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Abstract

The emergence of Large Language Models (LLMs) has significantly advanced
natural language processing, but these models often generate factually incorrect in-
formation, known as "hallucination". Initial retrieval-augmented generation (RAG)
methods like the "Retrieve-Read" framework was inadequate for complex reason-
ing tasks. Subsequent prompt-based RAG strategies and Supervised Fine-Tuning
(SFT) methods improved performance but required frequent retraining and risked
altering foundational LLM capabilities. To cope with these challenges, we propose
Assistant-based Retrieval-Augmented Generation (ASSISTRAG), integrating an
intelligent information assistant within LLMs. This assistant manages memory and
knowledge through tool usage, action execution, memory building, and plan speci-
fication. Using a two-phase training approach—Curriculum Assistant Learning and
Reinforced Preference Optimization—ASSISTRAG enhances information retrieval
and decision-making. Experiments show ASSISTRAG significantly outperforms
benchmarks, especially benefiting less advanced LLMs, by providing superior
reasoning capabilities and accurate responses.

1 Introduction

The emergence of Large Language Models (LLMs) has significantly advanced the field of natural
language processing, demonstrating an impressive ability to mimic human-like language patterns [1].
However, despite their extensive knowledge acquired during training, LLMs can occasionally generate
factually incorrect information, a phenomenon referred to as “hallucination” [2, 3]. To address this,
the integration of retrieval systems with LLMs has been suggested, allowing these models to tap into
external databases to generate more reliable responses [4].

Initially, retrieval-augmented generation (RAG) relied on a simple "Retrieve-Read" framework [5],
which was adequate for basic question-answering but insufficient for complex, multi-step reasoning
tasks. As language models advanced, various prompt-based RAG strategies emerged [6, 7], incorpo-
rating pre-retrieval and post-retrieval prompts to refine the process. However, these strategies heavily
relied on the foundational capabilities of the language models. Consequently, the focus shifted to
Supervised Fine-Tuning (SFT)-based RAG methods [8], which involve fine-tuning language models
specifically for RAG tasks to enhance their performance.

While SFT-based methods have improved the quality of generated responses, they face two limitations
that hinder their practical application. Firstly, these fine-tuned models are not easily adaptable to
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Figure 1: Comparisons of Naive, Prompt-based, SFT-based and our Assistant-based RAG frameworks.

emerging LLMs, requiring retraining for each new foundational LLM. Secondly, directly fine-tuning
a foundational LLM in the RAG scenario may change its innate abilities, potentially leading to
negative impacts on the model’s performance on other tasks. To address these challenges, we propose
Assistant-based Retrieval-Augmented Generation (ASSISTRAG), which integrates an intelligent
information assistant as a plugin within LLMs. This approach comprises a trainable assistant for
information management and a static main LLM dedicated to task execution, as depicted in Figure 1.

As an intelligent information assistant, ASSISTRAG operates in two primary categories to handle
complex tasks: memory management and knowledge management. Memory management involves
integrating and analyzing content from internal memory, while knowledge management focuses on
leveraging external knowledge. These two main functions are supported by four core capabilities
of ASSISTRAG: (1) Tool usage, which involves recalling relevant information from both internal
memory and external knowledge bases through a retriever; (2) Action execution, which involves
processing, analyzing, and extracting information; (3) Memory building, which involves recording
essential knowledge and reasoning patterns from historical interactions; (4) Plan specification, which
involves determining the necessity of each step in the process. These four capabilities work together
to ensure that ASSISTRAG can provide accurate and comprehensive support to the main LLM.

To implement ASSISTRAG, we adopt a two-phase training approach. The first phase, Curriculum
Assistant Learning, enhances the assistant’s capabilities in note-taking, question decomposition,
and knowledge extraction through progressively complex tasks. The second phase, Reinforced
Preference Optimization, uses reinforcement learning to tailor the assistant’s feedback to the main
LLM’s specific needs, optimizing knowledge extraction based on feedback from the main LLM.

During the inference stage, ASSISTRAG operates through a three-step process: (1) Information
Retrieval and Integration: The assistant understands the main LLM’s needs, retrieves relevant
knowledge from internal and external sources, and extracts valuable information. (2) Decision Making:
The assistant evaluates and decides whether to provide the retrieved memories and knowledge to the
main LLM based on their relevance. (3) Answer Generation and Memory Updating: The main LLM
generates an answer using its internal knowledge and the assistant’s information, while the assistant
updates its memory with crucial reasoning steps.

Results from experiments across three complex question-answering datasets reveal that ASSISTRAG
exhibits superior reasoning capabilities and markedly outperforms existing benchmarks. Notably,
when applied to different foundational LLMs, ASSISTRAG appears to confer more pronounced
benefits on less advanced LLMs.

2 Related Work

2.1 Retrieval-Augmented Generation

RAG represents a significant advancement in the domain of LLMs, particularly for tasks demanding
extensive knowledge. This paradigm begins with a retrieval step, where the LLM accesses an external
database to gather relevant information before addressing queries. Traditionally, RAG follows a
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"Retrieve-Read" framework [9, 5, 10, 11], with efforts focused on refining either the retriever or the
generator through pre-training approaches to augment RAG’s accuracy. Building on this foundation,
new RAG strategies have emerged, including the use of prompt-based methods like Chain-of-Thought
(CoT) reasoning [7, 12], iterative retrieval processes [13, 14, 15, 16], and leveraging LLM-generated
content for dynamic retrieval [6, 17, 18]. These strategies underscore the LLMs’ ability to select
relevant information adaptively in response to specific contexts. Concurrently, research on fine-
tuning LLMs for RAG applications is rapidly expanding [19, 20], focusing on enhancing skills
such as query reformulation [21] and knowledge integration [22, 23, 24], as well as developing
critical functions like determining the necessity of retrieval and appraising the value of retrieved
data [8, 25]. Departing from these approaches, our paper introduces Assistant-based RAG, integrating
an intelligent information assistant with the main LLM to boost its potential.

2.2 LLM-based Autonomous Agents

Recent advancements in LLMs have facilitated the development of LLM-based autonomous agents
such as AutoGPT [26], Toolformer [27], and MetaGPT [28], which utilize LLMs for effective
decision-making. Notably, ReAct [29] combines LLMs with external tools to manage knowledge-
intensive tasks, allowing for dynamic responses to environmental changes. Additionally, models like
WebGPT [30] integrate reinforcement learning with GPT-3, enabling the autonomous operation of
search engines during text generation. Innovative methods used by Flare [17] and Self-Ask [6] deter-
mine optimal times for information retrieval, while Reflexion [31] endows LLMs with introspective
mechanisms that continually refine their outputs. Our proposed Assistant-based RAG model further
enhances LLM capabilities by combining memory management and knowledge management, thus
providing robust support to the main LLM in tackling complex tasks.

3 Methodology

In this section, we first define the task of RAG and then introduce our proposed framework, AS-
SISTRAG. ASSISTRAG enhances the capabilities of LLMs through the support of an intelligent
information assistant. With abilities to use tools, execute actions, build memory, and plan, ASSIS-
TRAG can provide precise memory and knowledge management services for LLMs.

3.1 Task Definition

Given a question q and a collection of documents D = {di}|D|
i=1, the main LLM aims to generate

an answer y based on both the question and the relevant documents. This can be formalized as
y = LLMmain([Dq, q]), where Dq represents the set of documents retrieved for the query q, and
[·, ·] denotes the concatenation of the retrieved documents with the query. Expanding this concept,
ASSISTRAG employs an intelligent information assistant, LLMAssist, to enhance the main LLM’s
responses by providing relevant information, formalized as y = LLMmain([LLMAssist(q), q]). In the
following sections, we will detail the capabilities of the ASSISTRAG framework, along with its
training and inference procedures.

3.2 ASSISTRAG Overview

By incorporating an intelligent information assistant, ASSISTRAG aims to boost the potential of
LLMs in handling complex reasoning tasks. As illustrated in Figure 2, this framework consists of
two main components: a frozen main LLM tasked with generating answers based on the information
provided, and a trainable assistant LLM responsible for information management. This assistant
LLM is designed with two tasks: Memory Management involves storing interactions with the main
LLM and retrieving relevant past memories to assist in addressing similar questions. Knowledge
Management encompasses retrieving relevant information from external databases and processing it
to support the main LLM in formulating responses to new questions.

To effectively accomplish these tasks, we have endowed the assistant with four key capabilities:

• Tool Usage: Retrieving relevant information from internal memory and external knowledge bases.
• Action Execution: Reasoning, analyzing information need, and extracting knowledge.
• Memory Building: Recording essential knowledge and reasoning patterns from past interactions.
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Figure 2: Overview of ASSISTRAG. ASSISTRAG enhances LLMs by providing an intelligent
information assistant. Endowed with the ability of tool usage, action execution, memory building and
plan specification, it can achieve effective memory and knowledge management.

• Plan Specification: Determining the necessity of assistance during answer generation.

These four capabilities synergize to ensure that ASSISTRAG offers precise and comprehensive
support to the main LLM. In the following sections, we will provide a detailed examination of the
role and implementation of each capability.

3.2.1 Memory Management

Effective memory management is crucial for enhancing the main LLM’s performance by storing
and retrieving historical interactions. This functionality comprises two key processes: capturing
new insights and retrieving previously stored information. This stage activates the following three
capabilities of AssistRAG:

• Action I: Note Taking. This action FNT records critical information and the reasoning patterns
behind each historical interaction. Given the historical interactions of the main LLM, which include
question q, reference r, and answer y, the assistant is tasked with memorizing the key reasoning
process behind the answer into the memory slot mq: mq ←− FNT(q, r, y). The accumulation
of memory slots for all prior questions forms the assistant’s memoryM, which is utilized for
subsequent memory retrieval.

• Tool I: Memory Retriever. Given the question q and the assistant’s memoryM, the memory
retriever retrieves historically relevant memories, represented as:Mq ←− Rmemory(q,M).

• Plan I: Assessing the Usefulness of Retrieved Memory. If the question is entirely new, the
retrieved memories may not only be unhelpful but also negatively impact the main LLM’s response.
Therefore, we implement this plan to determine whether the retrieved memory slots should be
provided to the main LLM. Using a prompt, the assistant evaluates whether the retrieved memories
are beneficial for answering the current question. Only if the answer is affirmative will the retrieved
memories be supplied to the main LLM.
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Figure 3: Training framework of ASSISTRAG. It undergoes a two-stage training pipeline through
curriculum assistant learning and reinforced preference optimization.

3.2.2 Knowledge Management

Effective knowledge management is essential for an intelligent information assistant, involving the
efficient gathering of necessary knowledge to support the main LLM. This process includes analyzing
the information needs of the main LLM, retrieving relevant knowledge, and integrating it. This
process involves the following four capabilities of AssistRAG:

• Action II: Question Decomposition. This action FQD aims to break down the current question into
multiple sub-queries to facilitate the retrieval of knowledge across various aspects: Q′ ←− FQD(q),
where Q′ represents a series of sub-queries derived from the question q.

• Tool II: Knowledge Retriever. Utilizing a batch of sub-queries Q′, the knowledge retriever sources
relevant documents from external knowledge bases D, denoted as: DQ′ ←− Rknowledge(Q

′, D).

• Action III: Knowledge Extraction. This action FKE involves extracting essential knowledge
from a large number of retrieved documents. Given the question q and the retrieved documents
DQ′ , the assistant is responsible for extracting the relevant knowledge Kq from the search results:
Kq ←− FKE(q,DQ′).

• Plan II: Evaluating the Relevance of Extracted Knowledge. To ensure the accuracy and
relevance of the information provided to the main LLM, this plan determines whether the extracted
knowledge should be included in the response generation process. Similarly, we prompt the
assistant to assess whether the extracted knowledge is relevant to the current question.

To summarize, we have endowed the assistant with memory capabilities and designed three actions,
two retrieval tools, and two planning strategies integral to ASSISTRAG. Next, we will introduce the
training strategies developed for ASSISTRAG, focusing on enhancing the accuracy of these actions
and ensuring their compatibility with the main LLM.

3.3 ASSISTRAG Training

The training objectives of ASSISTRAG focus on two main goals: (1) enhancing the effectiveness
of each action within the RAG process, and (2) ensuring that its outputs align with the main LLM’s
requirements. To achieve these two goals, as depicted in Figure 3, we implement curriculum-based
assistant learning and reinforced preference optimization to optimize the training of ASSISTRAG.

Several studies have demonstrated that GPT-4 can achieve human-like annotation accuracy [32].
Based on this consideration, we leverage it to collect training data for the three actions. The supervised
training samples for each specific action are cataloged as CQD, CKE, and CNT, preparing these for the
assistant’s subsequent training phase.

3.3.1 Curriculum Assistant Learning

Motivation. The tasks of question decomposition, knowledge extraction, and note-taking are
interconnected, each contributing towards navigating the reasoning path from a question to its answer.
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To equip the assistant with a comprehensive understanding of the RAG process, we devise a step-wise
curriculum assistant learning strategy designed to evolve from simpler to more complex tasks to
foster a deepened mastery over time.

Training Objective. The curriculum learning strategy integrates training samples across three
sequential phases CQD → CKE → CNT. Each phase dedicates 60% of its focus to the task at hand,
with the remaining 40% evenly divided between the other two tasks. The assistant’s training employs
the standard next token prediction target based on the training set Dgen:

E(x,y)∼Dgen
log pϕ(y|x), (1)

where ϕ symbolizes the generator’s adjustable parameters, and (x, y) is the pair of input and expected
output. This methodical training strategy is designed to progressively refine the assistant’s proficiency
in each component of the RAG process, thereby boosting its effectiveness.

3.3.2 Reinforced Preference Optimization

Motivation. Although ASSISTRAG effectively handles RAG tasks after assistant learning, its output
may sometimes not fully meet the downstream LLM’s specific needs. To enhance integration, we
implement reinforced preference optimization, a technique that adjusts the assistant’s output based
on feedback from the main LLM, ensuring tailored assistance that better meets its requirements.

Training Objective. To optimize the assistant for better alignment with the main LLM, we adopt
Direct Preference Optimization (DPO) [33]. This approach involves generating two sets of references,
one from externally retrieved knowledge and the other generated by the assistant itself. The main
LLM evaluates these sets, with a preference determined by comparing the F1 scores of its responses
against correct answers. For reinforced preference optimization, we leverage the DPO algorithm’s
optimization objective, utilizing paired preference data Ddpo:

E(x,y1,y2)∼Ddpo
[log σ (log rθ(x, y1)− log rθ(x, y2))] (2)

where rθ(x, yi) = β πθ(yi|x)
πref(yi|x) is the reward implicitly defined by the language model πθ and the

reference model πref. This reinforced training stage enhances the assistant’s capability to deliver
assistance that aligns more closely with the main LLM’s preferences, enhancing overall efficacy.

3.4 ASSISTRAG Inference

Upon completing its training phase, ASSISTRAG initiates its inference process through three steps:

Information Retrieval and Integration. At this initial stage, ASSISTRAG first activates Action II
to understand the main LLM’s information needs. It then uses Tool I and Tool II to retrieve relevant
information from internal memory and external knowledge bases, respectively. Subsequently, it
invokes Action III to extract essential knowledge from the retrieved documents.

Decision Making. In this stage, ASSISTRAG decides whether to provide the retrieved memories and
extracted knowledge to the main LLM. It activates Plan I and Plan II to evaluate the relevance and
usefulness of the retrieved memories and knowledge for the current question. If the assistant deems
them helpful, they are supplied to the main LLM to aid in answer generation.

Answer Generation and Memory Updating. In the final phase, we prompt the main LLM to
generate an answer based on the question, its internal knowledge, and the information provided by the
assistant. Following this, ASSISTRAG activates Action I to utilize its note-taking feature, capturing
crucial reasoning steps from the interaction and incorporating them into its memory. This ensures the
assistant’s knowledge base remains up-to-date.

4 Experimental Setup

4.1 Datasets and Evaluation Metrics

In this study, we evaluate the effectiveness of our proposed method through experiments on three
intricate question-answering datasets: HotpotQA [34], 2WikiMultiHopQA [35], and Bamboogle [6].
These datasets, all derived from Wikipedia documents, provide a uniform corpus and retrieval
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Table 1: The evaluation results for three datasets. The "Main LLM" indicates the LLM employed for
question answering. The best results are shown in bold, while the second-best results are underlined.

Method Main LLM HotpotQA 2Wiki Bamboogle

EM F1 Prec. EM F1 Prec. EM F1 Prec.

Baselines without retrieval
CloseBook LLaMA2-chat 7B 13.2 18.4 17.8 14.4 18.2 17.8 10.4 16.3 16.7
CloseBook ChatGLM 6B 15.6 20.4 19.9 15.8 19.5 20.0 12.6 17.6 16.9
CloseBook ChatGPT3.5 20.0 25.8 26.4 21.6 25.7 24.5 14.4 22.0 22.3

Baselines with retrieval
Naive RAG LLaMA2-chat 7B 18.2 23.0 22.5 17.4 23.7 22.8 15.2 20.4 20.3
Naive RAG ChatGLM 6B 21.8 27.2 25.8 17.8 25.0 25.2 15.8 21.1 20.8
Naive RAG ChatGPT3.5 24.6 33.0 34.5 23.8 30.2 31.1 18.4 24.4 24.7
ReAct ChatGPT3.5 26.8 41.7 42.6 25.0 33.0 31.6 28.8 37.7 38.2
IRCoT ChatGPT3.5 31.4 40.3 41.6 30.8 42.6 42.3 30.2 38.8 37.9
Self-Ask ChatGPT3.5 28.2 43.1 44.8 28.6 37.5 42.8 23.2 32.8 30.8
SELF-RAG SELF-RAG 7B 31.0 42.4 42.3 35.0 40.7 41.0 29.8 35.5 37.8
LLMLingua ChatGPT3.5 28.2 40.2 40.0 29.4 38.6 37.8 25.2 31.3 30.8
ASSISTRAG LLaMA2-chat 7B 32.4 41.5 42.6 36.2 41.0 40.5 33.0 39.6 38.7
ASSISTRAG ChatGLM 6B 33.0 42.4 43.5 38.0 43.2 42.8 32.8 39.8 39.0
ASSISTRAG ChatGPT3.5 34.4 44.8 46.5 39.6 45.6 45.7 34.6 41.4 41.1

mechanisms to supply external references for LLMs. To manage costs, we follow a similar approach
as previous studies [17] by selecting a maximum of 500 questions from each dataset’s validation
set for our experiments. To assess the performance, we employ Exact Match (EM), F1 score, and
Precision (Prec.).

4.2 Baselines

We benchmark our model against three foundational models: LLaMA2-chat 7B [36],
ChatGLM3 6B [37], and ChatGPT, assessing their performance in Closebook, Naive RAG, and
ASSISTRAG settings. To compare our RAG framework with other RAG models, we include ad-
vanced prompt-based methods ReAct [29], IRCoT [7], Self-Ask [6], an SFT-based RAG model
Self-RAG [8], and a knowledge extraction model LLMLingua [38]. We ensure a fair comparison by
standardizing evaluation conditions across all models.

4.3 Implementation Details

Training Settings: In the assistant learning phase, we create a dataset comprising 50k training
samples based on instruction-following input-output pairs across three distinct task types. The
assistant LLM, which is based on ChatGLM3-6B [37], is fully fine-tuned across all parameters. The
training is conducted over 2 epochs with a batch size of 32 and a peak learning rate of 2e-5. For
the preference optimization phase, we employ a DPO trainer and uses LoRA for fine-tuning, with a
learning rate set to 1e-5 and the training duration extended to 2 epochs. The training code and data
can be accessed at https://github.com/smallporridge/AssistRAG.

Inference Settings: For employing ChatGPT, we opt for the gpt-35-turbo-16kmodel, accessed
through its API at a temperature setting of 0. We use a Wikipedia dump as our document corpus,
breaking down articles into 100-token passages. For both memory and knowledge retrieval, we
deploy the off-the-shelf LLM Embedder [39] to fetch up to 5 documents per input.

5 Results and Analysis

5.1 Main Results

The main results are presented in Table 1. Several key findings can be observed as follows:

Comparison among Different Reasoning Types. Applying our ASSISTRAG framework to Chat-
GPT demonstrates a significant performance advantage over other models across all datasets. Specifi-
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cally, ASSISTRAG showcases its adaptability with different base LLMs, consistently outperforming
them in both Closebook and Naive RAG settings. This result highlights the advantage of ASSISTRAG
in effectively assisting a variety of downstream LLMs. Additionally, our method surpasses contempo-
rary approaches employing prompt engineering or supervised fine-tuning, validating the efficacy of
our curriculum assistant learning and reinforced preference optimization training strategies.

Comparison among Different Base LLMs. By comparing the performance of ASSISTRAG across
various base LLMs, it is observed that stronger base LLMs yield higher quality responses across
all reasoning types. Notably, compared to Naive RAG settings, ASSISTRAG achieves performance
improvements of 78%, 51%, and 40% for LLaMA, ChatGLM, and ChatGPT, respectively. This
indicates that ASSISTRAG brings more substantial benefits to weaker base LLMs. A likely reason
is that weaker models inherently have less robust noise resistance. Benefiting from the assistant’s
knowledge extraction capability, the main LLM only receives relevant knowledge to generate answers,
leading to improved responses.

5.2 Analysis

Table 2: Ablation Studies of ASSISTRAG.

Method Hotpot. 2Wiki Bamb.

Memory Management
Remove FNT 40.2 42.0 39.0
Freeze FNT 41.3 43.1 39.9

Knowledge Management
Remove FQD 39.5 37.8 37.0
Freeze FQD 41.3 40.3 37.8
Remove FKE 39.2 38.5 38.7
Freeze FKE 40.9 39.7 39.4

ASSISTRAG 44.8 45.6 41.4
w/o. Planning 43.0 44.5 40.7
w/o. Curriculum 43.2 44.3 40.0
w/o. DPO 42.5 43.2 40.5

Ablation Studies. ASSISTRAG integrates
memory and knowledge management to sup-
port the main LLM, encompassing three actions:
note-taking, question decomposition, and knowl-
edge extraction. To evaluate their contribution,
we conduct ablation studies by removing each
action or freezing the parameters of the assis-
tant. Additionally, we assess the effects of not
implementing planning (w/o. Planning), cur-
riculum learning (w/o. Curriculum), and rein-
forced preference optimization (w/o. DPO) to
explore there contribution to the F1 score. Ta-
ble 2 illustrates that removing or freezing any of
the ASSISTRAG’s actions results in decreased
performance, underscoring the value of the as-
sistant learning in the RAG context. Notably,
maintaining these actions in a frozen state still
outperforms completely removing them, highlighting their critical role in the RAG process. Concern-
ing training strategies, the absence of planning, curriculum learning, and preference optimization
slightly diminishes performance, indicating that a structured progression from simple to complex
tasks and aligning with downstream LLM preferences contribute to the assistant providing more
accurate information to the downstream LLM, thereby enhancing the accuracy of LLM responses.

Table 3: Token usage comparison. “tok.” is the
average token input length preceding the answer.

Method API tok. SFT tok. F1

CloseBook 18 0 25.7
Naive RAG 782 0 30.2
IR-CoT 1890 0 42.6
SELF-RAG 0 1456 40.7
LLMLingua 176 780 38.6

ASSISTRAG 90 1528 45.6

Token Usage of Different Methods. A notable
benefit of our ASSISTRAG framework is its ef-
ficiency in preprocessing extensive information
prior to engaging the main LLM. This not only
enhances the inference speed of the main LLM
but also minimizes token usage, which is particu-
larly valuable when utilizing online API services
like ChatGPT. We select a representative model
for each reasoning type to compare their token
consumption in terms of online API and SFT
model, alongside their performance metrics F1
on the 2Wiki dataset. The results, as outlined in
Table 3, reveal significant differences in token
usage among the methods. Prompt-based RAG methods tend to consume a large number of tokens
due to their dependency on multiple API calls. On the other hand, SFT-based methods are more
economical in terms of API calls but require retraining for new LLM adaptations. In contrast, our
ASSISTRAG demonstrates a balanced approach by reducing API token costs while maintaining
adaptability across different LLMs without the need for retraining. This method not only lowers the
overall costs associated with API usage but also achieves superior performance.
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Figure 4: The relationships between inference time, cost, and F1 accuracy for different methods.

0 10 20 30 40 50
Training data size (k)

0.36

0.38

0.40

0.42

0.44

F1

AssistRAG
w/o. Curriculum
w/o. DPO Training

(a) HotpotQA

0 10 20 30 40 50
Training data size (k)

0.34

0.36

0.38

0.40

0.42

0.44

0.46

F1

AssistRAG
w/o. Curriculum
w/o. DPO Training

(b) 2WikiMultiHopQA

0 10 20 30 40 50
Training data size (k)

0.30

0.32

0.34

0.36

0.38

0.40

F1

AssistRAG
w/o. Curriculum
w/o. DPO Training

(c) Bamboogle

Figure 5: Performance with different training data sizes.

Accuracy, Efficiency, and Cost Analysis. When evaluating an algorithm’s value, we consider three
dimensions: accuracy, efficiency, and cost. To compare different RAG methods, we calculate each
method’s F1 accuracy, inference speed, and cost. We then illustrate the relationships between these
variables using three separate plots. From Figure 4, we observe that ASSISTRAG stands out as the
most balanced method, achieving the highest F1 accuracy of 45.6, while maintaining a comparable
inference time of 5.73 seconds and a low cost of 0.009 cents per question. Although methods like
IR-CoT show higher costs and longer inference times, they do not surpass ASSISTRAG in accuracy.
These results demonstrate that ASSISTRAG is advantageous for applications requiring high accuracy
without incurring significant costs.

Impact of Dataset Size and Training Strategy. We examine the effect of training dataset size on
model performance by creating subsets of 5k, 10k, and 20k instances from our original 50k training
samples. These subsets fine-tune three separate model versions, evaluated on three datasets, and
compared to the model trained on the full 50k dataset. We also compare the impact of curriculum
learning and DPO training by evaluating performance with each strategy omitted. Figure 5 shows a
clear performance improvement for ASSISTRAG as the training dataset size increases from 5k to 50k
across both datasets, indicating potential further gains with larger datasets. The curriculum learning
strategy performs better than random mixed training, especially with smaller datasets, showing its
advantage when data is limited. In contrast, DPO training benefits more from larger datasets, likely
because more data enables better training for high-quality data generation.

Case Study. Table 4 is a case study that highlights the capabilities of AssistRAG in processing and
answering complex comparative questions. In this case study, the main question "Who is older, Danny
Green or James Worthy?" is systematically broken down by ASSISTRAG into simpler sub-questions
regarding the birth dates of both individuals. This decomposition enables targeted information
retrieval, allowing the system to accurately locate and extract relevant birth date information from
the corpus. ASSISTRAG effectively retrieves multiple pieces of information, including relevant and
irrelevant entries, and filters through them to extract the necessary facts. For instance, it identifies
the birth dates of both Danny Green and James Worthy and ignores unrelated entries, such as those
concerning another individual named Danny Green who is a boxer. The memory retrieval capability
is then utilized to access previous similar questions and their answers, which aids in reinforcing
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Table 4: Case Study of AssistRAG.
Question: Who is older, Danny Green or James Worthy?

Question Decomposition: AssistRAG initially breaks down the main question into sub-questions to facilitate
targeted information retrieval:
- When was Danny Green born?
- When was James Worthy born?

Knowledge Retrieval: AssistRAG retrieves relevant information from the corpus:
- [1] James Worthy ...
- [2] Danny Green (basketball) ...
- [3] Danny Green (boxer) ...
- ...

Knowledge Extraction: From the retrieved information, AssistRAG extracts key facts:
- Danny Green (born June 22, 1987) is an American professional basketball player who last played for the
Philadelphia 76ers of the National Basketball Association (NBA). In his NBA career, Green has played for six
teams. As of 2020, Green is one of just four players in history to have won NBA championships with three
different teams.
- James Worthy James Ager Worthy (born February 27, 1961) is an American former professional basketball
player who is currently a commentator, television host, and analyst. A standout at the University of North
Carolina, the 6 ft 9 in (2.06 m) small forward shared College Player of the Year honors en route to leading the
Tar Heels to the 1982 NCAA Championship.

Memory Retrieval: AssistRAG retrieves similar questions and answers from the memory:
1. question: Who is older, Danny Jones or David Coverdale? answer: David Coverdale was born on 22
September 1951, while Danny Jones was born on 12 March 1986. Since David Coverdale was born earlier, he
is older than Danny Jones. So the answer is David Coverdale.
2. question: Who is older, Danny Shirley or Kevin Parker? answer: Danny Shirley was born on August 12,
1956, while Kevin Parker was born on January 20, 1986. Since Danny Shirley was born earlier than Kevin
Parker, he is older. So the answer is Danny Shirley.
3. ...

Planning: Both retrieved memory and extracted knowledge are useful for the question.

Final Output: Based on the analysis, Main LLM outputs:
- James Worthy was born on February 27, 1961, while Danny Green was born on June 27, 1987. Since James
Worthy was born earlier, he is older. So the answer is James Worthy.

Final Answer: James Worthy

Ground-truth: James Worthy

the current decision-making process. This step provides context and supports consistency in the
reasoning pattern applied by the system. Combining the extracted knowledge and retrieved memory,
ASSISTRAG plans the final response by confirming the usefulness of both sources of information. The
Main LLM then generates a comprehensive answer, stating that James Worthy, born on February 27,
1961, is older than Danny Green, born on June 22, 1987. This case study showcases ASSISTRAG’s
ability to manage complex tasks by leveraging its multi-step reasoning process, ensuring the delivery
of accurate and reliable answers. The superior performance in accurately answering comparative
questions is a testament to the system’s robust architecture and its effective integration of question
decomposition, information retrieval, knowledge extraction, planning, and memory capabilities.

6 Conclusion

In this study, we introduce ASSISTRAG to augment LLMs with an intelligent information assistant,
significantly improving their ability to tackle tasks requiring complex reasoning. By implement-
ing a two-stage training methodology that integrates curriculum assistant learning with reinforced
preference optimization, we enhance the assistant’s skills in memory and knowledge management.
Experiments demonstrate that ASSISTRAG surpasses existing baselines with a notable margin.
Looking ahead, we plan to further expand the assistant’s skills to include long-text processing [40]
and personalized support [41], thereby providing more effective assistance to the main LLM.
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A Appendix / supplemental material

A.1 Implementation Details

To achieve the effective functioning of ASSISTRAG, we meticulously designed and executed the
training and inference phases, ensuring optimal use of computational resources and robust fine-tuning
processes.

A.1.1 Training Settings

The training of the assistant LLM involved a two-phase approach: Assistant Learning and Preference
Optimization.

1. Assistant Learning Phase:

• Dataset Creation: We created a dataset comprising 50,000 training samples based on instruction-
following input-output pairs. These pairs were categorized across three distinct task types: question
decomposition, note-taking, and knowledge extraction.

• Model Architecture: The assistant LLM is based on ChatGLM3-6B [37], a state-of-the-art
language model known for its robust performance in various NLP tasks.

• Training Procedure: The assistant LLM was fully fine-tuned across all parameters over 2 epochs,
with a batch size of 32 and a peak learning rate of 2e-5. This phase focused on enhancing the
model’s ability to decompose complex queries, take notes, and extract relevant knowledge.
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Table 5: Training samples of note-taking.
Input
You are given 1) the question, 2) the answer, 3) the supporting facts where the answer can be derived. You
are supposed to figure out the reasoning process towards the answer step-by-step without other content. Be
concise and direct.
Question: American politician Joe Heck ran unsuccessfully against Democrat Catherine Cortez Masto, a
woman who previously served as the 32nd Attorney General of where?
Answer: Nevada
Supporting Facts: Joseph John Heck (born October 30, 1961) is an American politician, physician, and U.S.
Army Brigadier General who had served as the U.S. Representative for Nevada’s 3rd congressional district
from 2011 to 2017. He ran unsuccessfully against Democrat Catherine Cortez Masto in the general election
for the open Nevada United States Senate seat in 2016. She previously served as the 32nd Attorney General of
Nevada from 2007 to 2015.
Reasoning:

Output
Catherine Cortez Masto previously served as the 32nd Attorney General of Nevada. Joe Heck ran unsuccess-
fully against her in the general election for the open Nevada United States Senate seat in 2016. Therefore, the
answer is Nevada."

2. Preference Optimization Phase:

• Optimization Technique: We employed a DPO (Distributed Preference Optimization) trainer to
refine the assistant’s feedback mechanisms.

• Fine-tuning with LoRA: Low-Rank Adaptation (LoRA) was utilized for fine-tuning, which helps
in adjusting a subset of model parameters efficiently, reducing the computational load.

• Learning Rate and Duration: The learning rate was set to 1e-5, with the training duration
extending to 2 epochs.

Training Resources: The entire training process was conducted using 8 A800 GPUs, providing
substantial computational power to handle the intensive training tasks efficiently.

A.1.2 Inference Settings

During the inference phase, the ASSISTRAG system was fine-tuned to operate seamlessly with the
main LLM, ensuring effective retrieval and processing of information.

• Model Selection: For the main LLM, we opted for the gpt-35-turbo-16k model, accessed
through its API. This model was chosen for its extended context window and advanced capabilities
in handling complex queries.

• Temperature Setting: The temperature was set to 0, ensuring deterministic outputs which are
crucial for consistency in inference tasks.

• Document Corpus: A Wikipedia dump was used as the primary document corpus. Articles were
segmented into 100-token passages to facilitate efficient retrieval.

• Retrieval tool: Both memory and knowledge retrieval processes utilized the off-the-shelf LLM
Embedder [39], capable of fetching up to 5 documents per input, ensuring comprehensive coverage
of relevant information.

Inference Resources: The inference tasks were efficiently handled using a single A800 GPU,
highlighting the system’s capability to deliver high performance with minimal resource usage.

A.1.3 Data Annotation and Samples

The training data annotation process was critical in ensuring the quality and relevance of the dataset.
We utilized GPT4-turbo for annotating the dataset, ensuring high accuracy and consistency across the
training samples. The dataset included approximately 50k training samples, labeled to cover a wide
range of instruction-following tasks.

Instructions and Training Data Samples: The following tables (Table 6, 5, and 7) provide detailed
examples of the instruction types and training data samples used in the training phase.
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Table 6: Training samples of query decomposition.
Input
Please generate a series of search queries that can be used to find information relevant to the given question.
Question: The 1968 Baltimore Orioles season included a replacement of Hank Bauer by the manager who
spent how many seasons with the Orioles?.
Search queries:

Output Who replaced Hank Bauer as the manager of the 1968 Baltimore Orioles?
How many seasons did Earl Weaver spend with the Baltimore Orioles?

Table 7: Training samples of knowledge extraction.
Input
Please extract relevant snippets from search results that would be helpful in answering this question.
Question: Musician and satirist Allie Goertz wrote a song about the The Simpsons character Milhouse, who
Matt Groening named after who?.
Search results:
- [1] Allie Goertz – Allie Goertz Allison Beth Allie Goertz (born March 2, 1991) is an American musician.
Goertz is known for her satirical songs based on various pop culture topics. Her videos are posted on YouTube
under the name of Cossbysweater. Subjects of her songs have included the film The Room ...
- [2] Allie Goertz – and logo of the series. The album was made possible through Kickstarter. She is co-host
of Everything’s Coming Up Simpsons podcast, formerly known as Everything’s Coming Up Podcast, a
Simpsons-focused podcast along with Julia Prescott. Goertz also served as a social media producer for ...
- [3] ...
Snippets:

Output Allie Goertz – Allie Goertz Allison Beth Allie Goertz (born March 2, 1991) is an American musician.
Goertz is known for her satirical songs based on various pop culture topics. Milhouse Van Houten Milhouse
Mussolini Van Houten is a fictional character in the animated television series The Simpsons, voiced by
Pamela Hayden, and created by Matt Groening who named the character after ...

A.2 Error Analysis

We have conducted a comprehensive error analysis on the performance of AssistRAG. To facilitate
this analysis, we selected 50 erroneous examples from the HotpotQA dataset and calculated the
proportion of each error type:

1. Insufficient Knowledge Retrieval: Instances where the retrieved knowledge does not
contain the answer.

2. Knowledge Extraction Errors: Cases where the answer is present in the retrieved knowl-
edge, but the assistant fails to extract this information.

3. Answer Reasoning Mistakes: Situations where the assistant extracts the correct information
but the main LLM produces an incorrect answer.

4. Other: Including errors such as non-exact match answers.

From Table 8, our findings indicate that more than half of the errors stem from insufficient knowl-
edge retrieval, which is likely linked to the performance of the retriever and the manner in which
questions are reformulated. Additionally, a significant portion of errors are due to reasoning mistakes,
highlighting the importance of the main LLM’s reasoning capabilities. Given that HotpotQA involves
multi-hop question-answering tasks, these findings underscore the high demands placed on reasoning
abilities.

A.3 Limitations

Despite the advancements offered by ASSISTRAG, several limitations warrant consideration. Firstly,
relying on an intelligent information assistant introduces additional computational complexity and
latency. The two-phase training approach and its operation during inference require substantial
computational resources, which may limit the practical application of ASSISTRAG in environments
with restricted processing capabilities or where real-time responses are critical.
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Table 8: Proportion of each error type in the analysis.
Error Type Proportion
Insufficient Knowledge Retrieval 58%
Knowledge Extraction Errors 12%
Answer Reasoning Mistakes 20%
Other 10%

Secondly, the effectiveness of ASSISTRAG depends on the quality and comprehensiveness of the
external knowledge bases and internal memory it accesses. In scenarios where the available data is
sparse, outdated, or biased, the assistant’s ability to retrieve and integrate relevant information may be
compromised, leading to suboptimal or erroneous outputs from the main LLM. This dependence on
data quality underscores the need for continuous updates and maintenance of the knowledge sources.

Lastly, the decision-making process during inference, which involves the assistant evaluating the rele-
vance of retrieved information, is inherently difficult. The assistant’s ability to accurately determine
the necessity and applicability of specific knowledge is crucial for effective support. However, this
process is susceptible to errors, particularly in scenarios involving ambiguous or multifaceted queries.
Enhancing the precision and reliability of this decision-making mechanism is a key area for further
research.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: the paper provides evaluation results and error analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer:[Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer:[Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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