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Abstract

What should a function that extrapolates beyond known input/output examples look like? This
is a tricky question to answer in general, as any function matching the outputs on those examples
can in principle be a correct extrapolant. We argue that a “good” extrapolant should follow
certain kinds of rules, and here we study a particularly appealing criterion for rule-following
in list functions: that the function should behave predictably even when certain elements are
removed. In functional programming, a standard way to express such removal operations is by
using a filter function. Accordingly, our paper introduces a new semantic class of functions — the
filter equivariant functions. We show that this class contains interesting examples, prove some
basic theorems about it, and relate it to the well-known class of map equivariant functions. We
also present a geometric account of filter equivariants, showing how they correspond naturally to
certain simplicial structures. Our highlight result is the amalgamation algorithm, which constructs
any filter-equivariant function’s output by first studying how it behaves on sublists of the input,
in a way that extrapolates perfectly.

Keywords: equivariance, extrapolation, length generalisation, geometric deep learning

1. Introduction

We want to mathematically characterise functions with certain kinds of rule-following behaviour.
Given an example behaviour like reverse [2, 3] = [3, 2], why prefer the extrapolation reverse [2, 4,
3] = [3, 4, 2] over, say, reverse [2, 4, 3] = [2, 4, 3]7 We identify cases where this question has a
precise answer based on certain symmetries, which does not rely on implied semantics of reverse.

A practical motivation for our work comes from machine learning. In 2025, it is difficult to find
tasks that neural network models do not do well, but length-based generalisation remains one
such case. In many other domains, symmetries have been a crucial tool in supporting out-of-
distribution generalisation. While we do not develop this here, we propose that the symmetries
we identify for list functions could play a similar role for length generalisation of neural networks.

* Work performed while at Google DeepMind.
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2. Symmetries of list functions, and filter equivariance

We study symmetries of list functions, i.e. functions of the form f : [a] — b, mapping lists of
elements of type a — which we denote using [a] — to an output of type b.

As will be shown, the specific kind of symmetric behaviour we will study here — which we call
equivariance — necessarily implies that b = [a], i.e., the function must map from lists to lists,
without changing the underlying type of the elements. This allows the composition of these
functions in arbitrary order. We define list function equivariance as follows:

Definition 1 We say that a list function f : [a] — [a] is equivariant' with respect to a particular
transformation g : [a] — [a] if, when composing f with g, the composition order does not matter.

Our work is not the first to study list function symmetries. In particular, a well studied symmetry
is with respect to the map : (¢ — b) — [a] — [b] function. For a given element-wise function
¥ :a — b, map v : [a] — [b] applies ¥ to each element of the input independently. It is a standard
result that we can characterise all functions that commute with map as natural transformations
from the list functor to itself, and the idea may be generalized to other functors too, such as trees.
While map-equivariant functions are certainly important and elegant, they have no direct bearing
on length-general extrapolation; as map does not change the length of the list it operates over.
To go further in our objective, we need to study operators that perturb a list’s length.

This can usually be done either by adding

or removing elements from it. In general, f
removals tend to be easier to reason about,
as they constrain the space of possible ele- filter (2 @)
ments that can be transformed. Further, re- < <
movals based on element position (e.g. remov-
ing the last element) would exclude several im-
portant rule-following functions from consider-
ation, such as reverse and sort. This motivates
us to consider remowals by value.

filter (# @)

Figure 1: We leverage filter equivariance as a way

to express functions which are length-

2.1. Equivariance to filter invariant through removing items by
value. A filter-equivariant (FE) func-
tion f may be composed with filter in

The canonical way to remove elements by value oo
any order, yielding the same results.

is to apply the function filter : (a — Bool) —
[a] — [a] that selects just those elements from a list that match a predicate function ¢ : a — Bool:

filter even [1,2,3] = [2] filter odd [1,2,3,4] = [1, 3]

For a function to be symmetric to all kinds of value-based removals, we need it to remain equiv-
ariant across all choices of predicates ¢, as follows (see Figure 1):

1. Readers familiar with geometric deep learning (Bronstein et al., 2021, GDL) will likely recognise that this
definition of equivariance is weaker than usual, as g is not constrained by a group structure. This means it does
not need to be a lossless transformation. In this sense, the functions we study here are more easily expressed
by frameworks going beyond GDL, such as categorical deep learning (Gavranovié et al., 2024, CDL).
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Definition 2 We say that a list function f : [a] — [a] is filter-equivariant (FE) if, for all choices
of ¢ : a — Bool, composing [ with filter ¢ gives the same result in either order:

V¢ : a — Bool. (filter ¢) - f = f - (filter ¢) (1)

Further, f : [a] — [a] is natural filter-equivariant (NFE) if it is both map- and filter-equivariant.

It’s worth briefly surveying a few prominent examples of (N)FEs. Namely, key NFEs are reverse
and inflate n, where inflate : Nat — [a] — [a] repeats each element in the list n times. These two
functions turn out to be the only important basis functions for NFEs, as all other NFEs can be
obtained by function composition and concatenation of these primitive functions. For reasons of
brevity we cannot derive this here, but leave it to Appendix AZ.

Clearly, all NFEs are also FEs, but the converse does not hold. The sort function, as well as
filter ¢ itself, are filter equivariant but not NFEs. Intuitively, map equivariants cannot depend on
inputs’ values — otherwise there would exist a v for which map v would modify their behaviour.
An example of a function that is map equivariant, but is not FE is triangle, which repeats the ith
element of an input list 7 times, e.g. triangle [3,7,5] = [3,7,7,5,5,5]. This is due to the fact FEs
cannot depend on elements’ absolute position (which filter may easily displace).

3. Amalgamation

Now we demonstrate our key result, showing exactly how filter equivariance supports length
generalisation. In particular, we show how an FE’s behavior on any list is determined by its
behaviour on all of that list’s sublists with two unique elements.

For example, if a function f : [a] — [a] is FE, and we know the following:
f12,1,2] =11,2,2] f13,2,2] =1[2,2,3] f13:1]=11,3]
we can deduce f [3,2,1,2] = [1,2,2,3]—we extrapolated sort-like behaviour from small examples!

For a given input list xs, one needs to apply all necessary filters to reduce xs to two unique
elements. Then, we compute f on these smaller lists, and ‘glue’ the results together. This process
of gluing partial results together we call amalgamation, and it is depicted in Figure 2.

Firstly, we need a way to reason about these collections of filtered lists. Let X be the set of all
possible values in our input list, and let X'\ zs be the set X with elements in zs : [X]| removed. Then
we can reason about filtered collections as x : [X] — [X] such that x zs € [X \ zs]. Intuitively, x zs
may represent the result of f when filtering out elements in zs, e.g. x zs = f (filter (¢ zs) xs).

Clearly, not every such collection of lists can be amalgamated into one unique list. Therefore, we
need to carve out a subtype of [X]| — [X \ zs] containing only amalgamable collections—collections
for which only one, unique and correct way to amalgamate exists.

We can define this subtype recursively. Firstly, we can define the predicate AMy X, of collections,
X : [X] = [X\zs], from which the first element, xo : X, is amalgamable:

X € AMy X <= 3x¢ € X. Vzs: [X]. 9 ¢ zs = head (x zs) = xo,

2. We can also reason about the more general case of FEs, but the derivation is less clean—see Appendix B.
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Figure 2: The process of amalgamating the output of f [z1,x9, x3, 24, 25] = [y1, Y2, Y3, Y4, ys], for
the same filter-equivariant function f and input as presented in Figure 1.

where head : [a] — a returns the first element (“head”) of its input list. This means that all lists
in the collection that still have g must put it at the first position.

Now, we must ensure the amalgamability is also maintained across the rest of the list, and using
AMg, we can ground a recursive procedure to do so. We define a new predicate, AM X, by:

XEAMX < (Vzs:[X]. xzs=]])
V (x € AMg X A dx € AM X)
where 0 : [X] — [X\zs] is defined as follows:

5x 25 = {X zs zo(x) € zs
tail (x zs) zo(x) ¢ zs

where z((x) is the unique head element of zs (which must exist if x € AMy X). The definition of
AM X entails that amalgamable collections either have no elements left to amalgamate, or they
can uniquely amalgamate the first element x(, and the remaining collection of lists, dx — obtained
by removing zo(x) from the head of all relevant lists, by the use of tail — is amalgamable.

Using this definition, we can establish an isomorphism between [X] and AM X, via the function
amal : AM X — [X] which repeatedly extracts the first element until convergence:

amalxz{u Vzs: [X]. x zs =] @)

xo(x) :: amal 0x otherwise

This can be interpreted as iteratively searching for xo() by majority voting (see Appendix C).

With this framework in place, all that remains is to prove that applying f to all sublists of zs
with two unique elements forms an amalgamable collection—this is our key theorem, which we
prove in Appendix D for reasons of brevity.

Theorem 3 Let [ : [X] — [X] be filter-equivariant, and xs : [X] be a list with at least three
unique elements. Then, amal can perfectly reconstruct f xs from knowledge of the collection
{f ys}, where ys ranges over all sublists of xs with two unique elements.

Using this result, we can conclude that filter equivariance entails a rigorous form of rule-following,
allowing perfect extrapolation from small examples, in a way that’s strictly specified by the amal
function — while capturing many wuseful functions such as sort, reverse and filter. Future work can
utilise our theoretical grounding to construct “deep FEs” operating in high-dimensional spaces.
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Appendix A. Characterising all NFEs

As hinted in the main body of the paper, there is a neat way in which we can express the collection
of all natural filter equivariant functions (NFEs) — this Appendix explores this in greater depth.

Firstly, we can create new (N)FEs by combining existing ones via concatenation and composition.
In other words, (N)FEs possess the following two monoid structures:

Lemma 4 NFEs (and FEs) form a monoid with unit being the constant function mapping every
list to the empty list, and with addition defined by pointwise list concatenation:

(f 4 9g) xs = (f zs) 4 (g zs)

Lemma 5 NFEs (and FEs) form another monoid with the unit being the identity function and
the composition of two (N)FEs giving an (N)FE.

Given a list zs :: [a], we denote by |xrs| the elements occurring in zs. This function may be
defined, for example, in Haskell, as follows:

=1 :: [a] —> [a]
001 =10
|x:xs| = x : | filter (/= x) xs |
Note that | — | : [a] — [a] is FE but not NFE. Our first insight is that FE functions do not add

any new values to the input list. (As a corollary, FE functions must map the empty list to the
empty list.)

Lemma 6 Let f : [a] — [a] be filter-equivariant. Then, for all input lists zs : [a], |f xzs| C |zs|.

Proof: Let xs be a list, assume y ¢ |zs| and we can show y ¢ |f xs|. Define the predicate ¢
by ¢ z := (2 # y). Then f xs = (f - filter ¢) xzs = (filter ¢ - f) xs = filter ¢ (f xs). Therefore,
y & |f wsl.


https://proceedings.mlr.press/v235/gavranovic24a.html
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A.1. Properties of (k-)NFE functions

Recall that natural filter equivariants (NFEs) are functions that are equivariant to both map and
filter. This is a very strong pair of constraints: it implies that the function must both behave
predictably across various lengths and its behaviour must not depend on the values of the items
inside the list. We begin by studying NFEs, as these constraints will more easily yield interesting
mathematical structure.

As a general note for what follows, we may assume without loss of generality that the input list
to any NFE has unique elements. One way to force the elements of an input list xs to be unique
by “tagging” each element with its index:

enumerate [zg, Z1,. .., %] = [(20,0), (1,1),..., (Tn,n)]
This operation can be undone by:

unenumerate [(x0,0), (x1,1),..., (xn,n)] = [T0o, 21, ..., Zn]

Noting that unenumerate = map first, we can see that uniquification of input elements preserves
the operation of any natural transformation f, in the following sense:

unenumerate - f - enumerate = (map first) - f - enumerate
= f - (map first) - enumerate
= f - unenumerate - enumerate

=f

The first result we show for NFEs is that they must replicate each element a consistent number
of times—if a particular element is replicated k times by an NFE, all of them must be replicated
k times.

Lemma 7 Let f : [a] — [a] be natural filter-equivariant and let k = len(f [*]) where * : 1. Then,
for all inputs zs : [a], we have len (f xs) = k x (len xs). Further, if x occurs m times in xs, then
x occurs k x m times in f xs.

Proof: First, we use the map equivariance of f to show that, when applied to any singleton list,
it must return a list of length k. Further, we know — due to Lemma 6 — that this list can only
contain the singleton element in the original input list. Now, we can use the filter equivariance
of f to extend the result for singletons to arbitrary lists with no repeated elements. For the
case where the input list contains repeated elements, we can apply enumerate as described above,
apply the previous result, and then use map equivariance to conclude the proof.

We call a function f : [a] — [a] a k-NFE if it is an NFE that maps singletons to lists of length k.
We first describe 1-NFEs and then tackle the general case. Since Lemma 7 implies that 1-NFEs do
not modify the overall collection of values in the input, they are nothing more than a pre-defined
permutation of the input elements—a standard example of which is reverse. By map equivariance,
a 1-NFE must therefore be given by a family of permutations ¢ : [] Nzt Perm(n) where Perm
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maps every natural number n to the set of permutations on the set {0,..,n — 1}. For the specific
case of reverse, these permutations are

treverse = [Hv [0]7 [17 O]? [27 17 0]7 [37 27 17 0] e ]

While this approach will allow us to define 1-NFEs, we still need to include the coherence con-
ditions relating the various permutations (¢ 0 to ¢t 1 to ¢t 2, etc.). This is the essence of length-
generality: the permutations at longer lengths need to be systematically related to the ones at
shorter lengths. To define this coherence, we leverage simplicial algebra:

Definition 8 Let A be the semi-simplicial category. Its objects are the finite natural numbers
(thought of as sets {0,1,...,n — 1} for n : Nat), and its morphisms n — m are inclusions.
A semi-simplical set is a functor F' : A°P — Set, i.e. a family of sets F(n) with functions
F(f): F(m) — F(n) for every inclusion f :n — m, obeying the functoriality laws.

With the concept of semi-simplicial sets handy, we can define two particularly important semi-
simplicial sets: the terminal set and the permutation set:

Example 1 The terminal semi-simplicial set, 1, is the functor that maps every object to the
one-element set. The functor Perm is the semi-simplicial set that maps n to the set Perm(n) of
permutations on n. Given any inclusion f : n — m, define Perm(f) : Perm(m) — Perm(n) to map
a permutation on m elements to the permutation on n elements, by simply removing the elements
in m that are not in n.

Using these two semi-simplicial sets, we can formally, coherently define a 1-NFE:

Lemma 9 A I-NFFE is exactly the natural transformation 1 — Perm. That is, a 1-NFE is a
family of permutations ty, : Perm(n) such that for every inclusion f :n — m, t, = Perm(f) t,,.
We call such families semi-simplicial permutations.

Indeed, those familiar with the terminology of category theory will note that a 1-NFE is simply
a cone over the functor Perm and that the set of 1-NFEs is lim,,_,o, Perm(n). Below we will refer
to families like this as cones, for brevity.

Next, we turn to the general case of k-NFEs, where a similar story can be told. We know — by
Lemma 7 — that a k-NFE maps lists of length n to lists of length k x n, by mapping a list zs to a
permutation of inflate £ xzs. Because of the map equivariance of NFEs, this data is given through
a permutation of k x n, i.e., an element of Perm(k x n). Thus, we define:

Definition 10 The semi-simplicial set of k-permutations is defined by the functor

—xk Perm
AP X8 A0p TETT Gt

A cone for the above functor is called o k-semi-simplicial permutation.

Using k-semi-simplicial permutations, we can extend our definition of 1-NFEs to k-NFEs analo-
gously:
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Lemma 11 A particular k-NFE is a k-semi-simplicial permutation, and hence the set of all
k-NFEs is limy,_,o Perm(n x k).

Just as natural transformations give a categorical interpretation of map equivariance, semi-
semplicial permutations develop the category theory for filter equivariance. In the next section,
we turn to type theory.

A.2. Inductive characterisation of NFEs

Given the relationship between k-semi-simplicial permutations and 1-semi-simplicial permuta-
tions, one may wonder if k-NFEs can be built from 1-NFEs. A positive answer would hint at a
compositional semantics for NFEs where k-NFEs are built from &’-NFEs for k' < k.

This claim turns out to be true, and it is possible to provide an inductive presentation of the set
of NFEs as an inductive data type. Concretely, in Haskell, we have:

data NFE = Z
| P Nat NFE
| N Nat NFE

To be clear, the data type NFE contains only the unique representations of NFEs 2 and is a drastic
simplification of the formal definition of NFEs, which consists of data (as above) which must obey
equivariance constraints (missing from the above).

Rather than providing NFEs as an inductive data type, we could give k-NFEs a definition as an
inductive family, by defining NFE : Nat — Set mapping k to the set of k-NFEs. The only reason
why we chose not to do so is because we have currently found no use for such a presentation.

To understand the inductive type NFE, consider it as a defining lists of natural numbers with two
different ways to construct them. Indeed,

Lemma 12 There is a bijection between NFE and List(Nat 4+ Nat).

We now explain how NFE represents an NFE by giving a function mapping every element of the
data type NFE to an actual NFE. Since NFE is the free monad on Nat 4+ Nat, and NFEs form a
monoid, it suffices to map Nat+Nat to the class of NFEs. We do this by sending an element n of the
first injection to the NFE inflate n and an element n of the second injection to reverse - (inflate n).
This gives the following function

[[ -1] :: NFE -> [a] -> [a]

[[ Z 1] xs (]

[l Pnm]] xs = inflate n xs ++ [[ m ]] xs

[[ Nnm]] xs = reverse (inflate n xs) ++ [[ m 1] xs

3. The constructors P and N are assumed to have their first input as n : Nat, where n > 1.
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That every element of NFE generates an NFE is clear, since we have already seen that NFEs
contain the constant function returning the empty list [1, contain reverse and inflate n, and are
closed under function composition and under concatenation. To see these are the only NFEs, we
can first leverage map equivariance to show that the only 1-NFEs are the identity and reverse.

This result scales to k-NFEs by enumeration across k; it further shows the following:
Lemma 13 The number of k-NFEs is 2 x 3*~1 when k > 1.

For example, the only 2-NFEs are inflate 2, reverse- (inflate 2), identity - identity, reverseidentity,
identity H reverse, and reverse 4 reverse — six functions in total.

Appendix B. Characterising filter equivariants

Having established the foundations that allowed us to characterise all NFEs, we are ready to
relax the map equivariance constraint, and refine our analysis for the case of FEs — the crux of
our paper.

Recall how we characterised NFEs by the fact they will inflate the input list by a certain constant
k (leading to k-NFEs). It is possible to generalise this to the FE case—however, when doing so,
not all elements will necessarily be replicated by the same amount, leading to the following result:

Lemma 14 Given a filter-equivariant function f : [a] — [a], there is an underlying function
® : a — Nat — Nat such that if © occurs n times in s, then x occurs ®(x,n) times in f xs

Proof: The proof of the above defines
®(z,n) = len(f (repeat n z))

To prove the lemma, use filter equivariance for the specific function filter ¢ keeping only the
element of interest, i.e., ¢ z := (z = x). O

With knowledge of the occurrence function ®, we can characterise the final output of any FE as
follows:
Lemma 15 Let f be filter-equivariant. Then, if the distinct elements of xs are [x1,...,2,] and
x; occurs n; times in xs, then f xs is a permutation of

concat [ repeat ®(z;,n;) z; | 1<i<n]
These permutations must be coherent with respect to the same semi-simplicial structure used

to describe NFEs. To formalise this statement, we can generalise the idea of k-NFEs to ®-FEs,
where ® : ¢ — Nat — Nat is the corresponding occurrence function of the FE.

We characterised k-NFEs via functors whose domain was the semi-simplicial category A, because
all we needed to know was the length of the list — map equivariance meant we could assume,
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without loss of generality, that all elements were distinct. This is not the case for ®-FEs where
we need to know which elements are in the input list and what is their multiplicity (the two inputs
for ®). This is a setting suitable for multisets (also known as bags), and hence we define category
Bag as follows

Definition 16 The category Bag is defined as follows

e Objects are tuples (n, f) with finite numbers n : Nat and functions f : Fin n — Nat.*

e Morphisms (n, f) — (', f') are inclusions i : n — n' such that f = f'-i

The idea is that an object (n, f) represents a multiset of n distinct elements, where the ith element
(0<i<mn-—1)occurs f i times. Using this structure — which entirely represents our input list’s
item counts — we can now map it into the semi-simplicial category A:

Definition 17 Given an occurrence function ® as above, there is an induced functor P : Bag — A
sending (n, f) to (3, : Fin n) ®(4, f 9).

Now we can use this mapping to characterise all ®-FEs, just as we did for k-NFEs before. A
®-FE will be a family of permutations which are coherent to ensure filter equivariance. This is
exactly a ®-cone.

Lemma 18 A ®-FF function is a cone over the functor Perm - P.

What is pleasing about this construction is that we have a very similar characterisation for ®-
FEs as we had for k-NFEs. Indeed, the characterisations coincide on NFEs. Using this, we can
enumerate specific mechanisms for defining filter-equivariant functions. The most interesting is
the clause showing how recursive functions defined by iteration may be filter equivariant.

Lemma 19 The following claims are all true:

o If f € FE and f’' € FE, then f +# f' € FE and f - f' € FE.
o If f € NFE then f € FE.
o Ifa:a— [a] — [a] is such that

filter ¢ (a(xz,xs)) = filter ¢ xs ¢ = = false
filter ¢ (a(z,xs)) = ofx,filter p xs) ¢ x = true

then foldr o [| € FE, where foldr is the right fold®, such that, for a given list xs =
[:L‘l, PN ,$n].'

foldr a [| s = a(z1, a(x2, af. .., a(xp—_1,(zn,[]))))) -
Note this example covers sort, reverse and filter ¢, most of the specific FEs we discussed
before.

4. Here Fin : Nat — Set explicitly transforms a number to a set of that size.

5. The general signature of the right fold is foldr : (a — b — b) — b — [a] — b. foldr f z : [a] — b is a standard
way to represent iterative computation: the function f is applied iteratively to the entries of the input list in
[a], with the value of z : b used to “seed” the computation.

10
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Appendix C. Pseudocode of amalgamation for FEs

With the results in the main paper body, it suffices to generate all sublists of two unique elements,
compute f on those sublists, and then execute amalgamation to reconstruct f xs. This procedure
is outlined in Figure 2, and represented by the following pseudocode:

Input: filter-equivariant f: [X] — [X], 2zs:X, |X|>3
X
for X' C X s.t. | X'|=]X|—-2do
| x < (f (filter (¢ X') xs)) = x
end
ys < |
while 3l € x s.t. len [ > 0 do
for x ¢ X do
| score(z) «+ 0
end
for [ € y do
if len [ > 0 then
| score(head 1) < score(head 1) + 1
end
end
T 4 argmax,cx score(x)
YS < xo = YS
for [ € x do
if len [ > 0 then

if head [ = zy then
|1« tail

end
end

end
end
return reverse ys

Appendix D. List collections of two unique elements are amalgamable

To lay the groundwork for proving our work’s key Theorem, we first establish an isomorphism
between [X] and AM X. Specifically, in one direction, we can map lists in X to amalgamable
collections in AM X by way of the filter collection, w: [X] — X — [X \ z], defined by 7 xs z =
filter (# x) xs. In the other direction, as already hinted in the main text, we can invert this
function by amalgamating—so long as the input list zs : [X] has at least three elements:

Lemma 20 Let zs : [X] be a list with at least three unique elements. Then m xzs € AM X.
Further, m is an isomorphism with amal as its inverse.

Proof: The first statement (on amalgability of m zs) holds by induction on zs, noting that
7 - tail = ¢ - w. This statement can also be used to prove amal - 7 = identity. O

11
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It will also be useful to note that this same logic allows us to amalgamate 7 (f xs), for any
filter-equivariant f : [X] — [X]:

Lemma 21 Let f: [X] — [X] be a filter-equivariant function, and xs : | X| be a list with at least
three unique elements. Then, m (f xs) € AM X.

Proof: If f does not reduce the size of xs —i.e., |xs| = |f xs| — then surely f xs has at least three
unique elements, and Lemma 20 applies. If, instead, |xs| > |f xs| — for example, if f is a filter —
we need to apply more care if |f zs| < 3.

When |f xs| =0, f xs =[], therefore (7 (f xs)) v =[] for all x : X, and hence 7 (f xs) € AM X.

Otherwise, let x © = 7 (f xs) be our collection of outputs of f. We first show that z¢(x) =
head (f xs). Now, since x x = filter (# z) (f xs), we can conclude that head (x x) = head (f xs)
whenever x # head (f zs). And since | X| — the number of collections in x — is at least 3, this
element is uniquely specified. Any other candidate x’ for xo(x) would not be the head of the list
X z, for z # &', z # x (which must exist since |X| > 3). Therefore, 7 (f zs) € AMy X

It is possible to show (just like for Lemma 20) that 7 - tail = 0 - 7, and we are done. ]

Now we can use this to show our key result:

Theorem 22 Let f : [X] — [X] be filter-equivariant, and xs : [X]| be a list with at least three
unique elements. Then, amal can perfectly reconstruct f xs from knowledge of the collection
{f ys}, where ys ranges over all sublists of xs with two unique elements.

Proof: First, we show that we can correctly amalgamate f xs from the collection of all outputs
of f where one input element had been filtered out, i.e., {f (filter (# x) zs)},.x:

f xs=amal (7 (f xs)) = amal (A\x — filter (# z) (f zs)) = amal (Az — f (filter (# ) zs))

where we exploited Lemma 21 in the first step, and the fact that f is filter-equivariant in the final
step.

Now we observe that, if filter (# x) xs has more than two unique elements, those can be themselves
reconstructed from collections obtained by filtering an additional element, using exactly the same
argument:

f s = VR f (filter (# z) xs) [filter (# x) zs| <2
o= ama v amal (A\y — f (filter (# y) (filter (# x) xs))) otherwise

This is already sufficient to prove our Theorem — as we will continue to stack nested filter and amal
calls until we have only lists of no more than two unique elements, from which we can reconstruct
everything we need. However, it’s arguably not very satisfying, as it requires multiple nested calls
to amal.

Conveniently, we can prove a lemma that implies it is sufficient to just amalgamate once:

Lemma 23 Let f: [X]| — [X] be filter equivariant, and xs : [X] be a list with at least four unique
elements. Then it is true that:

amal (Ax — amal (A\y — f (filter (# {z,y}) zs))) = amal (A(z,y) — f (filter (# {z,y}) xs))

12
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where, in the right hand side, we set X' = X x X and x' : X' — [X] to represent our collection
of lists, indexed over tuples (x,y) where x # y.

Proof: We have already showed that the left-hand side is equal to f xs. First, we can show that
the first element of the right-hand side matches this, i.e., zo(x’) = head (f xs).

Whenever head (f xs) # x Ahead (f xs) # y, head (f (filter (# {z,y}) xs)) = head (f zs), which
satisfies the constraints needed for xo(x’). The only thing left is to show it is unique. For any
other candidate head 2’ # head (f xs), it will not be the head element in all lists where it appears
— particularly, any list indexed by (2/,y") where y’ # head (f xs). Therefore, it must hold that

zo(x') = head (f xs).

Now, we must show that applying dx’ allows us to continue amalgamating in a way that gradually
reconstructs f xs. Note that, because x’ uses a slightly modified input space, we need to redefine
how ¢ applies here, by simply extending the check of which lists contain xo(x’):

5y () = 4 X @Y z=zo(x) Vy = wo(X)
X (y) {tan (¢ (@9)) @ # 20(x) Ay £ 20(x)

Now, we can show that this collection is equivalent to the collections we would get by processing
the tail of our desired list with the same two-element filtering, i.e.:

5Y' () = filter (# {z,y}) (tail (f v5))

To see this, let us examine both cases: when x = xo(x) Vy = zo(X’), then we return x’ (z,y) =
filter (# {x,y}) (f xs) = filter (# {x, y}) tail (f xs), since the head element of (f xs) will be filtered
out in this case. When x # xo(X') Ay # zo(X), then we return tail (x’ (z,y)) = tail (filter (#
{z,y}) (f xs)) = filter (# {x,y}) (tail (f zs)), where the final swap is possible because we know
the first element of f xs will not be filtered out by the filter call.

Now, it holds (by induction on f zs, as in Lemma 20) that amal dx’ = tail (f xs), and we are
done.

D.1. Amalgamation for NFEs

Our arguments above show that any FE function output f xs is determined by {f ys}, where ys
ranges over all sublists of s with two unique elements. To specialise this to NFEs, first recall
from Section A.1 that we can assume an input list to an NFE has unique elements — if it doesn’t
already, we can uniquify with enumerate without changing f’s behavior. Thus, this section’s
“sublists with two unique elements” become precisely the sublists of length two.

Further, given a length-two list [z,y] with z # y, for any other length-two list [p, ], there exists
some function g : X — X with [p,q] = map ¢ [z,y]. Then, map equivariance implies that
f Ip,q) = (map g) (f [z,y]), meaning that if we know a single length-two example f [z,y] it
suffices to determine every other length-two example, and hence to determine f’s global behavior
by amalgamation. So, we see that the “trick” by which an NFE like reverse is determined from
observing only one doubleton example is, in fact, mathematically sound.

A brief counterexample shows how analogous reasoning fails for general FEs. Consider a function
f : [a] — [a] that, for each unique element x € xs postpends |z|? copies of = to an initially-empty
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output list, where |z| is the number of times = appears in xs. For example,
f14,7,4,7,8] =[4,4,4,4,7,7,7,7,8]

We can see that f is not map equivariant because, for example, it does not commute with mapping
a constant function. Further, we can see that f acts as the identity function on any two-element
list with unique elements, and hence its general behavior cannot be deduced by such examples.

It is interesting to consider whether stronger conditions exist that rule out functions where output
multiplicity depends on input multiplicity. Future work could investigate whether there are, for
example, variants of filter ¢ that, rather than retaining or discarding all elements that match a
predicate ¢, instead retain or discard certain subsets, or different subsets in turn. It is possible
that a function which is equivariant to such functions would have the desired properties, and
hence support generalisation from length-two lists.
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