reg. parameter τ > 0, iterations Niter
Initialize: u← 0n; v← 0c

for N = 1, . . . , Niter do
a← B(u,v)1c; b← B(u,v)T1n

if k is even then
update v //see Section 4.3

else
update u //see Section 4.3

return B(u,v)

4.2 TRAINING-TIME IMBALANCE MITIGATION VIA LINEAR PROGRAMMING

We now turn to training-time mitigation. We aim to find pseudo-labels Q that are close to the
classifier’s scores and adhere to r̂ and use Q to train the classifier using the cross-entropy loss. There
are two design choices: (i) whether to find pseudo-labels at the individual instance level or at the batch
level; (ii) whether to be strict in enforcing the marginal r̂. In addition, we face two challenges: (iii)
we are provided with M -ary tuples of instances of the form (x1, . . . , xM); (iv) Q must additionally
abide by the constraints coming from σ and the partial labels, e.g., when s = 1 in Example 1.1,
then the only valid label assignments for (x1, x2) are (1,1), (0,1) and (1,0). Regarding (i), finding
pseudo-labels at the individual instance level does not guarantee that the modified scores match r̂
(Peng et al., 2022). Regarding (ii), strictly enforcing r̂ could be problematic as r̂ can be noisy.

To accommodate the above requirements while avoiding the crux of solving non-linear programs, we
rely on a novel linear programming (LP) formulation of MI-PLL that finds pseudo-labels for a batch
of n scores. We use (xℓ,1, . . . , xℓ,M , sℓ) to denote the ℓ-th partial training sample in a batch of size n.
We also use Pi ∈ [0, 1]n×c and Qi ∈ [0, 1]n×c, for i ∈ [M], to denote the classifier’s scores and the
pseudo-labels assigned to the i-th input instances of the batch. In particular, Pi[ℓ, j] = f j(xℓ,i), while
Qi[ℓ, j] is the corresponding pseudo-label. Before continuing, it is crucial to explain how to associate
each training sample sℓ with a Boolean formula in disjunctive normal form (DNF). Associating partial
labels with DNF formulas is standard in the neurosymbolic literature (Xu et al., 2018; Tsamoura
et al., 2021; Huang et al., 2021; Wang et al., 2023b). For ℓ ∈ [n], i ∈ [M], and j ∈ [c], let qℓ,i,j be a
Boolean variable that is true if xℓ,i is assigned label j ∈ Y and false otherwise. Let Rℓ be the size of
σ−1(sℓ). Based on the above, we can associate each label vector y in σ−1(sℓ) with a conjunction
ϕℓ,t of Boolean variables from {qℓ,i,j}i∈[M],j∈[c], such that qℓ,i,j occurs in ϕℓ,t only if the i-th label
in y is j ∈ Y. We assume a canonical ordering over the variables occurring in each φℓ,t, for t ∈ [Rℓ],
and use φℓ,t,k to refer to the k-th variable. We use |φℓ,t| to denote the number of variables in φℓ,t.

Based on the above, finding a pseudo-label assignment for (xℓ,1, . . . , xℓ,M) that adheres to σ and sℓ
reduces to finding an assignment to the variables in {qℓ,i,j}i∈[M],j∈[c] that makes Φℓ hold. Previous
work (Roth & Yih, 2007; Srikumar & Roth, 2023) has shown that we can cast satisfiability problems
(as the one above) to linear programming problems. Therefore, instead of finding a Boolean true or
false assignment to each qℓ,i,j , we can find an assignment in [0, 1] for the real counterpart of qℓ,i,j
denoted by [qℓ,i,j]. Via associating the [qℓ,i,j]’s to the entries in the Qi’s, i.e., Qi[ℓ, j] = [qℓ,i,j], we
can solve the following linear program to perform pseudo-labeling:

objective min
(Q1,...,QM)

M

∑
i=1

⟨− log(Pi),Qi⟩,

s.t.

∑Rℓ
t=1[αℓ,t] ≥ 1, ℓ ∈ [n]

−|φℓ,t|[αℓ,t] + ∑
|φℓ,t|
k=1 [φℓ,t,k] ≥ 0, ℓ ∈ [n], t ∈ [Rℓ]

−∑
|φℓ,t|
k=1 [φℓ,t,k] + [αℓ,t] ≥ (1− |φℓ,t|), ℓ ∈ [n], t ∈ [Rℓ]

∑c
j=1[qℓ,i,j] = 1, ℓ ∈ [n], i ∈ [M]

[qℓ,i,j] ∈ [0, 1], ℓ ∈ [n], i ∈ [M], j ∈ [c]
|Qi · 1n − nr̂| ≤ ϵ, i ∈ [M]

(6)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The objective in (6) aligns with our aim to find pseudo-labels close to the classifier’s scores. The
independence among the classifier’s scores for different xℓ,i’s– recall that a classifier makes a
prediction for each xℓ,i independently of the other instances– justifies the sum over different i’s in the
minimization objective. The first three constraints force the pseudo-labels for the ℓ-th training sample
to adhere to σ and sℓ, where the αℓ,t’s are Boolean variables introduced due to converting the Φℓ’s
into conjunctive normal form (CNF) using the Tseytin transformation (Tseitin, 1983). The fourth and
the fifth constraint wants the pseudo-labels for each instance xℓ,i to sum up to one and lie in [0, 1].
Finally, the last constraint wants for each i ∈ [M], the probability of predicting the j-th pseudo-label
for an element in {xℓ,i}ℓ∈[n] to match the ratio estimates at hand r̂j up to some ϵ ≥ 0: the smaller ϵ
gets, the stricter the adherence to r̂ becomes. The detailed derivation of (6) is in Appendix D, as well
as an example program formulation based on Example 1.1. Finally, Table 8 summarizes the notation.

To summarize, training-time mitigation works as follows: for each epoch, we split the training samples
in TP into batches. For each batch {(xℓ,1, . . . , xℓ,M , sℓ)}ℓ∈[n], we form matrices P1, . . . ,PM by
applying f on the xℓ,i’s and solve (6) to get the pseudo-label matrices Q1, . . . ,QM . Finally, we train
f by minimizing the cross-entropy loss between Q1, . . . ,QM and P1, . . . ,PM . We will use LP to
denote the above training technique.

Remarks. Our formulation in (6) is oblivious to r̂, which can be estimated using either Algorithm 1
or any other technique, such as the moving average one from (Wang et al., 2022). Furthermore, the
formulation in (6) allows us to find either hard or soft pseudo-labels: we can treat (6) as an integer
linear program via forcing [qℓ,i,j] to lie in {0, 1}, instead of [0, 1].

4.3 CAROT: TESTING-TIME IMBALANCE MITIGATION

We conclude this section with CAROT, an algorithm that mitigates learning imbalances at testing-time
by modifying the model’s scores to adhere to the estimated ratios r̂. Incorporating r̂ into the model’s
scores involves the design choices (i) and (ii) presented at the beginning of Section 4.2– challenges
(iii) and (iv) are specific to training. Regarding (i), most existing testing-time mitigation algorithms
algorithms (e.g., (Menon et al., 2021)) modify a model’s scores at the level of individual instances.
Regarding (ii), as we explained in Section 4.2, strictly enforcing r̂ could also be problematic, as now,
r̂ may be also different from the label marginal underlying the test data.

Similarly to Section 4.2, we propose to adjust the model’s scores for a whole batch of n > 1 test
samples (represented by a matrix P ∈ Rn×c) so that the adjusted scores P′ roughly adhere to r̂.
Precisely, we propose to find P′ that optimizes the following objective:

min
P′∈Rn×c

+ ,P′1c=1n

⟨− log(P),P′⟩+ τ KL(P′T1n ∥ nr̂)− ηH(P′) (7)

The first term in (7) encourages P′ to be close to the original scores. The second term encourages
the column sums of P′ to match r̂, with τ > 0 controlling adherence, where KL is the Kullback-
Leibler divergence. This formulation leads to a robust semi-constrained optimal transport (RSOT)
problem (Le et al., 2021). The regularizer ηH(P′), where H denotes entropy, allows to approxi-
mate the optimal solution using the robust semi-Sinkhorn algorithm (Le et al., 2021), leading to
CAROT (Confidence-Adjustment via Robust semi-constrained Optimal Transport), see Algorithm 2.

In Algorithm 2, B(u,v) denotes an n× c matrix whose (i, j) cell is computed as a function of u and
v by exp(ui + vj + log(Pij)/η). In each iteration, the algorithm alternates between updating the
c-dimensional vector v and the n-dimensional vector u. The former update, which is computed as
v← ητ

η+τ

(
v
η + log(nr̂)− log(b)

)
, forces B(u,v) to adhere to r̂; the latter, which is computed as

u← η
(

u
η + log(1n)− log(a)

)
, forces the elements in each row of B(u,v) to add to one. Matrix

B(u,v) converges to the optimal solution to (7) when Niter goes to infinity (Le et al., 2021).

Choice of η and τ . In practice, we use a small partially labeled validation set to choose η and τ .
Doing so, the validation set can be obtained by splitting the training set of partially labelled data TP.

Guarantees. CAROT minimizes (7) under a polynomial number of iterations, see (Le et al., 2021).
Being a testing-time technique, this is the only guarantee that CAROT can reasonably provide.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

Baselines. We focus on scenarios from neurosymbolic learning due to the increasing interest on the
topic. We consider the state-of-the-art loss semantic loss (SL) (Xu et al., 2018; Wang et al., 2023b;
Huang et al., 2021) for MI-PLL training and use the engine Scallop that performs MI-PLL training
using that loss (Huang et al., 2021). Since there are no prior MI-PLL techniques for mitigating
imbalances at testing-time, we consider Logit Adjustment (LA) (Menon et al., 2021) as a competitor
to CAROT. The notation +A, for an algorithm A ∈ {LA, CAROT}, means that the scores of a
baseline model are modified at testing-time via A. We do not assume access to a validation set of gold
labelled data, applying LA and CAROT using the estimate r̂ obtained via Algorithm 1. However,
we use a validation set of partially labelled data to run Algorithm 1. We also carry experiments with
RECORDS (Hong et al., 2023), a technique that mitigates imbalances at training-time for standard
PLL (no previous MI-PLL training-time baseline exists). We use SL+RECORDS when a classifier
has been trained using RECORDS in conjunction with SL. RECORDS acts as a competitor to LP.
Notice that the imbalance mitigation technique from (Wang et al., 2022), SOLAR, cannot act as a
competitor to our proposed techniques (see Appendix E for a detailed discussion on SOLAR). Finally,
we carry experiments using LP, see Section 4.2. We use LP(ALG1) and LP(EMP), when LP is
applied using the ratios obtained via Algorithm 1 and via the approximation from (Wang et al., 2022).

Benchmarks. We carry experiments using an MI-PLL benchmark previously used in the neurosym-
bolic literature (Manhaeve et al., 2018; 2021b; Huang et al., 2021; Li et al., 2023a), namely MAX-M ,
as well as a newly introduced, called Smallest Parent. Training samples in MAX-M are as described
in Example 1.1. We vary M to {3, 4, 5} and use the MNIST benchmark to obtain training and testing
instances. In Smallest Parent, training samples are of the form (x1, x2, p), where x1 and x2 are
CIFAR-10 images and p is the most immediate common ancestor of y1 and y2, assuming the classes
form a hierarchy. To simulate long-tail phenomena (denoted as LT), we vary the imbalance ratio ρ of
the distributions of the input instances as in (Cao et al., 2019; Wang et al., 2022): ρ = 0 means that
the hidden label distribution is unmodified and balanced. Despite looking simply at a first glance,
our scenarios are quite challenging. First, the pre-image of σ may be particularly large, making
the supervision rather weak, e.g., in the MAX-5 scenario, there are 5× 94 candidate label vectors
when the partial label is 9. Second, the transition functions may exacerbate the imbalances in the
hidden labels, with the probability of certain partial labels getting very close to zero. For instance, in
the MAX-5 scenario, the probability of the partial label zero is 10−5 when ρ = 0. This probability
becomes even smaller when ρ = 50. Each cell shows mean accuracy and standard deviation over
three different runs. The results of our analysis are summarized in Table 1, Table 2 and Figure 3.
Results on more neurosymbolic scenarios and a further analysis are in the appendix.

Table 1: Experimental results for MAX-M using mP = 3000.

Algorithms Original ρ = 0 LT ρ = 15 LT ρ = 50
M = 3 M = 4 M = 5 M = 3 M = 4 M = 5 M = 3 M = 4 M = 5

SL 84.15 ± 11.92 73.82 ± 2.36 59.88 ± 5.58 71.25 ± 4.48 66.98 ± 3.2 55.06 ± 5.21 66.74 ± 5.42 67.71 ± 11.58 55.74 ± 2.58
+ LA 84.17 ± 11.95 73.82 ± 2.36 59.88 ± 5.58 70.80 ± 4.52 66.98 ± 3.20 54.53 ± 5.74 66.57 ± 5.09 61.10 ± 3.95 52.47 ± 8.06
+ CAROT 84.57 ± 11.50 73.08 ± 3.10 60.26 ± 5.20 74.95 ± 3.45 67.44 ± 2.74 55.80 ± 4.47 68.16 ± 4.00 68.25 ± 6.14 57.29 ± 14.17

RECORDS 85.56 ± 7.25 75.11 ± 0.77 59.43 ± 6.61 55.47 ± 20.45 53.34 ± 16.66 52.40 ± 7.95 70.20 ± 7.65 66.05 ± 13.90 59.93 ± 4.86
+ LA 87.63 ± 5.11 75.11 ± 0.77 59.28 ± 6.76 54.90 ± 20.16 54.46 ± 15.54 51.25 ± 9.09 70.09 ± 7.26 65.78 ± 14.18 59.93 ± 4.86
+ CAROT 90.97 ± 2.03 75.94 ± 0.91 60.45 ± 7.78 54.32 ± 21.85 62.74 ± 8.14 55.85 ± 4.61 71.46 ± 6.4 71.25 ± 8.70 63.64 ± 5.92

LP(EMP) 94.97 ± 1.32 77.86 ± 4.22 55.27 ± 11.27 75.83 ± 5.26 69.67 ± 5.47 59.25 ± 7.27 77.16 ± 3.46 70.06 ± 10.73 56.79 ± 1.58
+ LA 94.69 ± 1.60 77.91 ± 4.16 55.34 ± 11.19 75.77 ± 5.32 68.92 ± 3.96 58.49 ± 5.74 77.1 ± 3.52 69.76 ± 10.31 56.81 ± 1.56
+ CAROT 95.07 ± 1.20 75.53 ± 7.42 53.07 ± 12.99 76.38 ± 4.72 69.74 ± 5.51 59.56 ± 8.14 77.58 ± 3.04 70.11 ± 10.34 57.09 ± 1.90

LP(ALG1) 96.09 ± 0.41 78.34 ± 4.80 59.91 ± 6.63 74.51 ± 9.13 69.14 ± 1.82 56.81 ± 3.74 72.23 ± 11.49 69.28 ± 11.78 63.67 ± 7.04
+ LA 95.81 ± 0.74 78.97 ± 4.09 59.98 ± 6.56 74.26 ± 9.06 68.73 ± 2.23 56.37 ± 3.13 72.23 ± 11.49 69.21 ± 11.86 63.67 ± 7.04
+ CAROT 96.13 ± 0.38 80.78 ± 2.36 59.71 ± 6.35 77.05 ± 7.00 69.19 ± 1.81 59.76 ± 7.24 74.82 ± 10.18 74.30 ± 7.54 64.39 ± 6.43

Table 2: Experimental results for Smallest Parent using mP = 10000.
Algorithms Original ρ = 0 LT ρ = 5 LT ρ = 15 LT ρ = 50 Algorithms Original ρ = 0 LT ρ = 5 LT ρ = 15 LT ρ = 50

SL 69.82 ± 0.53 67.94 ± 0.40 69.04 ± 0.03 74.65 ± 0.44 LP(EMP) 79.41 ± 1.33 79.24 ± 1.03 68.40 ± 1.90 70.29 ± 1.62
+ LA 69.83 ± 0.53 67.93 ± 0.41 68.70 ± 0.30 74.62 ± 0.36 + LA 79.41 ± 1.33 79.24 ± 1.03 68.40 ± 1.90 70.29 ± 1.62
+ CAROT 69.82 ± 0.53 67.93 ± 0.41 68.70 ± 0.41 74.15 ± 0.47 + CAROT 79.41 ± 1.33 79.28 ± 0.91 77.10 ± 1.74 80.71 ± 1.50

RECORDS 48.71 ± 3.90 48.15 ± 4.56 50.14 ± 1.10 55.12 ± 1.40 LP(ALG1) 80.23 ± 0.70 81.27 ± 0.71 81.99 ± 0.51 83.44 ± 0.48
+ LA 54.12 ± 2.00 45.48 ± 2.31 56.83 ± 1.30 60.87 ± 1.20 + LA 80.20 ± 0.74 81.26 ± 0.72 81.99 ± 0.51 83.44 ± 0.48
+ CAROT 68.16 ± 0.47 69.04 ± 0.74 71.70 ± 0.84 75.69 ± 0.90 + CAROT 68.90 ± 11.09 76.38 ± 5.68 82.00 ± 0.51 83.44 ± 0.48

Conclusions. We observed many interesting phenomena: (i) training-time mitigation can significantly
improve the accuracy; (ii) state-of-the-art on training-time mitigation might not be appropriate for
MI-PLL; (iii) approximate techniques for estimating r can sometimes be more effective when used
for training-time mitigation; (iv) testing-time mitigation can substantially improve the accuracy of a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

classifier; however, it tends to be less effective than training-time mitigation; (v) CAROT may be
sensitive to the quality of estimated ratios r̂; (vi) Algorithm 1 offers quite accurate marginal estimates.

Figure 3: Accuracy of the marginal estimates computed by Algorithm 1. Blue denotes the gold ratios,
red the estimated ones, and green the absolute difference between the gold and estimated ratios.

Starting from the last conclusion, Figure 3 shows that Algorithm 1 offers quite accurate estimates even
in challenging scenarios with high imbalance ratios. Regarding (i), let us focus on Table 2. We can
see that both LP(EMP) and LP(ALG1) lead to higher accuracy than models trained exclusively via
SL. For example, when ρ = 5 in Smallest Parent, the mean accuracy obtained via training under SL is
67.94%; the mean accuracy increases to 79.24% under LP(EMP) and to 81.27% under LP(ALG1). In
MAX-4, the mean accuracy under SL is 55.48%, increasing to 78.56% under LP(ALG1). Regarding
(ii), consider again Table 2: when RECORDS is applied jointly with SL, the accuracy of the model
can substantially drop, e.g., when ρ = 5 in Table 2, the mean accuracy drops from 67.94% to 48.15%.
In the MAX-M scenarios, RECORDS seems to improve over SL; however, for certain scenarios the
accuracy drops drastically (e.g., for ρ = 15). The above stresses the importance of LP(Section 4.2).

Figure 4: Impact of the label ratio qual-
ity on CAROT’s performance.

Let’s move to (iii). In most of the cases, LP(ALG1) leads to
higher accuracy than LP(EMP). However, the opposite may
also hold in some cases. One such example is MAX-3 for
ρ = 50: the mean accuracy for the baseline model is 66.74%,
increasing to 72.23% under LP(ALG1) and to 77.16% under
LP(EMP). A similar phenomenon is observed for ρ = 15
for the same scenario. The above suggests that there can
be cases where employing the gold ratios (Algorithm 1 pro-
duces estimates that converge to the gold ratios, see Propo-
sition C.1) may not always be the best solution. A similar
observation is made by the authors of RECORDS (Hong
et al., 2023). One cause of this phenomenon is the high
number of classification errors during the initial stages of
learning. Those classification errors can become higher in
our experimental setting, as in MAX-M , we only consider a subset of the pre-images of each partial
label to compute SL and (6), to reduce the computational overhead of computing all pre-images.

We conclude with CAROT. Tables 1 and 2 show that CAROT can be more effective than LA. For
example, in the MAX-3 scenarios and ρ = 50, the mean accuracy is 66.74% under SL, drops to
66.57% under SL+LA and increases to 68.16% under SL+CAROT. In Smallest Parent and ρ = 50,
the mean accuracy of LP(EMP) increases from 70.29% to 80.71% under CAROT; LA has no impact.
CAROT also improves the accuracy of RECORDS models, often, by a large margin. For example,
for Smallest Parent and ρ = 15, the mean accuracy of a RECORDS-based trained model increases
from 50.14% to 71.70% when CAROT is applied. CAROT is also consistently better than LA when
applied on top of RECORDS. However, there can be cases where both LA and CAROT drop the
accuracy of the baseline model. One such example is met in Smallest Parent and ρ = 5: the mean
accuracy under LP(ALG1) is 81.27% and drops to 76.38% when CAROT is applied.

We analyse the sensitivity of CAROT under the quality of the input r̂, where quality is measured by
means of the KL divergence to r. Figure 4 shows the accuracy of an MNIST model (trained with the
MAX-3 dataset), when CAROT is applied at testing-time using 500 randomly generated ratios r̂ of
varying quality. We observe that CAROT’s effectiveness drops as the estimated marginal diverges
more from r. Also, the performance can decrease by more than 10% with only a small perturbation
in the KL divergence. This instability may be the reason CAROT fails to improve a base model.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Training- vs testing-time mitigation. CAROT is a more lightweight technique, relying on the
polynomial complexity, semi-Sinkhorn algorithm (Le et al., 2021). However, as the empirical results
suggest, CAROT may lead to lower classification accuracy in comparison to LP. On the contrary,
LP may increase the training overhead over the state-of-the-art– that is applying the top-k SL per
training sample (Xu et al., 2018; Wang et al., 2023b). This is because when k is fixed, the complexity
to compute the SL is polynomial; in contrast, solving (6), which is a linear program calculated out of
a batch of samples, is an NP-hard problem. When the SL runs without approximations though and
the pre-image of σ is very large, the complexity of SL is worst case #P-complete per training sample
(Chavira & Darwiche, 2008), making (6) a more computationally efficient approach.

6 RELATED WORK

An extended version and more detailed comparison against the related work is in Appendix E.

Long-tail supervised learning. Two supervised learning techniques related to our work are
LA (Menon et al., 2021) and OTLM (Peng et al., 2022). Both aim at testing-time mitigation.
LA modifies the classifier’s scores by subtracting the gold ratios. CAROT can be substantially more
effective than LA, see Section 5. OTLM assumes that the marginal r is known, resorting to an OT
formulation for adjusting the classifier’s scores. In contrast, we propose a statistically consistent
technique to estimate r, see Section 4.1, and resort to RSOT to accommodate for noisy r̂’s.

Long-tail PLL. The authors in (Cour et al., 2011) showed that certain classes are harder to learn than
others in standard PLL. We are the first to extend those results under MI-PLL. The only two works in
the intersection of long-tail learning and (single-instance) PLL are RECORDS (Hong et al., 2023)
and SOLAR (Wang et al., 2022). RECORDS modifies the classifier’s scores using the same idea with
LA. It employs a momentum-updated prototype feature to estimate r̂. Unlike LP, RECORDS does
not take into account the constraints coming from MI-PLL. Section 5 shows that RECORDS is less
effective than our proposals, degrading the baseline accuracy on multiple occasions. SOLAR relies
on standard OT to assign pseudo-labels to instances, in contrast to our formulation in (6). Also,
SOLAR uses an averaging technique to estimate r, as opposed to Algorithm 1.

MI-PLL. We close with some recent theoretical results on MI-PLL. The authors in (Marconato et al.,
2023; 2024) characterize reasoning shortcuts in MI-PLL. In contrast, our work provides class-specific
error bounds, formally characterizing learning imbalances in MI-PLL. It is worth noting that the
authors in (Tang et al., 2024a;b) use the term multi-instance partial-label learning to describe their
learning setting. The differences with ours (see Section 2) are as follows. First, the objective in
(Tang et al., 2024a;b) is to learn a bag classifier, i.e., a classifier f : 2X → Y, and not an instance
classifier. Second, unlike our setting, in (Tang et al., 2024a;b), the training samples are of the form
(X,S), where X is a bag of instances and S is a bag of labels for the whole X. Due to the above
differences, the formulation in (Tang et al., 2024a;b) cannot capture the neurosymbolic learning
setting in (Manhaeve et al., 2018; Dai et al., 2019; Tsamoura et al., 2021; Li et al., 2023a).

7 CONCLUSIONS AND FUTURE WORK

Comments on the theory. Our analysis in Section 3 assumes that the probability of misclassifying
an instance x only dependents on its class. This assumption is also adopted in other learning settings,
such as noisy label learning (Zhang et al., 2021; Patrini et al., 2017). Although there are more complex
scenarios where this assumption does not hold, our theory stands as an over-approximation to those
scenarios, similarly to the connection between class- and instance-dependent noisy label learning.
Furthermore, our formulation in (3) can be extended to cases where the correlations among the
instances (x1, . . . , xM) of each training sample are weak, i.e., have very few correlations. Extending
our analysis in the general non-i.i.d. setting is an important direction for future research.

Our work is the first to theoretically characterize and mitigate learning imbalances in MI-PLL. Our
theoretical characterization complements the existing theory in long-tail learning, identifying and
addressing the unique challenges in MI-PLL. Additionally, we contributed an LP-based and an RSOT-
based mitigation technique that both outperform state-of-the-art in long-tail learning. Our empirical
analysis unveiled two topics for future research: computing marginal for testing-time mitigation and
designing more effective testing-time mitigation techniques. Another important future direction is
to look into scalability, as for scenarios with a large number of classes, it may be computationally
expensive to run Algorithm 1 or Algorithm 2.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press, 2004.

Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. A systematic study of the class imbalance
problem in convolutional neural networks. Neural Networks, 106:249–259, 2018.

Vivien Cabannes, Alessandro Rudi, and Francis Bach. Structured prediction with partial labelling
through the infimum loss. In ICML, pp. 1230–1239, 2020.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. In NeurIPS, pp. 1567–1578, 2019.

Ming-Wei Chang, Lev Ratinov, and Dan Roth. Guiding Semi-Supervision with Constraint-Driven
Learning. In ACL, pp. 280–287, 6 2007.

Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting. Artificial
Intelligence, 172(6):772 – 799, 2008.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16(1):321–357,
2002.

Timothee Cour, Ben Sapp, and Ben Taskar. Learning from partial labels. Journal of Machine
Learning Research, 12:1501–1536, 2011. ISSN 1532-4435.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In NeurIPS, 2013.

Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging Machine Learning and Logical
Reasoning by Abductive Learning. In NeurIPS, pp. 2815–2826, 2019.

Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, and Masashi Sugiyama. Provably
consistent partial-label learning. In NeurIPS, pp. 10948–10960, 2020.

Kuzman Ganchev, João Graça, Jennifer Gillenwater, and Ben Taskar. Posterior regularization for
structured latent variable models. Journal of Machine Learning Research, 11:2001–2049, 2010.

Nitish Gupta, Sameer Singh, Matt Gardner, and Dan Roth. Paired examples as indirect supervision in
latent decision models. In EMNLP, pp. 5774–5785, 2021.

Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Transactions on Knowledge
and Data Engineering, 21(9):1263–1284, 2009.

Feng Hong, Jiangchao Yao, Zhihan Zhou, Ya Zhang, and Yanfeng Wang. Long-tailed partial label
learning via dynamic rebalancing. In ICLR, 2023.

Grant Van Horn and Pietro Perona. The devil is in the tails: Fine-grained classification in the wild.
CoRR, abs/1709.01450, 2017.

Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie Si. Scallop:
From probabilistic deductive databases to scalable differentiable reasoning. In NeurIPS, pp.
25134–25145, 2021.

Robert I. Jennrich. Asymptotic properties of non-linear least squares estimators. The Annals of
Mathematical Statistics, 40(2):633–643, 1969. ISSN 00034851. URL http://www.jstor.
org/stable/2239482.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis
Kalantidis. Decoupling representation and classifier for long-tailed recognition. In ICLR, 2020.

Khang Le, Huy Nguyen, Quang M Nguyen, Tung Pham, Hung Bui, and Nhat Ho. On robust
optimal transport: Computational complexity and barycenter computation. In Advances in Neural
Information Processing Systems, pp. 21947–21959, 2021.

11

http://www.jstor.org/stable/2239482
http://www.jstor.org/stable/2239482

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qing Li, Siyuan Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, and Song-Chun Zhu.
Closed loop neural-symbolic learning via integrating neural perception, grammar parsing, and
symbolic reasoning. In ICML, 2020.

Zenan Li, Yuan Yao, Taolue Chen, Jingwei Xu, Chun Cao, Xiaoxing Ma, and Jian Lu. Softened
symbol grounding for neurosymbolic systems. In ICLR, 2023a.

Ziyang Li, Jiani Huang, and Mayur Naik. Scallop: A language for neurosymbolic programming.
Proceedings of the ACM on Programming Languages, 7(PLDI), 2023b.

Ziyang Li, Jiani Huang, Jason Liu, Felix Zhu, Eric Zhao, William Dodds, Neelay Velingker, Rajeev
Alur, and Mayur Naik. Relational programming with foundational models. Proceedings of the
AAAI Conference on Artificial Intelligence, 38(9):10635–10644, 2024.

Tianyi Lin, Nhat Ho, Marco Cuturi, and Michael I. Jordan. On the complexity of approximating
multimarginal optimal transport. Journal of Machine Learning Research, 23(1), 2022.

Wenpeng Liu, Li Wang, Jie Chen, Yu Zhou, Ruirui Zheng, and Jianjun He. A partial label metric
learning algorithm for class imbalanced data. In ACML, volume 157, pp. 1413–1428, 2021.

Jiaqi Lv, Miao Xu, Lei Feng, Gang Niu, Xin Geng, and Masashi Sugiyama. Progressive identification
of true labels for partial-label learning. In ICML, pp. 6500–6510, 2020.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. In NeurIPS, pp. 3749–3759, 2018.

Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Neural probabilistic logic programming in deepproblog. Artificial Intelligence, 298:103504, 2021a.

Robin Manhaeve, Giuseppe Marra, and Luc De Raedt. Approximate Inference for Neural Probabilistic
Logic Programming. In KR, pp. 475–486, 2021b.

Emanuele Marconato, Stefano Teso, Antonio Vergari, and Andrea Passerini. Not all neuro-symbolic
concepts are created equal: Analysis and mitigation of reasoning shortcuts. In NeurIPS, 2023.

Emanuele Marconato, Samuele Bortolotti, Emile van Krieken, Antonio Vergari, Andrea Passerini,
and Stefano Teso. BEARS make neuro-symbolic models aware of their reasoning shortcuts. CoRR,
abs/2402.12240, 2024.

Stephen Mayhew, Snigdha Chaturvedi, Chen-Tse Tsai, and Dan Roth. Named Entity Recognition
with Partially Annotated Training Data. In CoNLL, 2019.

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and
Sanjiv Kumar. Long-tail learning via logit adjustment. In ICLR, 2021.

Tsvetomila Mihaylova, Vlad Niculae, and André F. T. Martins. Understanding the mechanics of
SPIGOT: Surrogate gradients for latent structure learning. In EMNLP, pp. 2186–2202, 2020.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
The MIT Press, 2nd edition, 2018. ISBN 0262039400.

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making
deep neural networks robust to label noise: A loss correction approach. In CVPR, pp. 2233–2241,
2017.

Hanyu Peng, Mingming Sun, and Ping Li. Optimal transport for long-tailed recognition with learnable
cost matrix. In ICLR, 2022.

Hao Peng, Sam Thomson, and Noah A. Smith. Backpropagating through structured argmax using a
SPIGOT. In ACL, pp. 1863–1873, 2018.

Gabriel Peyré and Marco Cuturi. Computational optimal transport, 2020.

Aditi Raghunathan, Roy Frostig, John Duchi, and Percy Liang. Estimation from indirect supervision
with linear moments. In ICML, volume 48, pp. 2568–2577, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dan Roth and Wen-tau Yih. Global Inference for Entity and Relation Identification via a Linear
Programming Formulation. MIT Press, Introduction to Statistical Relational Learning edition,
2007.

Sivan Sabato and Naftali Tishby. Multi-instance learning with any hypothesis class. Journal of
Machine Learning Research, 13(97):2999–3039, 2012. URL http://jmlr.org/papers/
v13/sabato12a.html.

Sivan Sabato, Nathan Srebro, and Naftali Tishby. Reducing label complexity by learning from bags.
In PMLR, volume 9, pp. 685–692, 2010.

Rajhans Samdani, Ming-Wei Chang, and Dan Roth. Unified expectation maximization. In ACL, pp.
688–698, 2012.

Junghoon Seo and Joon Suk Huh. On the power of deep but naive partial label learning. In ICASSP,
pp. 3820–3824, 2021.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, USA, 2014. ISBN 1107057132.

Vivek Srikumar and Dan Roth. The integer linear programming inference cookbook.
ArXiv, abs/2307.00171, 2023. URL https://api.semanticscholar.org/CorpusID:
259316294.

Jacob Steinhardt and Percy S Liang. Learning with relaxed supervision. In NeurIPS, volume 28,
2015.

Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, and Junjie Yan.
Equalization loss for long-tailed object recognition. In CVPR, pp. 11662–11671, 2020.

Jingru Tan, Xin Lu, Gang Zhang, Changqing Yin, and Quanquan Li. Equalization loss v2: A new
gradient balance approach for long-tailed object detection. In CVPR, pp. 1685–1694, June 2021.

Wei Tang, Weijia Zhang, and Min-Ling Zhang. Multi-instance partial-label learning: towards
exploiting dual inexact supervision. Science China Information Sciences, 67(3), 2024a.

Wei Tang, Weijia Zhang, and Min-Ling Zhang. Disambiguated attention embedding for multi-instance
partial-label learning. In NeurIPS, 2024b.

Efthymia Tsamoura, Timothy Hospedales, and Loizos Michael. Neural-symbolic integration: A
compositional perspective. In AAAI, pp. 5051–5060, 2021.

Grigori S Tseitin. On the complexity of derivation in propositional calculus. Automation of reasoning,
298:466–483, 1983.

Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang, and Wen-tau Yih. Learning from explicit and
implicit supervision jointly for algebra word problems. In EMNLP, pp. 297–306, 2016.

A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 1998.

Haobo Wang, Mingxuan Xia, Yixuan Li, Yuren Mao, Lei Feng, Gang Chen, and Junbo Zhao. Solar:
Sinkhorn label refinery for imbalanced partial-label learning. In NeurIPS, 2022.

Kaifu Wang, Hangfeng He, Tin D. Nguyen, Piyush Kumar, and Dan Roth. On Regularization and
Inference with Label Constraints. In ICML, 2023a. URL https://cogcomp.seas.upenn.
edu/papers/paper-to-come.pdf.

Kaifu Wang, Efthymia Tsamoura, and Dan Roth. On learning latent models with multi-instance weak
supervision. In NeurIPS, 2023b.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu, Lianli Gao, Bing Tian Dai, and Heng Tao
Shen. Template-based math word problem solvers with recursive neural networks. In AAAI, pp.
7144–7151, 2019a.

13

http://jmlr.org/papers/v13/sabato12a.html
http://jmlr.org/papers/v13/sabato12a.html
https://api.semanticscholar.org/CorpusID:259316294
https://api.semanticscholar.org/CorpusID:259316294
https://cogcomp.seas.upenn.edu/papers/paper-to-come.pdf
https://cogcomp.seas.upenn.edu/papers/paper-to-come.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico Kolter. Satnet: Bridging deep learning and
logical reasoning using a differentiable satisfiability solver. In ICML, 2019b.

Hongwei Wen, Jingyi Cui, Hanyuan Hang, Jiabin Liu, Yisen Wang, and Zhouchen Lin. Leveraged
weighted loss for partial label learning. CoRR, abs/2106.05731, 2021. URL https://arxiv.
org/abs/2106.05731.

Zhaofeng Wu. Learning with latent structures in natural language processing: A survey. arXiv
preprint arXiv:2201.00490, 2022.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss function
for deep learning with symbolic knowledge. In ICML, pp. 5502–5511, 2018.

Ning Xu, Congyu Qiao, Xin Geng, and Min-Ling Zhang. Instance-dependent partial label learning.
In NeurIPS, volume 34, pp. 27119–27130, 2021.

Zhun Yang, Adam Ishay, and Joohyung Lee. NeurASP: Embracing neural networks into answer set
programming. In IJCAI, pp. 1755–1762, 2020.

Peilin Yu, Tiffany Ding, and Stephen H. Bach. Learning from multiple noisy partial labelers. In
PMLR, volume 151, pp. 11072–11095, 2022.

Hanlin Zhang, Jiani Huang, Ziyang Li, Mayur Naik, and Eric Xing. Improved logical reasoning of
language models via differentiable symbolic programming. In ACL, pp. 3062–3077, July 2023.

Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, and Alexander J. Ratner. A survey
on programmatic weak supervision. ArXiv, abs/2202.05433, 2022. URL https://api.
semanticscholar.org/CorpusID:246823025.

Mingyuan Zhang, Jane Lee, and Shivani Agarwal. Learning from noisy labels with no change to
the training process. In ICML, volume 139 of Proceedings of Machine Learning Research, pp.
12468–12478, 2021.

Yivan Zhang, Nontawat Charoenphakdee, Zheng Wu, and Masashi Sugiyama. Learning from
aggregate observations. In NeurIPS, 2020.

Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National Science Review, 5(1):
44–53, 08 2017. ISSN 2095-5138. doi: 10.1093/nsr/nwx106. URL https://doi.org/10.
1093/nsr/nwx106.

14

https://arxiv.org/abs/2106.05731
https://arxiv.org/abs/2106.05731
https://api.semanticscholar.org/CorpusID:246823025
https://api.semanticscholar.org/CorpusID:246823025
https://doi.org/10.1093/nsr/nwx106
https://doi.org/10.1093/nsr/nwx106

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX ORGANIZATION

Our appendix is organized as follows:

• Appendix A introduces preliminaries and notation related to (robust) optimal transport.

• Appendix B provides the proofs to all formal statements from Section 3 and a more detailed
discussion on our bounds.

• Appendix C provides the proof of statistical consistency of Algorithm 1 and discusses other
technical aspects related to Algorithm 1.

• Appendix D discusses a non-linear program formulation of MI-PLL. In addition, it presents
the detailed steps to derive the optimization objective in (6), as well as an example of (6) for
training classifiers in the context of Example 1.1.

• Appendix E presents an extended version of the related work.

• Appendix F provides further details on our empirical analysis and presents results on more
benchmarks.

• Tables 7 and 8 summarize the notation used in our paper.

A EXTENDED PRELIMINARIES

Optimal transport. Let Z1 and Z2 be two discrete random variables over [m1] and [m2]. For i ∈ [2],
vector bi ∈ Rmi

+ denotes the probability distribution of Zi, i.e.,P(Zi = mj) = bij , for each j ∈ [mi].
Let U be the set of matrices defined as {Q ∈ Rm1×m2

+ |Q1m1
= b2,Q1m2

= b1}. The optimal
transport (OT) problem (Peyré & Cuturi, 2020) asks us to find the matrix Q ∈ U that maximizes a
linear object subject to marginal constraints, namely

min
Q∈U
⟨P,Q⟩ (8)

Assume that we are strict in enforcing the probability distribution b1, but not in enforcing b2. The
robust semi-constrained optimal transport (RSOT) problem (Le et al., 2021) aims to find:

min
Q∈U ′

⟨P,Q⟩+ τKL(Q1m1 ||b2) (9)

where U ′ = {Q ∈ Rm1×m2
+ |Q1m2

= b1} and τ > 0 is a regularization parameter. The solution to
(9) can be approximated in polynomial time using the robust semi-Sinkhorn algorithm from (Le et al.,
2021), which generalizes the classical Sinkhorn algorithm (Cuturi, 2013) for OT.

B PROOFS AND DETAILS FOR SECTION 3

B.1 PROOFS

Proposition 3.1 (Class-specific risk bound). For any j ∈ Y, we have that Rj(f) ≤ Φσ,j(RP(f ;σ)).

Proof. This result directly follows from the definition of the program (3).

Proposition 3.3. Let d[F] be the Natarajan dimension of [F]. Given a confidence level δ ∈ (0, 1), we
have that Rj(f) ≤ Φσ,j(R̃P(f ;σ,TP, δ)) with probability 1− δ for any j ∈ [c], where

R̃P(f ;σ,TP, δ) = R̂P(f ;σ,TP) +

√
2 log(emP/2d[F] log(6Mc2d[F]/e))

mP/2d[F] log(6Mc2d[F]/e)
+

√
log(1/δ)

2mP
(4)

Proof. To start with, let Lσ ◦ [F] be the function space that maps a (training) example (x, s) to its
partial loss defined as follows:

Lσ ◦ [F] := {(x, s) 7→ Lσ([f](x), s)|f ∈ F} (10)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The standard generalization bound with VC dimension (see, for example, Corollary 3.19 of (Mohri
et al., 2018)) implies that:

RP(f) ≤ R̂P(f ;TP) +

√
2 log(emP/dVC(Lσ ◦ [F]))

mP/dVC(Lσ ◦ [F])
+

√
log(1/δ)

2mP

(11)

where dVC(·) is the VC dimension. For simplicity, let d = dVC(Lσ ◦ [F]) and d[F] be the Natarajan
dimension of [F]. Using a similar argument as in (Wang et al., 2023b), given any d samples in
XM × O using [F], we let N be the maximum number of distinct ways to assign label vectors (in
YM) to these d samples. Then, the definition of VC-dimension implies that:

2d ≤ N (12)

On the other hand, these d samples contain Md input instances in X. By Natarajan’s lemma (see, for
example, Lemma 29.4 of (Shalev-Shwartz & Ben-David, 2014)), we have that:

N ≤ (Md)d[F]c2d[F] (13)

Combining (13) with the above equations, it follows that

(Md)d[F]c2d[F] ≥ N ≥ 2d (14)

Taking the logarithm on both sides, we have that:

d[F] log(Md) + 2d[F] log c ≥ d log 2 (15)

Taking the first-order Taylor series expansion of the logarithm function at the point 6d[F], we have:

log(d) ≤ d

6d[F]
+ log(6d[F])− 1 (16)

Therefore,

d log 2 ≤ d[F] log d+ d[F] logM + 2d[F] log c

≤ d[F]

(
d

6d[F]
+ log(6d[F])− 1

)
+ d[F] logM + 2d[F] log c

=
d

6
+ d[F] log(6Mc2d[F]/e)

(17)

Rearranging the inequality yields

d ≤
d[F] log(6Mc2d[F]/e)

log 2− 1/6

≤ 2d[F] log(6Mc2d[F]/e)

(18)

as claimed.

Proposition 3.5. If σ is M -unambiguous, then the risk of f can be bounded by

R(f) ≤
√

wT(D(Σσ,r))†wRP(f ;σ) =
√

c(c− 1)RP(f ;σ) (5)

which coincides with Lemma 1 from (Wang et al., 2023b) for M = 2, where w := ∑c
j=1 rjwj .

Proof. Since w := ∑c
i=1 riwi, we have R(f) = wTh. Then, we consider the following relaxed

program:
max
h

wTh

s.t. hTD(Σσ,r)h ≤ RP

(19)

where D(Σσ,r) is the diagonal part of Σσ,r, namely:

D(Σσ,r) = [rirj1{i = j}1{i ̸≡ j (mod c)}]i∈[c2],j∈[c2] (20)

In other words, D(Σσ,r) encodes all the partial risks that is caused by repeating the same type of
misclassification twice. On the other hand, the M -unambiguity condition ensures that each type of

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 5: Class-specific upper bounds obtained via (3). (left) DY is uniform. (right) DPS
is uniform.

(Enlarged version of Figure 2).

misclassification, when repeated twice, leads to a misclassification of the partial label. Therefore,
w ∈ Range(D(Σσ,r)).

Problem (19) is a special case of the single constraint quadratic optimization problem. Then, the fact
that w ∈ Range(D(Σσ,r)) implies that the dual function of this problem (with dual variable λ) is

g(λ) = λRP +
wT(D(Σσ,r))

†w

4λ
(21)

where (D(Σσ,r))
† is the pseudo-inverse, namely

(D(Σσ,r))
† = [(rirj)

−1
1{i = j}1{i ̸≡ j (mod c)}]i∈[c2],j∈[c2] (22)

Therefore,
wT(D(Σσ,r))

†w = c(c− 1) (23)
According to Appendix B of (Boyd & Vandenberghe, 2004), strong duality holds for this problem.
Therefore, the optimal value is given exactly as

inf
λ≥0

g(λ) = 2

√
c(c− 1)

4
RP =

√
c(c− 1)RP (24)

as claimed.

B.2 FURTHER DISCUSSION ON OUR BOUNDS

Intuitively, the difficulty of learning is affected by (i) the distribution of partial labels in DP and (ii)
the size of the pre-image of σ for each partial label. These two factor are reflected in our risk-specific
bounds. Let us continue with the analysis in Example 3.2.
Example B.1 (Cont’ Example 3.2). Let us start with CASE 1. In this case, our class-specific bounds
suggest that learning the class zero is more difficult than learning class nine despite that both hidden
labels y1 and y2 are uniform in {0, . . . , 9}, see left side of Figure B.2. The root cause of this learning
imbalance is σ and its characteristics. In particular, the partial labels that result after independently
drawing pairs of MNIST digits and applying σ on their gold labels are long-tailed, with s = 0
occurring with probability 1/100 and s = 9 occurring with probability 17/100 in the training data.
Hence, we have more supervision to learn class nine than to learn zero.

Now, let us move to CASE 2. In this case, our class-specific bounds suggest that learning class
zero is the easiest to learn, see right side of Figure B.2. This is because of two reasons. First, the
partial labels are uniform and hence, we have the same supervision to learn all classes. Second, the
pre-image of σ for different partial labels is very different. Regarding the second reason, partial
label s = 0 provides much stronger supervision than partial label s = 9: when s = 0, we have direct
supervision (s = 0 implies y1 = y2 = 0); in contrast, when s = 9 this only means that either y1 = 9
and y2 is any label in {0, . . . , 9}, or vice versa.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 6: Plot of function t 7→ t4 + 6t2(1− t)2 + 4t(1− t)3.

The above shows that σ (i) can lead to imbalanced partial labels even if the hidden labels are uniformly
distributed and (ii) may provide supervision signals of very different strengths. Hence, learning in
MI-PLL is inherently imbalanced due to σ.

B.3 DETAILS ON PLOTTING FIGURE 2

In this subsection, we describe the steps we followed to create the plots in Figure 2. We generated
the curves shown in each figure by plotting 20 evenly spaced points within the partial risk interval
RP ∈ [0, 0.2]. To obtain the value of the classification risk at each point, we solved the optimization
program (3) by using the COBYLA optimization algorithm implemented by the scipy.optimize
package. To mitigate numerical instability, for each point, we ran the optimization solver ten times
and dropped all the invalid results that were not in the range [0, 1]. The median of the remaining valid
results was then taken as the solution to (3).

C FURTHER DETAILS ON ALGORITHM 1

The estimate r̂ given by Algorithm 1 can be viewed as a method to find the maximum likelihood
estimation whose consistency is guaranteed under suitable conditions. The most critical one is the
invertibility of Ψσ . The invertibility is satisfied by practical transitions as the one from Example 1.1,
but may fail to hold for certain transitions even if the M -unambiguity condition (Wang et al., 2023b)
holds. We will provide one such example later in this section.

Suppose that the backprobagation step in Algorithm 1 can effectively find the maximum like-
lihood estimator. For a real ϵ > 0, let ∆ϵ

c be the shrinked probability simplex defined as
∆ϵ

c := {r ∈ ∆c|rj ≥ ϵ∀ j ∈ [c]}. Let r̂∗mp
:= argminr̂∈∆ϵ

c
∑cS

j=1 p̄j log[Ψσ(r̂)]j be the maximum
likelihood estimation. The following holds:

Proposition C.1 (Consistency). If there exists an ϵ > 0, such that r ∈ ∆ϵ
c and Ψσ is injective in ∆ϵ

c,
then r̂∗mp

→ r in probability as mP →∞.

Proof. Let ∆σ,ϵ
cS := {Ψσ(r)|r ∈ ∆ϵ

c} be the image of Ψσ on ∆ϵ
c. The set ∆σ,ϵ

cS is a compact subset in
R

cS . For any partial label aj ∈ S, let H(aj , r) := − log([Ψσ(r)]j) be the point-wise log-likelihood.
The M -unambiguity condition ensures that each coordinate of every vector in ∆σ,ϵ

cS should be at least
ϵM , and hence the function H is bounded on ∆σ,ϵ

cS . By Theorem 1 of (Jennrich, 1969), this ensures
that ∑s H(s, r) converges uniformly to ES [H(S, r)]. According to (Vaart, 1998) (Theorem 5.7), the
uniform convergence further ensures that Ψσ(r̂

∗
mp

) → p in probability as mP → ∞. Since Ψσ is
invertible, this implies that r̂∗mp

→ r in probability.

Counterexample where invertibility fails to hold. Consider the following transition function for
binary labels (Y = {0, 1}) and M = 4:

σ(y1, y2, y3, y4) =

1,
4

∑
i=1

yi ∈ {1, 2, 4}

0, otherwise

(25)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The M -unambiguity condition (Wang et al., 2023b) holds since σ(0, 0, 0, 0) ̸= σ(1, 1, 1, 1). On the
other hand, the probability that the partial label equal to 1 can be expressed as:

P(s = 1) = r41 + 6r21r
2
0 + 4r1r

3
0 = r41 + 6r21(1− r1)

2 + 4r1(1− r1)
3 (26)

which is not an injection, see the plot of function t 7→ t4 + 6t2(1− t)2 + 4t(1− t)3 in Figure 6.

D DETAILS FOR SECTION 4.2

D.1 A NON-LINEAR PROGRAM FORMULATION

A straightforward idea that accommodates the requirements set in Section 4.2 is to reformulate (9) by
(i) extending P (resp. Q) to a tensor of size n× c×M to store the scores (resp. pseudo-labels) of M -
ary tuples of instances and (ii) modifying U ′ so that the combinations of entries in Q corresponding
to invalid label assignments are forced to have product equal to zero. However, modifying U ′ in this
way, we cannot employ Sinkhorn-like techniques as the one in (Lin et al., 2022), leaving us only with
the option to employ non-linear1 programming techniques to find Q.

D.2 DERIVING THE LINEAR PROGRAM IN (6)

Let (xℓ,1, . . . , xℓ,M , sℓ) denote the ℓ-th partial training sample, where ℓ ∈ [n]. To derive the linear
program in (6), we associate each partial label sℓ with a DNF formula Φℓ, a process that is standard
in the neurosymbolic literature (Xu et al., 2018; Tsamoura et al., 2021; Huang et al., 2021; Wang
et al., 2023b). To ease the presentation, we describe how to compute Φℓ. Let {yℓ,1, . . . ,yℓ,Rℓ

}
be the set of vectors of labels in σ−1(sℓ). We associate each prediction with a Boolean variable.
Namely, let qℓ,i,j be a Boolean variable that becomes true when xℓ,i is assigned with label j ∈ Y.
Via associating predictions with Boolean variables, each yℓ,t can be associated with a conjunction
φℓ,t over Boolean variables from {qℓ,i,j |i ∈ [M], j ∈ [c]}. In particular, qℓ,i,j occurs in ϕℓ,t only if
the i-th label in yℓ,t is j ∈ Y. Consequently, the training sample (xℓ,1, . . . , xℓ,M , sℓ) is associated
with the DNF formula Φℓ =

∨Rℓ
r=1 φℓ,t that encodes all vectors of labels in σ−1(sℓ). We assume a

canonical ordering over the variables occurring in φℓ,t, using φℓ,t,j to refer to the j-th variable, and
use |φℓ,t| to denote the number of (unique) Boolean variables occurring φℓ,t. Based on the above, we
have φℓ,t =

∧|φℓ,t|
k=1 φℓ,t,k.

Similarly to (Srikumar & Roth, 2023), we use the Iverson bracket [] to map Boolean variables to their
corresponding integer ones, e.g., [qℓ,i,j], denotes the integer variable associated with the Boolean
variable qℓ,i,j .

We are now ready to construct linear program (6). Notice that the solutions of this program capture
the label assignments that abide by σ, i.e., the labels assigned to each (xℓ,1, . . . , xℓ,M) should be
either of yℓ,1, . . . ,yℓ,Rℓ

. The steps of the construction are (see (Srikumar & Roth, 2023)):

• (STEP 1) We translate each Φℓ into a CNF formula Φ′
ℓ via the Tseytin transformation (Tseitin,

1983) to avoid the exponential blow up of the (brute force) DNF to CNF conversion.

• (STEP 2) We add the corresponding linear constraints out of each subformula in Φ′
ℓ.

Given Φℓ =
∨Rℓ

r=1 φℓ,t, the Tseytin transformation associates a fresh Boolean variable αℓ,t with each
disjunction φℓ,t in Φℓ and rewrites Φℓ into the following logically equivalent formula:

Φ′
ℓ :=

Rℓ∨
t=1

αℓ,t︸ ︷︷ ︸
Ψℓ

∧
Rℓ∧
t=1

(αℓ,t ↔ φℓ,t) (27)

After obtaining Φ′
ℓ, the construction of (6) proceeds as follows. The first inequality that will be

added to (6) comes from formula Ψℓ. In particular, it will be the inequality ∑Rℓ
t=1[αℓ,t] ≥ 1, due

1Non-linearity comes from the KL term and by enforcing invalid label combinations to have product equal
to zero.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

to Constraint (3) from (Srikumar & Roth, 2023). The next inequalities come from the subformula∧Rℓ
t=1 (αℓ,t ↔ φℓ,t) from (27). The latter can be rewritten to the following two formulas:

αℓ,t →
|φℓ,t|∧
k=1

φℓ,t,k (28)

|φℓ,t|∧
k=1

φℓ,t,k → αℓ,t (29)

According to Constraint (10) from (Srikumar & Roth, 2023), (28) and (29) are associated with the
following inequalities:

−|φℓ,t|[αℓ,t] +
|φℓ,t|

∑
k=1

[φℓ,t,k] ≥ 0 (30)

−
|φℓ,t|

∑
k=1

[φℓ,t,k] + [αℓ,t] ≥ (1− |φℓ,t|) (31)

which will also be added to the linear program.

Lastly, according to Constraint (5) from (Srikumar & Roth, 2023), we have an equality
∑c

j=1[qℓ,i,j] = 1, for each ℓ ∈ [n] and i ∈ [M]. The above equality essentially requires the scores of
all pseudo-labels for a given instance xℓ,i to sum up to one. Finally, we require each pseudo-label
[qℓ,i,j] to be in [0, 1], for each ℓ ∈ [n], i ∈ [M], and j ∈ [c].

Putting everything together, we have the following linear program:

minimize min
(Q1,...,Qm)

M

∑
i=1

⟨Qi,− log(Pi)⟩,

subject to

∑Rℓ
r=1[αℓ,t] ≥ 1, ℓ ∈ [n],

−|φℓ,t|[αℓ,t] + ∑
|φℓ,t|
k=1 [φℓ,t,k] ≥ 0, ℓ ∈ [n], t ∈ [Rℓ]

−∑
|φℓ,t|
k=1 [φℓ,t,k] + [αℓ,t] ≥ −1(1− |φℓ,t|), ℓ ∈ [n], t ∈ [Rℓ]

∑c
j=1[qℓ,i,j] = 1, ℓ ∈ [n], i ∈ [M]

[qℓ,i,j] ∈ [0, 1], ℓ ∈ [n], i ∈ [M], j ∈ [c]

(32)

Program (6) results after adding to the above program constraints enforcing the hidden label ratios r̂.
Example D.1. We demonstrate an example of (6) in the context of Example 1.1. We assume n = 2.
We also assume that the partial labels s1 and s2 of the two partial samples in the batch are equal to 0
and 1, respectively. Due to the properties of the max, we have:

σ−1(0) = {(0, 0)} (33)

σ−1(1) = {(0, 1), (1, 0), (1, 1)} (34)

and formulas Φ1 and Φ2 are defined as:

Φ1 = q1,1,0 ∧ q1,2,0︸ ︷︷ ︸
φ1,1

(35)

Φ2 = q2,1,0 ∧ q2,2,1︸ ︷︷ ︸
φ2,1

∨ q2,1,1 ∧ q2,2,0︸ ︷︷ ︸
φ2,2

∨ q2,1,1 ∧ q2,2,1︸ ︷︷ ︸
φ2,3

(36)

The Tseytin transformation associates the fresh Boolean variables α1,1, α2,1, α2,2, and α2,3 to φ1,1,
φ2,1, φ2,2, and φ2,3, respectively, and rewrites Φ1 and Φ2 to the following logically equivalent
formulas:

Φ′
1 = α1,1 ∧ (α1,1 ↔ φ1,1) (37)

Φ′
2 = (α2,1 ∨ α2,2 ∨ α2,3) ∧ (α2,1 ↔ φ2,1) ∧ (α2,2 ↔ φ2,2) ∧ (α2,3 ↔ φ2,3) (38)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The linear constraints that are added due to Φ′
1 are:

[α1,1] ≥ 1
−|φ1,1|[α1,1] + [q1,1,0] + [q1,2,0] ≥ 0
−([q1,1,0] + [q1,2,0]) + [α1,1] ≥ −1(1− |φ1,1|)

(39)

The linear constraints that are added due to Φ′
2 are:

[α2,1] + [α2,2] + [α2,3] ≥ 1
−|φ2,1|[α2,1] + [q2,1,0] + [q2,2,1] ≥ 0
−|φ2,2|[α2,2] + [q2,1,1] + [q2,2,0] ≥ 0
−|φ2,3|[α2,3] + [q2,1,1] + [q2,2,1] ≥ 0
−([q2,1,0] + [q2,2,1]) + [α2,1] ≥ −1(1− |φ2,1|)
−([q2,1,1] + [q2,2,0]) + [α2,2] ≥ −1(1− |φ2,2|)
−([q2,1,1] + [q2,2,1]) + [α2,3] ≥ −1(1− |φ2,3|)

(40)

Finally, the requirement that the pseudo-labels for each instance xℓ,i to sum up to one, for ℓ ∈ [2]
and i ∈ [2], and to lie in [0, 1] introduces the following linear constraints:

∑9
j=0[q1,1,j] = 1

∑9
j=0[q1,2,j] = 1

∑9
j=0[q2,1,j] = 1

∑9
j=0[q2,2,j] = 1

[q1,i,j] ∈ [0, 1], i ∈ [2], j ∈ {0, . . . , 9}
[q2,i,j] ∈ [0, 1], i ∈ [2], j ∈ {0, . . . , 9}

(41)

E EXTENDED RELATED WORK

Long-tail learning. The term long-tail learning has been used to describe settings in which instances
of some classes occur very frequently in the training set, with other classes being underrepresented.
The problem has received considerable attention in the context of supervised learning with the
proposed techniques operating either at training- or at testing-time. Techniques in the former category
typically work by either reweighting the losses computed out of the original training samples (Cao
et al., 2019; Tan et al., 2020; 2021) or by over- or under-sampling during training (Chawla et al.,
2002; Buda et al., 2018). Techniques in the latter category work by modifying the classifier’s output
scores at testing-time and using the modified scores for classification (Kang et al., 2020; Peng et al.,
2022), with LA being one of the most well-known techniques (Menon et al., 2021). LA modifies the
classifier’s scores at testing-time by subtracting the (unknown) gold ratios. In particular, the prediction
of classifier f given input x is given by argmaxj∈[c] f

j(x)− ln(rj). Our empirical analysis shows
that CAROT is more effective than LA.

Closest to our work is the study in (Peng et al., 2022). Unlike CAROT, the authors in (Peng et al.,
2022) focus on single-instance PLL, assume that the marginal r is known, and use an optimal transport
formulation (Peyré & Cuturi, 2020) to adjust the classifier’s scores. In contrast, CAROT relies on
the assumption that r̂ may be noisy, resorting to a robust optimal transport formulation (Le et al.,
2021) to improve the classification accuracy in those cases.

Partial Label Learning. As discussed in (Wang et al., 2023b), MI-PLL is an extension to standard
(single-instance) PLL (Cour et al., 2011; Lv et al., 2020; Feng et al., 2020). The observation that
certain classes are harder to learn than others dates back to the work of (Cour et al., 2011) in the
context of PLL. We are the first to provide such results for MI-PLL, unveiling also the relationship
between σ and class-specific risks.

Long-tail PLL. A few recently proposed papers lie in the intersection of long-tail learning and
standard PLL, namely (Liu et al., 2021), RECORDS (Hong et al., 2023) and SOLAR (Wang et al.,
2022), with the first one focusing on non-deep learning settings. RECORDS modifies the classifier’s
scores following the same basic idea with LA and uses the modified scores for training. However, it
employs a momentum-updated prototype feature to estimate r̂. RECORDS’s design allows it to be
used with any loss function and to be trivially extended to support MI-PLL. Our empirical analysis
shows that RECORDS is less effective than CAROT, leading to lower classification accuracy when
the same loss is adopted during training.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

SOLAR shares some similarities with LP. In particular, given single-instance PLL samples of the
form {(x1, S1), . . . , (xn, Sn)}, where each Sℓ ⊆ Y is the partial label of the ℓ-th PLL sample2,
SOLAR finds pseudo-labels Q by solving the following linear program:

min
Q∈∆
⟨Q,− log(P)⟩ (42)

s.t. ∆ :=
{
[qℓ,j]n×c | QT1n = r̂, Q1c = c, qℓ,j = 0 if j /∈ Sℓ

}
⊆ [0, 1]n×c

Program (42) shows that the information of each partial label Sℓ is strictly encoded into ∆. To
directly extend (42) to MI-PLL, we have two options:

• Use an n× cM tensor P to store the model’s scores, where cell P [ℓ, j1, . . . , jc] stores the
classifier’s scores for the label vector (j1, . . . , jc) associated with the ℓ-th training MI-PLL
sample, for 1 ≤ ℓ ≤ n. However, that formulation would require an excessively large tensor,
especially when M gets larger.

• Use separate tensors P1, . . . ,PM to represent the model’s scores of the M instances, and
set for each 1 ≤ ℓ ≤ n, the product P1[ℓ, j1]× · · · × PM [ℓ, jc] to be 0 if (j1, . . . , jc) does
not belong to σ−1(sℓ). However, that formulation would lead to a non-linear program.

Neither choice is scalable for MI-PLL when M is large3. To circumvent this issue, our work translates
the information of the partial labels into linear constraints, leading to an LP formulation. Another
difference between SOLAR and our work is that we provide Algorithm 1 to obtain ratio estimates,
while SOLAR employs a window averaging technique to estimate r based on the model’s own scores
(Wang et al., 2022).

Finally, although CAROT also uses a linear programming formulation with a Sinkhorn-style pro-
cedure, it differs from SOLAR in that it adjusts the classifier’s scores at testing-time rather than
assigning pseudo-labels at training time.

Constrained learning. MI-PLL is closely related to constrained learning, in the sense that the
predicted label vector y is subject to constraint σ(y) = s. Training classifiers under constraints
has been well studied in NLP (Steinhardt & Liang, 2015; Raghunathan et al., 2016; Peng et al.,
2018; Mihaylova et al., 2020; Upadhyay et al., 2016; Wang et al., 2019a; Gupta et al., 2021). The
work in (Roth & Yih, 2007) proposes a formulation for training under linear constraints; (Samdani
et al., 2012) proposes a Unified Expectation Maximization (UEM) framework that unifies several
constrained learning techniques including CoDL (Chang et al., 2007) and Posterior Regularization
(Ganchev et al., 2010). In particular, (Mayhew et al., 2019) employs a conceptually similar idea by
encoding prior information of the label frequency with a CoDL formulation to enhance partial label
learning for the Named Entity Recognition (NER) task. The UEM framework was also adopted by
(Li et al., 2023a) for neurosymbolic learning. Our LP formulation is orthogonal to the UEM. These
two could be integrated though.

The theoretical framework for constrained learning in (Wang et al., 2023a) provides a generalization
theory. The framework suggests that encoding the constraint during both the training and testing
stages results in a better model compared to encoding it only during testing. This theory could be
potentially extended to explain the advantage of LP-based methods and to characterize the necessary
conditions for CAROT to improve model performance.

Neurosymbolic learning and MI-PLL. MI-PLL quite often arises in neurosymbolic learning
(Manhaeve et al., 2018; Wang et al., 2019b; Dai et al., 2019; Yang et al., 2020; Tsamoura et al., 2021;
Manhaeve et al., 2021b; Huang et al., 2021; Li et al., 2023a). However, none of the above works
deals with learning imbalances.

There has been recent theoretical research on MI-PLL and related problems (Marconato et al., 2023;
2024; Wang et al., 2023b). The work in (Marconato et al., 2023; 2024) deals with the problem of
characterizing and mitigating reasoning shortcuts in MI-PLL, under the prism of neurosymbolic
learning. Intuitively, a reasoning shortcut is a classifier that has small partial risk, but high classi-
fication risk. For example, a reasoning shortcut is a classifier that may have a good accuracy on
the overall task of returning the maximum of two MNIST digits, but low accuracy of classifying

2In standard PLL, each partial label is a subset of classes from Y.
3Yet another non-linear formulation is presented in Section D based on RSOT (see Section A).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Listing 1 Theory for the Smallest Parent benchmark.
land_transportation :- automobile, truck
other_transportation :- airplane, ship
transportation :- land_transportation, other_transportation
home_land_animal :- cat, dog
wild_land_animal :- deer, horse
land_animal :- home_land_animal, wild_land_animal
other_animal :- bird, frog
animal :- land_animal, other_animal
entity :- transportation, animal

MNIST digits. The work in (Marconato et al., 2023) showed that current neurosymbolic learning
techniques are vulnerable to reasoning shortcuts. However, it offers no (class-specific) error bounds
or any theoretical characterization of learning imbalances. The authors in (Wang et al., 2023b) were
the first to propose necessary and sufficient conditions that ensure learnability of MI-PLL and to
provide error bounds for a state-of-the-art neurosymbolic loss under approximations (Huang et al.,
2021). Our theoretical analysis extends the one in (Wang et al., 2023b) by providing (i) class-specific
risk bounds (in contrast to (Wang et al., 2023b), which only bounds R(f)) and (ii) stricter bounds
for R(f). In particular, as we show in Proposition 3.5, we can recover the bound from Lemma 1 in
(Wang et al., 2023b) by relaxing (3).

Other weakly-supervised setting. Another well-known weakly-supervised learning setting is that of
Multi-Instance Learning (MIL). In MIL, instances are not individually labelled, but grouped into sets
which either contain at least one positive instance, or only negative instances and the aim is to learn a
bag classifier (Sabato & Tishby, 2012; Sabato et al., 2010). In contrast, in MI-PLL, instances are
grouped into tuples, with each tuple of instances being associated with a set of mutually exclusive
label vectors, and the aim is to learn an instance classifier.

F FURTHER EXPERIMENTS AND DETAILS

Why using SL and Scallop. SL (Xu et al., 2018; Manhaeve et al., 2021a) has become the state-of-the-
art approach to train deep classifiers in neurosymbolic learning settings. Training under SL requires
computing a Boolean formula ϕ encoding all the possible label vectors in σ−1(s) for each partial
training sample (x, s) and then computing the weighted model counting (Chavira & Darwiche, 2008)
of ϕ given the softmax scores of f . SL has been effective in several tasks, including visual question
answering (Huang et al., 2021), video-text retrieval (Li et al., 2023b), and fine-tuning language
models (Li et al., 2024) and has nice theoretical properties (Wang et al., 2023b; Marconato et al.,
2023). Due to its effectiveness, SL is now adopted by several neurosymbolic engines, DeepProbLog
(Manhaeve et al., 2021a), namely, DeepProbLog’s successors Manhaeve et al. (2021b), and Scallop
(Huang et al., 2021; Li et al., 2023b).

In our empirical analysis we only use Scallop because it is the only engine at the moment offering
a scalable SL implementation that can support our scenarios when M ≥ 3. The requirement to
compute σ−1(s) during training. Computing σ−1(s) is generally required by neurosymbolic learning
techniques (Li et al., 2023a; Manhaeve et al., 2021a; Dai et al., 2019; Yang et al., 2020). This
computation can become a bottleneck when the space of candidate label vectors grows exponentially,
as it is the case in our MAX-M , SUM-M , and HWF-W scenarios. As also experimentally shown by
(Tsamoura et al., 2021; Wang et al., 2023b), the neurosymbolic techniques from (Manhaeve et al.,
2021a;b; Dai et al., 2019; Li et al., 2023a; Yang et al., 2020) either time out after several hours while
trying to compute σ−1(s), or lead to deep classifiers of much worse accuracy than Scallop. So,
Scallop was the only engine that could support our experiments, balancing runtime with accuracy.

A further discussion on scalability issues in neurosymbolic learning can be found in Section 3.2 and
6 from (Wang et al., 2023b).

Additional scenarios. In addition, we carried experiments with two other scenarios that have been
widely used as neurosymbolic benchmarks, SUM-M (Manhaeve et al., 2018; Huang et al., 2021)
and HWF-M (Li et al., 2023a;b). SUM-M is similar to MAX-M , however, instead of taking

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

the maximum, we take the sum of the gold labels. The HWF-M scenario4 was introduced in Li
et al. (2020) and each training sample ((x1, . . . , xM), s) consists of a sequence (x1, . . . , xM) of
digits in {0, . . . , 9} and mathematical operators in {+,−, ∗}, corresponding to a valid mathematical
expression, and s is the result of the mathematical expression. As in SUM-M , the aim is to train
a classifier for recognizing digits and mathematical operators. Notice that this benchmark is not
i.i.d. since only specific types of input sequences are valid. The benchmark comes with a list of
training samples, however, we created our own ones in order to introduce imbalances in the digits
and operators distributions.

Computational infrastructure. The experiments ran on an 64-bit Ubuntu 22.04.3 LTS machine with
Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz, 3.16TB hard disk and an NVIDIA GeForce RTX
2080 Ti GPU with 11264 MiB RAM. We used CUDA version 12.2.

Software packages. Our source code was implemented in Python 3.9. We used the following python
libraries: scallopy5, highspy6, or-tools7, PySDD8, PyTorch and PyTorch vision.
Finally, we used part of the code9 available from (Hong et al., 2023) to implement RECORDS and
part of the code10 available from (Wang et al., 2022) to implement the sliding window approximation
for marginal estimation.

Classifiers. For MAX-M and SUM-M we used the MNIST CNN also used in (Huang et al., 2021;
Manhaeve et al., 2018). For HWF-M , we used the CNN also used in (Li et al., 2023a;b). For Smallest
Parent, we used the ResNet model also used in (Wang et al., 2022; Hong et al., 2023).

Data generation. To create datasets for MAX-M , Smallest Parent, SUM-M , and HWF-M we
adopted the approach followed in prior work, e.g., (Dai et al., 2019; Tsamoura et al., 2021; Wang
et al., 2023b). In particular, to create each training sample, we draw instances x1, . . . , xM from
MNIST or CIFAR-10 in an independent fashion. Then, we apply the transition σ over the gold labels
y1, . . . , yM to obtain the partial label s. To create datasets for HWF-M , we followed similar steps
to the above, however, to make sure that the input vectors of images represent a valid mathematical
expression, we split the training instances into operators and digits, drawing instances of digits for
odd is and instances of operators for even is, for i ∈ [M]. Before dataset creation, we the images
in HWF were split into training and testing ones with ratio 70%/30%, as the benchmark was not
offering those splits. As we state in Section 5, to simulate long-tail phenomena (denoted as LT), we
vary the imbalance ratio ρ of the distributions of the input instances as in (Cao et al., 2019; Wang
et al., 2022): ρ = 0 means that the hidden label distribution is unmodified and balanced. In each
scenario, the test data follows the same distribution as the hidden labels in the training MI-PLL data,
e.g., when ρ = 0, the test data is balanced; otherwise, it is imbalanced under the same ρ.

Further details. For the Smallest Parent scenarios, we computed SL and (6) using the whole pre-
image of each partial label. For the MAX-M scenarios, as the space of pre-images is very large, we
only consider the top-1 proof (Wang et al., 2023b) both when running Scallop and in (6). For the
Smallest Parent benchmark, we created the hierarchical relations shown in Listing 1 based on the
classes of CIFAR-10.

To assess the robustness of our techniques, we focus on scenarios with high imbalances, large
number of input instances, and few partial training samples. Table 3 shows results for SUM-M , for
M ∈ {5, 6, 7}, ρ = {50, 70}, and mP = 2000. Table 4 shows results for HWF-M , for M ∈ {5, 6, 7},
ρ = {15, 50}, and mP = 250, while Table 5 shows results for the same experiment, but mP = 1000.
In Tables 4 and 5, LP(ALG1) refers to running LP using the gold ratios– Algorithm 1 cannot be
applied, as the data is not i.i.d. in this scenario. Tables 4 and 5 focuses on training-time mitigation.
RECORDS was not considered as it led to substantially lower accuracy in the MAX-M and Smallest
Parent scenarios. Figure 7 shows the marginal estimates computed by Algorithm 1 for different
scenarios. Last, Table 6 presents the full results for the MAX-M scenarios. The tables follow the
same notation with the ones in the main body of the paper.

4The benchmark is available at https://liqing.io/NGS/.
5https://github.com/scallop-lang/scallop (MIT license).
6https://pypi.org/project/highspy/ (MIT license).
7https://developers.google.com/optimization/ (Apache-2.0 license).
8https://pypi.org/project/PySDD/ (Apache-2.0 license).
9https://github.com/MediaBrain-SJTU/RECORDS-LTPLL (MIT license).

10https://github.com/hbzju/SoLar.

24

https://liqing.io/NGS/
https://github.com/scallop-lang/scallop
https://pypi.org/project/highspy/
https://developers.google.com/optimization/
https://pypi.org/project/PySDD/
https://github.com/MediaBrain-SJTU/RECORDS-LTPLL
https://github.com/hbzju/SoLar

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Conclusions. The conclusions that we can draw from Table 3, 4, 5 and Figure 7 are very similar to the
ones that were drawn in the main body of our paper. When LP is adopted jointly with the estimates
obtained via Algorithm 1, we can see that the accuracy improvements are substantial on multiple
occasions. For example, in SUM-6 with ρ = 50, the accuracy increases from 67% under SL to 80%
under LP(ALG1); in HWF-7 with ρ = 15, the accuracy increases from 37% under SL to 41% under
LP(ALG1). The accuracy under LP(EMP) is lower than the accuracy under LP(ALG1) in SUM-M .
We argue that this is because of the low quality of the empirical estimates of r, a phenomenon that
gets magnified due to the adopted approximations– recall that we run for SL and LP using the top-1
proofs, in order to make the computation tractable. The lower accuracy of LP(ALG1) for SUM-7
and ρ = 70 is attributed to the fact that the marginal estimates computed by Algorithm 1 diverge from
the gold ones, see Figure 7. In fact, computing marginals for this scenario is particularly challenging
due to the very large pre-image of σ when M = 7, the high imbalance ratio (ρ = 70), and the small
number of partial samples (mP = 2000). Tables 4 and 5 also suggest that SOLAR’s empirical ratio
estimation technique may harm LP’s accuracy, supporting a claim that we also made in the main
body of the paper, that computing marginals for training-time mitigation is an important direction for
future research.

Figure 7 shows the robustness of Algorithm 1 in computing marginals. Figure 8 shows the hidden
label ratios and the corresponding class-specific classification accuracies under the MAX-M and the
Smallest Parent scenarios for ρ = 50.

Table 3: Experimental results for SUM-M using mP = 2000. Results over six runs.

Algorithms LT ρ = 50 LT ρ = 70
M = 5 M = 6 M = 7 M = 5 M = 6 M = 7

SL 82.28 ± 15.87 67.60 ± 13.43 68.42 ± 25.66 75.43 ± 22.49 79.60 ± 19.36 69.05 ± 13.31
+ LA 81.74 ± 16.27 67.04 ± 13.27 68.33 ± 25.61 75.38 ± 22.58 79.47 ± 19.49 68.95 ± 12.91
+ CAROT 82.21 ± 15.94 68.82 ± 12.61 69.54 ± 24.46 76.12 ± 21.80 80.47 ± 18.37 66.08 ± 17.70

LP(EMP) 75.31 ± 23.49 62.86 ± 6.97 62.89 ± 34.47 78.18 ± 20.74 64.66 ± 33.95 63.64 ± 35.32
+ LA 74.94 ± 23.86 62.36 ± 6.71 62.55 ± 34.81 78.11 ± 20.81 64.02 ± 34.66 63.08 ± 35.87
+ CAROT 72.19 ± 17.50 64.13 ± 8.37 65.26 ± 32.24 77.25 ± 21.48 66.36 ± 27.43 67.95 ± 30.85

LP(ALG1) 89.86 ± 8.54 80.10 ± 18.45 77.94 ± 20.72 91.64 ± 7.62 91.52 ± 7.24 63.79 ± 12.97
+ LA 89.72 ± 8.68 79.43 ± 19.15 77.61 ± 21.05 91.66 ± 7.60 91.52 ± 7.24 63.70 ± 12.87
+ CAROT 89.14 ± 9.16 78.85 ± 19.55 67.74 ± 29.69 91.29 ± 7.86 91.97 ± 6.80 67.06 ± 9.78

Table 4: Experimental results for HWF-M using mP = 250. Results over six runs.

Algorithms LT ρ = 15 LT ρ = 50
M = 3 M = 5 M = 7 M = 3 M = 5 M = 7

SL 38.03 ± 44.91 44.83 ± 5.22 37.02 ± 10.89 39.94 ± 46.83 50.40 ± 17.31 36.83 ± 20.94

LP(EMP) 41.66 ± 23.00 44.16 ± 7.33 38.66 ± 6.90 45.56 ± 39.70 50.29 ± 25.65 34.38 ± 16.60

LP(GOLD) 48.31 ± 26.72 44.72 ± 6.73 41.06 ± 8.05 50.73 ± 34.19 51.63 ± 14.00 35.55 ± 15.17

Table 5: Experimental results for HWF-M using mP = 1000. Results over six runs.

Algorithms LT ρ = 15 LT ρ = 50
M = 3 M = 5 M = 7 M = 3 M = 5 M = 7

SL 94.01 ± 0.49 95.34 ± 0.14 48.23 ± 6.91 27.42 ± 25.62 80.81 ± 15.36 83.87 ± 13.00

LP(EMP) 84.27 ± 10.01 84.86 ± 10.80 50.90 ± 12.17 49.26 ± 45.98 66.44 ± 19.62 47.04 ± 8.58

LP(GOLD) 94.39 ± 0.27 95.72 ± 0.34 55.73 ± 6.12 41.09 ± 52.57 81.28 ± 14.43 88.85 ± 27.89

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Ta
bl

e
6:

E
xp

er
im

en
ta

lr
es

ul
ts

fo
rM

A
X

-M
us

in
g
m

P
=

3
0
0
0.

A
lg

or
ith

m
s

O
ri

gi
na

lρ
=

0
LT

ρ
=

5
LT

ρ
=

1
5

LT
ρ
=

5
0

M
=

3
M

=
4

M
=

5
M

=
3

M
=

4
M

=
5

M
=

3
M

=
4

M
=

5
M

=
3

M
=

4
M

=
5

SL
84

.1
5
±

11
.9

2
73

.8
2
±

2.
36

59
.8

8
±

5.
58

55
.4

8
±

23
.2

3
66

.2
4
±

1.
22

55
.1

3
±

4.
20

71
.2

5
±

4.
48

66
.9

8
±

3.
2

55
.0

6
±

5.
21

66
.7

4
±

5.
42

67
.7

1
±

11
.5

8
55

.7
4
±

2.
58

+
L

A
84

.1
7
±

11
.9

5
73

.8
2
±

2.
36

59
.8

8
±

5.
58

55
.4

8
±

23
.2

3
65

.6
3
±

1.
75

55
.1

3
±

4.
20

70
.8

0
±

4.
52

66
.9

8
±

3.
20

54
.5

3
±

5.
74

66
.5

7
±

5.
09

61
.1

0
±

3.
95

52
.4

7
±

8.
06

+
C

A
R

O
T

84
.5

7
±

11
.5

0
73

.0
8
±

3.
10

60
.2

6
±

5.
20

56
.5

2
±

21
.7

0
66

.7
0
±

0.
76

55
.9

1
±

3.
42

74
.9

5
±

3.
45

67
.4

4
±

2.
74

55
.8

0
±

4.
47

68
.1

6
±

4.
00

68
.2

5
±

6.
14

57
.2

9
±

14
.1

7

R
E

C
O

R
D

S
85

.5
6
±

7.
25

75
.1

1
±

0.
77

59
.4

3
±

6.
61

77
.9

8
±

3.
13

65
.8

5
±

0.
62

55
.0

7
±

4.
24

55
.4

7
±

20
.4

5
53

.3
4
±

16
.6

6
52

.4
0
±

7.
95

70
.2

0
±

7.
65

66
.0

5
±

13
.9

0
59

.9
3
±

4.
86

+
L

A
87

.6
3
±

5.
11

75
.1

1
±

0.
77

59
.2

8
±

6.
76

77
.9

8
±

3.
13

65
.4

3
±

0.
87

54
.4

0
±

4.
44

54
.9

0
±

20
.1

6
54

.4
6
±

15
.5

4
51

.2
5
±

9.
09

70
.0

9
±

7.
26

65
.7

8
±

14
.1

8
59

.9
3
±

4.
86

+
C

A
R

O
T

90
.9

7
±

2.
03

75
.9

4
±

0.
91

60
.4

5
±

7.
78

78
.3

1
±

4.
00

67
.5

7
±

1.
74

55
.4

6
±

3.
94

54
.3

2
±

21
.8

5
62

.7
4
±

8.
14

55
.8

5
±

4.
61

71
.4

6
±

6.
4

71
.2

5
±

8.
70

63
.6

4
±

5.
92

L
P(

E
M

P)
94

.9
7
±

1.
32

77
.8

6
±

4.
22

55
.2

7
±

11
.2

7
80

.1
5
±

1.
69

70
.7

3
±

1.
85

56
.2

8
±

2.
03

75
.8

3
±

5.
26

69
.6

7
±

5.
47

59
.2

5
±

7.
27

77
.1

6
±

3.
46

70
.0

6
±

10
.7

3
56

.7
9
±

1.
58

+
L

A
94

.6
9
±

1.
60

77
.9

1
±

4.
16

55
.3

4
±

11
.1

9
80

.0
8
±

1.
55

70
.5

4
±

1.
82

55
.3

1
±

3.
27

75
.7

7
±

5.
32

68
.9

2
±

3.
96

58
.4

9
±

5.
74

77
.1
±

3.
52

69
.7

6
±

10
.3

1
56

.8
1
±

1.
56

+
C

A
R

O
T

95
.0

7
±

1.
20

75
.5

3
±

7.
42

53
.0

7
±

12
.9

9
80

.2
9
±

2.
33

70
.8

8
±

2.
22

57
.8

5
±

4.
05

76
.3

8
±

4.
72

69
.7

4
±

5.
51

59
.5

6
±

8.
14

77
.5

8
±

3.
04

70
.1

1
±

10
.3

4
57

.0
9
±

1.
90

L
P(

A
L

G
1)

96
.0

9
±

0.
41

78
.3

4
±

4.
80

59
.9

1
±

6.
63

78
.5

6
±

1.
52

69
.7

1
±

0.
03

57
.6

1
±

3.
09

74
.5

1
±

9.
13

69
.1

4
±

1.
82

56
.8

1
±

3.
74

72
.2

3
±

11
.4

9
69

.2
8
±

11
.7

8
63

.6
7
±

7.
04

+
L

A
95

.8
1
±

0.
74

78
.9

7
±

4.
09

59
.9

8
±

6.
56

78
.4

8
±

1.
53

69
.7

1
±

0.
03

57
.4

7
±

3.
09

74
.2

6
±

9.
06

68
.7

3
±

2.
23

56
.3

7
±

3.
13

72
.2

3
±

11
.4

9
69

.2
1
±

11
.8

6
63

.6
7
±

7.
04

+
C

A
R

O
T

96
.1

3
±

0.
38

80
.7

8
±

2.
36

59
.7

1
±

6.
35

78
.9

3
±

1.
85

70
.3

2
±

0.
86

57
.6

2
±

3.
08

77
.0

5
±

7.
00

69
.1

9
±

1.
81

59
.7

6
±

7.
24

74
.8

2
±

10
.1

8
74

.3
0
±

7.
54

64
.3

9
±

6.
43

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 7: Accuracy of the marginal estimates computed by Algorithm 1 for different scenarios. Blue
denotes the gold ratios, red the estimated ones, and green the absolute difference between the gold
and estimated ratios.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 90

20

40

60

80

100

MNIST classes

H
id

de
n

la
be

lr
at

io
s
r

MAX-5, ρ = 50

0 1 2 3 4 5 6 7 8 90

20

40

60

80

100

MNIST classes

%
Pe

r-
cl

as
s

cl
as

si
fic

at
io

n
ac

cu
ra

cy

MAX-5, ρ = 50

SL
ILP(ALG1)

1 2 3 4 5 6 7 8 9 100

20

40

60

80

100

CIFAR10 class indices

H
id

de
n

la
be

lr
at

io
s
r

Smallest Parent, ρ = 50

1 2 3 4 5 6 7 8 9 100

20

40

60

80

100

CIFAR10 class indices

%
Pe

r-
cl

as
s

cl
as

si
fic

at
io

n
ac

cu
ra

cy

Smallest Parent, ρ = 50

SL
ILP(ALG1)

Figure 8: (Up left) hidden label ratios r for MAX-5 with ρ = 50. (Up right) Class-specific
classification accuracies under SL and ILP(ALG1) for MAX-5 with ρ = 50. (Down left) hidden label
ratios r for Smallest parent with ρ = 50. (Down right) Corresponding class-specific classification
accuracies under SL and ILP(ALG1) for Smallest parent with ρ = 50.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 7: The notation in the preliminaries and the theoretical analysis.
Supervised learning notation

1{·} Indicator function
[n] := {1, . . . , n} Set notation
X, Y = [c] Input instance space and label space
x, y Elements from X and Y
X,Y Random variables over X and Y
D, DX , DY Joint distribution of (X,Y) and marginals of X and Y
rj = P(Y = j) probability of occurrence (or ratio) of label j ∈ Y in D
DY := r = (r1, . . . , rc) Marginal of Y
∆c Space of probability distributions over Y
f : X→ ∆c Scoring function
f j(x) Score of f upon x for class j ∈ Y
[f] : X→ Y Argmax classifier induced by f
F, [F] Space of scoring functions and corresponding space of classifiers
d[F] Natarajan dimension of [F]
L(y′, y) := 1{y′ ̸= y} Zero-one loss given y, y′ ∈ Y
R(f) Zero-one risk of f
Rj(f) := P ([f](x) ̸= j|Y = j) Risk of f for the j-th class in Y
D(A) The diagonal matrix that shares the same diagonal with square

matrix A
MI-PLL notation

M > 0 Number of input instances per MI-PLL sample
x = (x1, . . . , xM), y = (y1, . . . , yM) Vector of input instances and their (hidden) gold label
S = {a1, . . . , acS} Space of cS partial labels
S Random variable over S
σ : YM → S Transition function (known to the learner)
s = σ(y) Partial label
σ−1(s) Pre-image of s, i.e., set of all vectors y ∈ YM s.t. σ(y) = s
(x, s) Partial sample
DP Distribution of partial samples over XM × S
DPS

Marginal of S
TP Set of mP partial samples
[f](x) Short for ([f](x1), . . . , [f](xM))
Lσ(y, s) := L(σ(y), s) Zero-one partial loss subject to σ
RP(f ;σ) := E(X1,...,XM ,S)∼DP

[Lσ(([f](X)), S)] Zero-one partial risk subject to σ

R̂P(f ;σ,TP) Empirical zero-one partial risk subject to σ given set TP of partial
samples

Notation in Section 3
1n, 0n All-one and all-zero vectors
In Identity matrix of size n× n
ej c-dimensional one-hot vector, where the j-th element is one
H(f) c×c matrix where the (i, j) cell is the probability of f classifying

an instance with label i ∈ Y to j ∈ Y.
h(f) := vec(H(f)) Vectorization of H(f)
wj := vec(Wj) Vectorization of matrix Wj := (1c − ej)e

T
j , where j ∈ Y

Σσ,r Symmetric matrix in Rc2×c2 depending on σ and r
Φσ,j(RP(f ;σ)) Optimal solution to program (3) and upper bound to Rj(f)

R̃P(f ;σ,TP, δ) Generalization bound of RP(f ;σ) for probability 1− δ

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 8: The notation used in our proposed algorithms.
Notation in Section 4.1

pj := P(S = aj) Probability of occurrence (or ratio) of aj ∈ S in DP

Pσ System of polynomials [pj]Tj∈[cS] = [∑(y1,...,yM)∈σ−1(aj)
]Tj∈[cS]

Ψσ Mapping of each rj ∈ Y to its solution in Pσ , assuming p is known
r̂, p̂ Estimates of r and p
p̄j := ∑mP

k=1 1{sk = aj}/mP Estimate of pj given partially labeled dataset TP

Notation in Section 4.2
n > 0 Size of each batch of partial samples
i Index over [M]
j Index over [c]
ℓ Index over [n]
(xℓ,1, . . . , xℓ,M , sℓ) ℓ-th partial training sample in the input batch
Rℓ Size of σ−1(sℓ)
t Index over [Rℓ]
Pi Matrix in [0, 1]n×c, where Pi[ℓ, j] = f j(xℓ,i)
Qi Matrix in [0, 1]n×c, where Qi[ℓ, j] is the pseudo-label assigned with

label j ∈ Y for instance xℓ,i

qℓ,i,j A Boolean variable that is true if xℓ,i is assigned with label j ∈ Y and
false otherwise

φℓ,t Conjunction over the qℓ,i,j Boolean variables that encodes the t-th label
vector in σ−1(sℓ)

Φℓ = φℓ,1 ∨ · · · ∨ φℓ,Rℓ
DNF formula encoding the label vectors in σ−1(sℓ)

αℓ,t A fresh Boolean variable associated with each φℓ,t by the Tseytin trans-
formation

Notation in Section 4.3
n > 0 Size of each batch of test input instances from X
P Matrix in Rn×c of the f ’s scores on the test instances of the input batch
P′ Matrix in Rn×c storing the CAROT’s adjusted scores for P
H(P′) Entropy of P′

η, τ > 0 Parameters of robust semi-constrained optimal transport problem (Le
et al., 2021)

30

	Introduction
	Preliminaries
	Theory: characterizing learning imbalances in MI-PLL
	Algorithms: mitigating imbalances in MI-PLL
	Estimating the marginal of the hidden labels
	Training-time imbalance mitigation via linear programming
	CAROT: testing-time imbalance mitigation

	Experiments
	Related work
	Conclusions and Future Work
	Extended preliminaries
	Proofs and details for Section 3
	Proofs
	Further discussion on our bounds
	Details on plotting Figure 2

	Further details on Algorithm 1
	Details for Section 4.2
	A non-linear program formulation
	Deriving the linear program in (6)

	Extended related work
	Further experiments and details

