
Efficiently Learning One Hidden Layer Neural
Networks From Queries

Sitan Chen∗
sitanc@mit.edu

MIT

Adam R. Klivans†
klivans@cs.utexas.edu

UT Austin

Raghu Meka‡
raghum@cs.ucla.edu

UCLA

Abstract

Model extraction attacks have renewed interest in the classic problem of learning
neural networks from queries. This work gives the first polynomial-time algo-
rithm for learning one hidden layer neural networks provided black-box access to
the network. Formally, we show that if F is an arbitrary one hidden layer neural
network with ReLU activations, there is an algorithm with query complexity and
running time that is polynomial in all parameters that outputs a network F ′ achiev-
ing low square loss relative to F with respect to the Gaussian measure. While a
number of works in the security literature have proposed and empirically demon-
strated the effectiveness of certain algorithms for this problem, ours is the first
with fully polynomial-time guarantees of efficiency for worst-case networks (in
particular our algorithm succeeds in the overparameterized setting).

1 Introduction

The problem of learning neural networks given random labeled examples continues to be a funda-
mental algorithmic challenge in machine learning theory. There has been a resurgence of interest in
developing algorithms for learning one hidden layer neural networks, namely functions of the form
F (x) =

∑k
i=1 siσ(〈wi, x〉 − bi) where wi ∈ Rd, si ∈ {±1}, bi ∈ R are the unknown parameters.

Here we consider the ubiquitous setting where σ is the ReLU activation, the input distribution on x
is Gaussian, and the goal is to output a ReLU network F ′ with E[(F (x)− F ′(x))2] ≤ ε.
Despite much recent work on this problem [JSA15, ZSJ+17, GKM18, GLM18, GKLW18,
ZYWG19, BJW19, DKKZ20, CKM20, LMZ20], obtaining a polynomial-time algorithm remains
open. All known works take additional assumptions on the unknown weights and coefficients
or do not run in polynomial-time in all the important parameters. In fact, there are a number
of lower bounds, both for restricted models of computation like correlational statistical queries
[GGJ+20, DKKZ20] as well as under various average-case assumptions [DV20, DV21], that suggest
that a truly polynomial-time algorithm may be impossible to achieve.

In this work, we strengthen the learner by allowing it query access to the unknown network. That
is, the learner may select an input x of its choosing and receive the output value of the unknown
network F (x). Our main result is the first polynomial-time algorithm for learning one hidden layer
ReLU networks with respect to Gaussian inputs when the learner is given query access:

Theorem 1.1. Let F (x) =
∑k
i=1 siσ(〈wi, x〉−bi) with ‖wi‖2 ≤ R, si ∈ {±1}, and bi ≤ B. Given

black-box access to F , there exists a (randomized) algorithm that will output with probability at least
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1 − δ, a one hidden layer network F ′ such that Ex∼N (0,Id)[(F (x) − F ′(x))2] ≤ ε. The algorithm
has query complexity and running time that is polynomial in d,B,R, k, 1/ε, and log(1/δ).

In light of the aforementioned lower bounds [GGJ+20, DKKZ20, DV20, DV21], Theorem 1.1 sug-
gests there is a separation between learning from random samples and learning from queries in the
context of neural networks.

In addition to being a naturally motivated challenge in computational learning theory, the question of
learning neural networks from queries has also received strong interest from the security and privacy
communities in light of so-called model extraction attacks [TJ+16, MSDH19, PMG+17, JCB+20,
RK20, JWZ20]. These attacks attempt to reverse-engineer neural networks found in publicly de-
ployed real-world systems. Since the target network is publicly available, an attacker therefore
obtains black-box query access to the network — exactly the learning model we are working in.
Of particular interest is the work of Carlini et al. [CJM20] (see also [JCB+20]), who gave several
heuristics for learning deep neural networks given black-box access (they also empirically verified
their results on networks trained on MNIST). Another relevant work is that of [MSDH19] which
gave theoretical guarantees for the problem we study under quite strong separation/linear indepen-
dence assumptions on the weight vectors; in fact they are able to exactly recover the network, but in
the absence of such strong assumptions this is impossible (see Section 1.2). Since these papers bear
strong parallels with our techniques, in Section 1.2 we provide a more detailed description of why
these approaches break down in our setting and highlight the subtleties that we address to achieve
the guarantee of Theorem 1.1.

1.1 Our Approach

Here we describe our approach at a high level. Fix an unknown one hidden-layer network F (x) =∑k
i=1 siσ(〈wi, x〉 − bi) with weight vectors wi ∈ Rd, signs si ∈ {±1}, and bias terms bi ∈ R.

Consider a line L = {x0 + t · v}t∈R for x0, v ∈ Rd and the restriction F |L(t) , F (x0 + t · v) given
by

F |L(t) =

k∑
i=1

siσ (〈wi, x0〉 − bi + t〈wi, v〉) .

Note that as a univariate function, F |L(t) is a piecewise-linear function. We call a point t ∈ R a
critical point of F |L if the slope of the piecewise-linear function changes at t. Our starting point
is that if we can identify the critical points of F |L, then we can use estimates of the gradient of F
at those critical points to estimate the weights of the hidden units in F . More concretely, suppose
we have identified a critical point ti of F |L for a line L. Now, back in the d-dimensional space, if
we look at a sufficiently small neighborhood of the point x′ = x0 + ti · v, then the set of activated
units around x′ changes by exactly one (in fact, by this reasoning, for a random L, F |L will have
one unique critical point for each neuron in F , provided no two neurons are exact multiples of each
other). We can exploit this to retrieve the wi’s and bi’s by finite differencing: for each such x′,
compute (F (x′+ δ)−F (x′))/‖δ‖, for several sufficiently small perturbations δ ∈ Rd, and this will
recover siwi (see Algorithm 2 and 4.9 below for the details). We can recover sibi in a similar fashion
(see Algorithm 1). We remark that the approach we have described appears to be quite similar to
that of [CJM20, JCB+20, MSDH19].

However, the above description leaves out the following key interrelated challenges for getting prov-
able guarantees for arbitrary networks:

1. How do we identify the critical points of F |L for a given line L?
2. If we make no assumptions on how well-separated the weight vectors are, it is actually impossible

to recover all of the weight vectors and biases in a bounded number of queries. Using the neurons
that we do approximately recover, is it possible to piece them together to approximate F ?

A rigorous solution to these issues turns out to be quite tricky and technically involved. For instance,
what if some critical points are arbitrarily close to each other (imagine the piecewise linear func-
tion being a tiny peak of exponentially small in d width on the real line) on the line F |L. In this
case, identifying them would not be possible efficiently. We develop several structural results about
cancellations in ReLU networks (culminating in Lemma 3.9) that show that such a situation only
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arises in degenerate cases where some sub-network of F contains a cluster of many similar neurons
(we formalize the notion of similarity in Definition 3.1). We show in Section 3 that much smaller
networks can approximate these sub-networks. On the other hand, for pairs of neurons which are
sufficiently far from each other, the critical points on a random line L will be well-separated.

With the structural results in hand, roughly speaking it suffices to identify one “representative” neu-
ron for every cluster of similar neurons in F . To do this, we discretize L into intervals of equal
length and look at differences between gradients/biases of F at the midpoints of these intervals. The
key result leveraging our structural results is Theorem 4.8 which shows that the set of all such differ-
ences comprises a rich enough collection of neurons that we can assemble some linear combination
of them that approximates F . To find a suitable linear combination, we run linear regression on the
features computed by these neurons (see Section 4.4).

1.2 Comparison to Previous Approaches

Our general approach of looking for critical lines along random restrictions of F |L is also the ap-
proach taken in the empirical works of [CJM20, JCB+20] and in the theoretical work of [MSDH19],
but we emphasize that there are a variety of subtleties that arise because we are interested in learning
worst-case networks from queries. In contrast, the empirical works consider trained networks aris-
ing in practice, while [MSDH19] makes a strong assumption that the weight vectors wi are linearly
independent and that they are angularly separated. Note that such assumptions cannot hold in the
practically relevant setting where F is overparameterized.

To give a sense for the issues that these existing techniques run up against when it comes to worst-
case networks, imagine that the one-dimensional piecewise linear function given by the restriction
F |L were simply a “bump,” that is, it is zero over most of the line except in a small interval [a, a+δ].
For instance, this would arise in the following example:

Example 1.2. Consider the one-dimensional one hidden layer network F : R→ R given by F (x) =
σ(x− a) + σ(x− a− δ)− σ(2x− 2a− δ). This function looks like the zero function except over
the interval [a, a+ δ], where it looks like a small “bump.”

The proposal in the works mentioned above is to run a binary search to find a critical point. Namely,
they initialize to some large enough interval [−τ, τ ] in L and check whether the gradient at the left
or right endpoint differs from the gradient at the midpoint tmid = 0. If the former, then they restrict
the search to [−τ, tmid] and recurse until they end up with a sufficiently small interval, at which point
they return the midpoint of that interval as an approximation to a critical point. The intuition is that
n steps of binary search suffice to identify a critical point up to n bits of precision.4

It is clear, however, from the “bump” example that such a binary search procedure is doomed to
fail: if the bump does not occur in the middle of the starting interval [−τ, τ ], then at the outset, we
don’t know which half to recurse on because the gradients at the endpoints and the gradient at the
midpoint are all zero! Indeed, to locate the bump, it is clear that we need to query a number of points
which is at least inverse in the width of the bump to even find an input to the network with nonzero
output.

We remark that this is in stark contrast to related active learning settings where the ability to query
the function can sometimes yield exponential savings on the dependence on 1/ε (see e.g. [Han09]).
Indeed, if we took the width of the bump to be of size poly(ε) to make it ε-far in square distance
from the zero function, we would still need poly(1/ε), rather than log(1/ε), queries to locate the
bump and distinguish the funcction from the zero function.

The core reason binary search fails for arbitrary networks is that there can be many disjoint linear
pieces of F |L which all have the same slope. Indeed, because the gradient of F at a given point
is some linear combination of the weight vectors, if F is overparameterized so that there are many
linear dependencies among the weight vectors, it is not hard to design examples like Example 1.2
where there may be many repeated slopes on any given random restriction of F to a line.

Apart from these technical issues that arise in the worst-case setting we consider and not in previous
empirical or theoretical works on model extraction, we also emphasize that our results are the first

4We remark that the refinement of binary search given in [CJM20, JCB+20] can speed this up to O(1) steps
for networks that arise in practice, but the issue that we describe poses a challenge for their technique as well.
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theoretical guarantees for learning general one hidden-layer ReLU networks with bias terms in any
learning model, including PAC learning from samples. As will quickly become evident in the se-
quel, biases introduce many technical hurdles in their own right. To our knowledge, the only other
theoretical guarantees for learning networks with biases are the work of [JSA15] which considers
certain activations with nonzero second/third-order derivatives, precluding the ReLU, and the recent
work of [ATV21] which considers ReLU networks whose weight vectors are well-conditioned.
Remark 1.3. As discussed above, the “bump” construction in Example 1.2 shows that unlike in
related active learning contexts, poly(1/ε) dependence is necessary in our setting. In fact this
example also tells us another somewhat counterintuitive fact about our setting. Naively, one might
hope to upgrade Theorem 1.1 by replacing the dependence on the scaling parameters R,B with one
solely on the L2 norm of the function. To see why this is impossible, consider scaling the function
in Example 1.2 by a factor of δ−3/2 to have unit L2 norm. To learn F , we have to figure out the
location of the bump, but this requires Ω(1/δ) queries, and δ can be taken to be arbitrarily small.

Limitations and Societal Impact The line of work on learning neural networks from black-box
access does pose a risk, for instance, that proprietary models offered via publicly-hosted APIs may
be stolen by attackers who are only able to interact with the models through queries. The attackers
might then use the extracted parameters of the model to learn sensitive information about the data the
model was trained on, or perhaps to construct adversarial examples. That being said, understanding
why this query learning problem can be easy for theorists is the first step towards building provable
safeguards to ensure that it is hard for actual attackers. For instance, it is conceivable that one can
prove information-theoretic or computational hardness for such problems if appropriate levels and
kinds of noise are injected into the responses to the queries. Furthermore, query complexity lower
bounds can inform how many accesses an API should allow any given user.

2 Preliminaries

Notation We let Sd−1 denote the unit sphere in Rd. Let ej denote the j-th standard basis vector

in Rd. Given vectors u, v, let ∠(u, v) , arccos
(
〈u,v〉
‖u‖‖v‖

)
. Given a matrix M , let ‖M‖op and

‖M‖F denote the operator and Frobenius norms respectively. Given a function h which is square-
integrable with respect to the Gaussian measure, we will use ‖h‖ to denote Ex∼N (0,Id)[h(x)2]1/2.
Given a collection of indices S ⊆ Z, we say that i, j ∈ S are neighboring if there does not exist
i < ` < j for which ` ∈ S.
Definition 2.1. A neuron is a pair (v, b) where v ∈ Rd and b ∈ R; it corresponds to the function
x 7→ σ(〈v, x〉 − b), which we sometimes denote by σ(〈v, ·〉 − b).

Definition 2.2. Given a line L ⊂ Rd parameterized by L = {x0 + t · v}t∈R, and a function
F : Rd → R, define the restriction of F to L by F |L(t) , F (x0 + t · v).

Definition 2.3. Given a line L ⊂ Rd and a restriction F |L of a piecewise linear function F : Rd →
R to that line, the critical points of F are the points t ∈ R at which the slope of F |L changes.

We will need the following standard facts about the concentration of the norm and individual entries
of a Gaussian vector.

Fact 2.4. Given Gaussian vector h ∼ N (0,Σ), Pr
[
‖h‖ ≥ O(‖Σ1/2‖op(

√
r +

√
log(1/δ)))

]
≤ δ,

where r is the rank of Σ.
Fact 2.5. For covariance matrix Σ ∈ Rm×m, given h ∼ N (0,Σ) we have that |hi| ≤
O
(√

Σi,i

√
log(m/δ)

)
for all i ∈ [m] with probability at least 1− δ.

We will also need anti-concentration of the norm of a Gaussian vector and the individual entries of
a random unit vector.
Lemma 2.6. There is an absolute constant C > 0 such that given any Gaussian vector h ∼
N (µ,Σ), Pr

[
‖h‖ ≥

√
ν‖Σ‖1/2F

]
≥ 1− C

√
ν.

Lemma 2.7. For random v ∈ Sd−1, Pr

[
|v1| < δ

2
√
d+O(
√

log(1/δ))

]
≤ δ.
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3 ReLU Networks with Cancellations

In the following section we prove several general results about approximating one hidden-layer
networks with many “similar” neurons by much smaller networks, deferring proofs to the supple-
mentary material.

3.1 (∆, α)-Closeness of Neurons

We first formalize a notion of geodesic closeness between two neurons and record some useful
properties. This notion is motivated by Lemma 4.4 where we study the critical points of random
restrictions of one hidden-layer networks.

Definition 3.1. Given v, v′ ∈ Rd and b, b′ ∈ R, we say that (v, b) and (v′, b′) are (∆, α)-close if
the following two conditions are satisfied:

1. |sin∠(v, v′)| ≤ ∆

2. ‖bv′ − b′v‖ ≤ α‖v‖‖v′‖.

Note that this is a measure of angular closeness between (v, b), (v′, b′) ∈ Rd+1. For instance, if
(v, b) = (λv∗, λb∗) and (v′, b′) = (λ′v∗, λ′b∗) for some (v∗, b∗), then (v, b) and (v′, b′) are (0, 0)-
close.

We first collect some elementary consequences of closeness. The following intuitively says that if
we scale two (∆, α)-neurons to have similar norm, then their biases will be close.

Lemma 3.2. If (v, b) and (v′, b′) are (∆, α)-close, and v = γv′ + v⊥ for v⊥ orthogonal to v′, then
|γb′ − b| ≤ α‖v‖.

Note that when two neurons are (∆, α)-close, their weight vectors are either extremely correlated or
extremely anti-correlated. In fact, given a collection of neurons that are all pairwise close, they will
exhibit the following “polarization” effect.

Lemma 3.3. Suppose ∆ <
√

2/2. If (v1, b1), . . . (vk, bk) are all pairwise (∆, α)-close for some
α > 0, then there is a partition [k] = S1 t S2 for which 〈vi, vj〉 ≥ 0 for any i ∈ S1, j ∈ S1 and
i ∈ S2, j ∈ S2, and for which 〈vi, vj〉 < 0 for any i ∈ S1, j ∈ S2 and i ∈ S2, j ∈ S1.

In the rest of the paper we will take ∆ to be small, so Lemma 3.3 will always apply. As such, it will
be useful to define the following terminology:

Definition 3.4. Given (v1, b1), . . . , (vk, bk) which are all pairwise-close, we will call the partition
S1 t S2 given in Lemma 3.3 the orientation induced by {(vi, bi)}.

We note that (∆, α)-closeness satisfies the triangle inequality.

Lemma 3.5. If (v1, b1) and (v2, b2) are (∆, α)-close, and (v2, b2) and (v3, b3) are (∆′, α′)-close,
then (v1, b1) and (v3, b3) are (∆ + ∆′, 2α+ 2α′)-close.

3.2 Merging Neurons

We prove that a one hidden-layer network where all neurons are (∆, α)-close to some neuron can
be approximated by at most two neurons:

Lemma 3.6. [See supplementary material.] Given F (x) =
∑k
i=1 siσ(〈wi, x〉 − bi) for si ∈ {±1}

and (v∗, b∗) ∈ Rd × R for which (wi, bi) is (∆, α)-close to (v∗, b∗) for all i ∈ [k], there exist
coefficients a+, a− ∈ R for which

E
x∼N (0,Id)

[(
F (x)− a+σ(〈v∗, x〉 − b∗)− a−σ(〈−v∗, x〉+ b∗)

)2] ≤ O(k2(∆2/5 + α2))‖v∗‖2.

Furthermore, we have that

|a+|‖v∗‖, |a−|‖v∗‖ ≤
∑
i

‖wi‖ and |a+b∗|, |a−b∗| ≤ α
∑
i

‖wi‖+
∑
i

|bi|.
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Note that Lemma 3.6 requires the existence of a neuron (v∗, b∗) which is close to all neurons
{(vi, bi)}. In our algorithm, we will not have access to (v∗, b∗) but rather to some linear combi-
nation of the neurons {(vi, bi)}. We show that provided this linear combination is not too small in
norm, it will also be close to all the neurons {(vi, bi)}.
Lemma 3.7. Suppose we have vectors v1, . . . , vm, v

∗ ∈ Rd, biases b1, . . . , bm, b∗ ∈ R for which ev-
ery (vi, bi) is (∆, α)-close to (v∗, b∗). Then for any s1, . . . , sm ∈ {±1}, if we define v ,

∑m
i=1 sivi

and b ,
∑m
i=1 sibi, then (v, b) is (∆m,α

∑
i‖vi‖/‖v‖)-close to (v∗, b∗).

This presents an issue however: what if the linear combination of neurons that we get access to in
our eventual algorithm has small norm, in which case Lemma 3.7 is not helpful? It turns out this
linear combination takes a very specific form (see the vector in (1)), and we argue that if it is indeed
small, then the underlying network we are trying to approximate will be close to a linear function!
Formally we show:

Lemma 3.8. Suppose (v1, b1), . . . , (vm, bm) are pairwise (∆, α)-close, and let [m] = S1 t S2

denote the orientation induced by them (see Definition 3.4). Define B , maxi‖bi‖ and R ,
maxi‖vi‖. If signs s1, . . . , sm ∈ {±1} satisfy

‖
∑
i∈S1

sivi −
∑
i∈S2

sivi‖ ≤ (∆R)2/9, (1)

then for the network F (x) ,
∑
i siσ(〈vi, x〉−bi), there exists an affine linear function `(x) : Rd →

R for which

E
x∼N (0,Id)

[
(F (x)− `(x))

2
]
≤ poly(k,R,B) · (α1/2 + ∆2/9)

where ` , 〈w∗, ·〉 − b∗ satisfies

‖w∗‖ ≤
∑
i

‖vi‖ and |b∗| ≤
∑
i

‖bi‖.

3.3 Putting Everything Together

Putting Lemmas 3.6, 3.7, and 3.8 together, we conclude that networks whose hidden units are pair-
wise (∆, α)-close can either be approximated by a particular size-two network, or by some affine
linear function:

Lemma 3.9. Suppose (v1, b1), . . . , (vk, bk) are pairwise (∆, α)-close, and let [k] = S1tS2 denote
the orientation induced by them (see Definition 3.4). Define B , maxi‖bi‖ and R , maxi‖vi‖.
Let s1, . . . , sm ∈ {±1}.
Define F (x) =

∑
i siσ(〈vi, x〉 − bi), v∗ =

∑
i∈S1

sivi −
∑
i∈S2

sivi, and b∗ =
∑
i∈S1

sibi −∑
i∈S2

sibi. At least one of the following holds:

1. There is an affine linear function ` : Rd → R for which ‖F−`‖2 ≤ poly(k,R,B)·(α1/2+
∆2/9).

2. There exist coefficients a+, a− ∈ R for whichG(x) , a+σ(〈v∗, x〉−b∗)−a−σ(〈−v∗, x〉+
b∗) satisfies ‖F −G‖2 ≤ poly(k,R,B) · (∆2/5 + α2∆−4/9).

Proof. By assumption, every (vi, bi) is (∆, α)-close to (v1, b1). By Lemma 3.7 we get that for
(v∗, b∗) defined in the lemma statement, (v1, b1) is (∆k, αmR/‖v∗‖)-close to (v∗, b∗).

If ‖v∗‖ ≥ (∆R)2/9, then we conclude that (v1, b1) is (∆k, αm∆−2/9R7/9)-close to (v∗, b∗), and
by Lemma 3.6 we find that there is a choice of a+, a− for which the function G defined in the
lemma statement satisfies ‖F − G‖2 ≤ O(k4R2(∆2/5k2/5 + α2m2∆−4/9R14/9)) (note that we
used ‖v∗‖ ≤

∑
i‖vi‖ ≤ kR).

If ‖v∗‖ ≤ (∆R)2/9, then by Lemma 3.8 we find that there is an affine linear ` for which ‖F −`‖2 ≤
poly(k,R,B) · (α1/2 + ∆2/9).
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4 Learning One Hidden Layer

In this section we give our algorithm for learning neural networks from queries. Throughout, we
will suppose we have black-box query access to some unknown one-hidden layer neural network

F (x) ,
k∑
i=1

siσ(〈wi, x〉 − bi), (2)

where si ∈ {±1}, wi ∈ Rd, bi ∈ R. Define the quantities R , maxi‖wi‖ and B , maxi‖bi‖; our
bounds will be polynomial in these quantities, among others.

4.1 Critical Points of One-Hidden Layer Networks

In this section, we compute the critical points of restrictions of F and argue that they are far apart
along random restrictions unless if the corresponding neurons were close to begin with (in the sense
of Definition 3.1).

First, we formalize the notion of a random restriction:
Definition 4.1. A Gaussian line L is a random line in Rd formed as follows: sample x0 ∼ N (0, Id)

and Haar-random v ∈ Sd−1 and form the line L , {x0 + t · v}t∈R.

Here we compute the critical points along a restriction of F .

Proposition 4.2. Given a line L = {x0 + t · v}t∈R, the restriction F |L(t) , F (x0 + t · v) is given
by

F |L(t) =

k∑
i=1

siσ (〈wi, x0〉 − bi + t〈wi, v〉) .

This function has k critical points, namely t = − 〈wi,x0〉−bi
〈wi,v〉 for every i ∈ [k].

Proof. The critical points of F |L are precisely the points t at which a neuron changes sign. So the
crticial point associated to the i-th neuron is the t for which 〈wi, x0〉−bi+t〈wi, v〉 = 0, from which
the claim follows.

We can show that these critical points are not too large, unless the norm of the corresponding weight
vector is small. The reason for the latter caveat is that, e.g., if one took the one-dimensional neuron
σ(εz − b) for b fixed and ε→ 0, the z at which it changes sign tends to∞).
Lemma 4.3. With probability at least 1 − δ over the randomness of Gaussian line L, we have that

|ti| .
k(
√
d+
√

log(1/δ))

δ‖wi‖ + k
(√

d+
√

log(1/δ)
)√

log(k/δ) for every critical point ti of F |L.

Fix a separation parameter ∆ > 0 which we will tune in the sequel. We show that along Gaussian
lines L, F |L’s critical points are well-separated except for those corresponding to neurons which are
(∆, α)-close.
Lemma 4.4. There is an absolute constant c > 0 for which the following holds. Given Gaussian line
L, with probability at least 1− δ we have: for any pair of i, j for which (wi, bi) and (wj , bj) are not

(∆, c∆
√

log(k/δ))-close, the corresponding critical points are at least Ω

(
∆δ2

k4
(√

d+
√

log(k/δ)
))-

apart.

4.2 Line Search and Existence Theorem

At a high level, our algorithm works by searching along F |L, partitioning L into small intervals,
and computing differences between the gradients/biases of F at the midpoints of these intervals.
The primary structural result we must show is that there exists enough information in this set of
differences to reconstruct F up to small error.

As we will be working with partitions of lines, it will be convenient to define the following notation:
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Definition 4.5. Given line L ⊂ Rd and finite interval I ⊆ R corresponding to a segment I ⊂ L,
let ∇L(I) denote the gradient of F at the midpoint of I. For tmid ∈ R the midpoint of I , define
bL(I) , F |L(tmid) − (F |L)′(tmid) · tmid. Intuitively, this is the “y-intercept” of the linear piece
of F |L that contains tmid. When L is clear from context, we will drop subscripts and denote these
objects by ∇(I) and b(I).

Definition 4.6. Given line L ⊂ Rd and length s > 0, let {ti} denote the critical points of F |L, and
let G+

L(s) ⊆ [k] (resp. G−L (s)) denote the set of indices a ≤ i ≤ b for which ti+1 − ti ≥ s (resp.
ti − ti−1 ≥ s). Let G∗L(r) , G+

L(r) ∩G−L (r).

The following observation motivates Definition 4.6:
Observation 4.7. Given line L ⊂ Rd, let {ti} denote the critical points of F |L. Let I1, . . . , Im
be a partition of some interval I into pieces of length r, and for ti ∈ I let `(i) denote the index
of the interval containing I . Then for any i ∈ G+

L(2r) (resp. i ∈ G−L (2r)), I`(i)+1 is entirely
contained within [ti, ti+1] (resp. I`(i)−1 is entirely contained within [ti−1, ti]). In particular, I`(i)−1

and I`(i)+1 are linear pieces of F |L.

The following is the main result of this section. At a high level, it says if we partition a random line
in Rd into sufficiently small intervals and can compute the gradient of F at the midpoint of each
interval, then we can produce a collection of neurons which can be used to approximate F .
Theorem 4.8. For any ε, δ > 0, define

r , O

 ∆δ2

k4
(√

d+
√

log(k/δ)
)
 (3)

τ , kr + Θ

(
k(
√
d+

√
log(1/δ))

δ‖wi‖
+ k

(√
d+

√
log(1/δ)

)√
log(k/δ)

)
. (4)

Partition the interval [−τ, τ ] into intervals I1, . . . , Im of length r.

Let L be a Gaussian line, and let S denote the set of all m(m − 1) pairs (w, b) obtained by taking
distinct i, j ∈ [k] and forming (∇L(Ii) − ∇L(Ij), bL(Ii) − bL(Ij)). There exist {±1}-valued
coefficients {aw,b}(w,b)∈S , vector w∗, and b∗ ∈ R for which∥∥∥∥∥∥F −

∑
(w,b)∈S

aw,b · σ(〈w, ·〉 − b)− 〈w∗, ·〉 − b∗
∥∥∥∥∥∥ ≤ ε+ Pk,R,B,log(1/δ) ·∆2/9.

for Pk,R,B,log(1/δ) some absolute constant that is polynomially large in k,R,B, log(1/δ). Further-
more, we have that

‖aw,b · w‖ ≤ kR and |aw,b · b| ≤ c∆k2R
√

log(k/δ) + kB (5)

‖w∗‖ ≤ kR and |b∗| ≤ kB

4.3 Gradient and Bias Oracles

It remains to implement oracles to compute bL(I) and ∇L(I) for prescribed line L and interval I .
It is not clear how to do this for arbitrarily small intervals because for general networks there can be
many arbitrarily close critical points, but we will only need to do so for certain “nice” I as suggested
by Theorem 4.8.

To that end, first note that it is straightforward to form the quantities bL(I) for intervals I entirely
contained within linear pieces of F |L; we formalize this in Algorithm 1.

It remains to demonstrate how to construct ∇L(I). Intuitively one can accomplish this via “finite
differencing,” i.e. the gradient of a piecewise linear function F at a point x can be computed from
queries by computing F (x+δ)−F (x)

δ for several sufficiently small perturbations δ ∈ Rd and solving
the linear system.

With a priori precision estimates, we can similarly implement a gradient oracle, as formalized in
Algorithm 2 and Lemma 4.9.
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Algorithm 1: GETBIAS(L, I)

Input: Line L ⊂ Rd, interval I = [a, b] ⊂ R
Output: bL(I) if I is entirely contained within a linear piece of F |L

1 tmid ← midpoint of I .
2 y0 ← F |L(tmid).
3 s← F |L(b)−F |L(a)

b−a .
4 return y0 − s · tmid

Algorithm 2: GETGRADIENT(x, α)

Input: x ∈ Rd, α > 0 for which (6) holds
Output: ∇F (x) ∈ Rd

1 for j ∈ [d] do
2 Sample random unit vector zj ∈ Sd−1.
3 vj ← (F (x+ αzj)− F (x))/α.

4 Let w be the solution to the linear system {〈w, zj〉 = vj}j∈[d].
5 return w

Lemma 4.9. For any α > 0 and any x ∈ Rd for which
|〈wi, x〉 − bi| ≥ α‖wi‖ ∀ i ∈ [k], (6)

GETGRADIENT(x, α) makes d queries to F and outputs ∇F (x).

In order to use GETGRADIENT to construct the vectors ∇L(I), we require estimates for α in
Lemma 4.9. In the following lemma we show that with high probability over the randomness of
L, if an interval I completely lies within a linear piece of F |L, then we can bound how small we
must take α to query the gradient of F at the midpoint of that interval. As is clear from the proof of
Theorem 4.8 in the supplementary material, these are the only intervals that we need gradient and
bias information from.
Lemma 4.10. Let L be a Gaussian line. With probability at least 1−δ over the randomness of L, the
following holds: in the partition [−τ, τ ] = I1∪· · ·∪Im in Theorem 4.8, for any I` which entirely lies
within a linear piece of F |L, GETGRADIENT(tmid, α) correctly outputs ∇L(I`), where xmid is the
midpoint of the interval I` ⊂ L that corresponds to interval I` ⊂ R and α = δ·r

4k
√
d+O(k

√
log(k/δ))

(where r is defined in (3)).

Putting these ingredients together, we obtain the following algorithm, GETNEURONS for producing
a collection of neurons that can be used to approximate F .

We prove correctness of GETNEURONS in the following lemma:
Lemma 4.11. For any ε, δ > 0, GETNEURONS(ε, δ) makes poly(k, d,R,B, 1/ε, log(1/δ)) queries
and outputs a list S of pairs (w, b) for which there exist {±1}-valued coefficients {aw,b}(w,b)∈S as
well as a vector w∗ and a scalar b∗ such that∥∥∥∥∥∥F − 〈w∗, ·〉 − b∗ −

∑
(w,b)∈S

aw,b · σ(〈w, ·〉 − b)

∥∥∥∥∥∥ ≤ ε.
4.4 Linear Regression Over ReLU Features

It remains to show how to combine the neurons produced by GETNEURONS to obtain a good ap-
proximation to F . As Theorem 4.8 already ensures that some linear combination of them suffices,
we can simply draw many samples (x, F (x)) for x ∼ N (0, Id), form the feature vectors computed
by the neurons output by GETNEURONS, and run linear regression on these feature vectors.

Formally, let S denote the set of pairs (w, b) guaranteed by Theorem 4.8. We will denote the w’s by
{ŵj} and the b’s by {b̂j}. Consider the following distribution over feature vectors computed by the
neurons in S:

9



Algorithm 3: GETNEURONS(ε, δ)
Input: Accuracy ε > 0, confidence δ > 0
Output: List S of pairs (w, b) (see Theorem 4.8 for guarantee)

1 S ← ∅.
2 Sample Gaussian line L.
3 ∆← (ε/Pk,R,B,log(1/δ))

9/2. // Theorem 4.8

4 α← δ·r
4k
√
d+O(k

√
log(k/δ))

. // Lemma 4.10

5 Define r, τ according to (3), (4).
6 Partition [−τ, τ ] into disjoint intervals I1, . . . , Im of length r.
7 for all j ∈ [m] do
8 xj ← midpoint of the interval Ij ⊂ L that corresponds to Ij ⊂ R.
9 ∇̂L(Ij)← GETGRADIENT(xj , α).

10 b̂L(Ij)← GETBIAS(L, Ij).

11 for all pairs of distinct i, j ∈ [m] do
12 (vj , bj)← (∇̂L(Ii)− ∇̂L(Ij), b̂L(Ii)− b̂L(Ij)).
13 if (vj , bj) satisfies the bounds in (5) then
14 Add (vj , bj) to S.

15 return S .

Definition 4.12. LetD′ denote the distribution over R|S|+d+1×R of pairs (z, y) given by sampling
x ∼ N (0, Id) and forming the vector z whose entries consist of all σ(〈ŵj , x〉 − b̂j) as well as the
entries of x and the entry 1, and taking y to be F (x) for the ground truth network F defined in (2).

We will also need to define a truncated version of D′: let D denote D′ conditioned on the norm of
the |S|+1 to |S|+d-th coordinates having norm at mostM ,

√
d+O(

√
log(1/δ), which happens

with probability at least 1− δ over D′.

Our algorithm will be to sample sufficiently many pairs (z, y) from D′ (by querying F on random
Gaussian inputs) and run ordinary least squares. This is outlined in LEARNFROMQUERIES below.

Algorithm 4: LEARNFROMQUERIES(ε, δ)
Input: Accuracy ε > 0, confidence δ > 0

Output: One hidden-layer network F̃ : Rd → R for which ‖F − F̃‖ ≤ O(ε)

1 S = {(ŵj , b̂j)} ← GETNEURONS(ε, δ).
2 Draw samples (z1, y1), . . . , (zn, yn) from D // Definition 4.12

3 Let ṽ be the solution to the least-squares problem (7). Let b̃ denote the last entry of ṽ, and
let w̃ denote the vector given by the d entries of ṽ prior to the last.

4 Form the network F̃ (x) ,
∑
j ṽjσ(〈ŵj , x〉 − b̂j) + 〈w̃, ·〉 − b̃.

5 return F.

Formally, we show:

Theorem 4.13. Let S denote the list of pairs (ŵj , b̂j) output by GETNEURONS(ε, δ). Sample
(z1, y1), . . . , (zn, yn) from D for n = poly(k,R,B, 1/ε, d, log(1/δ)). With probability at least
1−O(δ) over the randomness of GETNEURONS and the samples, the following holds. Define

ṽ , arg min
‖v‖≤W

n∑
i=1

(〈v, zi〉 − yi)2, for W ,
√
τ/r + k(R+B), (7)

let b̃ denote the last entry of ṽ, and let w̃ denote the vector given by the d entries of ṽ prior to
the last. Then the one hidden-layer network F̃ (x) ,

∑
j ṽjσ(〈ŵj , x〉 − b̂j) + 〈w̃, ·〉 − b̃ satisfies

‖F − F̃‖ ≤ O(ε).
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