
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SAFETY IS ESSENTIAL FOR RESPONSIBLE OPEN-
ENDED SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

AI advancements have been significantly driven by a combination of foundation
models and curiosity-driven learning aimed at increasing capability and adaptability.
A growing area of interest within this field is Open-Endedness — the ability of
AI systems to continuously and autonomously generate novel and diverse artifacts
or solutions. This has become relevant for accelerating scientific discovery and
enabling continual adaptation in AI agents. This position paper argues that the
inherently dynamic and self-propagating nature of Open-Ended AI introduces
significant, underexplored risks, including challenges in maintaining alignment,
predictability, and control. This paper systematically examines these challenges,
proposes mitigation strategies, and calls for action for different stakeholders to
support the safe, responsible and successful development of Open-Ended AI.

1 INTRODUCTION

Artificial Intelligence (AI) has achieved remarkable progress driven by foundation models Bommasani
et al. (2021). Across various modalities, these models have shown incredible performance in tasks for
which they were designed Ramesh et al. (2021); Rombach et al. (2022); Achiam et al. (2023); Radford
et al. (2023); Brooks et al. (2024). However, they are not yet capable of autonomously and indefinitely
producing new creative, interesting and diverse discoveries. Such open-ended discovery is key to
making progress on problems that cannot be solved by simply following a specified objective. Indeed
humans use such open-ended processes to accumulate knowledge and solve difficult problems. Thus,
it has been argued that open-endedness is a key ingredient for Artificial Superintelligence Stanley
(2019); Team et al. (2021); Jiang et al. (2023); Nisioti et al. (2024); Hughes et al. (2024), which could
outperform humans at a wide range of tasks Morris et al. (2024).
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X

Figure 1: Open-Ended (OE) AI generates
novel artifacts over time, potentially co-
evolving with environments and societal val-
ues to drive creativity and progress. How-
ever, this position paper argues that its unpre-
dictability, difficulty in control, and cascading
misalignment pose catastrophic risks to soci-
etal and global stability.

Specifically, Open-Ended (OE) AI continuously pro-
duces artifacts that are novel and learnable to humans.
This enables it to generate new, complex, creative,
and adaptive solutions over time Soros & Stanley
(2014); Soros et al. (2017); Clune (2019); Sigaud
et al. (2023); Lu et al. (2024); Akiba et al. (2025).
Unlike traditional AI systems that optimize for fixed
objectives, OE AI perpetually explores new solutions
and adapts to changing circumstances without being
given an explicit goal.

There is a large diversity of systems that aim to be
open-ended. The Paired Open-Ended Trailblazer
(POET) Wang et al. (2019) facilitates OE exploration
by co-evolving environments and agents. The envi-
ronments become increasingly diverse and complex
based on the weaknesses of the agent, while the agent
develops solutions that may transfer across environ-
ments. The Voyager method Wang et al. (2024a) is an
LLM-powered embodied agent for lifelong learning in Minecraft. It utilizes an automatic curriculum
for OE exploration, a skill library to store and retrieve complex behaviors, and an iterative prompting
mechanism incorporating feedback and self-verification to refine executable actions.
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Historically, it has been a challenge to guide the exploration of OE AI toward artifacts that are
novel and interesting to humans, but recently Large Language Models (LLMs) have been applied to
accelerate this process. Since LLMs have been trained on large amounts of human data, they have
built an understanding of what is interesting and desirable to humans. Recent work has leveraged
LLMs as backbones for OE evolution and exploration Lehman et al. (2023); Zammit et al. (2024);
Aki et al. (2024). This opens up many beneficial applications for OE AI. LLMs have shown emergent
behaviors in OE scientific discovery Lu et al. (2024), navigating novel environments Wang et al.
(2024a), and eliciting truthful answers from LLMs Khan et al. (2024). However, with the growing
interest and potentially large-scale application of OE AI, we must evaluate and address the risks
coming from these systems.

While OE AI offers significant potential, it poses unique and substantial risks that must be
addressed for a safe and responsible deployment. Its inherent unpredictability and uncontrolla-
bility necessitate dedicated research to ensure safety and alignment with societal values.

While discussions on AI safety are broadly relevant, this paper focuses on the unique safety challenges
posed by OE AI. Previously, Hughes et al. (2024) and Ecoffet et al. (2020) have touched on these.
However, this paper offers a deeper, more comprehensive, and up-to-date overview of the safety
challenges in OE AI and suggests concrete research directions and actions to address them.

We first define OE AI and argue that its safety depends on our ability to systematically identify,
assess, and mitigate risks (Section 2). Building on this definition we identify that issues such as the
unpredictability of future artifacts, the trade-off between creativity and control, and the difficulties of
aligning OE AI with human values are key safety risks (Section 3). To address these, we suggest
research directions to develop continuously adapting oversight, constraints, and safety evaluations
for OE AI (Section 4). Lastly, we call for actions from various stakeholders - industry, academic
researchers, governments, and funding bodies (Section 5).

2 WHAT IS OPEN-ENDEDNESS

Defining Open-Endedness remains an ongoing challenge, as no single definition fully captures its
scope Stanley & Soros (2016); Soros et al. (2017); Stanley & Lehman (2015); Lehman & Stanley
(2011). One definition frames OE as generating artifacts that are novel, and learnable for an external
observer Hughes et al. (2024). This definition introduces subjectivity, as novelty can be evaluated
differently depending on the observer, and excludes systems generating unintelligible artifacts (e.g.,
TV noise). Another view models OE systems via evolutionary principles, prioritizing diversity and
incremental complexity in behaviors or solutions Packard et al. (2019). Such systems autonomously
create and solve problems without direct human intervention, mimicking the processes of biological
evolution. Another perspective views OE as a search problem characterized by continuous exploration
across a vast and evolving state space, generating diverse and increasingly complex solutions without
explicit end goals Sigaud et al. (2023). We adopt the definition by Hughes et al. (2024), which frames
OE as generating novel and learnable artifacts to an external observer. This is particularly suited for
ML contexts and facilitates a structured approach to identifying risks w.r.t. the observer incurred by
the evolving nature.

Definition An open-ended AI system is one that continuously generates artifacts that are novel and
learnable for an observer.

Consider a system S that generates a sequence of artifacts A1:t indexed by time t, where each artifact
resides within a state space A. The observer O has a model Mt that has observed a sequence of
artifacts A1:t up until t. Mt is a proxy for the observer’s prediction capability. The observer judges
the quality of Mt by a loss function L(Mt, At′), where At′ is an artifact generated in future, t′ > t.

Borrowing from Hughes et al. (2024) we consider a system to display novelty if it produces artifacts
that become progressively less predictable as time advances. Formally:

∀t < t′ ∃t∗ > t′ : E[L(Mt, At′)] < E[L(Mt, At∗)] (1)

This means for a static observer there will always be an artifact in the future that is worse at getting
predicted. This ensures the system keeps generating outputs that introduce new and less predictable
information over time.
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OE AI is learnable if incorporating a longer history of artifacts improves the observer’s ability to
predict future outputs. This is formalized as:

∀t < t′ < t∗ : E[L(Mt, At∗)] > E[L(Mt′ , At∗)] (2)

Here, the loss decreases as the observer integrates more past artifacts, indicating improved under-
standing over time.

In contrast, we use the term “traditional” to refer to all AI systems that are not open-ended. This also
includes systems that act autonomously or continually adapt, such as LLM agents or RL algorithms,
as long as they are not open-ended.

Applications OE AI has been proposed as the pathway for agents to evolve skills and knowledge
in diverse, rich task environments across infinite horizons, often as a way to achieve ASI Team
et al. (2021); Hughes et al. (2024); Nisioti et al. (2024). Systems like REAL-X Cartoni et al. (2020;
2023) demonstrate the potential of OE architectures for sensorimotor skill acquisition, where robots
autonomously learn how to interact with their environments and generalize these skills to new tasks.
OE learning has been applied to games to create evolving game scenarios Che et al. (2024). It can
serve as a complementary tool in human-led innovation, augmenting creativity by generating a new
environment. Genie Bruce et al. (2024) produces an OE array of unique, action-controllable virtual
worlds from various prompts. Lu et al. (2024) demonstrated the potential of using LLMs in an OE
setting to follow the scientific discovery paradigm: from hypothesis to paper generation. Finally, there
is a stream of work that uses the MAP-Elites framework Mouret & Clune (2015) to generate diverse
adversarial prompts to improve model robustness via iterative adversarial fine-tuning Samvelyan et al.
(2024); Deep Pala et al. (2024); Han et al. (2024).

Safety of Open-Ended AI Several definitions of safety exist, originating from domains with a long
history of safety research, such as aerospace, healthcare, and critical infrastructure Suyama (2005);
Kafka (2012). In AI, safety aims to prevent AIs from being used to cause harm or themselves causing
harm. Thus safety for AI is often tied to error-based definitions, where safety violations occur due to
identifiable faults or deviations from intended behavior. However, applying these definitions to OE
AI presents unique challenges. For OE AI, which evolves unpredictably and generates novel outputs,
errors cannot be predefined as it operates beyond the boundaries of prior design specifications. As a
result, error-based definitions of safety are inapplicable to OE. Instead, we adopt a risk management
perspective to define safety for OE AI Leveson (2012). Here, safety is the ability to systematically
identify, assess, and mitigate risks, even when the system’s artifacts are novel. This definition implies
that under high-stakes scenarios, the absence of risk management itself is a risk.

3 CHALLENGES AND RISKS

OE AI exhibits emergent behavior, where outputs may deviate significantly from expectations due to
vast input spaces, complex internal dynamics, or adaptation to changing conditions. They may develop
unsafe, unethical, or misaligned behaviors. We discuss their inherent unpredictability challenges,
trade-offs, difficulty to control, and broader consequential societal factors.

3.1 UNPREDICTABILITY

OE AI is necessarily unpredictable, due to its propensity for generating novel artifacts. As artifacts
become increasingly novel they become even more unpredictable. Imagine an OE system S that
produces increasingly novel scientific discoveries A ∈ A. Some of these artifacts, e.g., the recipe for
a novel, dangerous viruses, are unsafe. However, when starting to run this system at time t it will be
difficult for us to foresee which discoveries it will produce at a later time t′ and predict their safety.

Formally, we assume that a lower loss of the model on an artifact corresponds to a higher probability
of predicting that artifact: L(Mt, At′) < L(Mt, At∗) = PMt

(At′) > PMt
(At∗), with PMt

(a)
denoting the probability the model puts on artifact a. This assumption holds for loss functions such
as Cross-Entropy. From this, it becomes clear that the novelty definition (Definition 1) implies that
there is always a more unpredictable artifact that will be generated in the future: ∀t < t′ ∃t∗ > t′ :
E[PMt(At′)] > E[PMt(At∗)].
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Unpredictability makes it difficult for us to anticipate whether trajectories of future artifacts {At}∞t=n
will be safe. This undermines our ability to conduct solid risk management, thus, reducing the trust
we can put in such a system to behave safely.

In traditional Reinforcement Learning (RL) the reward function provides a handle to predict future
trajectories. RL agents are trained to create trajectories that achieve high rewards on a clearly defined
reward function. From this we can derive that highly rewarded trajectories are more likely to be
generated than trajectories with low reward. In contrast, OE AI lacks such an objective. Additionally,
the novelty criteria Lehman & Stanley (2011) or evolutionary developments Lehman & Stanley
(2010); Dharna et al. (2022) in OE AI encourage divergence, making it more complex to anticipate
the safety of future artifacts.

3.2 CREATIVITY VS. CONTROL

OE AI creates a fundamental tension between creativity and control in OE search Ecoffet et al. (2020).

Lack of Explicit Guidance. OE AI often operates without predefined boundaries, constraints, or
clear objectives. This allows it to explore vast and uncharted regions of the state space freely and
generate creative solutions that are not reachable by simply specifying the desired state. While this
promotes novelty and creativity, it makes it difficult to predict or control the direction of the system
to ones we deem valuable and safe.

Evolving Model and Environment. Unlike traditional systems, the agent gains new skills and
capabilities, generating new artifacts and adapting over time. The evolving nature of the OE AI
requires adapting the guidance given to it since the constraints on objectives given earlier might
become outdated as the model and its environment change.

3.3 MISALIGNMENT

The ability to align AI systems with human values is a grand challenge within the field of AI Safety
Hendrycks et al. (2021); Ji et al. (2024) that is essential for ensuring the safety and usefulness of AI
systems. The aim is to align the goals that an AI system intrinsically values and pursues with those of
its human designers. This can include intended objectives, ethical guidelines, or safety requirements.
AI alignment is usually formulated for AI systems that optimize an explicit, human-designed reward
function. In such a setting misalignment can occur because the reward function does not precisely
match the designers’ objective Krakovna et al. (2020) or because the AI internalizes goals that are
different from the explicit incentives Shah et al. (2022); Di Langosco et al. (2022).

However, OE AI does not optimize an explicitly defined reward function with a focus on diversity.
Instead, the designers may provide implicit incentives by structuring the search process in ways that
are likely to lead to artifacts that they value highly. This necessitates a different lens for analyzing the
alignment of OE AI Ecoffet et al. (2020).

The designer might not correctly specify their values in the structure of the OE AI or process. The
result would be an OE AI being driven towards an undesired goal. OE AI could still learn to
intrinsically pursue goals that are different from those specified in the OE process. For example,
humans evolved by evolution, which is an OE process whose structure causes it to optimize for
inclusive fitness. However, humans do not value inclusive fitness intrinsically but have intrinsic drives
towards sugary foods or protected sex.

Alignment of Evolving Systems. Another difference is that the goals pursued by an OE AI can
evolve throughout its lifetime, while the goals pursued by a traditional ML system remain static. This
means that tests or guarantees about the alignment of an OE AI at one time become outdated as the
system keeps evolving. Additionally, as OE AI explores novel situations, we cannot be sure that
alignment training performed initially will generalize to new situations.

Alignment of Interactive Components. OE AI systems often include multiple components. This
might be an LLM with additional components, multiple agents or an agent in an evolving environment.
Even though these individual components might be aligned, their dynamic interactions can result in
emergent behaviors that are misaligned. For example, in an OE process with multiple agents who do
not want to cause harm, incentives and inter-agent dynamics can force them into equilibria where
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harming others is necessary. Due to the unpredictable nature of each component, predicting such
dynamics is not possible.

3.4 TRACEABILITY

Tracking and reproducing an OE AI’s processes and outcomes generated is a challenging task. This
could be coupled with a negative cascading effect that small changes in artifacts or system states can
trigger, causing the system to diverge from its intended trajectory.

Lack of Reproducibility. Reproducing the evolving OE AI at a certain time is significantly more
challenging than traditional AI due to 1) the lack of clear training objectives, and 2) not being able to
reproduce the intermediate environmental feedback and states Flageat & Cully (2023); Flageat et al.
(2024), making it hard to trace and attribute the exploration paths. For example, evolving to images
that resemble real objects from random initial images is like “finding needles in a haystack” Secretan
et al. (2008) given the astronomically large search space. This can hinder the rigorous scientific
progress in this domain which requires transparent, open-source, and auditable technologies.

Difficulties in Attribution. A research direction that helps enable oversight, and evaluate and
improve the correctness of solutions is self-consistency checks. Wang et al. (2023) used a prompting
strategy that samples a diverse set of reasoning paths and then selects the most consistent answer.
Fluri et al. (2024) proposed a framework to evaluate superhuman models by checking if they follow
interpretable human rules, e.g., counterfactuals should flip the predicted decisions. Creating similar
tests for OE AI is more difficult. One can change the parameters of the initial state of an OE AI
to create a counterfactual environment; however, due to compounded cascading effects, the effects
of the changed parameters cannot be easily isolated and are entangled with other novelty-related
randomized intermediate states.

3.5 RESOURCE CONSTRAINTS

As the OE AI runs longer, it generates increasingly complex artifacts that require more computational
and human resources to evaluate. Unlike traditional ML models, OE AI requires more continuous
evaluation without clear guarantees of utility. OE AI is run for a longer time before producing
useful results since it involves much exploration and is not targeted toward specific useful results.
Furthermore, it is difficult to predict whether an OE AI will produce valuable artifacts. Thus, the
significant computational resources might not be justified. These issues are exacerbated in OE
AI that employs an LLM as a backbone since their large parameter size makes them expensive to
run compared to smaller specialized models. Therefore, developing OE AI with adaptive resource
constraints is important.

3.6 TRADE-OFFS

Safety

Speed Novelty

Safe & Novel = 
Slow Pace

Fast & Novel = 
 High Risk

Fast & Safe =
Predictable Behaviour Unachievable

Figure 2: The Impossible Triangle of
OE AI illustrates that safety, speed, and
novelty cannot be maximized together.

As the OE AI systems evolve, they must balance compet-
ing priorities, often resulting in trade-offs that make the
deployment of these systems challenging. As explained
in Figure 2, OE AI inherently faces a trade-off between
speed, novelty, and safety, creating a trilemma where op-
timizing two of these dimensions often compromises the
third. Speed refers to the rate at which the system can
generate new artifacts. Novelty measures the degree of
uniqueness or originality in each newly generated artifact.
Safety represents the system’s adherence to predefined
constraints, ensuring outputs avoid harmful, unethical, or
undesirable outcomes.

Application-Specific Needs. Trade-offs can be difficult to navigate because they can depend on
the types of problems we use OE AI for, which may require specific emphasis on one of these
dimensions. In safety-critical applications such as drug discovery or medical diagnosis, safety is the
foremost concern, often necessitating slower exploration to ensure rigorous validation and prevent
harm, limiting novelty and speed. Conversely, in applications like gaming or art, novelty is prioritized
to foster creativity, where the associated risks are generally lower, allowing safety to be sacrificed
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in favor of rapid, diverse output generation. Lastly, in autonomous vehicles or real-time industrial
systems, the focus is on quick, reliable responses, with novelty being a secondary concern to ensure
the system can operate effectively in dynamic, time-sensitive environments.

3.7 SOCIAL AND HUMAN RISKS

It is crucial to consider the societal risks of OE AI. While all new technologies may have negative
societal consequences, the unpredictable and evolving nature of OE AI may amplify known AI harms
or introduce unanticipated ones.

The Rate of Novelty. OE AI generates more novel artifacts than traditional AI and the rate of
innovation and disruption is harder to anticipate. This might outpace society’s ability to adapt,
integrate, and understand new developments. History provides examples of the disruptive effects of
excessive novelty, such as the Industrial Revolution, which, while transformative, led to widespread
social upheaval, labor displacement, and the erosion of traditional ways of life. Purely AI-led
innovation can result in a loss of human agency in shaping scientific and societal progress, leaving
individuals feeling disconnected from the process of discovery and creation.

Uninteresting Artifacts. OE AI should produce results that are interesting and useful to the observer.
Quantifying “interestingly new” progress has been one of the grand challenges in OE research.
Foundation models have been used as a Model-of-Interestingness (MoI) Zhang et al. (2024b) to
denote the human notion of what can be considered “novel” and at the same time “interesting”.
However, OE AI could still produce uninteresting artifacts. This could be because its sense of
interestingness might be misaligned with ours or because it may get stuck in a narrow set of artifacts
without exploring more widely. Also, as artifacts can be very complex it can be difficult for humans
to determine whether they are truly interesting and useful. This could lead to situations where an OE
AI produces useless, uninteresting artifacts, while humans do not recognize this. If such a system is
kept running it will be a waste of resources. Furthermore, it might limit human creativity if human
ideas are biased by generated artifacts or if humans think there is nothing more to explore. Such
problems are now discussed with LLMs and how they can homogenize individuals’ beliefs and lead
to a false impression of consensus Burton et al. (2024).

Difficulty to Plan. As discussed in Section 3.5, it is intractable to foresee, plan, or track the OE AI’s
progress or whether it would produce valuable solutions. Given limited resources, we may need to
prioritize which problems we delegate to OE AI. This has a resemblance to funding decisions for
research proposals. Our society needs transparent, fairways of deciding on appropriate allocations.

Reshaping Human Values. LLMs may learn to mislead humans as a result of reward hacking Wen
et al. (2024), wrongly convincing human evaluators that performance has increased. Persuasion,
deception, or drifting to rogue goals are examples of the catastrophic risks of AI discussed in the
literature with anticipation of becoming more likely when AI is adaptive Hendrycks et al. (2023),
such as the case in OE AI. Due to cascading effects, OE AI may generate solutions that are initially,
and then increasingly, misaligned, such as inaccurate scientific findings or biased policies. Values
within societies may also drift over time, sometimes for the worse Hendrycks et al. (2023). As
humans continue to get exposed to these proliferating artifacts, they might get normalized and set
harmful precedence, i.e, OE AI may gradually change societal and human values instead of getting
OE AI aligned to human values.

Accountability. Assigning accountability for the actions of traditional AI is an ongoing legal and
ethical debate. However, it is even more complicated for OE systems, since they act autonomously
and inherently behave in ways they were not designed to. This makes it unclear whether developers
can be blamed for the wrongdoings of the model. Furthermore, OE AI does not follow traditional
procedures for training and data collection, requiring new frameworks for assigning responsibility.

Environmental Factors. Current AI models use exuberant amounts of energy. Training GPT-3
consumed 1287 MWh of electricity, resulting in 502 metric tons of carbon emission Patterson et al.
(2021). Data centers use around 2.5 percent of global electricity, rivaling the aviation industry
in greenhouse gas emissions Pfeiffer (2023). The current paradigm of OE AI uses LLMs as a
backbone; running these models continuously requires a high amount of computation, which can
have a significant environmental impact.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 TECHNICAL MITIGATIONS OF RISKS

To address the risks and challenges, we explore and suggest research directions that enhance safety
against catastrophic risks while responsibly maintaining the benefits of OE exploration.

4.1 OVERSIGHT

As it is hard to anticipate the safety of OE processes, it is critical to oversee, either by humans or
another system, their behavior during execution. Oversight provides a mechanism to monitor, guide,
and correct system behavior, ensuring outputs align with human values and safety expectations.

Human-in-the-Loop Oversight. Ultimately, only humans can define safety and desirable values.
Thus it is critical to have a human in the loop when OE AI is run. This could mean that a human
actively monitors new artifacts. The human overseer could intervene when unsafe artifacts are
generated or filter which artifacts should be propagated to future iterations of the system. Furthermore,
a human overseer could provide feedback and guidance that steers the OE process in interesting
directions. OE can involve AI and human components working together Secretan et al. (2008).
However, humans are limited in their capacity and might not be able to accurately judge complex
artifacts, but should nevertheless set standards to remain in control.

Interpretable Decision-Making. To facilitate humans in providing oversight, future research needs
to create interpretable OE AI whose decisions and reasoning traces are transparent to a human
observer. Forcing OE AI to reason about its decisions in natural language, makes it inherently
interpretable to humans, allowing inspection and failure detection Hu & Clune (2024); Betley et al.
(2025). Systems can be trained to explain their artifacts to a weaker model to simulate a human
overseer. Furthermore, interpretability tools can be used to understand which input features Wang
et al. (2024b) or inner representations Alain & Bengio (2018); Cunningham et al. (2023) were relevant
to a decision.

Hierarchical Oversight. Oversight can be expensive when a human or a large model needs to check
every artifact. Hierarchical oversight can structure the supervision into layers, where a less expensive
monitoring process oversees every artifact and reports artifacts or behaviors to higher levels with
more expensive supervisors. Works such as Christiano et al. (2018); Chavan & Chavan (2024)
propose mechanisms where higher layers guide or intervene in the functioning of lower layers. By
analyzing the system’s outputs at multiple levels of abstraction, hierarchical oversight can identify
risks before they escalate while being resource efficient.

Scalable Oversight. Providing effective oversight is difficult for humans when generated artifacts
become too complex for them to evaluate accurately. Scalable oversight seeks to align AI systems
whose outputs surpass human expertise or are too numerous for humans to evaluate properly Burns
et al. (2023). Approaches such as Iterated Distillation and Amplification (IDA) Christiano et al.
(2018), Debate Irving et al. (2018) or Recursive Reward Modeling (RRM) Ibarz et al. (2018) could
be applied to ensure the safety of OE AI. For example, OE AI could be forced to justify its actions
in a debate with another agent, RRM could be used to align an overseer AI that can accurately
evaluate new artifacts, or OE AI could be trained via IDA to internalize human notions of safety and
interestingness. Furthermore, self-diagnostic tools such as Kamoi et al. (2024); Huang et al. (2024)
can be applied to OE AI to detect vulnerabilities in the system.

OE AI for Adaptive Oversight. For OE AI, oversight should not only scale to complex artifacts but
also accommodate the dynamic nature of OE AI by developing adaptable evaluation and uncertainty
thresholds. An overseer needs to be able to generalize to novel, possibly OOD artifacts. OE AI
itself can be used to develop new safety-specialized mechanisms that work in tandem with the
diversity-driven OE AI. An example is an overseer OE AI that co-evolves and judges safety.

OE AI for Risk Extrapolation. Similarly, a specialized OE AI can be used to anticipate and simulate
in advance the future trajectories of artifacts and assess their risks and cascading effects. This OE AI
could be optimized to generate novel but specifically harmful artifacts. This would need quantification
and uncertainty methods to measure how close the main artifact is to the hypothesized harmful ones,
based on this, an abortion or intervention step can follow.

Consequential Actions. As OE AI continues to evolve and explore, it may intervene in its envi-
ronments. We already observe strong progress in autonomous and embodied agents. However, for
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risky applications, e.g., scientific experiments, we would need to limit the OE AI from performing
catastrophically consequential actions where we cannot yet anticipate their outcomes. An alternative
is to build simulations and models that are faithful to our world that would enable sand-boxed artifact
generation. Given the challenges posed by novel and emergent artifacts, exploring causal models is a
promising direction, as they exhibit greater robustness on novel data Richens & Everitt (2024).

4.2 CONSTRAINTS

Most existing safety frameworks focus on structured environments with predefined goals. However,
building guardrails to prevent the OE AI from exploring unsafe artifacts will be crucial to ensure the
safety of these systems.

Constrained Exploration. Since OE AI often pursues diversity, the exploration process can inadver-
tently drive the system into unsafe or misaligned state spaces. By constraining exploration to an ϵ-ball,
the system can balance novelty with safety, similar to safe exploration in RL Garcıa & Fernández
(2015). This requires constrained novelty metrics that evaluate novelty relative to both past behaviors
and predefined safety constraints. In simple, discrete domains, such a novelty metric could be
formally specified, while LLM-based judges could quantify novelty in more complex domains. Based
on the novelty scores of new artifacts, it would be possible to penalize novel behaviors that exceed
a probabilistic safety threshold or confidence bound, as modeled using techniques like Gaussian
Processes Sui et al. (2015); Turchetta et al. (2016) or reachability analysis Krakovna et al. (2018);
Fisac et al. (2018). Furthermore, novelty search can be combined with shielding mechanisms Dawood
et al. (2024) to dynamically reject unsafe actions. Finally, safety constraints also can be introduced in
Minimal Criterion Coevolution Brant & Stanley (2017).

Artifact Complexity Budget. Setting a complexity budget might help balance novelty and exploration
with the ability of humans to understand, evaluate, and digest new artifacts. This budget serves as a
safeguard, preventing excessive unpredictability and mitigating the risk of negative compounding
effects that may arise from unrestrained exploration. By dynamically adjusting this budget it is
possible to navigate the creativity-control trade-off.

Setting Specific Rules. While OE AI continuously evolves and faces new challenges, there are rules
we never want it to break. Although such rules cannot cover all unsafe behaviors, they can still
prevent some failures. While constraints do limit the creativity of the OE AI by cutting off some
of the search space, the system is still able to openly explore the remaining space, thus retaining
its open-endedness. To take a more abstract and flexible view, rules could be specified as general
principles in a constitution Bai et al. (2022) that can be reinterpreted in new situations, or dynamically
created and updated by AI. An LLM guiding the OE AI’s decisions can either reason about these
rules Guan et al. (2025) or causally Kıcıman et al. (2024). Recent work Zaremba et al. (2025) shows
the potential and promise of LLMs, when given enough intermediate reasoning steps, to reason in
compliance tasks. This also provides an effective framework for overseers to judge new artifacts.

4.3 ADAPTIVE ALIGNMENT

Current alignment techniques assume a model and its environment remain static, thus only requiring
safety training once. New continual alignment algorithms could allow us to adapt safety as the
model and its circumstances change Zhang et al. (2024a). While Moskovitz et al. (2024) composite
reward weighting dynamically and Hong et al. (2024) address overoptimization and ambiguity, they
lack robust mechanisms for long-term feedback loops. Multi-agent RL for co-evolving alignment
dynamics in OE systems can be a promising research direction. Using dynamic reward functions
can adjust the reward signals to reflect the evolving human preferences or system performance.
Adaptive preference scaling Fang et al. (2024); Hong et al. (2024), and distributional preference
reward modeling Li et al. (2024) have been used to refine reward functions in RL-based systems
by adjusting reward weights in response to shifting human feedback or performance degradation.
For OE AI, dynamic reward calibration must go beyond simple reward adjustments to handle the
continuous and diverse outputs produced by such systems.

4.4 SAFETY EVALUATIONS

Finally, continuous safety evaluation of OE AI is important for understanding the extent of unsafe
behaviors.
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Benchmarking OE Safety. Developing benchmarks specifically for OE AI is crucial for quantifying
its risks and evaluating failure modes. Existing benchmarks, such as those on multi-agent risks and
unintended consequences Rivera et al. (2020), provide some insights but fail to incorporate the unique
characteristics of OE algorithms. A dynamic benchmark explicitly designed for OE AI would need
to address its continuous evolution, novelty generation, and dynamic complexity. For example, the
difficulty of tests could be adjusted to the OE AI’s changing capabilities.

Redteaming OE Systems. The previously outlined direction of “extrapolating risks” is beneficial
to anticipate future risks even if the OE system is aligned. On the other hand, targeted red teaming
can reveal failures for individual components or the entire system. Red teaming allows us to
stress-test OE systems by actively probing their vulnerabilities and finding situations in which they
behave unsafely.This could involve manually or adversarially finding inputs on which the OE system
misbehaves. Lehman et al. (2023); Bradley et al. (2023); Liu et al. (2024) uses LLMs to enhance
genetic programming by generating diverse, functional artifacts. These outputs could serve as
adversarial artifacts to test and evaluate system robustness like in Samvelyan et al. (2024), but here
the aim would be to test the entire OE systems. Further, one could construct an environment in which
the OE system is being led to produce unsafe artifacts.

5 CALL FOR ACTION

Ensuring the responsible deployment of OE AI requires active engagement from various stakeholders.

Funding bodies can shape research priorities. They could urge OE researchers to consider and
address the safety risks of their work. Further, they could dedicate resources toward robust safety
mechanisms and evaluations for OE AI.

Research on the intersection of safety and OE research is crucial, impactful and under-explored. We
argue that safety should be a critical part of OE research. This requires general awareness of the risks
and dedicated research on safety problems. Additionally, the AI safety community should dedicate
research to the specific risks of OE AI. We hope this paper can provide a bridge to foster exchange
and collaboration between these communities.

Opportunities lie in the application of OE AI to AI Safety. Aside from providing adaptive oversight
(Section 4.1) OE AI can be used to red-team traditional models Samvelyan et al. (2024) and agentic
applications, in addition to automating interpretability research.

Policy Makers should mandate audits of sufficiently capable OE AI to ensure adherence to safety
standards and societal values. Comprehensive auditing protocols must account for the dynamic and
emergent nature of these systems.

Industry deploying OE AI must implement and rigorously test oversight mechanisms and guardrails
for OE systems. Furthermore, comprehensive evaluation of societal and catastrophic risks should be
conducted in collaboration with third-parties, academia and governments.

Public. The ability and resources to run OE AIs are centralized in a few companies. Since deploying
them comes with large resource costs and safety risks, the public should be educated and consulted
on these decisions to prioritize.

6 CONCLUSION

Open-Ended AI is a promising paradigm for generating novel, adaptive solutions in complex and
dynamic environments, driving interest across research and applied domains. However, its open-ended
nature introduces specific safety challenges that must be addressed to enable responsible deployment
and maximize its societal benefits. We argue that the inherent unpredictability and uncontrollability of
OE AI, challenges in ensuring and maintaining alignment, traceability, and societal impacts, as well
as trade-offs in resource use and safety. We highlight the critical importance of human and automated
oversight over OE AI. Further, we suggest ways of giving adaptive guidelines to OE AI that retain its
creativity and co-evolve with it. Lastly, we call for targeted safety evaluations and provide concrete
suggestions on how different stakeholders can contribute to the responsible development of OE AI.
Ultimately, we hope this paper will lead the OE and safety communities and other stakeholders to
consider safety a priority in the development and deployment of OE AI.
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