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ABSTRACT

The lottery ticket hypothesis (LTH) has shown that dense models contain highly
sparse subnetworks (i.e., winning tickets) that can be trained in isolation to match
full accuracy. Despite many exciting efforts being made, there is one “common-
sense” seldomly challenged: a winning ticket is found by iterative magnitude
pruning (IMP) and hence the resultant pruned subnetworks have only unstructured
sparsity. That gap limits the appeal of winning tickets in practice, since the highly
irregular sparse patterns are challenging to accelerate on hardware. Meanwhile,
directly substituting structured pruning for unstructured pruning in IMP damages
performance more severely and is usually unable to locate winning tickets.

In this paper, we demonstrate the first positive result that a structurally sparse
winning ticket can be effectively found in general. The core idea is to append
“post-processing techniques” after each round of (unstructured) IMP, to enforce
the formation of structural sparsity. Specifically, we first “re-fill” pruned elements
back in some channels deemed to be important, and then “re-group” non-zero
elements to create flexible group-wise structural patterns. Both our identified
channel- and group-wise structural subnetworks win the lottery, with substantial
inference speedups readily supported by practical hardware. Extensive experi-
ments, conducted on diverse datasets across multiple network backbones, consis-
tently validate our proposal, showing that the hardware acceleration roadblock
of LTH is now removed. Specifically, the structural winning tickets obtain up
to {64.93%, 64.84%, 64.84%} running time savings at {36% ∼ 80%, 74%, 58%}
sparsity on {CIFAR, Tiny-ImageNet, ImageNet}, while maintaining comparable
accuracy. All the codes and pre-trained models will be publicly released.

1 INTRODUCTION

Recently, the machine learning research community has devoted considerable efforts and financial
outlay to scaling deep neural networks (DNNs) to enormous sizes (175 billion parameter-counts in
GPT-3 (Brown et al., 2020)). Although such overparameterization simplifies the training of DNNs
and dramatically improves their generalization (Bartlett et al., 2021; Du et al., 2018; Kaplan et al.,
2020), it may severely obstruct the practical usage on resource-limited platforms like mobile devices,
due to its large memory footprint and inference time (Hoefler et al., 2021). Pruning as one of the
effective remedies can be dated back to LeCun et al. (1990): it can eliminate substantial redundant
model parameters and boost the computational and storage efficiency of DNNs.

Such benefits drive numerous interests in designing model pruning algorithms (Han et al., 2015a;b;
Ren et al., 2018; He et al., 2017; Liu et al., 2017). Among this huge family, an emerging repre-
sentative studies the prospect of training sparse subnetworks in lieu of the full dense models with-
out impacting performance (Frankle & Carbin, 2019; Chen et al., 2020b). For instance, Frankle
& Carbin (2019) demonstrates that dense models contain sparse, matching subnetworks (Frankle
et al., 2020a) (a.k.a. winning tickets) capable of training in isolation from the original initialization
to match or even surpass the full accuracy. This phenomenon is referred to as the lottery tickets
hypothesis (LTH), which indicates several impressive observations: (i) usually extreme sparsity lev-
els (e.g., 90%, 95%) can be achieved without sacrificing the test accuracy; (ii) the located winning
ticket maintains undamaged expressive power as its dense counterpart, and can be easily trained
from scratch or early-epoch weights (Renda et al., 2020; Frankle et al., 2020a) to recover the full
performance. These advances are positive signs about the substantial potential of sparse DNNs.
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However, almost all LTH literature investigates unstructured sparsity only. In practical scenarios,
it brings little hardware efficiency benefits due to the poor data locality and low parallelism (He
et al., 2017; Mao et al., 2017; Wen et al., 2016) caused by highly irregular sparse patterns. Mean-
while, most of the accelerators are optimized for dense matrix operations (Han et al., 2016), which
means there is limited speedup for unstructured pruned subnetworks even the sparsity level exceeds
95% (Wen et al., 2016). Structural pruning (He et al., 2017; Liu et al., 2017) as an alternative
to exploring sparse subnetworks, removes the entire filter or channel in DNNs to gain more com-
putational efficiency at the cost of (more) accuracy degradation. As shown in Figure 1, traditional
channel-wise structural pruning approaches (He et al., 2017; Liu et al., 2017; Bartoldson et al., 2019;
Molchanov et al., 2019) quickly degrade performance and cannot lead to winning tickets, which was
also echoed in You et al. (2020).
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Figure 1: Achieved test accuracy over different
sparsity levels of diverse unstructured and struc-
tural subnetworks. Sparse models from classical
channel-wise structural pruning algorithms (He
et al., 2017; Liu et al., 2017; Bartoldson et al.,
2019; Molchanov et al., 2019) can not match the
full accuracy of the dense model (dash line).

In our paper, we present the first study into the
structural lottery tickets, which explores hardware-
friendly structural sparsity (including channel-wise
and group-wise patterns) in order to find lottery tick-
ets. Specifically, we start from unstructured sparse
subnetworks, and then adopt proposed refilling tech-
niques to create channel-wise structural sparsity by
growing back the pruned elements within the most
important channels and abandoning the rest. Our
results (Section 4) show such refined channel-wise
structural subnetworks win the lottery at a moderate
sparsity level with∼ 50% running time savings on an
Nvidia 2080 TI. In order to push the compression ra-
tio higher, we introduce a regrouping algorithm based
on hypergraph partitioning (Rumi et al., 2020) to es-
tablish group-wise structural patterns which are more
amenable to pruning due to the shape flexibility of
grouped dense blocks. These group-wise structural
winning tickets achieve ∼ 60% running time savings
at 50% ∼ 80% sparsity without any performance degradation compared to the dense models. Our
main contributions lie in the following aspects:

• To our best knowledge, we are the first to demonstrate the existence of structurally sparse
winning tickets at non-trivial sparsity levels (i.e., > 30%), and with both channel-wise and
group-wise sparse patterns.

• We propose the refilling technique and introduce the regrouping algorithm to form channel-
wise and group-wise structural sparsity, respectively. Such refined structural subnetworks
match the trainability and expressiveness of dense networks, while enabling the inference
speedup on practical hardware platforms like GPU machines.

• Extensive experiments validate our proposal on diverse datasets (i.e., CIFAR-10/100, Tiny-
ImageNet, and ImageNet) across multiple network architectures, including ResNets, VGG,
and MobileNet. Specifically, our structural winning tickets achieve 53.75% ∼ 64.93%
GPU running time savings at 45% ∼ 80% channel- and group-wise sparsity.

2 RELATED WORK

Pruning. Network pruning is a technique that aims at eliminating the unnecessary model param-
eters (Blalock et al., 2020), which can effectively shrink models for the deployment on resource-
constrained devices (LeCun et al., 1990; Hanson & Pratt, 1988). Pruning algorithms are roughly
categorized into two groups: (1) unstructured pruning (LeCun et al., 1990; Han et al., 2015a;b; Ren
et al., 2018; Zhang et al., 2018) with irregular sparse patterns; (2) structural pruning (He et al., 2017;
Liu et al., 2017; Li et al., 2016; Hu et al., 2016; Wen et al., 2016; Hong et al., 2018) with structural
sparse patterns such as channel-wise, block-wise, column-wise, etc..

Within the group of unstructured pruning, Han et al. (2015a;b) remove insignificant connections of
models in the post-training stage, with respect to certain heuristics like weight/gradient magnitudes;
during training sparsification is also another popular trend for pruning by leveraging `0 regular-
ization (Louizos et al., 2017) or alternating direction method of multipliers (ADMM) (Ren et al.,
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2018; Zhang et al., 2018). Recently, several pruning-at-initialization methods (Wang et al., 2020;
Lee et al., 2019b; Tanaka et al., 2020) are proposed to identify critical unstructured connections for
gradient-flow preserving, without any training. Although the unstructured sparse model has supe-
rior performance, it usually suffers from poor data locality and low parallelism (He et al., 2017; Mao
et al., 2017; Wen et al., 2016), which make it hard to speed up in real-world applications.

On the contrary, structural pruning is more hardware-friendly at the cost of notable accuracy loss
when the compression ratio increases. He et al. (2017); Liu et al. (2017) slim the network channels
via `1 regularization, and Bartoldson et al. (2019) selects important channels according to heuristics
of feature maps. To combine the benefits of structural and unstructured pruning, hybrid pruning
strategies have been introduced to pursue more general structural spares patterns which are also
capable of acceleration. For example, convolution kernels with half regular sparsity (Chen et al.,
2018) or pattern-based structural sparsity (Ma et al., 2020) or vector-wise (Zhu et al., 2019) and
group-wise (Rumi et al., 2020) regular sparsity.

The lottery tickets hypothesis (LTH). The lottery ticket hypothesis (LTH) (Frankle & Carbin,
2019) conjectures that there exists a sparse subnetwork called winning ticket within a dense network,
whose performance can match with the dense network when training from the same initialization.
With the assistance of weight rewinding techniques (Renda et al., 2020; Frankle et al., 2020a), the
original LTH can be scaled up to larger networks and datasets. The existence of winning tickets
are broadly verified under diverse contexts, such as image classification (Frankle & Carbin, 2019;
Liu et al., 2019; Wang et al., 2020; Evci et al., 2019; Frankle et al., 2020b; Savarese et al., 2020;
You et al., 2020; Ma et al., 2021a; Chen et al., 2020a), object detection Girish et al. (2020), natural
language processing Gale et al. (2019); Yu et al. (2020); Prasanna et al. (2020); Chen et al. (2020b;c),
generative adversarial networks Chen et al. (2021d); Kalibhat et al. (2020); Chen et al. (2021a),
graph neural networks Chen et al. (2021b), reinforcement learning Yu et al. (2020), and life-long
learning Chen et al. (2021c). However, all of the above LTH literature only locate unstructured
sparse winning tickets, which can hardly bring hardware efficiency boost on real-world applications.

As the most related work, You et al. (2020) finds structural winning tickets at only low sparsity
levels around 30% in few cases. It again reveals the complication and difficulty of identifying
computation-friendly sparse patterns. Another concurrent work (Alabdulmohsin et al., 2021) inves-
tigates a generalized LTH with weight space factorization, which is orthogonal to our work.

Sparse convolutional neural network (CNN) acceleration on GPU. Previous works have ex-
plored the acceleration of sparse convolution operations in two different directions. One direction
is to design efficient implementation of unstructured pruned networks for improved data locality
and utilization of hardware (Chen, 2018; Park et al., 2016). For example, Dong et al. (2019) pro-
poses “Acorns” to accelerate the sparse computations of convolution kernels with an input sparsity.
Peng et al. (2017) has proposed a matrix splitting algorithm for efficient CNN inference. Nvidia’s
cuSPARSE1 library contains various efficient sparse matrix computation algorithms like SpMM on
GPUs, drawing great attention in efficient scientific computing. Furthermore, advanced approaches
are developed based on SpMM, such as Adaptive Sparse Tiling (ASpT) (Hong et al., 2019). ASpT
significantly improves the data usage of SpMM and achieves the current state-of-the-art performance
among SpMM implementation variants. Another direction focuses on more hardware-friendly prun-
ing methods (Chen et al., 2018; Ma et al., 2020; Niu et al., 2020). During the model pruning,
these works aim to maintain certain regular sparse patterns, which benefit the hardware process-
ing/computing of corresponding sparse matrices. However, Chen et al. (2018) achieves unsatisfac-
tory compression ratio, while the pruning methods used in Ma et al. (2020) and Niu et al. (2020)
require dedicated compiler optimization to accelerate network execution.

3 METHODOLOGY

3.1 NOTATIONS AND PRELIMINARIES

Sparse subnetworks and pruning methods. In this paper, we mainly follow the routine notations
in Frankle & Carbin (2019); Renda et al. (2020). For a network f(x; θ) with input samples x and
model parameters θ, a sparse subnetwork is a network f(x;m � θ) with a binary pruning mask
m ∈ {0, 1}|θ|, where � is the element-wise product. In other words, it is a copy of dense network

1https://docs.nvidia.com/cuda/archive/10.2/cusparse/index.html
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f(x; θ) with some weights fixed to 0. If the non-fixed remaining weights are distributed irregularly,
we call it unstructured sparse patterns (e.g., Figure 2, left); if they are clustered into channels or
groups, we name it structural sparse patterns (e.g., Figure 2, right).

To obtain the desired sparse subnetworks, we consider and benchmark multiple classical pruning
algorithms: (1) random pruning (RP) which usually works as a necessary baseline for the sanctity
check (Frankle & Carbin, 2019); (2) one-shot magnitude pruning (OMP) by eliminating a part of
model parameters with the globally smallest magnitudes (Han et al., 2015a); (3) the lottery ticket
hypothesis (Frankle & Carbin, 2019) with iterative weight magnitude pruning (LTH-IMP or IMP for
simplicity) (Han et al., 2015a). As adopted in LTH literature (Frankle & Carbin, 2019), we identify
the sparse lottery tickets by iteratively removing the 20% of remaining weight with the globally
smallest magnitudes, and rewinding model weights to the original random initialization (Frankle &
Carbin, 2019) or early training epochs (Frankle et al., 2020b; Chen et al., 2020a). In this paper, the
model weights are rewound to the eighth epoch (i.e., the 5% of the entire training process) for all
CIFAR, Tiny-ImageNet, and ImageNet experiments. (4) pruning at initialization mechanisms. We
choose several representative approaches such as SNIP (Lee et al., 2019a), GraSP (Wang et al.,
2020), and SynFlow (Tanaka et al., 2020), which explore sparse patterns at random initialization
with some gradient flow based criterion. (5) Alternating Direction Method of Multipliers (ADMM)
for punning. It is a well-known optimization-based pruning method (Niu et al., 2020; Zhang et al.,
2018), which can obtain superior compression ratios with little performance degradation for deep
neural networks. Note that all pruning approaches are mainly conducted over networks without
counting their classification heads (Frankle & Carbin, 2019; Ma et al., 2021b).

Structural winning tickets. We begin by extending the original lottery tickets hypothesis to the
context of structural sparse patterns. A subnetwork f(x;m � θ) is a structural winning ticket for
an algorithm ATt if it satisfies: ¬ training subnetworks f(x;m � θ) with algorithm ATt results in
performance measurement on task T no lower than training dense networks f(x; θ) with algorithm
ATt , where θ is the original random initialization θ0 or early rewound weights like θ5%, and t is the
training iterations;  the non-zero elements in pruning mask m are clustered as channels, groups or
other hardware-friendly structural patterns.

Implementation details. We conduct experiments on diverse combinations of network architec-
tures and datasets. Specifically, we adopt Wide-ResNet-32-2 (Zagoruyko & Komodakis, 2016) (or
WRN-32-2), ResNet-18 (He et al., 2016) (or RN-18), MobileNet-v1 (or MBNet-v1) (Howard et al.,
2017), and VGG-16 (Simonyan & Zisserman, 2014) on both CIFAR-10 (Krizhevsky et al., 2009)
and CIFAR-100 datasets. ResNet-50 (or RN-50) is evaluated on both Tiny-ImageNet (Le & Yang,
2015) and ImageNet (Deng et al., 2009) datasets. Table 1 includes more training and evaluation
details of our experiments.

Table 1: Implementation details which follow the standard settings in Ma et al. (2021b).
Settings CIFAR-10 CIFAR-100 Tiny-ImageNet ImageNet

WRN-32-2 RN-18 MBNet-v1 VGG-16 WRN-32-2 RN-18 MBNet-v1 VGG-16 RN-50 RN-50

Batch Size 128 128 128 128 - - 64 - 32 -

Weight Decay 1× 10−4 1× 10−4 1× 10−4 2× 10−4 2× 10−4 2× 10−4 2× 10−4 5× 10−4 5× 10−4 1× 10−4

Learning Rate 0.1;×0.1 at 80,120 epoch of total 160 epochs

Optimizer SGD (Ruder, 2016) with a momentum of 0.9

Model Size 1.86 M 11.22 M 3.21 M 14.72 M 1.86 M 11.22 M 3.21 M 14.72 M 25.56 M 25.56 M

3.2 REFILLING FOR STRUCTURAL PATTERNS

It is well-known that the irregular sparsity patterns from unstructured magnitude pruning block the
acceleration on practical hardware devices. To overcome the limitation, we propose a simple refill-
ing strategy to reorganize the unstructured sparse patterns and to make them more hardware friendly.
Specifically, we first select important channels from the unstructured subnetwork according to cer-
tain criteria. The number of picked channels are depended on the desired sparsity level. Then, the
pruned elements are grown back to be trainable (i.e., unpruned) and are reset to the same random
initialization or early rewound weights. Lastly, the rest parameters in the remaining insignificant
channels will be removed. In this way, we refill important channels and empty the rest to create a
channel-wise structural sparse pattern that essentially brings computational reductions. Note that
the picking criterion can be the number of remaining weights in the channel, or the channel’s weight
statistics or feature statistics or salience scores, which are comprehensively investigated in the ab-
lation (Section A2). The complete pipeline and illustration are summarized in Algorithm 2 and
Figure 2, respectively.
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Figure 2: Overview of our proposals including refilling, refilling+, and regrouping, which turn unstructured
sparse mask into channel-wise and group-wise structured sparse masks.

Algorithm 1: IMP with rewinding step i
Input: f(x; θ0), unstructured sparsity s
Output: f(x;m� θi)

1 Set the pruning mask m = 1 ∈ R|θ|
2 Train f(x; θ0) to rewinding step i:
f(x; θi) = ATi (f(x; θ0))

3 while not reach sparsity s do
4 Train f(x;m� θi) to step t:

f(x;m� θt) = ATt−i(f(x;m� θi))
5 Pruning 20% of remaining weight of

m� θt, and update m
6 end

Algorithm 2: IMP-Refill(+)
Input: f(x;m� θi) with unstructured

sparsity s from Algorithm 1
Output: f(x;m� θi) with channel-wise

structural mask m at sparsity s̃
1 Calculate importance scores of each

channel according to certain criterion
2 Pick top-k channels in m, refill back their

0 (pruned) elements with 1 (trainable)
and update m, maintaining s̃ ∼ s

3 Pick and refill back extra channels in m
with s̃+ < s # Optional for Refill+

Algorithm 3: IMP-Regroup
Input: f(x;m� θi) with unstructured

sparsity s from Algorithm 1,
hyperparameters t1, t2, b1, and b2

Output: f(x;m)� θi with group-wise
structural mask m at sparsity s∗

1 while dense block can be found do
2 Divide the rows of the sparse pruning

mask m into t1 groups using hypergraph
partitioning (hMETIS)a

3 for group ci ∈ {c1, c2, . . . , ct1} do
4 if ci has ≥ b1 rows then
5 Select columns in ci that has no

less than t2 non-zero items
6 if ≥ b2 columns are selected then
7 Group and Refill the selected

columns as well as rows to a
dense block, and update m

8 end
9 end

10 end
11 end
12 Set other elements out of dense blocks to 0

ahttp://glaros.dtc.umn.edu/gkhome/
metis/hmetis/overview

Here we provide a detailed description of how many and which channels we choose to refill. Our
main experiments adopt the `1 norm of channel weights as the picking criterion to score the channel
importance due to its superior performance. Let θl ∈ Rcout×n denotes the parameters of the con-
volutional layer l, where cout is the number of output channel and n is the continued product of the
number of input channel, channel height and weight, as shown in Figure 2. θli ∈ Rn represents the
weights in the ith kernel and ml

i ∈ {0, 1}|θ
l
i| is the corresponding mask. We first calculate the `1

norm of ml
i � θli, which is a summation of the absolute value of remaining weights in the kernel i.

Then we use it to pick the top-k scored kernels, which will be fully refilled. k = dsl × cout × ne,
where sl is the original layerwise sparsity and cout × n is the total number of weights in kernel i.
Meanwhile, the rest cout − k kernels are dropped for efficiency gains.

Furthermore, we propose a soft version, refilling+, to make a redemption for the aggressive nature
of wiping out all remaining channels. It picks and re-actives an extra proportion of channels to slow
down the network capacity reduction, as indicated by shallow blue blocks in Figure 2.
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3.3 REGROUPING FOR STRUCTURAL PATTERNS

Although proposed refilling(+) reorganizes the unstructured mask and produces useful channel-
wise structural subnetworks, it is rigid and inelastic since the smallest manageable unit is a kernel.
In other words, the dense matrices in identified structural patterns have a restricted shape where
one dimension must align with the kernel size n, i.e., the continued product of the number of input
channels, channel height and weight. Motivated by Rumi et al. (2020), we introduce a regrouping
strategy (Figure 2) to create more fine-grained group-wise structural patterns with flexible shapes
for remaining dense matrices.

B How to perform regrouping? Regrouping aims to find and extract dense blocks of non-pruned
elements in the sparse weight matrix. These blocks have diverse shapes, as demonstrated in Figure 2,
which are usually smaller in size compared to the original sparse matrix. Note that a channel/kernel
can be regarded as a special case of the dense block.

As described in Algorithm 3, to achieve the goal, we first need to find similar rows and columns,
and then bring them together. Specifically, We adopt the Jaccard similarity (Rumi et al., 2020; Jiang
et al., 2020) among non-zero columns as the similarity between two rows in the sparse matrix, which
is calculated as a cardinality ratio of the intersections to the union of non-zero columns. For instance,
kernel 1 and kernel 2 in Figure 2 (upper left) share three columns in eight non-zero distinct columns,
and their similarity is 3

8 . Then, if two rows have a larger similarity, it can form a denser block
when we group them together. Take Figure 2 as an example. We can group kernel 1, 2, 3’s non-zero
columns 1, 3, 6, 11 with at least two elements together, which leads to the first orange dense block.

More precisely, we take the hypergraph partitioning in the regrouping algorithm to generate dense
blocks. It treats each row and column from the sparse matrix as a node and hyperedge in the hyper-
graph, where hyperedge (i.e., column) connects the corresponding nodes (i.e., row). Then, the pair-
wise similarity is leveraged to locate an optimal partitioning, which can be achieved with hMETIS2.
More details are referred to Rumi et al. (2020). After obtaining the desired dense blocks, we enable
all their parameters to be trainable by refilling the corresponding pruned elements. Note that refilling
these pruned weights does not cause any efficiency loss since the size of the blocks is fixed, while it
potentially maximizes the usage of these blocks and brings accuracy gains. Meanwhile, the rest pa-
rameters not included in the dense blocks will be discarded, i.e., setting the corresponding position
in binary mask m to zero, for reducing the computational overhead as illustrated in Figure 2. It is
because any parameters outside the dense blocks require extra weights loading and have little data
reuse (Rumi et al., 2020), which harms the trade-off of accuracy and efficiency.

B How refilled / regrouped dense blocks be beneficial? We notice that the common tools like
cuDNN (Chetlur et al., 2014) have a significant drawback that the inference time does not linearly
change with the number of kernels, since they are only optimized for kernel matrices with a multiple
of 32 rows (Radu et al., 2019). For example, as stated in Rumi et al. (2020), a convolutional layer
with 10 kernels might have a similar inference time with a convolutional layer with 32 kernels.
However, the number of kernels in these dense blocks is almost arbitrary, so a more sophisticated
GEMM-based efficient implementation (Rumi et al., 2020) is needed to accelerate better our refilled
/ regrouped structural patterns. Following Rumi et al. (2020), we split a kernel with r rows into two
parts: one has [r/32] × 32 rows and the other one has r mod 32 rows. First, we directly apply the
standard GEMM-based convolution algorithm with shared memory to cache the input and output
matrix. For the second part, due to the poor data reuse of input matrices, we choose caching the
kernel and output matrices for an improved cache hit rate and overall performance. More details are
referred to Rumi et al. (2020).

4 THE EXISTENCE OF STRUCTURAL WINNING TICKETS

Tiny-ImageNet and ImageNet. In this section, we reveal the existence of our proposed structural
winning tickets on ImageNet and Tiny-ImageNet with ResNet-50 backbone. Results of unstructured
IMP, channel-wise structural IMP-Refill(+), and group-wise structural IMP-Regroup are
collected in the Figure 3. The end-to-end inference time3 of obtained structural winning tickets with

2http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
3TorchPerf (https://github.com/awwong1/torchprof) is adopted as our tool to benchmark

both the end-to-end and layer-wise running time on GPU devices.
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extreme sparsity levels are presented, which is calculated on a single 2080 TI GPU with a batch size
of 64. Extreme sparsity is defined as maximum sparsity when the subnetwork has superior accuracy
than its dense counterpart.

(ResNet-50, Tiny-ImageNet) (ResNet-50, ImageNet)
Time Saving

Structural
Sparsity Accuracy

Time Saving

Structural
Sparsity Accuracy

Figure 3: (Curve plots) Testing accuracy (%) over network sparsity levels (%) on Tiny-ImageNet and Im-
ageNet datasets with ResNet-50 (25.56 M). (Radar plots) The end-to-end inference time saving of extreme
structural winning tickets. Note that unstructured subnetworks or dense models do not have structural sparsity,
and thus they are plotted as dots in the axes of accuracy in the corresponding radar plot. The rightmost plot
includes three extreme regroup tickets with accuracy drop < 1%, where “RG S: x%” indicates unstructured
sparsity before regrouping.

From Tiny-ImageNet results in Figure 3 (left), several positive observations can be drawn: ¶ Struc-
tural winning tickets with 60% channel-wise structural sparsity and 74% group-wise structural spar-
sity are located by IMP-Refill and IMP-Regroup respectively, which validate the effective-
ness of our proposals. · Although at the high sparsity levels (i.e., > 50%), IMP-Refill+
outperforms IMP-Refill if they are from the same unstructured IMP subnetworks. Consider-
ing the overall trade-off between channel-wise strcutural sparsity and accuracy, IMP-Refill ap-
pears a clear advantage. A possible explanation is that refilling+ seems to bring undesired channels
which potentially result in a degraded performance trade-off. ¸ IMP-Regroup performs better
at high sparsities. It is within expectation since fine-grained group-wise structural patterns tend to
make the networks be more amenable to pruning. ¹ Extreme channel- / group-wise structural win-
ning tickets with 45% ∼ 50% / 74% sparsity from IMP-Refill(+) / IMP-Regroup achieve
57.53% ∼ 61.79% / 64.84% GPU running time savings, without sacrificing accuracies.

As for large-scale ImageNet experiments, the conclusion are slightly different: ¶ There is almost
no difference between the performance of IMP-Refill and IMP-Refill+, and both can not
find channel-wise structural winning tickets. But it seems to suggest our picking rule (i.e., channel
weights’ `1 norm) provides a great estimation for channel importance, although it is too aggressive
for ImageNet experiments. · The group-wise structural winning ticket at 31% sparsity is still exist
in (RN-50, ImageNet), while the low sparsity brings limited 1% time savings. For a better efficiency
and performance trade-off, IMP-Regroup is capable of locating structural subnetworks at 51% /
58% sparsity with 53.75% / 64.84% time savings and 0.33% / 0.95% accuracy drop.

CIFAR with diverse network architectures. We then validate our approaches on CIFAR-10/100
(C10/100) with diverse network backbones including Wide-ResNet-32-2, MobileNet-v1, VGG-16,
and ResNet-18. Based on the extensive results in Figure 4 and 5, we find: ¶ On {(WRN-32-2,C10),
(WRN-32-2,C100), (MBNet-v1,C10), (MBNet-v1,C100), (VGG-16,C10), (VGG-16,C100), (RN-
18,C10), (RN-18,C100)} schemes, we consistently disclose the existence of structural winning tick-
ets with {53%, 28%, 67%, 0%, 60%, 40%, 50%, 0%} channel-wise sparsity and {66%, 36%, 72%,
56%, 80%, 80%, 78%, 78%} group-wise sparsity from IMP-Refill(+) and IMP-Regroup,
respectively. · With the same network, pursuing channel-wise sparse patterns on CIFAR-100 is
more challenging than it on CIFAR-10, possibly due to the larger dataset complexity. On the same
dataset, larger networks tend to have larger extreme sparsities for both channel- and group-wise
structural winning tickets, with the exception of IMP-Refill(+) on (RN-18, C100). ¸ At the
middle sparsity levels (i.e., < 50%), IMP-Regroup behaves closely to IMP-Refill(+), while
IMP-Regroup has a superior performance at high sparsity levels. ¹ Up to {57.75%, 60.60%,
55.45%, 64.93%} GPU running time savings are obtained by group-wise structural winning tickets
with undamaged performance on {(VGG-16,C10), (VGG-16,C100), (RN-18,C10), (RN-18,C100)},
which surpass IMP, IMP-Refill(+), and dense models by a significant efficiency margin. A
exception is that IMP-Refill on (VGG-16,C10) achieves the best time savings, i.e., 63.11%.
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(WRN-32-2, C10) (MBNet-v1, C10)(WRN-32-2, C100) (MBNet-v1, C100)

Figure 4: Testing accuracy (%) over network sparsity levels (%) on CIFAR-10/100 with small models Wide-
ResNet-32-2 (1.86 M) and MobileNet-v1 (3.21 M).

(VGG-16, CIFAR-10) (VGG-16, CIFAR-100)
Time Saving

Structural
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(ResNet-18, CIFAR-10) (ResNet-18, CIFAR-100)
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Structural
Sparsity Accuracy

Time Saving

Structural
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Figure 5: (Curve plots) Testing accuracy (%) over network sparsity levels (%) on CIFAR-10/100 with large
models VGG-16 (14.72 M) and RN-18 (11.22 M). (Radar plots) The end-to-end inference time saving of
extreme structural winning tickets. Note that unstructured subnetworks or dense models do not have structural
sparsity, and thus they are plotted as dots in the axes of accuracy in the corresponding radar plot.

Layer-wise speedups. Figure 6 shows the layer-wise speedup performance of convolution oper-
ations in VGG-16’s extreme structured winning tickets from different algorithms.IMP-Regroup
presents impressive layer-wise speedups up to 6.67x compared to others, especially on the last a few
layers (e.g., conv. 12). The possible reasons lie in two aspects: (i) the latter layers reach a larger
compression ratio and have greater potentials for acceleration; (ii) the regrouping algorithm prefers
convolutional layers (i.e., latter layers in VGG-16) with a larger number of kernels which benefits to
group appropriate dense blocks, as also suggested by Rumi et al. (2020).
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Figure 6: The layer-wise performance of convolution operations in extreme structural winning tickets of
(VGG-16, C10). The first six conv. operations are omitted since there is no meaningful speedup, coincided
with Rumi et al. (2020). Marks like “C: 2.77” indicate the layer-wise compression ratio of IMP-Regroup.
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Figure 7: (Left) Performance of structural tickets grouped from diverse initial unstructured masks. (Middle)
Performance of group-wise structural tickets with different weight rewinding. (Right) Performance compar-
isons between IMP-Regroup and group-aware IMP as described in Algorithm 4. Testing accuracies (%) over
network sparsity levels (%) are reported on (RN-18,C10).

5 ABLATION STUDY AND VISUALIZATION

Different sources of unstructured masks. Intuitively, the initial unstructured sparse mask should
plays an essential role in the achievable performance of our proposed “post-processing techniques”.
We therefore conduct a comprehensive ablation study about the various sources of the initial sparse
masks in Figure 7, including IMP, OMP, RP, SNIP, GraSP, SynFlow, and ADMM. The details
of comparison methods are included in Section 3.1. We observe that IMP and OMP provide initial
unstructured masks with the top-2 highest quality for our regrouping algorithm, in terms of the
train-from-scratch accuracy of grouped structural subnetworks.

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

Figure 8: Sparse mask visualizations of the
extreme winning tickets from IMP (unstruc-
tured), IMP-Refill (channel-wise struc-
tural), and IMP-Regroup (group-wise
structural) on (VGG-16,C10). The darker
color indicates the remaining unpruned ele-
ments. (a,b,c) are the last three conv. layers.

Different initialization for the re-training. Initializa-
tion (Frankle & Carbin, 2019; Renda et al., 2020) as an-
other key factor in LTH, also contributes significantly
to the existence of winning tickets. To exhaustively in-
vestigate the effect from different initialization (e.g., re-
wound weights), we launch experiments started from di-
verse rewound weights ({5%, 10%, 20%, 50%, 100%} of
total training epochs) as well as a random re-initialization.
As shown in Figure 7, using 50% rewound weight reach
the overall best performance; other weight rewinding se-
tups perform similarly and clearly surpass random re-
initializing at sparsity levels > 30%.

Group-aware IMP This work mainly focuses on the
post-processing of unstructured sparse masks. Another
possibility is integrating regrouping into IMP by alter-
natively performing unstructured magnitude pruning and
regrouping, which we term as group-aware IMP. From
Fig. 7, it has a worse performance due to the stricter con-
straint on sparse patterns, compared to IMP-Regroup.

Visualization of sparse masks. Figure 8 visualizes different types of obtained sparse masks from
(VGG-16,C10). Sub-figures (a,b,c) plot the mask matrices of size cout×n for certain layers. Similar
to the illustration in Figure 2, IMP-Refillmasks show clear kernel-wise sparse patterns across the
rows, and IMP-Regroup masks present fine-grained structural sparse patterns capable of forming
neat dense blocks after regrouping.

6 CONCLUSION

In this paper, we challenge the “common sense” that an identified IMP winning ticket can only have
unstructured sparsity, which severely limits its practical usage due to the irregular patterns. We for
the first time demonstrate the existence of structural winning tickets by leveraging post-processing
techniques, i.e., refilling(+) and regrouping. The located channel- and group-wise structural sub-
networks achieve significant inference speedups up to 6.67x on hardware platforms. In this sense,
our positive results bridge the gap between the lottery ticket hypothesis and practical accelerations
in real-world scenarios. We would be interested in examining LTH with more effective structural
sparsity for real-time mobile computing in future work.
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A1 MORE IMPLEMENTATION DETAILS

Group-aware IMP Here we provides the detailed procedures of group-aware IMP in Algorithm 4.
Intuitively, it embeds regrouping (Algorithm 3) into IMP (Algorithm 1) by performing regrouping
on the unstructured mask m from each IMP round.

Algorithm 4: Group-aware IMP
Input: f(x; θ0), group-wise structural sparsity s
Output: f(x;m� θi) with group-wise structural sparse mask s

1 Set the pruning mask m = 1 ∈ R|θ|
2 Train f(x; θ0) to rewinding step i: f(x; θi) = ATi (f(x; θ0))
3 while not reach sparsity s do
4 Train f(x;m� θi) to step t: f(x;m� θt) = ATt−i(f(x;m� θi))
5 Pruning 20% of remaining weight of m� θt, and update m
6 Refining the unstructured mask m by performing regrouping, as shown in Algorithm 3
7 end

Profiling. To compute the GPU running time of regrouped convolution layers, we adopt their
CUDA C/C++ implementation. Our results do not include the running time of normalization and
activation layers, following the standard in Rumi et al. (2020). For a fair calculation, we feed the
same input features to convolution layers that belong to the same model. For ResNet-18 and VGG-
16, the size of the input features is (64, 64, 127, 127). For ResNet-50, the size of input features is
(64, 64, 64, 64). The GPU we use for profiling is NVIDIA RTX 2080 TI, with a CUDA version of
10.2 and a cuDNN (Chetlur et al., 2014) version of 7.6.5.

A2 MORE EXPERIMENT RESULTS

Different channel picking criterion for refilling. We ablation the channel picking criterion for
IMP-Refill(+), including ¶ the `1 norm of channel’s remaining weight, · the `1 or `2 norms of
channel’s feature map, ¸ the number of remaining weights in the channel, ¹ the channel’s saliency
score (Molchanov et al., 2019). Experiment results are collected in Figure A9, which demonstrate
the superior performance of IMP-Refill w. `1 of channel weights (yellow curve).
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Figure A9: Performance of structural tickets refilled by diverse channel picking criterion. Testing accuracies
(%) over network sparsity levels (%) are reported on (RN-18,C10).
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All sections of newly added results and discussions are highlighted.

A3 APPLICATION TO OTHER TICKETS

We further study whether our methods rely on types of random initialization. We first identify
tickets in ResNet-50 on ImageNet, and then transfer the tickets we have found to CIFAR-10.
The test accuracy of the un-pruned (dense) ResNet-50 on CIFAR-10 is 95.37%. Multiple re-
sults from IMP-Refill IMP-Regroup and are reported in Table A2. We can see from Ta-
ble A2 that IMP-Refill can locate structured winning tickets at the sparsity around 36%, and
IMP-Regroup can locate structured winning tickets at higher sparsity (more than 56.00%). These
results suggest that our refill and regroup method can work on another kind of tickets (i.e., pre-
training tickets)

Table A2: Testing accuracy and percentage of remaining weights on ResNet-50 with CIFAR-10.
Different methods (IMP-Refill, and IMP-Regroup) are evaluated. The baseline (test accuracy
of the dense network) is 95.37%.

IMP-Refill IMP-Regroup

Remaining Weight Accuracy Remaining Weight Accuracy

64.14% 95.81 77.28% 94.94
51.37% 95.14 71.40% 96.28
41.01% 94.51 67.60% 94.09
32.76% 94.38 59.43% 95.65
26.17% 94.19 51.84% 95.39
20.97% 94.11 43.99% 95.51

A4 RESULTS UNDER DIFFERENT TRAINING SETTINGS

To provide more experimental results, we launch experiments under different settings with VGG-16,
WideResNet-32-2, and ResNet-50. The changes of training settings are summarized below:

1. For VGG-16, we increase the number of training epochs to 240, and we decay the learning rate
at 150th, 180th, and 210th epoch.

2. For WideResNet-32-2, we did not split the official training set into the a training and a validation
set as other experiments did. We also report the best validation accuracy instead of the best test
accuracy. We also increase the number of training epochs to 240 and decay the learning rate at
150th, 180th, and 210th epoch.

3. For ResNet-50, we replace the first convolution layer to be of kernel size 3, padding size 1, and
strides 1.

VGG-16 on CIFAR-100. The proportion of remaining weights and testing accuracy of (VGG-
16,C100) are shown in Table A3. From the table we can see that our conclusions still hold:
IMP-Regroup can locate structured winning tickets at very high sparsity (> 75%).

WideResNet-32-2 on CIFAR-100. The proportion of remaining weights and testing accuracy of
(WRN-32-2,C100) are shown in Table A4. From the table we can see that our conclusions still hold:
IMP-Regroup can locate structured winning tickets at about 75% sparsity, and IMP-Refill can
locate structured winning tickets at 20% sparsity.

ResNet-50 on Tiny-ImageNet. The proportion of remaining weights and testing accuracy of
(RN-50, Tiny-ImageNet) are shown in Table A5. From the table we can see that our conclu-
sions still hold: IMP-Regroup can locate structured winning tickets at about 42% sparsity, and
IMP-Refill can locate structured winning tickets at 20% sparsity.
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Table A3: Testing accuracy and percentage of remaining weights on CIFAR-100 with VGG-16.
Different methods (IMP, IMP-Refill, and IMP-Regroup) are evaluated. The baseline (test
accuracy of the dense network) is 73.43%.

Round IMP IMP-Refill IMP-Regroup

Remaining Weight Accuracy Remaining Weight Accuracy Remaining Weight Accuracy

1 80.00% 73.64 80.17% 73.43 82.36% 73.63
2 64.00% 73.80 64.06% 72.87 80.00% 73.81
3 51.20% 73.67 51.31% 72.67 69.46% 74.31
4 40.96% 74.01 41.08% 71.37 62.61% 73.94
5 32.77% 74.27 32.85% 70.79 56.09% 75.05
6 26.21% 74.56 26.33% 71.07 46.53% 74.98
7 20.97% 74.58 21.03% 69.42 38.18% 75.24
8 16.78% 74.52 16.94% 68.75 30.98% 74.68
9 13.42% 74.42 13.42% 67.25 25.27% 75.25

Table A4: Testing accuracy and percentage of remaining weights on CIFAR-100 with WideResNet-
32-2. Different methods (IMP, IMP-Refill, and IMP-Regroup) are evaluated. The baseline
(validation accuracy of the dense network) is 75.53%.

Round IMP IMP-Refill IMP-Regroup

Remaining Weight Accuracy Remaining Weight Accuracy Remaining Weight Accuracy

1 80.00% 76.21 80.00% 75.46 80.00% 75.98
2 64.00% 75.78 64.06% 74.59 64.00% 76.19
3 51.20% 76.02 51.51% 73.53 51.20% 76.13
4 40.96% 75.92 41.51% 72.95 40.96% 75.88
5 32.77% 76.07 32.84% 72.12 32.99% 75.98
6 26.21% 75.74 26.53% 70.91 26.27% 75.78
7 20.97% 75.92 21.11% 69.55 21.76% 74.74
8 16.78% 75.87 17.11% 67.74 18.14% 73.85
9 13.42% 75.41 13.67% 65.73 14.85% 72.99

Table A5: Testing accuracy and percentage of remaining weights on Tiny-ImageNet with ResNet-
50 (second implementation). Different methods (IMP, IMP-Refill, and IMP-Regroup) are
evaluated. The baseline (test accuracy of the dense network) is 65.33%.

Round IMP IMP-Refill IMP-Regroup

Remaining Weight Accuracy Remaining Weight Accuracy Remaining Weight Accuracy

1 80.00% 65.44 80.30% 65.27 80.15% 65.51
2 64.00% 65.69 64.16% 63.40 68.25% 65.16
3 51.20% 65.50 51.42% 61.89 58.19% 65.21
4 40.96% 65.73 41.08% 60.43 54.19% 64.42
5 32.77% 65.23 32.85% 59.64 51.75% 64.52
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A5 FLOPS RESULTS

We calculate the FLOPs of VGG-16 on CIFAR-10 processed with different methods. The FLOPs of
the dense VGG-16 is about 0.314G. We select models with similar sparsity for better comparison.
The sparsities of IMP-Refill, IMP-Refill+, and IMP-Regroup are {32.84%, 46.41%, 20.12%}, re-
spectively, and the FLOPs are {0.089G, 0.122G, 0.093G}, respectively. It is noteworthy that Refill
and Refill+ will lower the input and the output channel of a convolution layer while Regroup cannot,
so Refill and Refill+ can save more FLOPs under the same level of sparsity.

A6 OTHER VISUALIZATION

From Figure A10 we can see that, similar to IMP-Refill, IMP-Refill+ masks also show
kernel-wise sparse patterns across the rows.

(a)

(b)

(c)

Figure A10: Sparse mask visualizations of the extreme winning tickets from IMP-Refill+
(channel-wise structural), and on (VGG-16,C10). The darker color indicates the remaining un-
pruned elements. (a,b,c) are the last three conv. layers.

Except radar plots, we also include histograms to demonstrate the triads - Sparsity, Speedup, and
Accuracy, which are shown in Figure A11. In each histogram, we report the metrics of four methods:
Dense, IMP-Refill, IMP-Refill+, and IMP-Regroup. Dense has no sparsity and no
speedup, so the corresponding bars are always unseen from the charts.
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Figure A11: The sparsity, speedup, and test accuracy of various models (ResNet-18, VGG-19,
ResNet-50) on various datasets (CIFAR-10/-100, Tiny ImageNet, ImageNet).
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