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Abstract

Proteins, serving as the fundamental architects of biological processes, interact with lig-
ands to perform a myriad of functions essential for life. Designing functional ligand-binding
proteins is pivotal for advancing drug development and enhancing therapeutic efficacy. In
this study, we introduce ProteinReDiff, an efficient computational framework targeting the
redesign of ligand-binding proteins. Using equivariant diffusion-based generative models,
ProteinReDiff enables the creation of high-affinity ligand-binding proteins without the need
for detailed structural information, leveraging instead the potential of initial protein se-
quences and ligand SMILES strings. Our evaluations across sequence diversity, structural
preservation, and ligand binding affinity underscore ProteinReDiff’s potential to advance
computational drug discovery and protein engineering. We will release our data and source
code upon acceptance.

1 Introduction

Proteins, often referred to as the molecular architects of life, play a critical role in virtually all biologi-
cal processes. A significant portion of these functions involves interactions between proteins and ligands,
underpinning the complex network of cellular activities. These interactions are not only pivotal for basic
physiological processes, such as signal transduction and enzymatic catalysis, but also have broad implica-
tions in the development of therapeutic agents, diagnostic tools, and various biotechnological applications
(Du et al., 2016; Wanat, 2020; Skolnick & Zhou, 2022). Despite the paramount importance of protein-ligand
interactions, the majority of existing studies have primarily focused on protein-centric designs to optimize
specific protein properties, such as stability, expression levels, and specificity (Listov et al., 2024; Lisanza
et al., 2023; Dauparas et al., 2022; Yang et al., 2023a; Iqbal et al., 2022). This prevalent approach, despite
leading to numerous advancements, does not fully exploit the synergistic potential of optimizing both pro-
teins and ligands for redesigning ligand-binding proteins. By embracing an integrated design approach, it
becomes feasible to refine control over binding affinity and specificity, leading to applications such as tailored
therapeutics with reduced side effects, highly sensitive diagnostic tools, efficient biocatalysis, targeted drug
delivery systems, and sustainable bioremediation solutions (Yang & Lai, 2017; Ebrahimi & Samanta, 2023;
Ruscito & DeRosa, 2016), thus illustrating the transformative impact of redesigning ligand-binding proteins
across various fields.

Traditional methods for designing ligand-binding proteins have relied heavily on experimental techniques,
characterized by systematic but often inefficient trial-and-error processes (Creutznacher et al., 2022; Munk
et al., 2016; Tavares & van der Meer, 2021). These methods, while foundational, are time-consuming,
resource-intensive, and sometimes fall short in precision and efficiency. The emergence of computational
design has marked a transformative shift, offering new pathways to accelerate the design process and gain
deeper insights into the molecular basis of protein-ligand interactions. However, even with the advance-
ments in computational approaches, significant challenges remain. Many existing models demand extensive
structural information, such as protein crystal structures and specific binding pocket data, limiting their
applicability, especially in urgent scenarios like the emergence of novel diseases (Polizzi & DeGrado, 2020;
Stärk et al., 2023; Dauparas et al., 2023). For instance, during the outbreak of a new disease like COVID-
19, the spike proteins of the virus may not have well-characterized binding sites, delaying the development
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of effective drugs (Lv et al., 2020; Schaub et al., 2021). Furthermore, the complexity of binding mecha-
nisms, including allosteric effects and cryptic pockets, adds another layer of difficulty (Agajanian et al.,
2023; Oleinikovas et al., 2016). Specifically, many proteins do not exhibit clear binding pockets until ligands
are in close vicinity, necessitating extensive simulations to reveal potential binding interfaces (Meller et al.,
2023; Oleinikovas et al., 2016). While molecular dynamics simulations offer detailed atomistic insights into
binding mechanisms, they often prove inadequate for designing high-throughput sequences due to high com-
putational cost (Barros et al., 2019; Yang & Lai, 2017). This complexity underscores the need for a drug
design methodology that is agnostic to predefined binding pockets.

Our study addresses those identified challenges by introducing ProteinReDiff, a computational framework
developed to enhance the process of redesigning ligand-binding proteins. Originating from the foundational
concepts of the Equivariant Diffusion-Based Generative Model for Protein-Ligand Complexes (DPL) (Nakata
et al., 2023), ProteinReDiff incorporates key improvements inspired by the representation learning modules
from the AlphaFold2 (AF2) architecture (Jumper et al., 2021). Specifically, we integrate the Outer Product
Update (adapted from outer product mean of AF2), Single Representation Attention (adapted from MSA row
attention module), and Triangle Multiplicative Update modules into our Residual Feature Update procedure.
These modules collectively enhance the framework’s ability to capture intricate protein-ligand interactions,
improve the fidelity of binding affinity predictions, and enable more precise redesigns of ligand-binding
proteins.

The framework integrates the generation of diverse protein sequences with blind docking capabilities. Start-
ing with a selected protein-ligand pair, our approach stochastically masks amino acids and equivariantly
denoises the diffusion model to capture the joint distribution of ligand and protein complex conformations.
Another key feature of our method is blind docking, which predicts how the redesigned protein interacts with
its ligand without the need for predefined binding site information, while relying solely on initial protein
sequences and ligand SMILES strings (Weininger, 1988). This streamlined approach significantly reduces re-
liance on detailed structural data, thus expanding the scope for sequence-based exploration of protein-ligand
interactions.

MET ILE GLN

Masked Protein Sequence

c1cc(C(O)=O)ccc1

Ligand SMILES String

Input

MET ASP ILE PRO GLN

Novel Protein Sequence

Output

Input
Featuriation

Equivarinant
Denoising

Residual
Feature
Update

x12  

Confomational sampling
with a diffusion model

C  protein backbone and
ligand complexes 

Figure 1: Overview of the proposed framework. The process begins with utilizing a protein amino acid
sequence and a ligand SMILES string as inputs. The conformational sampling process includes iteratively
applying input featurization, updating residual features, and denoising equivariantly, ultimately yielding
novel protein sequences alongside their corresponding Cα protein backbone and ligand complexes.

In summary, the contributions of our paper are outlined as follows:
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• We introduce ProteinReDiff, an efficient computational framework for ligand-binding protein re-
design, rooted in equivariant diffusion-based generative models. Our innovation lies in integrating
AF2’s representational learning modules to enhance the framework’s ability to capture intricate
protein-ligand interactions.

• Our framework enables the design of high-affinity ligand-binding proteins without reliance on detailed
structural information, relying solely on initial protein sequences and ligand SMILES strings.

• We comprehensively evaluate our model’s outcomes across multiple design aspects, including se-
quence diversity, structure preservation, and ligand binding affinity, ensuring a holistic assessment
of its effectiveness and applicability in various contexts.

2 Related Work

2.1 Traditional Approaches in Protein Design

Protein design has historically hinged on computational and experimental strategies that paved the way for
modern advancements in the field. These foundational methodologies emphasized the intricate balance be-
tween understanding protein structure and engineering novel functionalities, albeit with inherent limitations
in scalability and precision. Key traditional approaches include:

• Rational Design Korendovych (2018); Song et al. (2023); Alley et al. (2019) focused on introducing
specific mutations into proteins based on known structural and functional insights. This method
required an in-depth understanding of the target protein structures and how changes might impact
its function.

• Directed Evolution Arnold & Volkov (1999); Wang & Zhao (2016); Guntas et al. (2005); Wal-
tenspühl et al. (2021) mimicked natural selection in the laboratory, evolving proteins towards desired
traits through iterative rounds of mutation and selection. Despite its effectiveness in discovering
functional proteins, the process was often labor-intensive and time-consuming.

These traditional methods have been instrumental in advancing our understanding and capability in protein
design. However, their limitations in terms of efficiency, specificity, and the broad applicability of findings
highlighted the need for more versatile and scalable approaches. As the field progressed, the integration
of computational power and biological understanding opened new avenues for innovation in protein design,
leading to the exploration and adoption of more advanced methodologies.

2.2 Deep Generative Models in Protein Design

Since their inception, deep generative models have significantly advanced fields like computer vision (CV)
(Raut & Singh, 2024) and natural language processing (NLP) (Iqbal & Qureshi, 2022), sparking interest in
their application to protein design. This enthusiasm has led to numerous studies that harness these models
for innovating within the protein design area. Among these, certain types of deep generative models have
distinguished themselves through their effectiveness and the promising results they have achieved, including:

• Variational Autoencoders (VAEs) are harnessed for their ability to learn rich representations
of protein sequences, enabling the generation of novel sequences through manipulation in the latent
space (Lyu et al., 2023; Greener et al., 2018; Brookes et al., 2019).

• Autoregressive models predict the probability of each amino acid in a sequential manner, facili-
tating the generation of coherent and functionally plausible protein sequences (Trinquier et al., 2021;
Fannjiang et al., 2022).

• Generative Adversarial Networks (GANs) employ two networks that work in tandem to pro-
duce protein sequences indistinguishable from real ones, enhancing the realism and diversity of
generated designs (Kucera et al., 2022; Anand & Huang, 2018).
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• Diffusion models represent a step forward by gradually transforming noise into structured data,
simulating the complex process of folding sequences into functional proteins (Gruver et al., 2023;
Watson et al., 2023; Wu et al., 2022a; Fu et al., 2023).

However, the majority of these studies have focused on protein-centric designs, with a noticeable gap in
research that integrates both proteins and ligands for the purpose of redesigning ligand-binding proteins.
Such integration is crucial for a holistic understanding of the intricate dynamics between protein structures
and their ligands, a domain that remains underexplored.

2.3 Current Approaches in Ligand-Binding Protein Redesign

Heavy Reliance on Detailed Structural Information Contemporary computational methodologies
for designing proteins that target specific surfaces predominantly rely on structural insights from native
complexes, underscoring the critical role of fine-tuning side-chain interactions and optimizing backbone
configurations for optimal binding affinity (Polizzi & DeGrado, 2020; Stärk et al., 2023; Dauparas et al.,
2023; Zheng et al., 2023; Watson et al., 2023; Yang et al., 2022). These strategies often initiate with the
generation of protein backbones, employing inverse folding techniques to identify sequences capable of folding
into these pre-designed structures (Yang et al., 2023a; Hsu et al., 2022; Dauparas et al., 2022; Yang et al.,
2022). This approach signifies a paradigm shift by prioritizing structural prediction ahead of sequence
identification, aiming to produce proteins that not only fit the desired conformations for potential ligand
interactions but also navigate around the challenge of undefined binding sites. Despite the advantages,
including the potential of computational docking to create binders via manipulation of antibody scaffolds
and varied loop geometries (Lyu et al., 2023; Bennett et al., 2024; Chungyoun & Gray, 2023), a notable
challenge persists in validating these binding modes with high-resolution structural evidence. Additionally,
the traditional focus on a limited array of hotspot residues for guiding protein scaffold placement often
restricts the exploration of possible interaction modes, particularly in cases where target proteins lack clear
pockets or clefts for ligand accommodation (Meller et al., 2023; Gagliardi & Rocchia, 2023).

Limited Training Data and Lack of Diversity Existing approaches often rely on a limited set of
training data, which can restrict the diversity and generalizability of the resulting models. For instance,
datasets like PDBBind provide detailed ligand information, but their scope is limited (Wang et al., 2004).
This limitation is further compounded when protein datasets lack corresponding ligand data, reducing the
effectiveness of the training process. Traditional methodologies also tend to focus on a narrow range of
protein-ligand interactions, potentially overlooking the broader spectrum of possible interactions.

Single-Domain Denoising Focus Previous methodologies typically concentrate on denoising either in
sequence space or structural space, but not both. Approaches like ProteinMPNN (Dauparas et al., 2022),
LigandMPNN (Dauparas et al., 2023), and MIF (Yang et al., 2022) primarily operate in sequence space, while
others like DPL function in structural space (Nakata et al., 2023). This single-domain focus can limit the
ability to capture the full complexity of protein-ligand interactions, which inherently involve both sequence
and structural dimensions. Consequently, these methodologies may fall short of accurately predicting the
functional capabilities of redesigned proteins.

Challenges in Generating Diverse Sequences with Structural Integrity While some approaches
prioritize sequence similarity to generate functional proteins, they often do so at the expense of structural
integrity. For example, ProteinMPNN and CARP focus heavily on sequence similarity, which can result
in a lack of diversity and flexibility in the generated sequences (Dauparas et al., 2022; Yang et al., 2023a).
This limitation can hinder the ability to explore a wider range of functional conformations, reducing the
effectiveness of the protein design process.

Distinct Improvements of Our Approach We address the weaknesses of available methodologies by in-
tegrating diverse datasets, employing a dual-domain denoising strategy, and ensuring the generation of diverse
sequences while maintaining structural integrity. Our approach utilizes only protein sequences and ligand
SMILES strings, eliminating the need for detailed structural information. By combining PDBBind (Wang
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et al., 2004) and CATH (Sillitoe et al., 2018) datasets, we effectively double our training data, enhancing
protein representations. Our equivariant and KL-divergence loss functions enable denoising across both se-
quence and structural dimensions, capturing the full complexity of protein-ligand interactions. This approach
maintains structural fidelity and promotes sequence diversity, overcoming the limitations of methodologies
prioritizing sequence similarity at the expense of diversity.

3 Background

3.1 Protein Language Models (PLMs)

Protein Language Models (PLMs) harness the power of natural language processing (NLP) to unravel the in-
tricate latency embedded within protein sequences. By analogizing amino acid sequences to human language
sentences, PLMs unlock profound insights into protein functions, interactions, and evolutionary trajectories
(Yang et al., 2023b). These models leverage advanced text processing techniques to predict structural, func-
tional, and interactional properties of proteins based solely on their amino acid sequences (Brandes et al.,
2022; Elnaggar et al., 2022; Rives et al., 2021; Lin et al., 2023a). Their adoption in protein design has cat-
alyzed significant progress, with studies leveraging PLMs to translate protein sequence data (Madani et al.,
2023; Ruffolo & Madani, 2024; Min et al., 2024; Zheng et al., 2023) into actionable insights, thus guiding the
precise engineering of proteins with targeted functional attributes.

Mathematically, a PLM can be represented as a function F that maps a sequence of amino acids S =
[s1, s2, . . . , sn], where si denotes the i-th amino acid in the sequence, to a high-dimensional feature space
that encapsulates the protein’s structural and functional properties:

X = F (S), X ∈ Rd, (1)

where X represents the continuous representation or embedding derived from the sequence S and d repre-
sents the dimensionality of the embedding space, determined by the PLM’s architecture. This embedding
captures the complex dependencies and patterns underlying the protein’s structural information and bio-
logical functionality. Through training on known sequences and structures, PLMs discern the "grammar"
governing protein folding and function, facilitating accurate predictions.

We employ the ESM-2 model (Lin et al., 2023a), a state-of-the-art protein language model with 650 million
parameters, pre-trained on nearly 65 million unique protein sequences from the UniRef (Suzek et al., 2014)
database, to feature initial masked protein sequences. ESM-2 enriches the latent representation of protein
sequences, bypassing the need for conventional multiple sequence alignment (MSA) methods. By incorporat-
ing structural and evolutionary information from input sequences, ESM-2 enables us to unravel interaction
patterns across protein families for effective ligand targeting. This understanding is crucial for designing and
optimizing ligand-binding proteins.

3.2 Equivariant Diffusion-based Generative Models

We utilize a generative model driven by equivariant diffusion principles, drawing from the foundations laid
by Variational Diffusion Models (Kingma et al., 2023) and E(3) Equivariant Diffusion Models (Hoogeboom
et al., 2022).

3.2.1 The Diffusion Procedure

First, we employ a diffusion procedure that is equivariant with respect to the coordinates of atoms x,
alongside a series of progressively more perturbed versions of x, known as latent variables zt, with t varying
from 0 to 1. To maintain translational invariance within the distributions, we opt for distributions on a
linear subspace that anchors the centroid of the molecular structure at the origin, and designate Nx as a
Gaussian distribution within this specific subspace. The conditional distribution of the latent variable zt

given x, for any given t in the interval [0, 1], is defined as

q(zt|x) = Nx(αtx, σ2
t I), (2)
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where αt and σ2
t represent strictly positive scalar functions of t, dictating the extent of signal preservation

versus noise introduction, respectively. We implement a variance-conserving mechanism where αt = 1− σ2
t

and posit that αt smoothly and monotonically decreases with t, ensuring α0 ≈ 1 and α1 ≈ 0. Given the
Markov property of this diffusion process, it can be described via transition distributions as

q(zt|zs) = Nx(αt|szs, σ2
t|sI), (3)

for any t > s, where αt|s = αt/αs and σ2
t|s = σ2

t − α2
t σ2

s . The Gaussian posterior of these transitions,
conditional on x, can be derived using Bayes’ theorem:

q(zs|zt, x) = Nx(µt→s(zt, x), σ2
t→sI), (4)

with

µt→s =
αsσ2

t|s

αt|sσ2
s

zt + σ2
sσ2

t

σ2
t|s

x, σ2
t→s = σ2

t σ2
s

σ2
t|s

. (5)

3.2.2 The Generative Denoising Process

The construction of the generative model inversely mirrors the diffusion process, generating a reverse tem-
poral sequence of latent variables zt from t = 1 back to t = 0. By dividing time into T equal intervals, the
generative framework can be described as:

pθ(x) =
∫

z

p(z1)p(x|z0)
T∏

i=1
pθ(zti

|zti−1), (6)

with s(i) = (i − 1)/T and t(i) = i/T . Leveraging the variance-conserving nature and the premise that
α1 ≈ 0, we posit q(z1) = Nx(0, I), hence treating the initial distribution of z1 as a standard Gaussian:

p(z1) = Nx(0, I). (7)

Furthermore, under the variance-preserving framework and assuming α0 ≈ 1, the distribution q(z0 | x) is
modeled as highly peaked (Song et al., 2020; Kingma et al., 2023). This allows us to approximate pdata(x)
as nearly constant within this narrow peak region. This yields:

q(x|z0) = q(z0|x)pdata(x)∫
x̃

q(z0|x̃)pdata(x̃)
≈ q(z0|x)∫

x̃
q(z0|x̃)

= Nx(x|z0/α0, σ2
0/α2

0I). (8)

Accordingly, we approximate q(x|z0) through:

p(x|z0) = Nx(x|z0/α0, σ2
0/α2

0I). (9)

The generative model’s conditional distributions are then formulated as:

pθ(zs|zt) = q(zs|zt, x = x̂θ(zt; t)), (10)

which mirrors q(zs|Fszt, x) but substitutes the actual coordinates x with the estimates from a temporal
denoising model x̂θ(zt; t), which employs a neural network parameterized by θ to predict x from its noisier
version zt. This denoising model’s framework, predicated on noise prediction ϵ̂θ(zt; t), is articulated as:

x̂θ(zt; t) = (zt − σtϵ̂θ(zt; t))
αt

. (11)

Consequently, the transition mean µt→s(zt, x̂θ(zt; t)) is determined by:

µt→s(zt, x̂θ(zt; t)) =
αsσ2

t|s

αt|sσ2
s

zt + αsσ2
t

σ2
t|s

x = 1
αt|s

zt −
σ2

t|s

αt|sσt
ϵ̂θ(zt; t). (12)
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4 Method

In this section, we detail the methodology employed in our noise prediction model, which is depicted in
Figure 1 and consists of three main procedures: (1) input featurization, (2) residual feature update, and
(3) equivariant denoising. Through these steps, we transform raw protein and ligand data into structured
representations, iteratively refine their features, and leverage denoising techniques inherent in the diffusion
model to improve sampling quality.

4.1 Input Featurization

We develop both single and pair representations from protein sequences and ligand SMILES string (Figure 2).
For proteins, we initially applied stochastic masking to segments of the amino acid sequences. The protein
representation is attained through the normalization and linear mapping of the output from the final layer of
the ESM-2 model, which is subsequently combined with the amino acid and masked token embeddings. Ad-
ditionally, for pair representations of proteins, we leveraged pairwise relative positional encoding techniques,
drawing from established methodologies (Jumper et al., 2021). For ligand representations, we employed a
comprehensive feature embedding approach, capturing atomic and bond properties such as atomic num-
ber, chirality, connectivity, formal charge, hydrogen attachment count, radical electron count, hybridization
status, aromaticity, and ring presence for atoms; and bond type, stereochemistry, and conjugation status
for bonds. These representations are subsequently merged, incorporating radial basis function embeddings
of atomic distances and sinusoidal embeddings of diffusion times. Together, these steps culminate in the
formation of preliminary complex representations, laying the foundation for our computational analyses.

c1cc(C(O)=O)ccc1

Ligand SMILES String

MET ILE GLN

Masked Protein Sequence

Protein
Language

Model
(ESM-2)

bonds

atoms

relpos

Single representation Pair representation

Figure 2: Overview of the input featurization procedure of the model.

4.2 Residual Feature Update Procedure

Our approach deviates significantly from the residual feature update procedure employed in the original DPL
model (Nakata et al., 2023). While the DPL model relied on Alphafold2’s Triangular Multiplicative Update
for updating single and pair representations, where these representations mutually influence each other, our
objective is to optimize this procedure for greater efficiency. Specifically, we incorporate enhancements such
as the Outer Product Update and Single Representation Attention to formulate sequence representational
hypotheses of protein structures and to model suitable motifs for binding target ligands specifically. These
modules, integral to Evoformer, the sequence-based module of AF2, play a crucial role in extracting essential
connections among internal motifs that serve structural functions (i.e., ligand binding) when structural
information is not explicitly provided during training. Importantly, we adapt and tailor these modules to
fit within our model architecture, ensuring their effectiveness in capturing the intricate interplay between
proteins and ligands.
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Figure 3: Overview of the residual feature update procedure of the model.

4.2.1 Single Representation Attention Module

The Single Representation Attention (SRA) module, derived from the Alphafold2 model’s MSA row atten-
tion with pair bias, accounts for long-range interactions among residues and ligand atoms within a single
protein-ligand embedding vector. In essence, the attention mechanism assigns importance to those involved
in complex-based folding to denoise the equivariant loss (Section 4.3) in a self-supervised manner. While the
original Alphafold2 MSA row attention mechanism processes input for a single sequence, the SRA module
is designed to incorporate representations from multiple protein-ligand complexes concurrently. Specifically,
the pair bias component of the SRA attention module captures dependencies between proteins and ligands,
which was shown to fit the attention score better than the regular self-attention model without bias terms (Xu
et al., 2023). By considering both the single representation vector (which encodes the protein/ligand sequen-
tial representation) and the pairwise representation vector (which encodes protein-protein and protein-ligand
interactions), this cross-attention mechanism exchanges information between pairwise and single representa-
tion to effectively preserves internal motifs, as evidenced by contact overlap metrics (Rao et al., 2021; Yang
et al., 2023b). As transformer architecture is widely used for predicting protein functions (Buton et al.,
2023), we observed similar efficacy to our binding affinity prediction in section Results 5.2.5 and Appendix
B-C.2. For a detailed description of the computational steps implemented in this module, refer to Algorithm
1.

Algorithm 1 Single Representation Attention pseudocode
Input: Single representation vector msi, pair representation vector zsij of the i-th sequence in the set of
sequences s, C = 65, Nhead = 4.
Output: Updated single representation vector m̃si with the dimension of Cm.

1: msi ← LayerNorm(msi)
2: qh

si, kh
si, vh

si ← LinearNoBias(msi) qh
si, kh

si, vh
si ∈ RC , h ∈ {1, . . . , Nhead}

3: bh
sij ← LinearNoBias(LayerNorm(zsij))

4: gh
si ← sigmoid(Linear(msi)) gh

si ∈ RC

5: ah
sij ← softmaxj

(
1√
C

qh
sik

h
sj

T + bh
sij

)
6: oh

si ← gh
si ⊙

∑
j ah

sijvh
sj

7: m̃si ← Linear(concath(oh
si)) m̃si ∈ RCm

8: return{m̃si}
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4.2.2 Outer Product Update

Since the SRA encodings have a shape (s, r, cm) and the pair representation has a shape (s, r, r, cz), the outer
product (OPU) layer merges insights by reshaping SRA encodings into pair representations. This module
leverages evolutionary cues from ESM to generate plausible structural hypotheses for pair representations
(Ju et al., 2021). It first calculates the outer product of the SRA embeddings of protein-ligand pairs, then
aggregates the outer products to yield a measure of co-evolution between every residue pair (Yang et al.,
2023b). Analogous to Tensor Product Representations (TPR) in NLP, the outer product is akin to the
filler-and-role binding relationship, where each entity (i.e. amino acid residue) on a sequence is attached to
a rich functional embedding based on its relationship to one another (Huang et al., 2018; Smolensky, 1990;
Huang et al., 2019).

This process integrates correlated information of residues i and j of a sequence s, resulting in the intermediate
Kronecker product tensors (.i.e. role embeddings in NLP) (Xu et al., 2023; Schlag & Schmidhuber, 2018;
Chen et al., 2021). Subsequently, an affine transformation projects those representations to hypotheses
concerning the relative positions of residues i and j under biophysical constraints. Our implementation
adapts the outer product without computing the mean to maintain the pair representations of multiple
protein-ligand complexes. For a detailed description of the computational steps implemented in this module,
refer to Algorithm 2.

Algorithm 2 Outer product update pseudocode
Input: Single representation vector msi of the i-th sequence in the set of sequences s, C = 32.
Output: Pair representation vector zsij with the dimension of s× Cz.

1: msi ← LayerNorm(msi)
2: asi, bsi ← Linear(msi) asi, bsi ∈ RC

3: osij ← flatten(asi ⊗ bsi) osij ∈ RC×C

4: zsij ← Linear(osij) zsij ∈ Rs×Cz

5: return{zsij}

4.2.3 Triangle Multiplicative Updates

After refining the pair representation, our model interprets the primary protein-ligand structure using princi-
ples from graph theory, treating each residue as a distinct entity interconnected through the pairwise matrix.
These connections are then refined through triangular multiplicative updates to account for physical and
geometric constraints, such as triangular inequality. While the SRA weights the importance of residues, the
triangular multiplicative update acts as another stack of transformer-based layers where any two edges affect
the third one to enforce triangle equivariance (Lin & AlQuraishi, 2023; Yang et al., 2023b). The starting
and ending nodes propagate information in and out of neighbors in similar fashion as the message-passing
framework (Xu et al., 2023). These mechanisms enable the model to generate more accurate representations
of protein-ligand complexes, leading to improved predictive performance in predicting binding affinities and
structural characteristics.

4.3 Equivariant Denoising

During the equivariant denoising process, the final pair representation undergoes symmetrization and is
then transformed using a multi-layer perceptron (MLP) into a weight matrix W . This matrix is utilized to
compute the weighted sum of all relative differences in 3D space for each atom, as shown in the equation
(Nakata et al., 2023):

ϵ̂i(z) =
∑

j

Wij(z) · (zi − zj)
∥zi − zj∥

. (13)

Afterward, the centroid is subtracted from this computation, resulting in the output of our noise prediction
model ϵ̂. Additionally, it’s important to note that the described model maintains SE(3)-equivariance, meaning
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that:

ϵ̂i(Rz + t) =
∑

j

Wij(Rz + t)
∥(Rzi + t)− (Rzj + t)∥ · ((Rzi + t)− (Rzj + t)) (14)

= R
∑

j

Wij(Rz + t)
∥zi − zj∥

· (zi − zj) (15)

= R
∑

j

Wij(z)
∥zi − zj∥

· (zi − zj) (16)

= Rϵ̂i(z) (17)

for any rotation R and translation t. This property is derived from the fact that the final representation, and
hence the weight matrix W , depends solely on atom distances that are invariant to rotation and translation.

5 Experiments

5.1 Training Process

5.1.1 Materials

Our training strategy leverages a meticulously curated dataset encompassing a broad range of protein struc-
tures, including both ligand-bound (holo) and ligand-free (apo) forms, sourced from two key repositories:
PDBBind v2020 (Wang et al., 2004) and CATH 4.2 (Sillitoe et al., 2018). PDBBind v2020 offers a di-
verse collection of protein-ligand complexes, while CATH 4.2 provides a substantial repository of protein
structures. Each dataset was selected for its unique contributions to our understanding of protein-ligand
interactions and structural diversity. This strategic selection of datasets ensures our model is exposed to a
wide and varied spectrum of protein-ligand interactions and structural configurations, enabling comprehen-
sive evaluation against diverse inverse folding benchmarks. By training on both holo and apo structures,
our approach imbues the model with a robust understanding of protein-ligand dynamics, equipping it to
navigate the complexities of unseen protein-ligand interaction scenarios effectively.

To ensure robust model training and evaluation, we employ careful data partitioning techniques. Using
MMseqs2 (Steinegger & Söding, 2017), we clustered and partitioned the protein sets for training, validation,
and testing, maintaining sequence similarities between 40% and 50% to ensure unbiased training and pre-
dictions, following protocols from other protein models (Yang et al., 2022; Jumper et al., 2021). For ligands,
we cluster based on the Tanimoto similarity of Morgan fingerprints (Morgan, 1965) on ligand structures.
Incorporating CATH 4.2 data into PDBBind not only preserves the objectivity of the train/test/validation
partitions but also substantially decreases the similarities within ligand sets, as shown in Table 1.

Table 1: Similarity between Train/Validation/Test Sets of Proteins and Ligands. The values represent
similarity percentages for the original PDBBind dataset versus combined PDBBind with CATH datasets in
parentheses.

Protein Validation Test
Train 36.0% (36.2%) 38.0% (42.2%)
Validation - 39.08% (43.5%)

Ligand Validation Test
Train 72.2% (36.1%) 9.41% (3.11%)
Validation - 9.37% (3.17%)

Table 2 provides an overview of the partitioning details, facilitating a clear understanding of the distribution
of samples across different subsets of the dataset.

• PDBBind v2020: For consistency and comparability with previous studies, we first adhered to
the test/training/validation split settings outlined in established literature (Ingraham et al., 2019),
specifically following the configurations defined in the respective sources for the PDBBind v2020
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Table 2: Data Partitioning Overview (Unit: number of samples)
Dataset Train Validation Test
PDBBind v2020 9430 552 207
CATH 4.2 15261 939 -

datasets (Koh et al., 2023). Then, we filtered out those highly similar sequences (above 95%) to
keep the average similarities between 40%-50%.

• CATH 4.2: In our approach, we deliberately focused on proteins with fewer than 400 amino acids
and less similar (below 90%) sequences from the CATH 4.2 database. This selective criterion was
chosen to prioritize smaller proteins, which often represent more druggable targets of interest in drug
discovery and development endeavors. During both the training and validation phases, SMILES
strings of CATH 4.2 proteins were represented as asterisks (masked tokens) to denote unspecified
ligands. Notably, CATH 4.2 was excluded from the test set due to the absence of corresponding
ligands required for evaluating protein-ligand interactions.

5.1.2 Loss Functions

Previous models typically denoise in only one domain, such as ProteinMPNN (Dauparas et al., 2022),
LigandMPNN (Dauparas et al., 2023), and MIF (Yang et al., 2022) in sequence space, and DPL (Nakata
et al., 2023) in structural space. This limitation restricts their ability to fully capture the intricate interactions
between proteins and ligands. To address this, we have introduced significant modifications to the loss
function to better suit the task of ligand-binding protein redesign. By tailoring the loss function to integrate
both sequence and structural spaces, our approach effectively addresses the unique challenges of protein-
ligand interactions. Specifically, the optimization of our model for ligand-binding protein redesign is governed
by a composite loss function L, formulated as follows:

L = LWS + LKL + LCE, (18)

Weighted Sum of Relative Differences (LWS) This component ensures the model’s sensitivity to
the directional influence between atoms, supporting the accurate prediction of the denoised structure while
maintaining physical symmetries. It is crucial for the equivariant denoising step, enabling accurate noise
prediction for atoms in the protein-ligand complex. The loss is defined as:

LWS =
T∑

t=1
∥ϵ− ϵ̂θ(z; t)∥ , (19)

where T is the total number of time steps in the diffusion process, ϵ is the Gaussian noise vector N (0, I),
and ϵ̂θ(z; t) is the loss prediction at time step t parameterized by a weight MLP in Section 4.3.

Kullback-Leibler Divergence (LKL) (Joyce, 2011) This component quantifies the divergence between
the model’s predictions and actual sequence data at timestep t − 1, playing a pivotal role in the denoising
process. Defined as KL(xpred_t-1, seqt-1), it contrasts the predicted distribution, xpred_t-1, against the true
sequence distribution, seqt-1, leveraging the diffusion process’s γ parameter for temporal adjustment. This
loss is also applied in the Protein Generator (Lisanza et al., 2023) model to ensure the model’s predic-
tions progressively align with actual data distributions, enhancing the accuracy of sequence and structure
generation by minimizing the expected divergence.

Cross-entropy Loss (LCE) This loss function is crucial for the accurate prediction of protein sequences,
aligning them with the ground truth through effective classification. It denoises each amino acid from masked
latent embedding to a specific class, leveraging categorical cross-entropy to rigorously penalize discrepancies
between the model’s predicted probability distributions and the actual distributions for each amino acid
type.
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5.1.3 Training Performance

Throughout the training phase, we meticulously observed the model’s performance, paying close attention
to the dynamics between training and validation losses, as demonstrated in Figure 4. While the training loss
consistently diminished, indicating effective learning, the validation loss exhibited more variability. Despite
these fluctuations, the validation loss showed an overall downward trend, suggesting that the model is
improving its generalization capabilities over time. The general alignment between the downward trends of
training and validation losses indicates that the model is learning effectively without significant overfitting.
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Figure 4: Training history chart of ProteinReDiff, showcasing the evolution of training and validation losses
over epochs.

5.2 Evaluation Process

5.2.1 Ligand Binding Affinity (LBA)

Ligand binding affinity is a fundamental measure that quantifies the strength of the interaction between
a protein and a ligand. This metric is crucial as it directly influences the effectiveness and specificity of
potential therapeutic agents; higher affinity often translates to increased drug efficacy and lower chances of
side effects (Sawada et al., 2024). Within this context, ProteinReDiff is evaluated on its ability to generate
protein sequences for significantly improved binding affinity with specific ligands. We utilize a docking score-
based approach for this assessment, where the docking score serves as a quantitative indicator of affinity.
Expressed in kcal/mol, these scores inversely relate to binding strength — lower scores denote stronger, more
desirable binding interactions.

5.2.2 Sequence Diversity

Sequence diversity is crucial for exploring protein’s functional space (Ziegler et al., 2023). It reflects the
capacity of our model, ProteinReDiff, to traverse the vast landscape of protein sequences and generate a wide
array of variations. To quantitatively assess this diversity, we utilize the average edit distance (Levenshtein
distance) (Miller et al., 2009) between all pairs of sequences generated by the model. This metric offers
a nuanced measure of variability, surpassing traditional metrics that may overlook subtle yet significant
differences. The diversity score is calculated using the formula:

Diversity Score = 1(
n
2
) n−1∑

i=1

n∑
j=i+1

d(Si, Sj), (20)

where d(Si, Sj) represents the edit distance between any two sequences Si and Sj . This calculation provides
an empirical gauge of ProteinReDiff’s ability to enrich the protein sequence space with novel and diverse
sequences, underlining the practical variance introduced by our model.
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5.2.3 Structure Preservation

Structural preservation is paramount in the redesign of proteins, ensuring that essential functional and
structural characteristics are maintained post-modification. To effectively measure structural preservation
between the original and redesigned proteins, three key metrics: the Template Modeling Score (TM Score)
(Zhang & Skolnick, 2004), the Root Mean Square Deviation (RMSD) (Laskowski & de Beer, 2014), and
the Contact Overlap (CO) (Bastolla et al., 2023). These two metrics collectively provide a comprehensive
assessment of structural integrity and similarity, essential for evaluating the success of our protein redesign
efforts.

The Root Mean Square Deviation (RMSD) is a measure used to quantify the distance between two
sets of points. In the context of protein structures, these points are the positions of the atoms in the protein.
The RMSD is given by the formula:

RMSD(p, p′) = min
(R,t)∈SO(3)×R3

[
1
N

N∑
i=1
∥pi − (Rp′

i + t)∥2
2

]1/2

, (21)

where p = (xi, yi, zi)N
i=1 and p′ = (x′

i, y′
i, z′i)N

i=1 denote two sequences of N 3D coordinates representing the
atomic positions in the original and redesigned proteins, respectively. This formula calculates the minimum
root mean square of distances between corresponding atoms, after optimal superposition, which involves
finding the best-fit rotation R and translation t that aligns the two sets of points. A lower RMSD value
indicates a higher degree of structural similarity, making it a direct measure of the extent to which structural
deviation has been minimized. Achieving a low RMSD is desirable, as it signifies that the redesign process
has successfully preserved the core structural configuration of the original protein.

TM Score provides a normalized measure of structural similarity between protein configurations, which
is less sensitive to local variations and more reflective of the overall topology. The TM Score is defined as
follows:

TM Score(p, p′) = max
(R,t)∈SO(3)×R3

 1
1 + 1

N

∑N
i=1

∥pi−(Rp′
i
+t)∥2

2
d2

0

 , (22)

where d0 is a scale parameter typically chosen based on the size of the proteins. The closer the TM Score is
to 1, the more similar the structures are, indicating global structural alignment.

Contact Overlap (CO) provides a complementary perspective to RMSD and TM Score by focusing on
the preservation of local structural motifs rather than overall geometric similarity. Several studies show that
having high CO indicates protein’s residue pairs having co-evolutionary signals (Cheng et al., 2019; Bastolla
et al., 2023) and performing related functions (Iyer et al., 2020). CO quantitatively measures the conservation
of inter-atomic contacts between the original and redesigned protein structures, which are crucial for the
protein’s structural integrity and functional capabilities. The metric is defined as:

CO(p, p′) = |C ∩ C ′|
|C ∪ C ′|

, (23)

where C = {(i, j) : ∥pi − pj∥ < rc, i ̸= j} and C ′ = {(i, j) : ∥p′
i − p′

j∥ < rc, i ̸= j} represent the sets of
contacts in the original and redesigned proteins, respectively. Here, pi and p′

i are the positions of atoms in
the original and redesigned proteins, and rc is a predefined cutoff distance that determines when two atoms
are considered to be in contact. A high CO score indicates that many of the original contacts are preserved
in the redesigned structure, suggesting that the redesign maintains much of the original protein’s structural
network, which is crucial for its stability and function.

5.2.4 Experimental Setup

To evaluate ProteinReDiff, we employed Omegafold (Wu et al., 2022b) to predict the three-dimensional
structures of all designed protein sequences. The choice of Omegafold over AF2 was favorable because
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Omegafold can more accurately fold proteins with low similarity to existing proteomes, making it suitable
for proteins lacking available ligand-binding conformations. Next, we utilized AutoDock Vina (Trott & Olson,
2010) to conduct docking simulations and evaluate the binding affinity between the redesigned proteins and
their respective ligands based on the predicted 3D structures. To ensure fair comparisons and mitigate
potential biases introduced by pre-docked structures, we aligned our redesigned protein structures with
reference structures before docking. This approach is crucial, particularly because the use of pre-docked
structures may favor certain conformations, leading to inaccurate evaluations. Additionally, to provide
context for our results, we compared the binding scores of our redesigned proteins not only with those of the
original proteins but also with proteins generated by other protein design models. Although these models may
exhibit different sequence characteristics compared to those explicitly designed for ligand binding affinity,
comparing their scores offers valuable insights. Such comparisons help elucidate the interplay between protein
sequence and structure in determining ligand interactions, enriching the interpretation of our findings and
advancing our understanding of protein-ligand interactions.

Benchmark Model Selection In selecting benchmark models for performance comparison, we focused on
state-of-the-art approaches, particularly those relevant to protein design tasks. Traditionally, protein design
has been primarily based on inverse folding, utilizing protein structure information. Our choices encompass
a range of methodologies:

• MIF (Yang et al., 2022), MIF-ST (Yang et al., 2022), and ProteinMPNN (Dauparas et al., 2022) are
notable for generating sequences with high identity and experimental significance, utilizing protein
structure information.

• The Protein Generator (Lisanza et al., 2023), a representative of RosettaFold models (Watson et al.,
2023), employs diffusion-based methods, making it an intriguing comparative candidate. The model
also shares a similar loss function, LKL, in sequence space with our model but diverges in modules
and training procedures (i.e., stochastic masking).

• ESMIF (Hsu et al., 2022), belonging to the ESM model family (Lin et al., 2023b), stands as another
competitive benchmark, emphasizing the generation of high-quality sequences.

• CARP, while lacking ligand information, shares similar protein input and output characteristics with
our models, warranting inclusion for comparison.

• DPL (Nakata et al., 2023), originally geared towards protein-ligand complex generation, was adapted
for our purposes by modifying loss functions and incorporating a sequence prediction module, given
its alignment with our model architecture.

• LigandMPNN (Dauparas et al., 2023), resembling the most to our task in designing ligand-binding
proteins, necessitates binding pocket information, unlike our model, which emphasizes a simplified
yet effective approach for ligand-binding protein tasks.

Our model’s design prioritizes simplicity in input while achieving effectiveness in output for ligand-binding
protein tasks. For a comprehensive comparison of input-output dynamics across each model, please consult
Table 3.

5.2.5 Results and Discussion

We conducted comprehensive evaluation of ProteinReDiff, as detailed in Table 4 and visually represented in
Figure 6, across the metrics of ligand binding affinity, sequence diversity, and structure preservation. These
evaluations provide a clear depiction of the model’s performance relative to established baselines and within
its variations.

For ProteinReDiff, we aimed to capture the diverse conformations of ligand-binding proteins, recognizing
that they can adopt multiple structural states. To assess these conformations, we employed alignment
metrics such as TM score, RMSD, and contact overlap (CO). In Figure 5, we presented several instances
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Table 3: Comparison of protein design models based on input and output characteristics
Model Input Output

Protein Protein Ligand Binding Protein Protein Ligand
Sequence Structure SMILES Pocket Sequence Structure Structure

CARP (Yang et al., 2023a) ✓ × × × ✓ × ×
ESMIF (Hsu et al., 2022) × ✓ × × ✓ × ×
MIF (Yang et al., 2022) ✓ ✓ × × ✓ × ×
MIF-ST (Yang et al., 2022) ✓ ✓ × × ✓ × ×
ProteinMPNN (Dauparas et al., 2022) × ✓ × × ✓ × ×
LigandMPNN (Dauparas et al., 2023) × ✓ ✓ ✓ ✓ × ×
Protein Generator (Lisanza et al., 2023) × ✓ × × ✓ × ×
DPL (Nakata et al., 2023) ✓ × ✓ × × ✓ ✓
ProteinReDiff (Ours) ✓ × ✓ × ✓ ✓ ✓

where the contact overlap appeared to be maintained, yet the RMSD is large and TM score is low. This
discrepancy suggests that while global alignment metrics like TM score and RMSD may not adequately
capture the domain shift within these complex ensembles, the preservation of local motifs, as indicated by
contact overlap, remains crucial in our framework. This underscores the importance of capturing both global
and local structural features for a comprehensive understanding of protein-ligand interactions.

A pivotal observation from our study is ProteinReDiff’s unparalleled ability to enhance ligand binding affinity,
particularly at a 15% masking ratio in Figure 6. This configuration not only surpasses the performance of
Inverse Folding (IF) models and the original DPL framework but also exceeds the binding efficiencies of
the original protein designs. By incorporating attention modules from AlphaFold2, ProteinReDiff effectively
captures the complex interplay between proteins and ligands, demonstrating its superiority over the original
DPL model. While other masking ratios within ProteinReDiff show varying degrees of effectiveness, lower
ratios, though at the same par as reference, do not achieve the peak LBA performance observed at 15%. For
instance, the 5% masked model emphasizes structural consistency with a high TM-Score and low RMSD, but
does not exhibit the same level of binding capability as the 15% masking. These findings are also consistent
with ablation studies shown in Appendix C.1. Conversely, higher masking ratios fail to strike the necessary
balance between introducing beneficial modifications and maintaining functional precision, underscoring the
importance of optimizing the masking ratio.

Our analysis of sequence diversity and structure preservation metrics reveals a delicate balance essential in
protein redesign. The 15% masking ratio, identified as optimal for enhancing ligand binding affinity in our
model, also aligns closely with benchmark methods in both sequence diversity and structure preservation. For
instance, LigandMPNN excels in sequence diversity but faces challenges in obtaining binding pocket inputs
for various design tasks, unlike our approach. Moreover, our models (at 30% and 40% maskings) significantly
outperform others in contact overlap, crucial for diversifying structures while preserving functional motifs in
protein redesign tasks. This equilibrium underscores ProteinReDiff’s ability to optimize ligand interactions
without compromising the exploration of sequence diversity or the integrity of original protein structures.

In contrast, extreme values in either sequence diversity or structure preservation, which could be seen in
other masking ratios, do not lead to optimal ligand binding affinities. This finding highlights an inverse
relationship between pushing the limits of diversity and preservation and achieving the primary goal of
binding enhancement. Thus, the 15% masking ratio not only stands out for its ability to significantly
improve ligand binding affinity but also for maintaining a balanced approach, ensuring that enhancements
in functionality do not detract from the protein’s structural and functional viability.

In Figure 7, we compare the ligand-binding affinity (LBA) of original and redesigned proteins by Pro-
teinReDiff. The redesigned proteins maintain their original folds while significantly enhancing LBA. In
ablation studies (Section 5.2.6), we can apply various masking strategies to adjust both sequence diversity
and structural integrity. This approach has potential applications in different settings to control the affinity
of ligand binders.
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Figure 5: Comparative visualizations of protein structures, each annotated with its corresponding PDB
ID. The figure includes a succinct table detailing Contact Overlap (CO) and Root Mean Square Devia-
tion (RMSD) metrics. Original protein structures are highlighted in green, and the redesigned versions by
ProteinReDiff are depicted in pink, illustrating the precise structural changes and enhancements achieved
through the redesign.

5.2.6 Ablation Studies

Here we conducted thorough ablation studies on ProteinReDiff’s model architecture, featurization, and
masking ratios. For complete ablation setup, please refer to Table 7 (Appendix C.2)

Interpreting Model Architecture We trained ablated versions of ProteinReDiff without the SRA or
OPU modules and compared them to the original DPL model. Initially designed for generating ensembles of
complex structures, DPL was adapted for targeted protein redesign by adding sequence-based loss functions
to generate new target sequences.

In Figure 8, we computed the performance score by averaging the sum of five evaluation metrics introduced
in Sections 5.2.1, 5.2.2, and 5.2.3. Since the sequence diversity is not within the [0,1] range, we applied
Min-Max normalization. For LBA and RMSD, we used inverse normalization to ensure that a score closer
to 1.0 indicates better model performance. The average score is then compared with the baseline score of
ProteinReDiff which was trained without any ablations.

We observed that our model outperformed DPL by a large margin. Incorporating just the OPU module
(without the SRA module) yields better performance than DPL, indicating OPU’s ability to exchange
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Table 4: Comparison of method performance across multiple metrics: Ligand binding affinity (LBA), se-
quence diversity, and structure preservation. Ligand binding affinity (LBA), TM Score, and RMSD are
reported as mean values with their respective margins of error.

Category Method LBA
(kcal/mol) ↓

Sequence
diversity ↑

Structure preservation
TM Score ↑ RMSD (Å) ↓ CO ↑

Baseline

CARP -5.658 ± 0.301 185.532 0.850 ± 0.023 3.768 ± 0.553 0.922 ± 0.003
MIF -5.518 ± 0.381 185.600 0.877 ± 0.020 2.986 ± 0.468 0.938 ± 0.002
MIF-ST -5.596 ± 0.330 185.584 0.872 ± 0.021 3.026 ± 0.451 0.937 ± 0.003
ESMIF -5.555 ± 0.326 187.512 0.837 ± 0.021 4.000 ± 0.501 0.915 ± 0.003
ProteinMPNN -5.423 ± 0.225 188.792 0.714 ± 0.026 6.806 ± 0.616 0.859 ± 0.004
LigandMPNN -5.717 ± 0.287 191.384 0.782 ± 0.024 4.512 ± 0.668 0.915 ± 0.008
Protein Generator -5.674 ± 0.266 186.962 0.806 ± 0.022 4.431 ± 0.523 0.899 ± 0.003
DPL -5.551 ± 0.459 188.139 0.788 ± 0.024 5.094 ± 0.537 0.896 ± 0.009
Reference cases -5.847 ± 0.263 - - - -

ProteinReDiff
(Ours)

5% Masking -5.805 ± 0.252 185.935 0.864 ± 0.022 3.197 ± 0.470 0.942 ± 0.007
15% Masking -6.803 ± 0.329 186.627 0.845 ± 0.023 3.690 ± 0.508 0.935 ± 0.007
30% Masking -5.769 ± 0.244 187.877 0.803 ± 0.024 4.467 ± 0.544 0.916 ± 0.008
40% Masking -5.617 ± 0.366 188.600 0.756 ± 0.026 5.639 ± 0.625 0.896 ± 0.008
60% Masking -5.467 ± 0.318 190.425 0.305 ± 0.024 18.056 ± 0.773 0.735 ± 0.010
70% Masking -5.470 ± 0.199 187.291 0.147 ± 0.004 23.197 ± 0.497 0.689 ± 0.007

insights between single and pair representations. Firstly, the equivariant loss function is parameterized on
the structural space, making the pairwise representations from the OPU critical to that loss. Secondly,
without OPU, the model performs poorly on TMScore (the bottom brown line in Figure 11, Appendix C.2),
which measures global structural preservation. Additionally, introducing SRA only without OPU hurts our
model performance, suggesting the model would have been over-parameterized as the SRA updates primarily
on the sequence representation. Therefore, combining both the OPU and SRA modules provides an effective
approach for enhancing the representational learning of ProteinReDiff. A complete comparative assessment
is presented in Table 4 and Appendix C.2.

Ablations on Input Featurization Methods We conducted ablation studies to evaluate different input
featurization methods, including manual feature engineering for ligands and the use of ESM-2 as a pre-trained
LLM for protein featurization.

We gradually reduced ligand features, starting with ligand distance and bond information (e.g., types, ring),
and even omitted the entire bond and ligand. In Figure 8, omitting bond features and distance caused less
reduction in model performance than omitting the entire ligand. Ligand bond information is crucial for
the model to learn the relative positions of ligand atoms and adhere to geometric constraints within the
triangular update module (Section 4.2.3).

We observed a significant decrease in model performance when ESM embeddings were excluded (the red
bar in Figure 8). The ESM features alone (the brown bar) significantly boosted performance when training
without ligand data, as these embeddings are enriched with protein evolutionary and biophysical information
needed for both single and pair representations. Other protein features, such as position encodings and amino
acid types, provided slight improvements, though they were minimal. However, excluding ligand information
led to a reduction in model performance compared to the baseline, as the model relies on learning the overall
structure of the complexes.

Therefore, using pre-trained featurization methods, such as ESM and other protein BERT-like models, in
combination with ligand input, significantly enhances model training and performance.

Impact of Masking Ratios We examined ProteinReDiff’s performance with various percentages of
masked amino acids, adjusting the masking ratio as a hyperparameter and retraining our model. In Figure 9,
we observed consistent top performance across the metrics with masking ratios between 5% and 15%. This
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RMSD ↓

TMScore ↑ Contact Overlap ↑

Ligand Binding Affinity ↓

Figure 6: Visualization of method performance across metrics. The metrics are plotted with mean values
and margins of error. For LBA, the red bar (top right) shows the docking score of reference complexes. The
horizontal dash lines indicate the regions of 15% masking model which is our standard for comparison.

range is crucial for the protein redesign strategy, enhancing binding affinity while preserving the structural
and functional motifs of the target protein. The 15% masking ratio achieved the best ligand binding affinity,
the most important metric for capturing protein function.

Interestingly, we noticed performance spikes for 50% masking in contact overlap and TM-score. This is
because applying stochastic masks allows the model to learn representations with varied masking from 0
up to the set ratio. Although the 50% masking does not surpass the 15% masking’s performance, the
improvement in the high masking regime demonstrates the robustness of our training scheme.

Overall, this investigation highlights the optimal level of sequence masking needed to enhance ligand binding
affinity, sequence diversity, and structural preservation. It also reinforces training strategies for protein
redesign as shown on the Discussion section (5.2.5).
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Figure 7: Comparative visualizations of protein-ligand complexes, each labeled with corresponding PDB IDs
and accompanied by a small table showing Ligand Binding Affinity (LBA) before and after the redesign.
Original structures are highlighted in green, while redesigned versions by ProteinReDiff appear in pink.
Ligands are depicted in various colors to emphasize specific binding sites and molecular interaction enhance-
ments post-redesign.

6 Conclusions

This study introduces ProteinReDiff, a computational framework developed to redesign ligand-binding pro-
teins. By utilizing advanced techniques inspired by Equivariant Diffusion-Based Generative Models and the
attention mechanism from AlphaFold2, ProteinReDiff demonstrates its ability to enhance complex protein-
ligand interactions. Our model excels in optimizing ligand binding affinity based solely on initial protein
sequences and ligand SMILES strings, bypassing the need for detailed structural data. Experimental val-
idations highlight ProteinReDiff’s capability to improve ligand binding affinity while preserving essential
sequence diversity and structural integrity. These findings open new possibilities for protein-ligand complex
modeling, indicating significant potential for ProteinReDiff in various biotechnological and pharmaceutical
applications.
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A Benchmarking ProteinReDiff against Related Models

Figure 10: Boxplot illustrating the distribution of ligand binding affinities, and structure preservation met-
rics (TM Score and RMSD) across all methods evaluated, including baseline models and variations of Pro-
teinReDiff. Each boxplot showcases the median, quartiles, and outliers within the data, providing insight
into the variability and central tendency of each metric across the dataset’s samples.
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B Evaluating Protein-Ligand Complex Representation

Evaluation Methodology In the continuation of our study’s exploration of protein-ligand complex repre-
sentations, we extended the use of the PDBBind v2020 dataset, previously detailed in our training process,
to evaluate the effectiveness of embeddings generated by ProteinReDiff. Employing these embeddings as
input features, we trained a Gaussian Process (GP) model aimed at predicting ligand binding affinity. The
choice of a GP model, recognized for its probabilistic nature and adaptability to the nuanced, uncertain
dynamics of biological interactions, was pivotal in assessing how well our embeddings encapsulate predictive
information about protein-ligand interactions. The GP model used a Gaussian likelihood, which is appropri-
ate for regression tasks, along with a Radial Basis Function (RBF) kernel. We chose the RBF kernel due to
its effectiveness in modeling smooth, continuous variations, which is characteristic of protein-ligand binding
affinities. The training of the GP model focused on optimizing the parameters to ensure a robust fit to the
training data.

Table 5: Experimental results of ligand binding affinity prediction task on PDBBind v2020 dataset.

Approach RMSE ↓ MAE ↓ Pearson ↑ Spearman ↑
(− log Kd/Ki) (− log Kd/Ki)

Pafnucy (Stepniewska-Dziubinska et al., 2018) 1.435 1.144 0.635 0.587
OnionNet (Zheng et al., 2019) 1.403 1.103 0.648 0.602
IGN (Jiang et al., 2021) 1.404 1.116 0.662 0.638
SIGN (Li et al., 2021) 1.373 1.086 0.685 0.656
SMINA (Koes et al., 2013) 1.466 1.161 0.665 0.663
GNINA (McNutt et al., 2021) 1.740 1.413 0.495 0.494
dMaSIF (Sverrisson et al., 2021) 1.450 1.136 0.629 0.588
TankBind (Lu et al., 2022) 1.345 1.060 0.718 0.689
GraphDTA (Nguyen et al., 2020) 1.564 1.223 0.612 0.570
TransCPI (Chen et al., 2020) 1.493 1.201 0.604 0.551
MolTrans (Huang et al., 2020) 1.599 1.271 0.539 0.474
DrugBAN (Bai et al., 2023a) 1.480 1.159 0.657 0.612
DGraphDTA (Jiang et al., 2020) 1.493 1.201 0.604 0.551
WGNN-DTA (Bai et al., 2023b) 1.501 1.196 0.605 0.562
STAMP-DPI (Wang et al., 2022) 1.503 1.176 0.653 0.601
PSICHIC (Koh et al., 2023) 1.314 1.015 0.710 0.686

ProteinReDiff (Our) 1.443 1.168 0.721 0.639

C Ablation Studies

C.1 Mask ablations

Table 6: Ablation Study Results on Mask Ratios. The table shows the impact of different mask ratios on
validation and test set performance metrics.

Mask
Ratio

Valid Test

LBA ↓ Sequence
Diversity ↑ TM-Score ↑ RMSD ↓ CO ↑ LBA ↓ Sequence

Diversity ↑ TM-Score ↑ RMSD ↓ CO ↑

5% -4.602 ± 0.377 87.252 0.555 ± 0.023 8.225 ± 0.510 0.788 ± 0.008 -6.058 ± 0.182 180.800 0.734 ± 0.025 6.685 ± 0.629 0.879 ± 0.010
10% -4.410 ± 0.541 89.472 0.598 ± 0.022 7.808 ± 0.544 0.873 ± 0.008 -6.101 ± 0.194 184.564 0.739 ± 0.027 7.108 ± 0.784 0.883 ± 0.010
15% -4.890 ± 0.303 89.601 0.581 ± 0.022 8.252 ± 0.537 0.867 ± 0.008 -6.202 ± 0.167 184.925 0.729 ± 0.025 7.257 ± 0.768 0.877 ± 0.010
30% -4.596 ± 0.257 90.643 0.453 ± 0.022 10.707 ± 0.604 0.820 ± 0.008 -5.553 ± 0.188 181.978 0.221 ± 0.015 21.166 ± 0.740 0.707 ± 0.009
40% -4.668 ± 0.281 89.091 0.297 ± 0.016 14.309 ± 0.497 0.768 ± 0.008 -5.794 ± 0.286 185.136 0.390 ± 0.024 15.014 ± 0.717 0.750 ± 0.011
50% -4.052 ± 1.162 90.445 0.390 ± 0.020 10.886 ± 0.424 0.788 ± 0.009 -6.034 ± 0.177 188.163 0.567 ± 0.029 10.239 ± 0.688 0.807 ± 0.012
60% -4.678 ± 0.262 88.643 0.226 ± 0.011 14.142 ± 0.337 0.729 ± 0.007 -5.981 ± 0.258 184.356 0.243 ± 0.017 18.092 ± 0.525 0.702 ± 0.009
70% -4.214 ± 0.264 81.333 0.165 ± 0.004 18.226 ± 0.456 0.733 ± 0.007 -5.360 ± 0.175 162.841 0.145 ± 0.004 24.944 ± 0.646 0.689 ± 0.008

C.2 Featurization and model architecture ablations
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Table 7: Ablation Setup of Featurization and Model Architecture
Ablation studies
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N
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(N
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PU

)

Bond distance ✓ ✓ ✓ ✓ ✓
Ligand Bond feats (type, ring,

etc.)
✓ ✓ ✓ ✓ ✓

Ligand atom feats (chi-
rality, charge, degree,
etc.)

✓ ✓ ✓ ✓ ✓ ✓ ✓

Protein ESM embeddings ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Residue feats (pos. en-
codings, res. type)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Model ar-
chitecture

Single Representation
Attention (SRA)

✓ ✓ ✓ ✓ ✓ ✓ ✓

Outer Product Update
(OPU)

✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 8: Ablation Study Results on Input Featurization Methods. The table presents the impact of various
feature removals on performance metrics.

Features LBA ↓ Sequence
Diversity ↑ TM-Score ↑ RMSD ↓ CO ↑

Reference -4.890 ± 0.303 89.601 0.581 ± 0.022 8.252 ± 0.537 0.877 ± 0.008
No bond -4.549 ± 0.272 84.837 0.287 ± 0.016 14.325 ± 0.491 0.761 ± 0.009
No bond distance -4.869 ± 0.277 90.186 0.447 ± 0.021 11.068 ± 0.579 0.821 ± 0.008
No bond feats -4.985 ± 0.289 85.974 0.475 ± 0.022 9.748 ± 0.476 0.811 ± 0.010
No ESM -2.723 ± 0.176 32.222 0.136 ± 0.007 37.322 ± 1.032 0.748 ± 0.008
No ligand -4.478 ± 0.252 87.723 0.324 ± 0.018 14.125 ± 0.571 0.780 ± 0.008
No OPU -3.197 ± 0.304 71.669 0.102 ± 0.006 40.969 ± 1.246 0.723 ± 0.004
No SRA -4.878 ± 0.282 87.054 0.424 ± 0.023 11.391 ± 0.556 0.810 ± 0.009
DPL -4.153 ± 0.631 86.379 0.311 ± 0.019 13.931 ± 0.527 0.744 ± 0.009
No ligand, only ESM -4.429 ± 0.270 88.481 0.390 ± 0.020 13.108 ± 0.702 0.813 ± 0.007
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Figure 11: Breakdown of metrics for ablation models based on different featurization methods and architec-
tural adjustments. The dashed line indicates the baseline ProteinReDiff model trained without any ablations.

32


	Introduction
	Related Work
	Traditional Approaches in Protein Design
	Deep Generative Models in Protein Design
	Current Approaches in Ligand-Binding Protein Redesign

	Background
	Protein Language Models (PLMs)
	Equivariant Diffusion-based Generative Models
	The Diffusion Procedure
	The Generative Denoising Process


	Method
	Input Featurization
	Residual Feature Update Procedure
	Single Representation Attention Module
	Outer Product Update
	Triangle Multiplicative Updates 

	Equivariant Denoising 

	Experiments
	Training Process
	Materials
	Loss Functions
	Training Performance

	Evaluation Process
	Ligand Binding Affinity (LBA) 
	Sequence Diversity 
	Structure Preservation 
	Experimental Setup
	Results and Discussion 
	Ablation Studies 


	Conclusions
	Benchmarking ProteinReDiff against Related Models
	Evaluating Protein-Ligand Complex Representation 
	Ablation Studies 
	Mask ablations 
	Featurization and model architecture ablations 


