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Abstract

This paper introduces a novel framework for Bayesian trend filtering using an empirical Bayes
approach and a variational inference algorithm. Trend filtering is a nonparametric regression
technique that has gained popularity for its simple formulation and local adaptability.
Bayesian adaptations of trend filtering have been proposed as an alternative method, while
they often rely on computationally intensive sampling-based methods for posterior inference.
We propose an empirical Bayes trend filtering (EBTF) that leverages shrinkage priors,
estimated through an empirical Bayes procedure by maximizing the marginal likelihood. To
address the computational challenges posed by large datasets, we implement a variational
inference algorithm for posterior computation, ensuring scalability and efficiency. Our
framework is flexible, allowing the incorporation of various shrinkage priors, and optimizes
the level of smoothness directly from the data. We also discuss alternative formulations
of the EBTF model, along with their pros and cons. We demonstrate the performance of
our EBTF method through comprehensive simulations and real-world data applications,
highlighting its ability to maintain computational efficiency while providing accurate trend
estimation.

1 Introduction

Nonparametric regression methods have been widely used in many statistical applications such as spatial
statistics, time series analysis, and survival analysis Dabrowska (1987); Gelfand & Schliep (2016); Moulines
et al. (2007). When the relationship between a predictor and a response variable is nonlinear, nonparametric
regression can effectively capture the true underlying relationship by fitting a curve to the predictors. Classical
nonparametric methods such as smoothing splines, B-splines, and kernel methods can be recast as penalized
linear regressions and they are straightforward to fit Härdle (1990). However, they are not adaptive in the
sense that they cannot adjust to local changes in the curve.

Trend filtering is a relatively new method for nonparametric regression. It penalizes the differences of adjacent
signals using an l1 penalty, and the penalty requires parameter tuning via cross-validation. Trend filtering
was initially introduced as splines with higher-order total variation regularization Steidl et al. (2006), without
being named trend filtering. Later, trend filtering was independently introduced by Kim et al. (2009) as a
modified version of Hodrick-Prescott (H-P) filtering Hodrick & Prescott (1997), that changes the penalty
from l2 to l1 norm. A more statistical and theoretical study of trend filtering is provided by Tibshirani (2014),
which showed that trend filtering achieves the minimax rate over a smoothness class defined by bounded
total variation, mainly due to its ability to choose basis adaptively from data.

One of the earliest Bayesian adaptations of trend filtering is from Roualdes (2015), and the author borrowed
ideas from Bayesian lasso Park & Casella (2008). Other shrinkage priors can be placed on the differences of
the signals. Examples are the spike-and-slab George & McCulloch (1993), normal-gamma Brown & Griffin
(2010), generalized double-Pareto Armagan et al. (2013), horseshoe priorCarvalho et al. (2009), and scale
mixture of normal distributions Faulkner & Minin (2018). A dynamic shrinkage process and the corresponding
Bayesian trend filtering based on a dynamic linear model are proposed by Kowal et al. (2019). All of the
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above Bayesian methods use a Gibbs sampler for posterior inference. When the sample size n is large, they
suffer from high computational cost and low speed.

In this paper, we propose a novel framework for Bayesian trend filtering that is fast, locally adaptive, and
accurate. Our method incorporates a shrinkage prior on the differences of the signal and employs an empirical
Bayes method to estimate the prior by maximizing the marginal likelihood. The posterior distribution is
computed using a variational inference algorithm. We highlight the advantages of our method as follows:
1. A fast and stable empirical Bayes trend filtering (EBTF), applicable to large-scale datasets; 2. Flexible
shrinkage priors that adapt to the best shrinkage operator, not limited to the l1 penalty; 3. Learns the level
of “penalty” from data by optimization; 4. Naturally extends to more complex settings, such as sparse signal,
which will be studied in Section 5. We provide a Python implementation of the method, and all the code and
analysis are available in the package ebtfPy on GitHub. The proofs for all the theorems in this paper are in
the Appendix D.

Notation: Denote the flat prior or improper prior for θ as θ ∼ C(·), and its density function is p(θ) ∝ c over
the support of θ. A vector is denoted in bold such as β, and when we need its elements, the vector is denoted
as β = (βi). A diagonal matrix with its diagonal elements is denoted as W = diag(wi).

2 Empirical Bayes Trend Filtering

In this section, we first give a brief review of the trend filtering problem, then present our models and
algorithms. For a given integer k ∈ N, the kth order trend filtering finds

β̂ = arg min
β∈Rn

1
2 ||y − β||22 + λ||D(k+1)β||1,

where D(k+1) ∈ R(n−k−1)×n is the discrete difference operator of order k + 1. When k = 0, the estimated
sequence is piecewise constant, and the difference matrix is

D =


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1

 ∈ R(n−1)×n. (1)

For k ≥ 1, the difference matrix is defined as D(k+1) = D(1) ·D(k), where D(1) is the (n− k − 1)× (n− k)
version of equation 1. When k = 1, the estimated sequence is piecewise linear; and twice-differentiable when
k = 2.

Existing algorithms for solving the trend filtering problem include primal-dual interior point Kim et al. (2009),
path algorithm Tibshirani & Taylor (2011) and alternating direction method of multipliers (ADMM) Ramdas
& Tibshirani (2016). The parameter λ controls the smoothness of the estimated sequence and is often selected
using cross-validation. Cross-validation for trend filtering is typically not random as the folds are often fixed.
For a detailed description, see the R function cv.trendfilter Arnold & Tibshirani (2016).

2.1 Model formulation

We formulate trend filtering model as a dynamic linear model (DLM) data-generating process. Throughout
this paper we will focus on the first-order sequence model, and we shall see that the general order model
formulation is straightforward by using the corresponding-order difference matrix. We consider the following
Bayesian variants of first-order trend filtering,

yi|βi ∼ N(βi, σ2s2
i ), for i = 1, ..., n,

β1 ∼ C(·),
(βj+1 − βj) ∼ g(·), for j = 1, ..., n− 1,

(2)

where C(·) denotes the uniform distribution over the entire real line, g(·) is the prior on the difference between
two consecutive means, σ2 is the unknown random error variance and s2

i is the known heterogeneous variance
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term. The variance s2
i can be regarded as the inverse weight for each observation, and for the homogeneous

setting s2
i = 1. The model formulation can be equivalently expressed in a matrix-vector form as

y|β ∼ N(β, σ2S),
β1 ∼ C(·),
(Dβ)j ∼ g(·),

where S = diag(s2
i ), and D is the first order difference matrix defined as equation 1.

2.2 Choice of prior

We choose a shrinkage prior g(·) such that the difference between two neighboring signals are mostly small
(close to 0), which would lead to a spatially-structured signal. In our model formulation, the choices of
shrinkage priors are flexible. In this paper, we focus on mixtures of normal distributions including the
point-normal and adaptive shrinkage (ash) prior Stephens (2017). The prior is represented as

g =
K∑

k=1
πkN(0, σ2

kσ2), (3)

where
∑

k πk = 1, and σ2 is the random error variance in model equation 2. For point-normal prior (spike
and slab prior with normal components), K = 2, and σ2

1 is often fixed at 0 or a very small number, while
{π1, σ2

2} are the hyperparameters. For ash prior, K is often large, and all σ2
k are known and fixed, and span

a large grid (from a small value to large ones), while πk’s are the hyperparameters. In this paper, we make
a novel extension of the ash prior such that σ2

k are not fixed excepting the first one (the one for the spike
component). Both priors have been applied to mean estimation and inference Castillo & Roquain (2018);
Willwerscheid & Stephens (2021), matrix factorization Ning & Ning (2021); Wang & Stephens (2021), sparse
regression Kim et al. (2022); Ray & Szabó (2022) and wavelet denoising Chipman et al. (1997); Xing et al.
(2021), and they have been shown to have better performance over other choices of priors.

2.3 The variational algorithm

For hyperparameters in the prior, we can either fix them before model fitting, or learn them from data. In
this paper, we take the empirical Bayes approach for estimating the prior, and the posterior inference is
conditional on the estimated prior distribution. While it’s possible to use MCMC for sampling from the
posterior, it’s intractable for large-scale datasets Quiroz et al. (2019). We instead propose to use variational
inference for posterior computation. We start this section with a high-level review of empirical Bayes and
variational inference.

2.3.1 Review of empirical Bayes and variational inference

An empirical Bayes (EB) approach estimates the prior by maximizing the marginal likelihood p(y; g) =∫
p(y|β)g(β)dβ, then the posterior is computed conditional on ĝ as p(β|y, ĝ).

Variational Inference (VI, Blei et al. (2017)) turns the posterior inference problem into an optimization
problem by approximating the true posterior with a more tractable distribution. The VI finds

q∗(β) = arg min
q∈Q

DKL(q(β)∥p(β|y; g)),

where Q is a family of approximate densities, and DKL is the Kullback-Leibler (KL) divergence. In practice,
we maximize the Evidence Lower Bound (ELBO), which is a lower bound on the log p(y; g):

F (q; g, y) = log p(y; g)−DKL(q(β)∥p(β|y)),
= Eq(β)(log p(y, β; g)− log q(β)).

Variational empirical Bayes (VEB) combines variational inference and empirical Bayes in a single optimization
problem, expressed as

q∗(β), ĝ = arg max
q∈Q,g∈G

F (q, g; y).
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2.3.2 Variational empirical Bayes for trend filtering

We develop the variational inference algorithm for model equation 2 in this section. For the prior 3, we follow
the standard approach for the Gaussian mixture model and introduce the latent variable z such that

(βj+1 − βj)|zjk = 1 ∼ N(0, σ2
kσ2),

p(zjk = 1) = πk, for j = 1, 2, ..., n− 1.
(4)

For the variational posterior, we consider the following variational distribution class that factorizes over β
and z:

q(β, z) = qβ(β)qz(z) = N(β; β̄, V )
n−1∏
j=1

K∏
k=1

α
zjk

jk , (5)

where αjk = qzjk
(zjk = 1) is the posterior probability that (βj+1 − βj) is drawn from the kth mixture

component. When V is a diagonal matrix, the posterior distribution is fully factorized. But we do not
make such simplification and assume V is a general covariance matrix. The evidence lower bound for model
equation 2 is then

FEBTF = Eq log p(y|β; σ2) + Eq log p(β, z; π, (σ2
k))− Eq log q(β, z). (6)

For the optimization of the ELBO, we take the VEB approach introduced in the section 2.3.1 – since σ2, π,
and prior variances (σ2

k) are all unknown, we treat them as variational parameters, which are optimized when
maximizing the ELBO. The following theorem gives the coordinate ascent update formulas of the variational
empirical Bayes algorithm for the first order EB trend filtering.
Theorem 2.1. The coordinate ascent algorithm for fitting EBTF model equation 2 has the following updates:

1. Given qβ, the update of the posterior probabilities αjk is

αjk =
πkN((Dβ̄)2

j + (DV DT )jj ; 0, σ2σ2
k)∑K

l=1 πlN((Dβ̄)2
j + (DV DT )jj ; 0, σ2σ2

l )
.

2. Given qz, the update for posterior variance V and posterior mean β̄ are

V = σ2(S−1 + DT WD)−1, β̄ = V y/σ2.

3. Given qβ, qz, the update for the prior variances σ2
k, and prior probabilities π are

σ2
k =

∑
j αjk((Dβ̄)2

j + (DV DT )jj)
σ2 ∑

j αjk
, πk ∝

∑
j

αjk.

4. Given the rest, let Ω = S−1 + DT WD, update σ2 as

σ2 = (yT S−1y − 2yT S−1β̄ + β̄T Ωβ̄ + tr(ΩV ))/(2n− 1).

The posterior precision matrix V −1 = (S−1 + DT WD)/σ2 is a tridiagonal matrix, because of the tridiagonal
structure of the difference matrix D. This indicates that the sequences (βi) are conditionally independent
a posteriori given two adjacent variables. Specifically, for the posterior distribution qβi

, the adjacent two
neighbors qβi−1 and qβi+1 are all the information needed to determine qβi .

Although the updates are formulated in matrix multiplication form, the computation cost can be significantly
reduced by leveraging the special structure of the difference matrix. The matrix DT WD is tridiagonal and
can be calculated fast by operations only on wi, yielding its diagonal and super-diagonal elements. An
optimized banded system solver (such as scipy.linalg.solveh_banded) can be used to find β̄. To find
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Algorithm 1 VEB algorithm for fitting EBTF equation 2 (outline only)
Input: Data yi, variances s2

i , for i = 1, 2, ..., n.
Init: Posterior mean β̄, posterior precision matrix diagonal d and super-diagonal e, residual variance σ2,
prior weights πk and variances σ2

k for k = 1, 2, ..., K.
repeat

1. Update posterior weights αik for i = 2, 3, ..., n and k = 1, 2, ..., K ;
2. Update posterior precision matrix (its diagonal and super-diagonal elements only);
3. Update β̄ by solving a (tridiagonal) banded linear system;
4. Update prior weights, variances, and residual variance.

until converged

the diagonal of DV DT , the diagonal and super-diagonal elements of V are first obtained by inverting the
tridiagonal precision matrix using the recursion algorithm from Usmani (1994). Then DV DT can be directly
calculated using operations only on the diagonal and super-diagonal elements of V . The final algorithm
for implementation is summarized in Algorithm 1. The algorithm iteratively solves for the maximum of
each parameter while keeping all other parameters fixed, ensuring that every update increases the objective
function.
Remark 2.2. In variational inference, the ELBO is in general not convex, and the initialization is important
for non-convex optimization problems. However, there are fast initialization methods that can provide a good
starting point for the variational algorithm. We address these initialization issues here. The residual variance
σ2 is initialized by applying median absolute deviation (MAD) to the finest level of wavelet coefficients as
described in section 4.2 of Donoho & Johnstone (1994). For heterogeneous variances where s2

i are unknown,
we may use the running MAD estimator proposed in Gao (1997) or the wavelet-based variance estimation
in Xing et al. (2021). The precision matrix is initialized to the identity matrix. The posterior mean β̄ is
initialized to the wavelet denoised mean by applying soft thresholding at σ

√
2 log n to the Haar wavelet

coefficients. The wavelet method is chosen because it is fast and the Haar wavelet threshold provides piecewise
constant signal estimation.

3 Alternative formulations of the EB trend filtering

In this section, we present two alternative formulations of the EBTF model, and show the equivalence among
all formulations in terms of the objective function ELBO. We further discuss the pros and cons for each
formulation.

3.1 Multivariate normal variance prior formulation

The primary model equation 2 can be formulated in an equivalent way as

y|β ∼ N(β, σ2S),
Dβ|W ∼ N(0, σ2W ),
Wjj ∼ g̃(·), for j = 1, 2, ..., n− 1,

(7)

where W is a diagonal covariance matrix W = diag(wj), and g̃ is a prior on the variances. Specifically, the
g̃ corresponding to the prior equation 3 is wj ∼ Discrete(σ2

1 , ..., σ2
k; π), where the discrete distribution is

defined as p(wj = σ2
k) = πk, for k = 1, 2, ..., K, with

∑
k πk = 1. This formulation is named the multivariate

normal variance (MNV) prior approach, as it introduces a multivariate normal prior on Dβ, followed by
another prior on the variances. We use the VEB framework for prior estimation and posterior computation
by maximizing the ELBO

FMNV = Eq log p(y, β, W ; g)− Eq log q(β, W ).
Theorem 3.1. Choosing the variational posterior distribution for model equation 7 as

q(β, W ) = qβ(·)qW (·) = N(β; β̄, V )
∏

j

qwj
(·), (8)
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then the VEB updates for maximizing the ELBO FMNV is the same as the ones in Theorem 2.1.

Although the VEB updates remain the same, the VEB algorithm C (in Appendix C) of the MNV approach
has a nice property: it alters between a simple update on qβ, and a general empirical Bayes Gaussian variance
(EBGV, see Appendix B) problem for (g̃, qW ). Hence, the MNV model formulation and inference are modular.
To accommodate different prior distributions on W , it is sufficient to develop the corresponding EBGV
problem for these priors, instead of re-deriving the full variational updates. The EBGV solver can then be
plugged into the general variational inference iterations.

3.2 Multiple linear regression formulation

The trend filtering problem can be formulated as a penalized regression problem, as shown in Lemma 2 of
Tibshirani (2014) . Specifically, let H ∈ Rn×n be the “inverse” of the first-order difference matrix D, such
that Dβ = b, H b̃ = β, where b̃ = (β1, bT )T .

The first element of b̃ is β1, which can be regarded as the baseline value, and all the subsequent signals are
additions or subtractions to it. The vector b captures the piecewise difference among the remaining signals.
Thus, model equation 2 can be reformulated as a Bayesian sparse multiple linear regression problem:

y|b̃ ∼ N(H b̃, σ2S),
β1 ∼ C(·),
bj ∼ g(·) for j = 1, 2, ..., n− 1,

(9)

where the prior g(·) is sparsity-inducing and is the same as equation 3.
Theorem 3.2. Choosing the variational posterior distribution for model equation 9 as

q(b̃, z) = qb̃(b̃)qz(z) = N(b̃; ¯̃b, Vb̃)
n−1∏
j=1

K∏
k=1

α
zjk

jk , (10)

then the ELBO for the the multiple linear regression formulation is

FMLR = Eq log p(y|b̃) + Eq log p(b̃, z)− Eq log qb̃(b̃)− Eq log qz(z),

and FMLR is equivalent to the ELBO equation 6 for the primary model formulation equation 2. Hence the
VEB updates for both models are the same.

Given the equivalence of the three model formulations equation 2,equation 7 and equation 9, we comment on
their advantages and disadvantages. The multiple linear regression formulation is very general, and there is a
large number of methods for Bayesian sparse linear regression. Hence those methods can be readily applied to
Bayesian trend filtering with minimal modifications (though the availability of EB sparse regression methods
is limited). The multivariate normal variance prior formulation is modular and can easily incorporate different
types of priors.

However, from a modeling perspective, the MNV and MLR approaches are specific to the pre-defined trend
filtering problem and are not easily generalized to more sophisticated models. On the other hand, the primary
dynamic linear model formulation of the trend filtering is more flexible in terms of adding additional model
components and adding custom features. In Section 5, we illustrate this perspective by constructing and
solving a sparse and spatially-structured sequencing model. See the related discussion in Section 7.2 of
Tibshirani (2014).

4 Numerical Examples

In this section, we compare our proposed method, EBTF, with existing locally adaptive methods and those
prioritizing computational speed and estimation accuracy. All experiments are conducted on a Linux system
with an i9-10900F processor and 32GB memory. The compared methods are:
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Table 1: Simulation metrics. The best metrics are in bold, the and second-best ones are italicized. Numbers
in bracket represent the standard errors. Standard errors are omitted for the last three functions as their
general scale is similar to the first ones.

Method Metric Blocks Step Bumps Heavisine Gauss Linear

EBTF
RMSE 0.21 (0.06) 0.15 (0.04) 0.38(0.03) 0.30 0.19 0.23
MAE 0.34 (0.05) 0.28 (0.04) 0.44(0.02) 0.48 0.39 0.38

Wave-hard
RMSE 0.46(0.03) 0.33(0.03) 0.66(0.03) 0.37 0.27 0.33
MAE 0.49(0.02) 0.44(0.04) 0.62(0.03) 0.54 0.43 0.50

Wave-Bayes
RMSE 0.60(0.06) 0.50(0.06) 0.84(0.05) 0.38 0.40 0.44
MAE 0.65(0.03) 0.59(0.04) 0.80(0.03) 0.52 0.51 0.55

genlasso-tf
RMSE 0.28(0.03) 0.21(0.04) 0.50 (0.03) 0.27 0.23 0.23
MAE 0.43(0.02) 0.41(0.04) 0.53 (0.02) 0.46 0.40 0.41

susie-tf-10
RMSE 0.44(0.11) 0.11(0.03) 1.30(0.05) 0.38 0.25 0.28
MAE 0.45(0.06) 0.26(0.04) 0.72(0.02) 0.55 0.42 0.48

susie-tf-20
RMSE 0.19(0.05) 0.11(0.03) 1.06(0.08) 0.31 0.25 0.26
MAE 0.32(0.03) 0.26(0.04) 0.63(0.03) 0.50 0.42 0.46

1. genlasso-tf: cross-validated trend filtering using the R function cv.trendfilter from the genlasso
package Arnold & Tibshirani (2014).

2. Wave-hard and Wave-Bayes: Haar wavelet denoising (hard thresholding Donoho & Johnstone (1994)
and Bayesian adaptive shrinkage Chang et al. (2000)) using the Python function denoise_wavelet
from the skimage package Van der Walt et al. (2014).

3. susie-tf: an empirical Bayes variable selection method extended for trend filtering, using the R function
susie_trendfilter from the susieR package Wang et al. (2020). We consider two settings where
L = 10 and L = 20.

4.1 Simulation

We consider six different signal functions: blocks, steps, bumps, Gaussian density (Gauss), linear, and
Heavisine. These functions are illustrated in Figure 4. We set the number of samples to be n = 1024, and the
residual variance to σ2 = 1. The signal-to-noise ratio (SNR) is defined as SNR = Var(β)/σ2 and is set to 3.
Each experiment is repeated 20 times, and we report the averaged root mean squared error (RMSE) and
mean absolute error (MAE) between the estimated and the signal, defined as

RMSE =
√

1
n
||β − β̂||22, MAE = 1

n
|β − β̂|1.

Table 1 shows the final metrics for all the signal functions. Clearly the proposed EBTF method consistently
yields the lowest or near-lowest RMSE and MAE. The method susie-tf-20 gives best estimations for block
and step signals, while EBTF also estimates these piecewise constant signals well. However, susie-tf suffers
from fitting the bumps function, and a closer look at the fitted signals shows that it is severely underfitting
the bumps (as it misses most of them). All methods except the wavelet-based ones give similar estimation
accuracy for the Heavisine, Gauss, and linear functions, with EBTF and genlasso-tf performing best.

Figure 1 summarizes all the simulations in one plot. It shows the average RMSE and the runtime of all
the methods across all the signal functions. Wavelet methods are significantly faster as they utilize the fast
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Figure 1: Simulation results: plot of run time (log) and RMSE. The run time is in seconds and then
log-transformed. The RMSE and runtime are averaged across all signal functions and repetitions.

pyramid algorithm for wavelet decomposition. EBTF is fast while providing the best estimation consistently.
Although susie-tf-20 has a lower RMSE than susie-tf-10 and wavelet methods, it comes at the expense of a
much higher runtime.

4.2 Real data

In this section, we show the applications of EBTF to several real datasets. The first dataset, motorcycle
acceleration Silverman (1985), is a classical example used for illustrating the nonparametric regression
methods. It provides measurements of head acceleration in a simulated motorcycle accident, used to test
crash helmets. For comparison, we add genelasso-tf and susie-tf fits. The black curve in Figure 2 is the EBTF
fit, and clearly it captures the trend of the acceleration over time. On the other hand, both the genlasso-tf
and susie-tf exhibit some degree of underfitting. The genelasso-tf seems to overshrink the signal around time
60 and time 100. It also underestimates the signal around time 0 to 20, as the estimated signal is clearly
below all the observations in that time period. The susie-tf seems to underfit the signal in the time period
from 70 to 90, as it only produces one big jump there.

We applied the EBTF method to eight more real datasets, and the figures for the fitted signals are shown in
Appendix A. The original data were processed by Van den Burg & Williams (2020), which evaluates several
change-point detection methods. For comparison, we included genlasso-tf fitted signals (blue line) in all plots.
Overall, EBTF (black line) provides more visually appealing signal fitting, especially in its ability to capture
the data trend without overfitting.

5 Sparse Empirical Bayes Trend Filtering

The primary EBTF model (2) can be viewed as a general generative prior for a spatially-structured sequence
and can be applied in various dynamic model settings. For example, inducing sparsity on the signal Koop
& Korobilis (2018); Ramírez-Hassan (2020); Rockova & McAlinn (2021). A slight modification of the prior
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Figure 2: Motorcycle acceleration data from Silverman (1985). The black line is the signal estimated by
EBTF, and we show the genlasso-tf (blue) and susie-tf (red) estimated signals as comparison.

leads to a sparse empirical Bayes trend filtering (sparse EBTF) as follows:

y|β ∼ N(β, σ2S),
β1 ∼ π0N(0, σ2σ2

0) + (1− π0)C(·),

βj+1|βj ∼ π0N(0, σ2σ2
0) +

∑
k=1

πkN(βj , σ2σ2
k), for j = 1, 2, ..., n− 1,

(11)

where σ2
0 is a pre-chosen small variance value such that N(0, σ2σ2

0) is spiky, with
∑K

k=0 πk = 1. We have
added an extra mixture component that induces sparsity on the sequence βi directly. In particular, each
element of the sequence is now a mixture of two components: one that promotes sparsity in βi, and a
smoothness-inducing component. The first component is a spiky normal distribution at 0 that shrinks βi

towards 0, while the second one is the same as in the original trend filtering model formulation. For the
posterior, we again consider the following variational distribution class that factorizes between β and z, as

q(β, z) = qβ(β)qz(z) = N(β; β̄, V )
n∏

i=1

K∏
k=0

αzik

ik , (12)

where αik = qzik
(zik = 1) is the posterior probability indicating the mixture distribution. We define α1k := 0

for k = 2, 3, ..., K since the prior of β1 has only two mixture components. The detailed development of the
VEB update for sparse EBTF is given in Appendix D.4.

To illustrate the effect of sparse EBTF on estimating sparse and spatially-structured signals, we present an
example where sparse EBTF shrinks the sequence towards 0 when the underlying signals are truly sparse. We
generated n = 4096 samples from the bump function, in which the signals are mostly at 0 and occasionally
jump to large values. We fitted a sparse EBTF model to the data and compared the fit with the regular
EBTF (without sparsity induction on the sequence). As shown in Figure 3, sparse EBTF is clearly able to
shrink the estimated signals towards 0 while estimating the spatially-structured curve. However, without the
signal-sparsity constraint, the estimated signals in sparse areas could be clearly non-zero, especially in areas
between two spikes.

6 Extensions and Discussions

In this paper, we propose a fast and scalable empirical Bayes trend filtering method for nonparametric
regression. The method leverages empirical Bayes estimation and variational inference, allowing it to learn
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Figure 3: Illustration of sparse EBTF. The true signal is a bump function, as shown in Figure 4. This signal
is mostly sparse at 0, while occasionally jumps to a large value. The left plot shows the regular EBTF fit,
without inducing sparsity on the signals. The right plot shows the sparse EBTF fitted signal. The blue
dashed line indicates y = 0.

the unknown smoothness level from the data. We demonstrated the superior performance of the EBTF
method through simulations and real data examples. Our proposed variational posterior family is multivariate
for the signal. This approach offers the benefit of fast computation while also maintaining the posterior
dependency among all signals. An alternative posterior family is to factorize over observations but not over
β, z, as q(β, z) =

∏
i q(βi|zi)q(zi). However this posterior assumes independence a posteriori and presents

more computational challenge as we need to track the posterior of βi over K components.

In our approach, we have utilized a flexible non-parametric shrinkage prior on the differences. However, there
are other Bayesian shrinkage priors that have been proposed recently, such as the widely used global-local
shrinkage priors. Our flexible framework can easily incorporate different shrinkage priors, allowing for the
selection of the appropriate prior based on the ELBO.

It is straightforward to extend our method to higher-order trend filtering by replacing the difference matrix
D with higher-order matrices, and all the results still hold. One difference is that when developing software
implementations, we need to develop solvers and matrix manipulations for general banded matrices. For
example, for k = 1, the posterior precision matrix is pentadiagonal.

As a final note, in real applications, the data may not always be real-valued: for non-Gaussian data, count
and binary data are the two most commonly encountered types. For example in image denoising Luisier et al.
(2010), the pixel values are typically integers and we may assume they follow Poisson distribution. Variational
inference methods have been developed for non-Gaussian likelihood by leveraging a Gaussian-based model,
and our method can be easily adapted to handle these non-Gaussian data types. For example, see Seeger &
Bouchard (2012) for Poisson data, and Durante & Rigon (2019); Jaakkola & Jordan (1997) for binary data.
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A Additional plots

blocks bumps

heavi linear

gauss step

Figure 4: Six signal functions in the simulation study. The blocks, bumps and Heavisine functions are
originally proposed by Donoho & Johnstone (1994) for evaluating wavelet denoising method. The blocks and
step functions are piecewise constant; bumps have most signals at 0 but jump at certain locations; linear is a
piecewise linear function; Heavisine is a piecewise twice differentiable function; Gauss is the Gaussian density
function.
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Figure 5: Honey bee movement states. The x-axis is the position and y-axis is sine of the head angle of a
single bee. Black line is the EBTF fitted signal, and blue line is the genlasso-tf estimated signal.
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Figure 6: CO2 emissions per person in Canada. Black line is the EBTF fitted signal, and blue line is the
genlasso-tf estimated signal.
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Figure 7: Number of home runs in the American League of baseball since 1900. Black line is the EBTF
fitted signal, and blue line is the genlasso-tf estimated signal.
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Figure 8: The volume of the Nile river at Aswan over each year. There is a clear change point in 1898 due to
a built dam.
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Figure 9: Total length of rail lines in the world, in kilometers.
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Figure 10: The number of robot calls in US.
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Figure 11: The number of license plate applications in Shanghai since 2002. Two outliers were removed.
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Figure 12: Well-log data. It captures the nuclear magnetic responses over time. The length of the series has
been reduced by sampling every 6 time points. Outliers were removed.

18



Under review as submission to TMLR

B Empirical Bayes Gaussian Variance

We give details on the general Gaussian variance problem Stephens (2022).

Definition B.1. Consider the following model on Gaussian variance: for i = 1, 2, ..., n,

xi|wi ∼ N(0, σ2wi),
wi ∼ g̃(·),

(13)

where σ2 is known. An empirical Bayes Gaussian variance procedure returns ˆ̃g by maximizing the marginal
log likelihood

∑
i log p(xi), and calculates the posterior qwi

(·) = p(wi|xi, ˆ̃g). The objective function of EBGV
problem is

FEBGV =
∑

i

Eq log N(xi; 0, σ2wi) +
∑

i

Eq log g̃(wi)
qwi

(wi)
.

The procedure defines a mapping from observations to the estimated prior and posterior distribution, and is
denoted as

(ĝ, qw) = EBGV(x, σ2).

The following lemma gives the EBGV marginal distribution, and posterior, when the prior g̃(·) is the discrete
prior.

Lemma B.2. In the EBGV problem equation 13, if wi has a discrete prior as

wi ∼ Discrete(σ2
1 , ..., σ2

k; π),

then the marginal distribution of xi is

p(xi) =
∑

w

p(xi|w)p(w) =
∑

k

πkN(xi; 0, σ2σ2
k).

The posterior distribution of wi is

p(wi|xi) =
∏

k

ϕ
I(wi=σ2

k)
ik ,

where

ϕik = πkN(xi; 0, σ2σ2
k)∑

k πkN(xi; 0, σ2σ2
k) .

And we have

E(w−1
i |xi) =

∑
k

ϕik/σ2
k.

Proof. The marginal and posterior distribution are given by their definitions, and the Bayes formula. The
expectation of 1/wi follows directly from the definition of discrete random variables.

C Algorithms
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Algorithm 2 VEB algorithm for fitting EBTF 7 (outline only)
Input: Data yi, variances s2

i , for i = 1, 2, ..., n.
Init: Posterior mean β̄, posterior precision matrix diagonal d, and super-diagonal e, residual variance σ2.
repeat

1. Update g̃(·) and qW by solving the EBGV problem equation 15;
2. Update qβ by updating the posterior precision matrix (its diagonal and super-diagonal elements only);
then β̄ by solving a (tridiagonal) banded linear system;
3. Update residual variance σ2.

until converged

D Proofs

D.1 Proof of Theorem 2.1

Proof. Based on the model equation 2, and the posterior distribution equation 5 the evidence lower bound
can be written in a vector-matrix form in β̄, V as

FEBTF =− n

2 log 2πσ2 − 1
2

n∑
i=1

log s2
i

− 1
2σ2 (yT S−1y − 2yT S−1β̄ + β̄T S−1β̄ + tr(S−1V ))

− 1
2σ2 β̄T DT WDβ̄ − 1

2σ2 tr(DT WDV ) + 1
2 log |V |

+
n−1∑
j=1

K∑
k=1

αjk(log πk −
1
2 log 2πσ2σ2

k − log αjk),

where S = diag(s2
i ) is the known diagonal variance matrix, D is the first order difference matrix equation 1,

and W = diag(wjj) is a diagonal weight matrix, with wjj =
∑K

k=1 αjk/σ2
k.

The update of each parameter (denoted generally as θ) is given by solving the root-finding equation ∂F/∂θ = 0.

D.2 Proof of Theorem 3.1

The ELBO for model equation 7 with posterior distribution being equation 8 is

FMNV = Eq log p(y, β, W )− Eq log q(β, W ),

= Eq log p(y|β) + Eq log p(β|W )
qβ(β) + Eq log g(W )

qw(W ) .
(14)

We prove the following theorem, which is an augmented version of Theorem 3.1
Theorem D.1. The variational inference update for qβ given qw is

β̄ = (S−1 + DT W −1D)−1y,

V = σ2(S−1 + DT W −1D)−1,

where
W −1 = diag(w−1

j ).
Given qβ, the update on g̃(·), qw is given by solving an EBGV problem

(ˆ̃g, qw) = EBGV
((√

b̄2
j + vbj

)
, σ2

)
, (15)
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where

b̄j = (Dβ̄)j ,

vbj = (DV DT )jj .

Furthermore, the variational inference algorithm is the same as Algorithm 2.

Proof. Given qβ, the ELBO for updating qw is

FMNV(qw) = Eqw
(Eqβ

(log p(β|W )) +
∑

j

Eqw
log g̃(wj)

qwj (wj)

=
∑

j

E log N(
√

b̄2
j + vbj ; 0, σ2wj) +

∑
j

E log g̃(wj)
qwj (wj) ,

which is exactly the objective function for EBGV problem. And we have

w−1
j =

∑
k

ϕjk/σ2
k,

ϕjk =
πkN(

√
b̄2

j + vbj
; 0, σ2σ2

k)∑
k′ πk′N(

√
b̄2

j + vbj
; 0, σ2σ2

k′)
.

Given qw, the ELBO related to qβ is

FMNV(qβ) = E log p(y|β) + E(Eqw (log p(β|W )))− E log qβ(β).

The update formulas for β̄, V are given by solving the root-finding equation ∂FMNV(qβ)/∂β̄ = 0, and
∂FMNV(qβ)/∂V = 0.

Since the marginal distribution in EBGV problem is the Gaussian mixture distribution as shown in Lemma
B.2, the update of prior parameters π, (σ2

k) are the same as the ones in Theorem 2.1, with ϕjk = αjk. To
show the variational inference algorithm is the same as Algorithm 2, we are left to show the update for σ2 is
the same as the one in Theorem 2.1. This is obvious since the ELBO related to σ2 in FMNV is the same as
FEBTF(σ2).
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D.3 Proof of Theorem 3.2

Proof. The ELBO FMLR is

FMLR =Eq log p(y, b̃, z)− Eq log q(b̃, z)

=− n

2 log σ2 − 1
2

∑
i

log s2
i

− 1
2σ2 (yT S−1y − 2yT H ¯̃b + ¯̃bT HT S−1H ¯̃b + tr(HT S−1HVb̃)

+
∑
j,k

αjk(log πk −
1
2 log σ2σ2

k −
1

2σ2σ2
k

(b̄2
j + vbj ))

+ 1
2 log |Vb̃| −

∑
j,k

αjk log αjk,

=− n

2 log σ2 − 1
2

∑
i

log s2
i

− 1
2σ2 (yT S−1y − 2yT H ¯̃b + ¯̃bT HT S−1H ¯̃b + tr(HT S−1HVb̃)

− 1
2σ2 (b̄T W b̄ + tr(WVb̄)) + 1

2 log |Vb̃|

+
∑
j,k

αjk(log πk −
1
2 log σ2σ2

k − log αjk),

where W = diag(wj) and wj =
∑

k αjk/σ2
k.

Let

¯̃b =
(

β̄1
b̄

)
, Vb̃ =

(
vβ1 Vβ1,b

Vb,β1 Vb

)
.

Given qb̃(b̃) = N(b̃; ¯̃b, Vb̃), the inducing posterior distribution on β is also multivariate normal, denoted as
qβ(·) = N(β; β̄, Vβ), where β̄ = H ¯̃b and Vβ = HVb̃HT . Based on the relationship between β, b, b̃, we also
have

b̄ = Dβ̄,

Vb = DVβDT .

Since H is a triangular matrix with diagonal elements all being 1, we have |H| = 1, |HT | = 1, and
|Vβ| = |HVb̃HT | = |H||Vb̃||HT | = |Vb̃|.

Given the above equivalence, the ELBO can be written as

FMLR =− n

2 log 2πσ2 − 1
2

n∑
i=1

log s2
i

− 1
2σ2 (yT S−1y − 2yT S−1β̄ + β̄T S−1β̄ + tr(S−1Vβ))

− 1
2σ2 β̄T DT WDβ̄ − 1

2σ2 tr(DT WDVβ) + 1
2 log |Vβ|

+
n−1∑
j=1

K∑
k=1

αjk(log πk −
1
2 log 2πσ2σ2

k − log αjk),

which is exactly the same as FEBTF.
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D.4 Update formulas for sparse EBTF

Theorem D.2. Let W0 = diag(αi0/σ2
0), the updates for empirical Bayes sparse trend filtering are as follows:

1. The update for posterior probabilities are

log αik ∝ log πk −
1
2 log 2πσ2σ2

k −
(Dβ̄)2

i + (DV DT )ii

2σ2σ2
k

,

log αi0 ∝ log π0 −
1
2 log 2πσ2σ2

0 −
β̄2

i + Vii

2σ2σ2
0

,

log α11 ∝ log(1− π0),
then

α10, α11 ←
α10

α10 + α11
,

α11

α10 + α11
,

and
αik ←

αik∑
l αil

,

for i = 2, 3, ..., n and k = 0, 1, ..., K.

2. The update for the posterior covariance matrix V and the posterior mean β̄ are
V = σ2(S−1 + DT WD + W0)−1,

β̄ = V y/σ2.

3. The update for prior variance σ2
k for k = 1, 2, ..., K and prior probabilities π are

σ2
k =

∑
i(αik((Dβ̄)2

i + (DV DT )ii))
σ2 ∑

i αik
,

π0 ←
n∑

i=1
αi0,

πk ←
n∑

i=2
αik, for k = 1, ..., K,

πk ←
πk∑K
l=1 πl

, for k = 0, 1, ..., K.

4. Update σ2 as
Ω = S−1 + DT WD + W0,

σ2 = yT S−1y − 2yT S−1β̄ + β̄T Ωβ̄ + tr(ΩV )
2n− 1 + α10

Proof. With the choice of posterior equation 12, the ELBO for EBSTF is
F =E log p(y, β, z)− Eqβ(β)qz(z)

=− n

2 log 2πσ2 −
∑

i

1
2 log s2

i

− 1
2σ2 (yT S−1y − 2yT S−1β̄ + β̄T S−1β̄ + tr(S−1V ))

+ α11(log(1− π0)) +
∑
i=1

αi0(log π0 + E log N(βi; 0, σ2σ2
0))

− 1
2σ2 β̄T DT WDβ̄ − 1

2σ2 tr(DT WDV ) + 1
2 log |V |

+
∑

i=2,k=1
αik(log πk −

1
2 log 2πσ2σ2

k − log αik)− α11 log α11.
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The update of each parameter (denoted generally as θ) is given by solving the root-finding equation

∂F

∂θ
= 0.
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