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ABSTRACT

Representations learned via self-supervised learning (SSL) can be susceptible to
dimensional collapse, where the learned representation subspace is of extremely
low dimensionality and thus fails to represent the full data distribution and modali-
ties. Dimensional collapse ––– also known as the “underfilling” phenomenon –––
is one of the major causes of degraded performance on downstream tasks. Pre-
vious work has investigated the dimensional collapse problem of SSL at a global
level. In this paper, we demonstrate that representations can span over high dimen-
sional space globally, but collapse locally. To address this, we propose a method
called local dimensionality regularization (LDReg). Our formulation is based on
the derivation of the Fisher-Rao metric to compare and optimize local distance
distributions at an asymptotically small radius for each data point. By increasing
the local intrinsic dimensionality, we demonstrate through a range of experiments
that LDReg improves the representation quality of SSL. The results also show that
LDReg can regularize dimensionality at both local and global levels.

1 INTRODUCTION

Self-supervised learning (SSL) is now approaching the same level of performance as supervised
learning on numerous tasks (Chen et al., 2020a;b; He et al., 2020; Grill et al., 2020; Chen & He,
2021; Caron et al., 2021; Zbontar et al., 2021; Chen et al., 2021; Bardes et al., 2022; Zhang et al.,
2022). SSL focuses on the construction of effective representations without reliance on labels. Qual-
ity measures for such representations are crucial to assess and regularize the learning process. A key
aspect of representation quality is to avoid dimensional collapse and its more severe form, mode
collapse, where the representation converges to a trivial vector (Jing et al., 2022). Dimensional col-
lapse refers to the phenomenon whereby many of the features are highly correlated and thus span
only a lower-dimensional subspace. Existing works have connected dimensional collapse with low
quality of learned representations (He & Ozay, 2022; Li et al., 2022; Garrido et al., 2023a; Dubois
et al., 2022). Both contrastive and non-contrastive learning can be susceptible to dimensional col-
lapse (Tian et al., 2021; Jing et al., 2022; Zhang et al., 2022), which can be mitigated by regularizing
dimensionality as a global property, such as learning decorrelated features (Hua et al., 2021) or min-
imizing the off-diagonal terms of the covariance matrix (Zbontar et al., 2021; Bardes et al., 2022).

In this paper, we examine an alternative approach to the problem of dimensional collapse, by in-
vestigating the local properties of the representation. Rather than directly optimizing the global
dimensionality of the entire training dataset (in terms of correlation measures), we propose to regu-
larize the local intrinsic dimensionality (LID) (Houle, 2017a;b) at each training sample. We provide
an intuitive illustration of the idea of LID in Figure 1. Given a representation vector (anchor point)
and its surrounding neighbors, if representations collapse to a low-dimensional space, it would re-
sult in a lower sample LID for the anchor point (Figure 1a). In SSL, each anchor point should be
dissimilar from all other points and should have a higher sample LID (Figure 1b). Based on LID,
we reveal an interesting observation that: representations can span a high dimensional space glob-
ally, but collapse locally. As shown in the top 4 subfigures in Figure 1c, the data points could span
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over different local dimensional subspaces (LIDs) while having roughly the same global intrinsic
dimension (GID). This suggests that dimensional collapse should not only be examined as a global
property but also locally. Note that Figure 1c illustrates a synthetic case of local dimensional col-
lapse. Later we will empirically show that representations converging to a locally low-dimensional
subspace can have reduced quality and that higher LID is desirable for SSL.
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Figure 1: Illustrations with 2D synthetic data. (a-b) The LID value of the anchor point (red star)
when there is (or is no) local collapse. (c) Fisher-Rao (FR) metric and mean LID (mLID) estimates.
FR measures the distance between two LID distributions, and is computed based on our theoretical
results. mLID is the geometric mean of sample-wise LID scores. High FR distances and low mLID
scores indicate greater dimensional collapse. Global intrinsic dimension (GID) is estimated using
the DanCO algorithm (Ceruti et al., 2014).

To address local dimensional collapse, we propose the Local Dimensionality Regularizer (LDReg),
which regularizes the representations toward a desired local intrinsic dimensionality to avoid col-
lapse, as shown at the bottom subfigure of Figure 1c. Our approach leverages the LID Representation
Theorem (Houle, 2017a), which has established that the distance distribution of nearest neighbors
in an asymptotically small radius around a given sample is guaranteed to have a parametric form.
For LDReg to be able to influence the learned representations toward a distributionally higher LID,
we require a way to compare distributions that is sensitive to differences in LID. This motivates us
to develop a new theory to enable measurement of the ‘distance’ between local distance distribu-
tions, as well as identify the mean of a set of local distance distributions. We derive a theoretically
well-founded Fisher-Rao metric (FR), which considers a statistical manifold for assessing the dis-
tance between two local distance distributions in the asymptotic limit. As shown in Figure 1c, FR
corresponds well with different degrees of dimensional collapse. More details regarding Figure 1c
can be found in Appendix A.

The theory we develop here also leads to two new insights: i) LID values are better compared using
the logarithmic scale rather than the linear scale; ii) For aggregating LID values, the geometric mean
is a more natural choice than the arithmetic or harmonic means. These insights have consequences
for formulating our local dimensionality regularization objective, as well as broader implications for
comparing and reporting LID values in other contexts.

To summarize, the main contributions of this paper are:

• A new approach, LDReg, for mitigating dimensional collapse in SSL via the regularization
of local intrinsic dimensionality characteristics.

• Theory to support the formulation of LID regularization, insights into how dimensionalities
should be compared and aggregated, and generic dimensionality regularization technique
that can potentially be used in other types of learning tasks.

• Consistent empirical results demonstrating the benefit of LDReg in improving multiple
state-of-the-art SSL methods (including SimCLR, SimCLR-Tuned, BYOL, and MAE), and
its effectiveness in addressing both local and global dimensional collapse.

2 RELATED WORK

Self-Supervised Learning (SSL). SSL aims to automatically learn high-quality representations
without label supervision. Existing SSL methods can be categorized into two types: generative

2



Published as a conference paper at ICLR 2024

methods and contrastive methods. In generative methods, the model learns representations through
a reconstruction of the input (Hinton & Zemel, 1993). Inspired by masked language modeling (Ken-
ton & Toutanova, 2019), recent works have successfully extended this paradigm to the reconstruc-
tion of masked images (Bao et al., 2022; Xie et al., 2022), such as Masked AutoEncoder (MAE)
(He et al., 2022). It has been theoretically proven that these methods are a special form of con-
trastive learning that implicitly aligns positive pairs (Zhang et al., 2022). Contrastive methods can
further be divided into 1) sample-contrastive, 2) dimension-contrastive (Garrido et al., 2023b), and
3) asymmetrical models. SimCLR (Chen et al., 2020a) and other sample-contrastive methods (He
et al., 2020; Chen et al., 2020a;b; Yeh et al., 2022) are based on InfoNCE loss (Oord et al., 2018).
The sample-contrastive approach has been extended by using nearest-neighbor methods (Dwibedi
et al., 2021; Ge et al., 2023), clustering-based methods (Caron et al., 2018; 2020; Pang et al., 2022),
and improved augmentation strategies (Wang et al., 2023). Dimension-contrastive methods (Zbontar
et al., 2021; Bardes et al., 2022) regularize the off-diagonal terms of the covariance matrix of the
embedding. Asymmetrical models use an asymmetric architecture, such as an additional predictor
(Chen & He, 2021), self-distillation (Caron et al., 2021), or a slow-moving average branch as in
BYOL (Grill et al., 2020).

Dimensional collapse in SSL. Dimensional collapse occurs during the SSL process where the
learned embedding vectors and representations span only a lower-dimensional subspace (Hua et al.,
2021; Jing et al., 2022; He & Ozay, 2022; Li et al., 2022). Generative methods such as MAE (He
et al., 2022) have been shown to be susceptible to dimensional collapse (Zhang et al., 2022). Sample-
contrastive methods such as SimCLR have also been observed to suffer from dimensional collapse
(Jing et al., 2022). Other studies suggest that while stronger augmentation and larger projectors are
beneficial to the performance (Garrido et al., 2023b), they may cause a dimensional collapse in the
projector space (Cosentino et al., 2022). It has been theoretically proven that asymmetrical model
methods can alleviate dimensional collapse, and the effective rank (Roy & Vetterli, 2007) is a use-
ful measure of the degree of global collapse (Zhuo et al., 2023). Effective rank is also helpful in
assessing the representation quality (Garrido et al., 2023a). By decorrelating features, dimension-
contrastive methods (Zbontar et al., 2021; Zhang et al., 2021; Ermolov et al., 2021; Bardes et al.,
2022) can also avoid dimensional collapse. In this work, we focus on the local dimensionality of the
representation (encoder) space, which largely determines the performance of downstream tasks.

Local Intrinsic Dimensionality. Unlike global intrinsic dimensionality metrics (Pettis et al., 1979;
Bruske & Sommer, 1998), local intrinsic dimensionality (LID) measures the intrinsic dimension in
the vicinity of a particular query point (Levina & Bickel, 2004; Houle, 2017a). It has been used as a
measure for similarity search (Houle et al., 2012), for characterizing adversarial subspaces (Ma et al.,
2018a), for detecting backdoor attacks (Dolatabadi et al., 2022), and in the understanding of deep
learning (Ma et al., 2018b; Gong et al., 2019; Ansuini et al., 2019; Pope et al., 2021). In Appendix B,
we provide a comparison between the effective rank and the LID to help understand local vs. global
dimensionality. Our work in this paper shows that LID is not only useful as a descriptive measure,
but can also be used as part of a powerful regularizer for SSL.

3 BACKGROUND AND TERMINOLOGY

We first introduce the necessary background for the distributional theory underpinning LID. The
dimensionality of the local data submanifold in the vicinity of a reference sample is revealed by the
growth characteristics of the cumulative distribution function of the local distance distribution.

Let F be a real-valued function that is non-zero over some open interval containing r ∈ R, r ̸= 0.
Definition 1 ((Houle, 2017a)). The intrinsic dimensionality of F at r is defined as follows, whenever
the limit exists:

IntrDimF (r) ≜ lim
ϵ→0

ln (F ((1+ϵ)r)/F (r))

ln((1+ϵ)r/r)
.

Theorem 1 ((Houle, 2017a)). If F is continuously differentiable at r, then

LIDF (r) ≜
r · F ′(r)

F (r)
= IntrDimF (r) .

Although the preceding definitions apply more generally, we will be particularly interested in func-
tions F that satisfy the conditions of a cumulative distribution function (CDF). Let x be a location of
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interest within a data domain S for which the distance measure d : S ×S → R≥0 has been defined.
To any generated sample s ∈ S , we associate the distance d(x, s); in this way, a global distribution
that produces the sample s can be said to induce the random value d(x, s) from a local distribution
of distances taken with respect to x. The CDF F (r) of the local distance distribution is simply the
probability of the sample distance lying within a threshold r — that is, F (r) ≜ Pr[d(x, s) ≤ r].

To characterize the local intrinsic dimensionality in the vicinity of location x, we consider the limit
of LIDF (r) as the distance r tends to 0. Regardless of whether F satisfies the conditions of a CDF,
we denote this limit by

LID∗
F ≜ lim

r→0+
LIDF (r) .

Henceforth, when we refer to the local intrinsic dimensionality (LID) of a function F , or of a point
x whose induced distance distribution has F as its CDF, we will take ‘LID’ to mean the quantity
LID∗

F .

In general, LID∗
F is not necessarily an integer. Unlike the manifold model of local data distributions

— where the dimensionality of the manifold is always an integer, and deviation from the manifold
is considered as ‘error’ — the LID model reflects the entire local distributional characteristics with-
out distinguishing error. However, the estimation of the LID at x often gives an indication of the
dimension of the local manifold containing x that would best fit the distribution.

4 ASYMPTOTIC FORM OF FISHER-RAO METRIC FOR LID DISTRIBUTIONS

We now provide the necessary theoretical justifications for our LDReg regularizer which will be
later developed in Section 5. Intuitively, LDReg should regularize the LID of the local distribution
of the training samples towards a higher value, determined as the LID of some target distribution.
This can help to avoid dimensional collapse by increasing the dimensionality of the representation
space and producing representations that are more uniform in their local dimensional characteristics.
To achieve this, we will need an asymptotic notion of distributional distance that applies to lower
tail distributions. In this section, we introduce an asymptotic variant of the Fisher-Rao distance that
can be used to identify the center (mean) of a collection of tail distributions.

4.1 FISHER-RAO DISTANCE METRIC

The Fisher-Rao distance is based on the embedding of the distributions on a Riemannian manifold,
where it corresponds to the length of the geodesic along the manifold between the two distribu-
tions. The metric is usually impossible to compute analytically, except for special cases (such as
certain varieties of Gaussians). However, in the asymptotic limit as w → 0, we will show that it is
analytically tractable for smooth growth functions.

Definition 2. Given a non-empty set X and a family of probability density functions ϕ(x|θ) pa-
rameterized by θ on X , the space M = {ϕ(x|θ)|θ ∈ Rd} forms a Riemannian manifold. The
Fisher-Rao Riemannian metric on M is a function of θ and induces geodesics, i.e., curves with
minimum length on M. The Fisher-Rao distance between two models θ1 and θ2 is the arc-length
of the geodesic that connects these two points.

In our context, we will focus on univariate lower tail distributions with a single parameter θ corre-
sponding to the LID of the CDF. In this context, the Fisher-Rao distance will turn out to have an
elegant analytical form. We will make use of the Fisher information I, which is the variance of the
gradient of the log-likelihood function (also known as the Fisher score). For distributions over [0, w]
with a single parameter θ, this is defined as

Iw(θ) =
∫ w

0

(
∂

∂θ
lnF ′

w(r|θ)
)2

F ′
w(r|θ) dr .

Lemma 1. Consider the family of tail distributions on [0, w] parameterized by θ, whose CDFs are
smooth growth functions of the form

Hw|θ(r) =
( r

w

)θ
.
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The Fisher-Rao distance dFR between Hw|θ1 and Hw|θ2 is

dFR(Hw|θ1 , Hw|θ2) =

∣∣∣∣ln θ2
θ1

∣∣∣∣ .
The Fisher information Iw for smooth growth functions of the form Hw|θ is:

Iw(θ) =

∫ w

0

(
∂

∂θ
lnH ′

w|θ(r)

)2

H ′
w|θ(r) dr =

1

θ2
.

The proof of Lemma 1 can be found in Appendix C.2.

4.2 ASYMPTOTIC FISHER-RAO METRIC

We now extend the notion of the Fisher-Rao metric to distance distributions whose CDFs (condi-
tioned to the lower tail [0, w]) have the more general form of a growth function. The LID Represen-
tation Theorem (Theorem 3 in Appendix C.1) tells us that any such CDF Fw(r) can be decomposed
into the product of a canonical form Hw|LID∗

F
(r) with an auxiliary factor AF (r, w):

Fw(r) = Hw|LID∗
F
(r) ·AF (r, w) =

( r

w

)LID∗
F

· exp
(∫ w

r

LID∗
F −LIDF (t)

t
dt

)
.

From Corollary 3.1 (Appendix C.1), the auxiliary factor AF (r, w) tends to 1 as r and w tend to 0,
provided that r stays within a constant factor of w. Asymptotically, then, Fw can be seen to tend to
Hw|θ as the tail length tends to zero, for θ = LID∗

F . More precisely, for any constant c ≥ 1,

lim
w→0+

w/c≤ r≤ cw

Fw(r)

Hw|LID∗
F
(r)

= lim
w→0+

w/c≤ r≤ cw

AF (r, w) = 1 .

Thus, although the CDF Fw does not in general admit a finite parameterization suitable for the direct
definition of a Fisher-Rao distance, asymptotically it tends to a distribution that does: Hw|LID∗

F
.

Using Lemma 1 we define an asymptotic form of Fisher-Rao distance between distance distributions.
Definition 3. Given two smooth-growth distance distributions with CDFs F and G, their asymptotic
Fisher-Rao distance is given by

dAFR(F,G) ≜ lim
w→0+

dFR(Hw|LID∗
F
, Hw|LID∗

G
) =

∣∣∣∣ln LID∗
G

LID∗
F

∣∣∣∣ .
4.3 IMPLICATIONS

Remark 1.1. Assume that LID∗
F ≥ 1 and that Gw = U1,w is the one-dimensional uniform distri-

bution over the interval [0, w] (with LID∗
G therefore equal to 1). We then have

dAFR(Fw,U1,w) = lnLID∗
F

LID∗
F = exp (dAFR(Fw,U1,w)) .

We can therefore interpret the local intrinsic dimensionality of a distribution F conditioned to the
interval [0, w] (with LID∗

F ≥ 1) as the exponential of the distance between distribution F and the
uniform distribution in the limit as w → 0.

There is also a close relationship between our asymptotic Fisher-Rao distance metric and a mathe-
matically special measure of relative difference.
Remark 1.2. One can interpret the quantity |ln (LID∗

G/LID∗
F )| as a relative difference between LID∗

G
and LID∗

F . Furthermore, it is the only measure of relative difference that is both symmetric, additive,
and normed (Törnqvist et al., 1985).

The asymptotic Fisher-Rao distance indicates that the absolute difference between the LID values
of two distance distributions is not a good measure of asymptotic dissimilarity. For example, a
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pair of distributions with LID∗
F 1 = 2 and LID∗

G1 = 4 are much less similar under the asymptotic
Fisher-Rao metric than a pair of distributions with LID∗

F 2 = 20 and LID∗
G2 = 22.

We can also use the asymptotic Fisher-Rao metric to compute the ‘centroid’ or Fréchet mean1 of a
set of distance distributions, as well as the associated Fréchet variance.
Definition 4. Given a set of distance distribution CDFs F = {F 1, F 2, . . . , FN}, the empirical
Fréchet mean of F is defined as

µF ≜ argmin
Hw|θ

1

N

N∑
i=1

(
dAFR(Hw|θ, F

i)
)2

.

The Fréchet variance of F is then defined as

σ2
F ≜

1

N

N∑
i=1

(
dAFR(µF , F

i)
)2

=
1

N

N∑
i=1

(
ln LID∗

F i − ln LID∗
µF

)2
.

The Fréchet variance can be interpreted as the variance of the local intrinsic dimensionalities of the
distributions in F , taken in logarithmic scale.

The Fréchet mean has a well-known close connection to the geometric mean, when the distance is
expressed as a difference of logarithmic values. For our setting, we state this relationship in the
following theorem, the proof of which can be found in Appendix C.3.
Theorem 2. Let µF be the empirical Fréchet mean of a set of distance distribution CDFs
F = {F 1, F 2, . . . , FN} using the asymptotic Fisher-Rao metric dAFR. Then LID∗

µF
=

exp
(

1
N

∑N
i=1 ln LID

∗
F i

)
, the geometric mean of {LID∗

F 1 , . . . ,LID∗
FN }.

Corollary 2.1. Given the CDFs F = {F 1, F 2, . . . , FN}, the quantity 1
N

∑N
i=1 ln LID

∗
F i is:

1. The average asymptotic Fisher-Rao distance of members of F to the one-dimensional uni-
form distribution (if for all i we have LID∗

F i ≥ 1).

2. The logarithm of the local intrinsic dimension of the Fréchet mean of F .

3. The logarithm of the geometric mean of the local intrinsic dimensions of the members of
F .

The proof of Assertion 1 is in Appendix C.4. Assertions 2 and 3 follow from Theorem 2.

It is natural to consider whether other measures of distributional divergence could be used in place
of the asymptotic Fisher-Rao metric in the derivation of the Fréchet mean. Bailey et al. (2022) have
shown several other divergences involving the LID of distance distributions — most notably that of
the Kullback-Leibler (KL) divergence. We can in fact show that the asymptotic Fisher-Rao metric
is preferable (in theory) to the asymptotic KL distance, and the geometric mean is preferable to the
arithmetic mean and harmonic mean when aggregating the LID values of distance distributions. For
the details, we refer readers to Theorem 4 in Appendix C.5.

In summary, Theorems 2 and 4 (Appendix C.5) show that the asymptotic Fisher-Rao metric is prefer-
able in measuring the distribution divergence of LIDs. These theorems provide theoretical justifica-
tion for LDReg, which will be described in the following section.

5 LID REGULARIZATION FOR SELF-SUPERVISED LEARNING

In this section, we formally introduce our proposed LDReg method. For an input image x and an
encoder f(·), the representation of x can be obtained as z = f(x). Depending on the SSL method,
a projector g(·), a predictor h(·), and a decoder t(·) can be used to obtain the embedding vector or
the reconstructed image from z. LDReg is a generic regularization on representations z obtained by
the encoder, and as such it can be applied to a variety of SSL methods (more details are in Appendix
E). We denote the objective function of an SSL method by LSSL.

1Also known as the Karcher mean, the Riemannian barycenter and the Riemannian center of mass.
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Local Dimensionality Regularization (LDReg). Following theorems derived in Section 4, we
assume that the representational dimension is d, and that we are given the representation of a sample
xi. Suppose that the distance distribution induced by F at xi is F i

w(r). To avoid dimensional
collapse, we consider maximizing the distributional distance between F i

w(r) and a uniform distance
distribution U1,w(r) (with LID = 1): for each sample, we could regularize a local representation
that has a local intrinsic dimensionality much greater than 1 (and thus closer to the representational
dimension d ≫ 1). We could regularize by maximizing the sum of squared asymptotic FR distances
(L2-style regularization), or of absolute FR distances (L1-style regularization).

In accordance to Corollary 2.1 in Section 4.2, we apply L1-regularization to minimize the negative
log of the geometric mean of the ID values. Assuming that LID∗

F i
w

is desired to be ≥ 1,

max
1

N

N∑
i

lim
w→0

dAFR(F
i
w(r), U1,w(r)) = min− 1

N

N∑
i

ln LID∗
F i

w
, (1)

where N is the batch size. Following Theorem 2 in Section 4.2, we apply L2-regularization to
maximize the Fréchet variance under a prior of µF = 1:

max
1

N

N∑
i

lim
w→0

(dAFR(F
i
w(r), U1,w(r)))

2 = min− 1

N

N∑
i

(
ln LID∗

F i
w

)2
. (2)

Our preference for the geometric mean over the arithmetic mean for L1- and L2-regularization is
justified by Theorem 4 in Appendix C.5. We refer readers to Appendix D for a discussion of other
regularization formulations.

We use the Method of Moments (Amsaleg et al., 2018) as our estimator of LID, due to its simplicity.
Since only the encoder is kept for downstream tasks, we estimate the LID values based on the
encoder representations (z = f(x)). Specifically, we calculate the pairwise Euclidean distance
between the encoder representations of a batch of samples to estimate the LID∗

F i
w

for each sample
xi in the batch: LID∗

F i
w
= − µk

µk−wk
, where k denotes the number of nearest neighbors of zi, wk is

the distance to the k-th nearest neighbor, and µk is the average distance to all k nearest neighbors.

The overall optimization objective is defined as a minimization of either of the following losses:

LL1 = LSSL − β
1

N

N∑
i

ln LID∗
F i

w
or LL2 = LSSL − β

(
1

N

N∑
i

(
ln LID∗

F i
w

)2) 1
2

, (3)

where β is a hyperparameter balancing the loss and regularization terms. More details of how to ap-
ply LDReg on different SSL methods can be found in Appendix E; the pseudocode is in Appendix J.

6 EXPERIMENTS

We evaluate the performance of LDReg in terms of representation quality, such as training a linear
classifier on top of frozen representations. We use SimCLR (Chen et al., 2020a), SimCLR-Tuned
(Garrido et al., 2023b), BYOL (Grill et al., 2020), and MAE (He et al., 2022) as baselines. We
perform our evaluation with ResNet-50 (He et al., 2016) (for SimCLR, SimCLR-Tuned, and BYOL)
and ViT-B (Dosovitskiy et al., 2021) (for SimCLR and MAE) on ImageNet (Deng et al., 2009). As
a default, we use batch size 2048, 100 epochs of pretraining for SimCLR, SimCLR-Tuned and
BYOL, and 200 epochs for MAE, and hyperparameters chosen in accordance with each baseline’s
recommended values. We evaluate transfer learning performance by performing linear evaluations
on other datasets, including Food-101 (Bossard et al., 2014), CIFAR (Krizhevsky & Hinton, 2009),
Birdsnap (Berg et al., 2014), Stanford Cars (Krause et al., 2013), and DTD (Cimpoi et al., 2014). For
finetuning, we use RCNN (Girshick et al., 2014) to evaluate on downstream tasks using the COCO
dataset (Lin et al., 2014). Detailed experimental setups are provided in Appendix F. For LDReg
regularization, we use k = 64 as the default neighborhood size. For ResNet-50, we set β = 0.01
for SimCLR and SimCLR Tuned, β = 0.005 for BYOL. For ViT-B, we set β = 0.001 for SimCLR,
and β = 5 × 10−6 for MAE. Since LL1 and LL2 perform similarly (see Appendix G.1), here we
mainly report the results of LL1. An experiment showing how local collapse triggers mode collapse
is provided in Appendix G.2, while an ablation study of hyperparameters is in Appendix G.3.
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6.1 LDREG REGULARIZATION INCREASES LOCAL AND GLOBAL INTRINSIC DIMENSIONS

Intrinsic dimensionality has previously been used to understand deep neural networks in a supervised
learning context (Ma et al., 2018b; Gong et al., 2019; Ansuini et al., 2019). For SSL, Figure 2a shows
that the geometric mean of LID tends to increase over the course of training. For contrastive methods
(SimCLR and BYOL), the mean of LID slightly decreases at the later training stages (dash lines).
With LDReg, the mean of LID increases for all baseline methods and alleviates the decreasing trend
at the later stages (solid lines), most notably on BYOL.
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Figure 2: (a) Geometric mean of LID values over training epochs. (b) Geometric mean of LID
values with varying color jitter strength in the augmentations for SimCLR. The linear evaluation
result is reported in the legend. (a-b) LID is computed on the training set. (c-d) The effective rank
and LID are computed for samples in the validation set. The solid and transparent bars represent
the baseline method with and without LDReg regularization, respectively. MAE uses ViT-B as the
encoder, and others use ResNet-50.

In Figure 2b, we adjusted the color jitter strength of the SimCLR augmentation policy and observed
that the mean LID of the representation space positively correlates with the strength. This indicates
that stronger augmentations tend to trigger more variations of the image and thus lead to represen-
tations of higher LID. This provides insights on why data augmentation is important for SSL Grill
et al. (2020); Von Kügelgen et al. (2021) and why it can help avoid dimensional collapse (Wagner
et al., 2022; Huang et al., 2023).

The effective rank (Roy & Vetterli, 2007) is a metric to evaluate dimensionality as a global property
and can also be used as a metric for representation quality (Garrido et al., 2023a). Figure 2c shows
that BYOL is less susceptible to dimensional collapse. SimCLR-Tuned uses the same augmentation
as BYOL (which is stronger than that of SimCLR), yet still converges to a lower dimensional space
as compared with BYOL. This indicates that for SimCLR and its variants, stronger augmentation
is not sufficient to prevent global dimensional collapse. Generative method MAE is known to be
prone to dimensional collapse (Zhang et al., 2022). Unsurprisingly, it has the lowest effective rank
in Figure 2c. Note that the extremely low effective rank of MAE is also related to its low repre-
sentation dimension which is 768 in ViT-B (other methods shown here used ResNet-50 which has a
representation dimension of 2048).

We also analyze the geometric mean of the LID values in Figure 2d. It shows that, compared
to other methods, BYOL has a much lower mean LID value. This implies that although BYOL
does not collapse globally, it converges to a much lower dimension locally. We refer readers to
Appendix G.2 for an analysis of how local collapse (extremely low LID) could trigger a complete
mode collapse, thereby degrading the representation quality. Finally, the use of our proposed LDReg
regularization can effectively void dimensional collapse and produce both increased global and local
dimensionalities (as shown in Figures 2c and 2d with ‘+ LDReg’).

6.2 EVALUATIONS

We evaluate the representation quality learned by different methods via linear evaluation, transfer
learning, and fine-tuning on downstream tasks. As shown in Table 1, LDReg consistently improves
the linear evaluation performance for methods that are known to be susceptible to dimensional col-
lapse, including sample-contrastive method SimCLR and generative method MAE. It also improves
BYOL, which is susceptible to local dimensional collapse as shown in Figure 2d. Tables 2 and 3
further demonstrate that LDReg can also improve the performance of transfer learning, finetuning
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Table 1: The linear evaluation results (accuracy (%)) of different methods with and without LDReg.
The effective rank is calculated on the ImageNet validation set. The best results are boldfaced.

Model Epochs Method Regularization Linear Evaluation Effective Rank Geometric mean
of LID

ResNet-50 100

SimCLR - 64.3 470.2 18.8
LDReg 64.8 529.6 20.0

SimCLR
(Tuned)

- 67.2 525.8 24.9
LDReg 67.5 561.7 26.1

BYOL - 67.6 583.8 15.9
LDReg 68.5 594.0 22.3

ViT-B 200
SimCLR - 72.9 283.7 13.3

LDReg 73.0 326.1 13.7

MAE - 57.0 86.4 25.8
LDReg 57.6 154.1 29.8

Table 2: The transfer learning results in terms of linear probing accuracy (%), using ResNet-50 as
the encoder. The best results are boldfaced.

Method Regularization Batch Size Epochs ImageNet Food-101 CIFAR-10 CIFAR-100 Birdsnap Cars DTD

SimCLR

- 2048 100 64.3 69.0 89.1 71.2 32.0 36.7 67.8
LDReg 64.8 69.1 89.2 70.6 33.4 37.3 67.7

- 4096 1000 69.0 71.1 90.1 71.6 37.5 35.3 70.7
LDReg 69.8 73.3 91.8 75.1 38.7 41.6 70.8

Table 3: The performance of the pre-trained models (ResNet-50) on object detection and instance
segmentation tasks, when fine-tuned on COCO. The bounding-box (APbb) and mask (APmk) average
precision are reported with the best results are boldfaced.

Method Regularization Epochs Batch Size Object Detection Segmentation
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

SimCLR -

100 2048

35.24 55.05 37.88 31.30 51.70 32.82
LDReg 35.26 55.10 37.78 31.38 51.88 32.90

BYOL - 36.30 55.64 38.82 32.17 52.53 34.30
LDReg 36.82 56.47 39.62 32.47 53.15 34.60

SimCLR - 1000 4096 36.48 56.22 39.28 32.12 52.70 34.02
LDReg 37.15 57.20 39.82 32.82 53.81 34.74

on object detection and segmentation datasets. Moreover, longer pretraining with LDReg can bring
more significant performance improvement. These results indicate that using LDReg to regularize
local dimensionality can consistently improve the representation quality.

Table 1 also indicates that the effective rank is a good indicator of representation quality for the
same type of SSL methods and the same model architecture. However, the correlation becomes less
consistent when compared across different methods. For example, SimCLR + LDReg and SimCLR-
Tuned have similar effective ranks (∼ 525), yet perform quite differently on ImageNet (with an
accuracy difference of 2.4%). Nevertheless, applying our LDReg regularization can improve both
types of SSL methods.

7 CONCLUSION

In this paper, we have highlighted that dimensional collapse in self-supervised learning (SSL) could
occur locally, in the vicinity of any training point. Based on a novel derivation of an asymptotic
variant of the Fisher-Rao metric, we presented a local dimensionality regularization method LDReg
to alleviate dimensional collapse from both global and local perspectives. Our theoretical analysis
implies that reporting and averaging intrinsic dimensionality (ID) should be done at a logarithmic
(rather than linear) scale, using the geometric mean (but not the arithmetic or harmonic mean). Fol-
lowing these theoretical insights, LDReg regularizes the representation space of SSL to have nonuni-
form local nearest-neighbor distance distributions, maximizing the logarithm of the geometric mean
of the sample-wise LIDs. We empirically demonstrated the effectiveness of LDReg in improving the
representation quality and final performance of SSL. We believe LDReg can potentially be applied
as a generic regularization technique to help other SSL methods.
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REPRODUCIBILITY STATEMENT

Details of all hyperparameters and experimental settings are given in Appendix F. Pseudocode for
LDReg and LID estimation can be found in Appendix J. A summary of the implementation is avail-
able in Appendix I. We provide source code for reproducing the experiments in this paper, which can
be accessed here: https://github.com/HanxunH/LDReg. We also discuss computational limitations
of LID estimation in Appendix H.
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A ACHIEVING DESIRED LOCAL DIMENSIONALITY WITH LDREG

In this section, we provide details regarding how Figure 1c is obtained. Following our theory,
LDReg can obtain representations that have a desired local dimensionality. We use a linear layer
and randomly generated synthetic data points in 2D following the uniform distribution. The linear
layer transforms these points into a representation space. Following Definition 3, one might specify
the desired local intrinsic dimensions as LID∗

G. The dimension of the representations is LID∗
F . To

achieve the desired local dimensionality, we minimize the following objective:

min

(
1

N

N∑
i

ln
LID∗

F i
w

LID∗
G

)
.

This objective corresponds to minimizing the asymptotic Fisher-Rao distance between the distribu-
tion of the representations and a target distribution of fixed local dimensionality. In Figure 3, we
plotted the results with target dimensions LID∗

G equal to [1.0, 1.2, 1.4, 1.6, 1.8, 2.0]. The results
show that the estimated LID is very close to the desired values. This indicates that LDReg can also
be used to regularize the representations to a specific value. From this point of view, LDReg can
potentially be applied to other learning tasks as a generic representation regularization technique.
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Figure 3: Each caption of the subfigures shows the desired local dimensionality and each title of
the subfigures shows the estimated LID and global intrinsic dimensionality (GID). GID is estimated
using the DanCO approach (Ceruti et al., 2014). mLID is the geometric mean of estimated sample
LIDs.

In the context of SSL, to avoid dimensional collapse, the resulting representation should span (fill)
the entire space, as shown in Figure 3f. The L1- and L2-regularization terms used for SSL aim
to maximize the asymptotic Fisher-Rao distance between local distance distribution F (r) and a
uniform distance distribution U1,w(r) (which has LID equal to 1, as shown in Figure 3a). In other
words, the final representations should be ‘further’ from that of Figure 3a, and ‘closer’ to that of
Figure 3f.
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B EFFECTIVE RANK VERSUS LOCAL INTRINSIC DIMENSIONALITY

Zhuo et al. (2023) proposed the effective rank (Roy & Vetterli, 2007) as a metric to evaluate the
degree of (global) dimensional collapse. Given the feature correlation matrix, the effective rank cor-
responds to the exponential of the entropy of the normalized eigenvalues. It is invariant to scaling
and takes real values, not just integers. It has a maximum value equal to the representation dimen-
sion. Intuitively, the effective rank assesses the degree to which the data ‘fills’ the representation
space, in terms of covariance properties. One might also define a local effective rank, which would
assess the degree to which the representation space surrounding a particular anchor sample is filled.

In contrast to the effective rank, the local intrinsic dimension (LID) is a local measure. Roughly
speaking, at a particular anchor sample, the LID assesses the growth rate of the distance distribution
of nearest neighbors. It is thus focused on distance properties (distances between samples), rather
than covariance properties between features. Comparisons between intrinsic dimensionality and
effective rank, emphasizing their differences, have been discussed in Del Giudice (2021).

C PROOFS

C.1 BACKGROUND

Theorem 3 (LID Representation Theorem (Houle, 2017a)). Let F : R → R be a real-valued
function, and assume that LID∗

F exists. Let r and w be values for which r/w and F (r)/F (w)
are both positive. If F is non-zero and continuously differentiable everywhere in the interval
[min{r, w},max{r, w}], then

F (r)

F (w)
=
( r

w

)LID∗
F

·AF (r, w), where AF (r, w) ≜ exp

(∫ w

r

LID∗
F −LIDF (t)

t
dt

)
,

whenever the integral exists.

Corollary 3.1 ((Houle, 2017a)). Let c and w be real constants such that c ≥ 1 and w > 0. Let
F : R → R be a real-valued function satisfying the conditions of Theorem 3 over the interval
(0, cw]. Then

lim
w→0+

w/c≤ r≤ cw

AF (r, w) = 1 .

If F (0) = 0, and F is non-decreasing and continuously differentiable over some interval [0, w] for
w > 0, then F is referred to as a smooth growth function. If F is a CDF, we use the notation Fw to
refer to F conditioned over [0, w]; that is, Fw(r) = F (r)/F (w).

C.2 PROOF OF LEMMA 1

Proof. We leverage a result from (Taylor, 2019), which shows that the Fisher-Rao metric be-
tween two one-dimensional distributions with a single parameter can be expressed as d(θ1, θ2) =

|
∫ θ2
θ1

u(θ) dθ|, where u(θ)2 = I(θ), and I(θ) is the Fisher information with respect to the single
parameter θ. In our context, θ corresponds to the local intrinsic dimensionality. For the Fisher
information for functions restricted to the form Hw|θ, we will therefore use the quantity

Iw(θ) =
∫ w

0

(
∂

∂θ
lnH ′

w|θ(r)

)2

H ′
w|θ(r) dr .
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We now derive an expression for the Fisher-Rao distance. From (Taylor, 2019), and noting that
Fisher information is greater than or equal to zero,

dFR(Hw|θ1 , Hw|θ2) =

∣∣∣∣∣
∫ θ2

θ1

√
Iw(θ) dθ

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ θ2

θ1

(∫ w

0

(
∂

∂θ
ln

(
θ

w

( r

w

)θ−1
))2

θ

w

( r

w

)θ−1

dr

) 1
2

dθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ θ2

θ1

(∫ w

0

(
1

θ
+ ln

r

w

)2
θ

w

( r

w

)θ−1

dr

) 1
2

dθ

∣∣∣∣∣∣ .
With the substitution v =

(
r
w

)θ
, we obtain

dFR(Hw|θ1 , Hw|θ2) =

∣∣∣∣∣∣
∫ θ2

θ1

(∫ 1

0

(
1

θ
+

1

θ
ln v

)2

dv

) 1
2

dθ

∣∣∣∣∣∣
=

∣∣∣∣∣
∫ θ2

θ1

1

θ

√[
v + 2(v ln v − v) + (v ln2 v − 2v ln v + 2v)

]∣∣1
0
dθ

∣∣∣∣∣
=

∣∣∣∣∣
∫ θ2

θ1

1

θ
dθ

∣∣∣∣∣ =

∣∣∣∣ln θ2
θ1

∣∣∣∣ .

C.3 PROOF OF THEOREM 2

Proof. We find the distribution Hw|θ that minimizes the expression

θG = argmin
θ

1

N

N∑
i=1

(
dAFR(Hw|θ, F

i)
)2

,

by taking the partial derivative with respect to θ, and solving for the value θ = θG for which the
partial derivative is zero.

∂

∂θ

(
1

N

N∑
i=1

∣∣∣∣ln θ

LID∗
F i

∣∣∣∣2
)∣∣∣∣∣

θ=θG

= 0

∂

∂θ

N∑
i=1

(
ln2 θ + ln2 LID∗

F i − 2 ln θ ln LID∗
F i

)∣∣∣∣∣
θ=θG

= 0

N∑
i=1

(
2 ln θG
θG

− 2
ln LID∗

F i

θG

)
= 0

N ln θG =

N∑
i=1

ln LID∗
F i

θG = exp

(
1

N

N∑
i=1

ln LID∗
F i

)
.

In a similar fashion, the second partial derivative can be shown to be strictly positive at θ = θ1.
Since the original expression is continuous and non-negative over all θ ∈ [0,∞), θ1 is a global
minimum.
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C.4 PROOF OF COLLARY 2.1

Proof. Assertion 1 follows from the fact that

1

N

N∑
i=1

dAFR(F
i,U1) =

1

N

N∑
i=1

∣∣∣∣ln LID∗
F i

1

∣∣∣∣
=

1

N

N∑
i=1

ln LID∗
F i (if LID∗

F i ≥ 1) .

C.5 KULLBACK-LEIBLER DIVERGENCE AS DISTRIBUTIONAL DIVERGENCE

It is natural to consider whether other measures of distributional divergence could be used in place
of the asymptotic Fisher-Rao metric, in the derivation of the Fréchet mean. Bailey et al. (2022) have
shown several other divergences and distances which, when conditioned to a vanishing lower tail,
tend to expressions involving the local intrinsic dimensionalities of distance distributions — most
notably that of the Kullback-Leibler (KL) divergence. Here, we define an asymptotic distributional
distance from the square root of the asymptotic KL divergence considered in (Bailey et al., 2022).
Lemma 2 ((Bailey et al., 2022)). Given two smooth-growth distance distributions with CDFs F and
G, their asymptotic KL distance is given by

dAKL(F,G) ≜ lim
w→0+

√
DKL(Fw, Gw) =

√
LID∗

G

LID∗
F

− ln
LID∗

G

LID∗
F

− 1 ,

where

DKL(Fw, Gw) ≜
∫ w

0

F ′
w(t) ln

F ′
w(t)

G′
w(t)

dt

is the KL divergence from F to G when conditioned to the lower tail [0, w].

When aggregating the LID values of distance distributions, it is worth considering how well the
arithmetic mean (equivalent to the information dimension (Romano et al., 2016)) and the harmonic
mean might serve as alternatives to the geometric mean. Theorem 4 shows that the arithmetic and
harmonic means of distributional LIDs are obtained when the asymptotic Fisher-Rao metric is re-
placed by the asymptotic KL distance, in the derivation of the Fréchet mean.
Theorem 4. Given a set of distributions F = {F 1, F 2, . . . , FN}, consider the metric used in
computing the Fréchet mean µF = Hw|θ.

1. Using the asymptotic Fisher-Rao metric dAFR(Hw|θ, F
i) as in Definition 4 gives θ equal

to the geometric mean of {LID∗
F 1

w
, . . . ,LID∗

FN
w
}.

2. Replacing dAFR(Hw|θ, F
i) by the asymptotic KL distance dAKL(Hw|θ, F

i) gives θ equal
to the arithmetic mean of {LID∗

F 1 , . . . ,LID∗
FN }.

3. Replacing dAFR(Hw|θ, F
i) by the (reverse) asymptotic KL distance dAKL(F

i, Hw|θ) gives
θ equal to the harmonic mean of {LID∗

F 1 , . . . ,LID∗
FN }.

Proof. Assertion 1 has been shown in Theorem 2.

For Assertion 2, we find the value of θ for which the following expression is minimized:

θA = argmin
θ

1

N

N∑
i

(
dAKL(Hw|θ, F

i)
)2

.

Using Lemma 2, and observing that LID∗
Hw|θ

= θ,(
dAKL(Hw|θ, F

i)
)2

= lim
w→0

DKL(Hw|θ, F
i) =

LID∗
F i

θ
− ln

LID∗
F i

θ
− 1 .
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As in the proof of Theorem 2, the minimization is accomplished by setting the partial derivative to
zero and solving for θ = θA.

∂

∂θ

(
1

N

N∑
i=1

(
LID∗

F i

θ
− ln

LID∗
F i

θ
− 1

))∣∣∣∣∣
θ=θA

= 0

1

N

N∑
i=1

(
−LID∗

F i

θ2A
+

1

θA

)
= 0

θA =
1

N

N∑
i=1

LID∗
F i .

For Assertion 3, we similarly find the value of θ for which the following expression is minimized:

θH = argmin
θ

1

N

N∑
i

(
dAKL(F

i, Hw|θ)
)2

.

Once again, we take the partial derivative with respect to θ, set it to zero, and solve for θ = θH:

∂

∂θ

(
1

N

N∑
i=1

(
θ

LID∗
F i

− ln
θ

LID∗
F i

− 1

))∣∣∣∣∣
θ=θH

= 0

1

N

N∑
i=1

(
1

LID∗
F i

− 1

θH

)
= 0

θH =
N∑N

i=1
1

LID∗
Fi

.

Note that θG and θH can be verified as minima by computing the second partial derivatives with
respect to θ.

The square root of the KL divergence is only a ‘weak approximation’ of the Fisher-Rao metric on
statistical manifolds, and this approximation is known to degrade as distributions diverge (Carter
et al., 2007). Moreover, the KL divergence is also nonsymmetric. Theorem 4 therefore indicates
that the asymptotic Fisher-Rao metric is preferable (in theory) to the asymptotic KL distance, and
the geometric mean is preferable to the arithmetic mean and harmonic mean when aggregating the
LID values of distance distributions.

D OTHER REGULARIZATION FORMULATIONS

We elaborate on our choices of regularization term.
Remark 4.1. The proposed regularization is equivalent to maximizing the (log of the) geometric
mean of the IDs of the samples.

Theorem 4 provided arguments for why use of geometric mean is preferable to other means for the
purpose of computing the Frechet mean of a set of distributions. We can similarly consider why
a regularization corresponding to the arithmetic mean of the LIDs of the samples would be less
preferable. i.e. max 1

N

∑N
i LID∗

F i
w

. Note that

max
1

N

N∑
i

LID∗
F i

w
= max

1

N

N∑
i

exp
(
lim
w→0

dFR(F
i
w(r), U1,w(r))

)
.

Observe that this arithmetic mean regularization, due to the exponential transformation, would apply
a high weighting to samples with very large distances from the uniform distribution (that is, samples
with large ID). In other words, such a regularization objective could be optimized by making the ID
of a small number of samples extremely large.
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E LDREG AND SSL METHODS

In this section, we provide more details on how to apply LDReg on different SSL methods. Since
LDReg is applied to the representation obtained by the encoder, the varying combinations of projec-
tor, predictor, decoder, and optimizing objective used by SSL methods does not directly affect how
LDReg is applied. As a result, LDReg can be regarded as a general regularization for SSL.

SimCLR. For input images x of batch size N , an encoder f(·), and a projector g(·), the representa-
tions are obtained by z = f(x), and the embeddings are e = g(z). Given a batch of 2N augmented
inputs, the NT-Xent loss used by SimCLR (Chen et al., 2020a) for a positive pair of inputs (xi, xj)
is:

LNTXent
i = − ln

exp(sim(ei, ej)/τ)∑2N
m̸=j exp(sim(ei, em)/τ)

,

where τ is the temperature, and the final loss is computed across all positive pairs.

For applying LDReg with LL1 term on SimCLR, we optimize the following objective:

LL1 = LNTXent − β
1

2N

2N∑
i

ln LID∗
F i

w
,

where the LID for each sample is estimated using the method of moments: LID∗
F i

w
= − µk

µk−wk
,

where µk is the averaged distance to the k nearest neighbors of zi, and wk is the distance to the k-th
nearest neighbor of zi.

BYOL. BYOL (Grill et al., 2020) uses an additional predictor h(·) to obtain predictions p = h(e),
a momentum encoder (exponential moving average of the weights of the online model) where e′ is
obtained, and the loss function is the scaled cosine similarity between positive pairs, defined as:

LBYOL
i = 2− 2

pi · e′j
∥pi∥2∥e′j∥2

,

with the final loss computed symmetrically across all positive pairs.

For applying LDReg with LL1 term on BYOL, we optimize the following objective:

LL1 = LBYOL − β
1

2N

2N∑
i

ln LID∗
F i

w
.

The LID for each sample is estimated in the same way as applying LDReg on SimCLR. For BYOL,
we use representations obtained by both the online and momentum branches as the reference set.

MAE. MAE (He et al., 2022) uses a decoder that aims to reconstruct the input image. Unlike a
contrastive approach, it does not rely on two different augmented views of the same image. MAE
uses an encoder f(·) to obtain the representation z = f(x′) for a masked image x′, and the decoder
t(·) aims to reconstruct the original image x by taking representation r as input. Specifically, MAE
optimizes the following objective:

LMAE
i = ∥t(f(x′

i)),xi∥2.

For applying LDReg with LL1 term on MAE, we optimize the following objective:

LL1 = LMAE − β
1

N

N∑
i

ln LID∗
F i

w
.

The LID for each sample is estimated in the same way as applying LDReg on SimCLR.

F EXPERIMENTAL SETTINGS

For each baseline method, we follow their original settings, except in the case of BYOL, where
we changed the parameter for the exponential moving average from 0.996 to 0.99, which performs
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better when the number of epochs is set to 100. Detailed hyperparameter settings can be found in
Tables 5-11. We use 100 epochs of pretraining and a batch size of 2048 as defaults. For LDReg
regularization, we use k = 128 as the default neighborhood size. For ResNet-50, we use β = 0.01
for SimCLR and SimCLR Tuned, β = 0.005 for BYOL. For ViT-B, we use β = 0.001 for SimCLR,
and β = 5 × 10−6 for MAE. We perform linear evaluations following existing works (Chen et al.,
2020a; Grill et al., 2020; He et al., 2022; Garrido et al., 2023b). For linear evaluations, we use batch
size 4096 on ImageNet — other settings are shown in Table 9.

Following SimCLR (Chen et al., 2020a) and BYOL (Grill et al., 2020), we evaluate transfer learning
performance by performing linear evaluations on other datasets, including Food-101 (Bossard et al.,
2014), CIFAR (Krizhevsky & Hinton, 2009), Birdsnap (Berg et al., 2014), Stanford Cars (Krause
et al., 2013), and DTD (Cimpoi et al., 2014). Due to computational constraints, for the transfer
learning experiments, we did not perform full hyperparameter tuning for each model and dataset.
The reproduced results of baseline methods are slightly lower than the reported results by Chen et al.
(2020a); Grill et al. (2020). For all datasets, we use 30 epochs, weight decay to 0.0005, learning rate
0.01, batch size 256, and SGD with Nesterov momentum as optimizer. These settings are based on
the VISSL library 2.

We evaluate the finetuning performance with downstream tasks using the COCO dataset
(train2017 and val2017) (Lin et al., 2014). We use ResNet-50 with RCNN-C4 (Girshick
et al., 2014) with batch size 16 and base learning rate 0.02. We use the popular framework
detectron2 3, and our configurations follow the MOCO-v1 official implementation 4 exactly.

We conducted our experiments on Nvidia A100 GPUs with PyTorch implementation, with each
experiment distributed across 4 GPUs. We used automatic mixed precision due to its memory effi-
ciency. The estimated runtime is 40 hours for pretraining and linear evaluations. As can be seen from
the pseudocode in Appendix J, the additional computation mainly depends on the calculation and
sorting of pairwise distances. As shown in Table 4, we observed no significant additional computa-
tional costs for LDReg. Open source code is available here: https://github.com/HanxunH/LDReg.

Table 4: Wall-clock comparisons for pretraining with Distributed Data-Parallel training. Each exper-
iment uses 4 GPUs distributed over different nodes. Results are based on 100 epochs of pretraining.
Communication overheads could have a slight effect on the results.

Method Wall-clock time
SimCLR 27.8 hours

SimCLR + LDReg 27.1 hours

Table 5: Pretraining setting for SimCLR (Chen et al., 2020a).

Base learning rate 0.075
Learning rate scaling 0.075×

√
BatchSize

Learning rate decay Cosine (Loshchilov & Hutter, 2016) without restart
Weight Decay 1.0× 10−6

Optimizer LARS (You et al., 2017)
Temperature for LNTXent 0.1

Projector 2048-128

Data Augmentations. For each baseline and LDReg version, we use the same augmentation as in
existing works. Augmentation policy for SimCLR (Chen et al., 2020a) is in Table 10, for SimCLR-
Tuned (Garrido et al., 2023b) and BYOL (Grill et al., 2020) is in Table 11.

2https://github.com/facebookresearch/vissl
3https://github.com/facebookresearch/detectron2
4https://github.com/facebookresearch/moco/tree/main/detection/configs
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Table 6: Pretraining setting for SimCLR-Tuned (Garrido et al., 2023b).

Base learning rate 0.5
Learning rate scaling 0.5× BatchSize

256
Learning rate decay Cosine (Loshchilov & Hutter, 2016) without restart

Weight Decay 1.0× 10−6

Optimizer LARS (You et al., 2017)
Temperature for LNTXent 0.15

Projector 8192-8192-512

Table 7: Pretraining setting for BYOL (Grill et al., 2020).

Base learning rate 0.4
Learning rate scaling 0.4× BatchSize

256
Learning rate decay Cosine (Loshchilov & Hutter, 2016) without restart

Weight Decay 1.5× 10−6

Optimizer LARS (You et al., 2017)
τ for moving average 0.99

Projector 4096-256
Predictor 4096-256

Table 8: Pretraining setting for MAE (He et al., 2022).

Base learning rate 1.5× 10−4

Learning rate scaling 1.5× 10−4 × BatchSize
256

Learning rate decay Cosine (Loshchilov & Hutter, 2016) without restart
Weight Decay 0.05

Optimizer AdamW (Loshchilov & Hutter, 2019)
β1 for the optimizer 0.9
β2 for the optimizer 0.95

Table 9: Linear evaluation setting for ImageNet.

Epochs 90
Base learning rate 0.1

Learning rate scaling 0.1× BatchSize
256

Minimal learning rate 1.0× 10−6

Learning rate decay Cosine (Loshchilov & Hutter, 2016) without restart
Weight Decay 0

Optimizer LARS (You et al., 2017)

Table 10: Image augmentation policy for SimCLR (Chen et al., 2020a).

Parameter View 1 View 2

Random crop probability 1.0 1.0
Horizontal flip probability 0.5 0.5
Color jittering probability 0.8 0.8
Color jittering strength (s) 1.0 1.0
Brightness adjustment max intensity 0.8× s 0.8× s
Contrast adjustment max intensity 0.8× s 0.8× s
Saturation adjustment max intensity 0.8× s 0.8× s
Hue adjustment max intensity 0.2× s 0.2× s
Grayscale probability 0.2 0.2
Gaussian blurring probability 0.5 0.5
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Table 11: Image augmentation policy for BYOL (Grill et al., 2020) and SimCLR-Tuned (Garrido
et al., 2023b).

Parameter View 1 View 2

Random crop probability 1.0 1.0
Horizontal flip probability 0.5 0.5
Color jittering probability 0.8 0.8
Brightness adjustment max intensity 0.4 0.4
Contrast adjustment max intensity 0.4 0.4
Saturation adjustment max intensity 0.2 0.2
Hue adjustment max intensity 0.1 0.1
Grayscale probability 0.2 0.2
Gaussian blurring probability 1.0 0.1
Solarization probability. 0.0 0.2

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 COMPARING LOSS TERMS

It can be observed from Table 12 that there are no significant differences between the regularization
terms LL1 and LL2 for improving the performance of SSL.

Table 12: Comparing the results of linear evaluations of regularization terms of LDReg. All models
are trained on ImageNet for 100 epochs. The results are reported as linear probing accuracy (%).

Method Regularization k=64 k=128

SimCLR LL1 64.8 64.6
LL2 64.4 64.5

G.2 LOCAL COLLAPSE TRIGGERING COMPLETE COLLAPSE

In this section, we demonstrate that local collapse could trigger the worst-case mode collapse, where
the output representation is a trivial vector. LDReg is a general regularization tool that regularizes
representation to achieve a target LID. One can also use LDReg to achieve lower LID and, in the
extreme case, local collapse. Specifically, we optimize the following objective function:

min

(
1

N

N∑
i

ln LID∗
F i

w

)
.

This objective regularizes the geometric mean of LID (of the representations) to 1. We use β to
control the strength of the regularization term and denote it as Min LID.

Table 13: Comparing the results of linear evaluations of regularization terms of LDReg, MinLID
and baseline. All models are trained on ImageNet for 100 epochs using ResNet-50 as encoder. The
results are reported as linear probing accuracy (%) on ImageNet.

Method Regularization β Linear Acc Effective Rank Geometric mean of LID

SimCLR

LDReg 0.01 64.8 529.6 20.0
- - 64.3 470.2 18.8

Min LID 0.01 64.2 150.7 16.0
Min LID 0.1 63.1 15.0 3.8
Min LID 1.0 46.4 1.0 1.6
Min LID 10.0 Complete collapse - -

As shown in Table 13, it can be observed that using Min LID with stronger (larger β) will regularize
the representation to have extremely low effective rank and eventually result in complete collapse,
even if SimCLR explicitly uses negative pairs to prevent this. Figure 4 shows the visualizations
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of learned representations with different regularizations. Additionally, the performance of linear
evaluations degrades as dimensionality decreases. This result indicates that low LID is undesirable
for SSL.

40 30 20 10 0 10 20 30
40

30

20

10

0

10

20

30 0
1
2
3
4
5
6
7
8
9

(a) LDReg β=0.01
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Figure 4: t-SNE visualizations of the representations learned by different pretraining. Results are
based on ResNet-50 with SimCLR with ImageNet validation set. Only the first 10 classes are se-
lected for visualizations.

G.3 ABLATION STUDY

We examine the effects of varying β and k for LDReg using SimCLR as the baseline. It can be
observed in Figure 5a and 5b that linear evaluation performance is relatively stable across different
values of k and β. For effective rank, Figure 5c shows that greater strength of LDReg regularization
(larger β) actually decreases the effective rank. This is not surprising, since LID is a local measure,
and effective rank is a global measure. The differences between effective rank and LID are outlined
in Appendix B. Figure 5d shows that a smaller value for k is more beneficial for LDReg. Smaller k is
indeed more preferable, as it helps to preserve the locality assumptions upon which LID estimation
depends.
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Figure 5: (a-b) Linear evaluation results and (c-d) effective ranks with varying β and k. All models
are trained on ImageNet for 100 epochs. The results are reported as linear probing accuracy (%) on
ImageNet.

Table 14 shows that LDReg can consistently improve the baseline with different batch sizes. We
reduce the k at the same rate as N is reduced, e.g. 16 and 32 for batch sizes 512 and 1024, re-
spectively. It can be observed that LDReg can consistently improve the baseline in different batch
sizes.

Table 14: Comparing the results of linear evaluations with different batch sizes N . All models are
trained on ImageNet for 100 epochs. The results are reported as linear probing accuracy (%).

Method Regularization N=512 N=1024 N=2048

SimCLR - 63.6 64.2 64.3
LDReg 64.1 64.7 64.8
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G.4 ADDITIONAL LINEAR EVALUATION RESULTS

In this subsection, we further verify the effectiveness of LDReg with decorrelating feature methods
such as VICReg (Bardes et al., 2022) and Barlow Twins (Zbontar et al., 2021). We also evaluate
with another SOTA sample-contrastive method MoCo (He et al., 2020). For applying LDReg on
VICReg, we use β = 0.025 and k = 64. For Barlow Twins, we use β = 1.0 and k = 64. For
MoCo, we use β = 0.05 and k = 128. All other settings are kept the same as each baseline’s
originally reported hyperparameters. Results can be found in Table 15.

Table 15: The linear evaluation results (accuracy (%)) of different methods with and without LDReg.
The effective rank is calculated on the ImageNet validation set. The best results are boldfaced.

Model Epochs Method Regularization Linear Evaluation Effective Rank Geometric mean
of LID

ResNet-50 100

MoCo - 68.7 595.0 17.1
LDReg 69.6 651.8 22.3

VICReg - 66.7 546.7 21.5
LDReg 66.9 602.4 22.5

Barlow Twins - 65.5 602.1 20.8
LDReg 65.6 754.0 24.1

VICReg and Barlow Twins are SSL methods rather than regularizers. For example, compared to
MoCo, VICReg and Barlow Twins use different projector architectures and loss functions. It’s not
fair to compare LDReg across different types of SSL methods. For example, MoCo with LDReg has
a linear evaluation of 69.6, yet MoCo alone can achieve 68.7, while VICReg under the same setting
is only 66.7. However, if we apply our regularizer to these methods, their performance can all be
improved, as shown in the table 15.

To fairly compare the regularizers, we use the covariance (denoted as Cov) and variance (denoted
as Var) as alternative regularizers to replace LDReg and apply to BYOL. Note that they are pseudo-
global dimension regularizers, as we cannot use the entire training set to calculate the covariance,
it is calculated on a mini-batch. We also performed a hyperparameter search for Cov and Var (β
for the strength of the regularization). We used the same regularization formula as VICReg (Bardes
et al., 2022) for Cov and V ar as the following:

C(Z) =
1

n− 1

n∑
i=1

(zi − z̄)(zi − z̄)T , z̄ =
1

n

n∑
i=1

zi, (4)

Cov(Z) = c(Z) =
1

d

∑
i ̸=j

[C(Z)]2i,j , (5)

where d is the representation dimensions.

V ar(Z) =
1

d

d∑
j=1

max(0, γ − S(zj , ϵ)) where S(·) is the standard deviation. (6)

We apply the regularization on representations learned by the encoder, the same as in LDReg. The
results can be found in the Table 16. All results are based on 100 epoch pretraining with BYOL and
ResNet-50. All settings are exactly the same as LDReg except for the regularization term.

Table 16: The linear evaluation results on comparing different regularization terms. The effective
rank is calculated on the ImageNet validation set. The best results are boldfaced.

Method Regularizer β Linear Evaluation Effective Rank Geometric mean of LID

BYOL

None - 67.6 583.8 15.9
Cov 0.01 67.6 583.5 15.9
Cov 0.1 67.5 593.5 15.8

Cov+Var 0.01 67.8 539.2 15.5
Cov+Var 0.1 67.7 798.4 16.8
LDReg 0.005 68.5 594.0 22.3

Although the covariance and variance regularizer can increase the global dimension, it does not
improve the local dimension. It also has a rather minor effect on the linear evaluation accuracy,
whereas LDReg improves by almost 1%. This further confirms the effectiveness of LDReg.
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H LIMITATIONS AND FUTURE WORK

The main theory of our work is based on the local intrinsic dimensionality model and well-founded
Fisher-Rao metric. Computation of LDReg and the Fisher-Rao metric all require the ability to accu-
rately estimate the local intrinsic dimension. We have used the method of moments in this paper for
LID estimation, due to its simplicity and attractiveness for incorporation within a gradient descent
framework. Other estimation methods could be used instead; however, all estimation methods for
LID are known to degrade in performance as the dimensionality increases. Moreover, our estimation
of LID is based on nearest neighbor sets computed from within a minibatch. This choice is made
due to feasibility of computation, but entails a reduction in accuracy as compared to using nearest
neighbors computed from the whole dataset. In future work, one might explore other estimation
methods and tradeoffs between estimation accuracy and computation time.

Based on existing works, LDReg assumes that higher dimensionality is desirable for SSL. LDReg
relies on a hyperparameter β to adjust the strength of the regularization term. The theory devel-
oped in this work allows LDReg to achieve any desired dimensionality. However, the optimal di-
mensionalities for SSL are dependent on the dataset and loss function. Knowledge of the optimal
dimensionality (if it could be determined) can be integrated into LDReg for best performance.

I IMPLEMENTATION DETAILS

For implementation with PyTorch, Garrido et al. (2023b) have discussed popular open-source imple-
mentations of SimCLR (compatible with DDP using gather) that use slightly inaccurate gradients.
The implementation in VICReg (Bardes et al., 2022) codebase 5 is correct and should be used. We
find that this slightly affects the performance when reproducing SimCLR’s results. This also affects
LDReg for estimating LIDs with DDP. For all of our experiments, we use the same implementation
as Garrido et al. (2023b); Bardes et al. (2022).

Estimating LID needs to compute the pairwise distance, in PyTorch, the cdist function by default
uses a matrix multiplication approach. For Nvidia Ampere or newer GPUs, TensorFloat-32
tensor cores should be disabled due to precision loss in the matrix multiplication. This preci-
sion loss can significantly affect the LID estimations.

J PSEUDOCODE

Algorithm 1: Method of moments for LID estimation using pytorch pseudocode.

# data: representations
# reference: reference points
# k: the number of nearest neighbours

def lid_mom_est(data, reference, k):
r = torch.cdist(data, reference, p=2) # Pairwise distance
a, idx = torch.sort(r, dim=1)
m = torch.mean(a[:, 1:k], dim=1) # mu_k
lids = m / (a[:, k] - m) # a[:, k] is the w_k
return lids

5https://github.com/facebookresearch/vicreg
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Algorithm 2: LDReg using pytorch pseudocode.

# f: representations
# k: the number of nearest neighbours
# beta: the hyperparameter $\beta$
# loss: SSL loss (such as NTXent)
# reg_type: "l1" or "l2" (L1 or L2 loss)

lids = lid_mom_est(data=f, reference=f.detach(), k=k)
if reg_type == "l1":

lid_reg = - torch.abs(torch.log(lids))
elif reg_type == "l2":

lid_reg = - torch.sqrt(torch.square(torch.log(lids)))
total_loss = loss + beta * lid_reg
total_loss = total_loss.mean(dim=0)
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