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Abstract

Traditional drug design methods are costly and time-consuming due to their re-
liance on trial-and-error processes. As a result, computational methods, including
diffusion models, designed for molecule generation tasks have gained significant
traction. Despite their potential, they have faced criticism for producing phys-
ically implausible outputs. We alleviate this problem by conditionally training
a diffusion model capable of generating molecules of varying and controllable
levels of structural plausibility. This is achieved by adding distorted molecules to
training datasets, and then annotating each molecule with a label representing the
extent of its distortion, and hence its quality. By training the model to distinguish
between favourable and unfavourable molecular conformations alongside the stan-
dard molecule generation training process, we can selectively sample molecules
from the high-quality region of learned space, resulting in improvements in the
validity of generated molecules. In addition to the standard two datasets used by
molecule generation methods (QM9 and GEOM), we also test our method on a
druglike dataset derived from ZINC. We use our conditional method with EDM,
the first E(3) equivariant diffusion model for molecule generation, as well as two
further models—a more recent diffusion model and a flow matching model—which
were built off EDM. We demonstrate improvements in validity as assessed by RD-
Kit parsability and the PoseBusters test suite; more broadly, though, our findings
highlight the effectiveness of conditioning methods on low-quality data to improve
the sampling of high-quality data.

1 Introduction

Drug design involves complex optimisation steps to obtain molecules that achieve desired biological
responses. Traditional methods rely on trial-and-error, leading to high costs and limited productivity
[25]. Computational approaches, especially deep learning models, aim to reduce costs and expedite
processes by reducing failures. One way that such models aim to do this is by generating molecules
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with desirable properties, particularly in terms of binding to their target. To achieve this, a model
must first master the fundamental task of generating structurally viable molecules.

While many models historically operated in 1D or 2D space [20, 5, 6], focus has recently shifted
towards developing models capable of directly outputting both atom types and coordinates in 3D.
Autoregressive models were once prominent in this domain, generating 3D molecules by adding
atoms and bonds iteratively [14, 22, 16]. However, such models suffer from an accumulation of errors
during the generation process and do not fully capture the complexities of real-world scenarios due
to their sequential nature, potentially losing global context [12, 13]. To address these limitations,
recent studies have turned to diffusion models, which iteratively denoise data points sampled from
a prior distribution to generate samples. Unlike autoregressive models, diffusion-based methods
can simultaneously model local and global interactions between atoms. Nevertheless, diffusion in
molecule generation has faced criticism for yielding implausible outputs [8, 3]. There have been
ongoing efforts to improve the performance of models trained on small molecules such as those
found in the QM9 dataset [19, 10, 15, 24, 11], but achieving success in generating larger molecules,
as encountered in datasets like GEOM [1], remains challenging without incorporating additional
techniques such as energy minimisation or docking [27].

In this paper, we focus on enhancing the ability of a diffusion model to generate plausible 3D druglike
molecules. To achieve this, we use the property-conditioning method developed by Hoogeboom et al.
[10]. Instead of conditioning a model on pre-existing properties, we condition on conformer quality,
training the model to not only generate molecules, but also to distinguish high- and low-quality
chemical structures.

To achieve this, we generate distorted versions of each of the three datasets we evaluate the method
on: QM9, GEOM, and a subset of ZINC. We sample molecules from each dataset and apply random
offsets to their original coordinates, based on a maximum distortion value. Each distorted molecule
is assigned a label representing the degree of warping applied and is added back to the dataset.
Non-distorted molecules are also labeled, identifying them as high-quality conformers. Using
these datasets of molecules with varying levels of quality, we train property-conditioned models,
encouraging the model to learn to label molecule validity while simultaneously training it to generate
molecules.

First, we evaluate our conditioning method with EDM, the first E(3) equivariant diffusion model for
molecule generation [10]. We then test it on two additional models: a geometry-complete diffusion
model [15] and a flow matching method [21], both designed to enhance the structural plausibility
of generated molecules. We also employ two datasets of druglike molecules: the GEOM dataset,
and another derived from the ZINC database. This ensures the method extends beyond the scope of
smaller molecules found in QM9.

Our findings demonstrate that across the models tested, conditioning a model with low-quality
conformers enables it to discern between favourable and unfavourable molecular conformations. This
allows us to target the area of the learned space corresponding to high-quality molecules, resulting in
an improvement of the validity of generated molecules. More broadly, this demonstrates the potential
of supplementing molecule generation methodologies not solely with examples of desired molecules
but also with instances exemplifying undesired outcomes.

2 Methods

2.1 Generation of 3D molecules

Hoogeboom et al. [10] introduced the first E(3)-equivariant diffusion model (EDM) for generating
3D small molecules. Since then, significant efforts have been made to modify the original EDM,
whether to adapt the method for structure-based drug design [4, 7, 12] or to enhance the validity of
the generated molecules [17]. Notable examples of the latter include GCDM (Geometry-Complete
Diffusion Model) [15] and EquiFM [21]. GCDM addresses the limitations of diffusion models that
rely on molecule-agnostic and non-geometric graph neural networks (GNNs) for 3D graph denoising
by introducing a geometry-complete approach. In contrast, EquiFM focuses on the issue of unstable
probability dynamics in existing diffusion models by incorporating geometric flow matching, merging
the advantages of equivariant modeling with stabilised probability dynamics.
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Figure 1: An overall schema of the methods used with (a) the datasets used to train both the
unconditional and conditional models, (b) the generation of high energy conformers and their addition
to the datasets, (c) the training of the conditional model and (d) the conditional inference

2.2 Conditioning on conformer quality

The authors of EDM developed an extension to their method to carry out conditional molecule
generation. In this instance, property annotations are included alongside each of the molecules in the
training dataset, and at inference, molecules can be generated with a desired value of this property.
We use this property-conditioning method to train models conditioned on conformer quality. To
implement this, we first generated datasets with 3D conformers of molecules of variable quality levels,
and corresponding annotations. We generated distorted versions of a subset of molecules from each
of the datasets we used. For each molecule, its 3D coordinates, represented as C = {(xi, yi, zi)}
where i denotes the atom index, were obtained. Subsequently, a random number D within the range
of 0 to Dmax angstroms, labelled as the maximum distortion, was sampled:

D ∼ U(0, Dmax)
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Figure 2: Diagram depicting the process of coordinate distortion for a molecule in three-dimensional
space. The process involves the following steps: first, sampling the maximum distortion (D) from a
uniform distribution between 0 and Dmax Angstrom. Second, generating random offsets within the
range of [-D, D] for each dimension of the original coordinates, C. Third, applying these offsets to
the original coordinates of each atom in the molecule, resulting in a distorted conformer, S.

This value represents the maximum distance in angstrom that could be added to atoms in that molecule:
in other words, the sampled distortion value determines the maximum extent of perturbation to be
applied to the molecule’s structure. Following this, random offsets were generated within the range
of 0 to the sampled distortion, D, for each dimension of every atom’s coordinates:

offsetx, offsety, offsetz ∼ U(−D,D)

These offsets were then applied to the original coordinates:

sxi
= xi + offsetx; syi

= yi + offsety; szi = zi + offsetz

Resulting in a ‘distorted’ version of the molecule. This distorted molecule, along with its corre-
sponding sampled distortion value D, was subsequently added to the training set. Following the
generation of the distorted datasets, we use the property-conditioning training protocol outlined by
Hoogeboom et al. to train on them, using the distortion factor D as the property of interest, and
follow the sampling protocol to generate molecules corresponding to D = 0Å.

2.3 Assessment metrics

For each trained model, we generated 100 molecules. The generated molecules were passed through
RDKit, resulting in an RDKit sanitisation pass rate. All molecules were then passed through
PoseBusters; however, the first step of the PoseBusters pipeline is to sanitise all molecules, so
molecules that fail this automatically fail all subsequent tests. We report the number of molecules
that pass RDKit sanitisation as well as all 7 non RDKit sanitisation PoseBusters tests. Finally, we
also calculate an internal diversity score with MOSES[18].

2.4 Datasets

2.4.1 QM9

The QM9 dataset [19] is a widely used benchmark dataset in quantum chemistry and machine learning
research. It consists of quantum-mechanical properties and 3D conformers of 130,000 small organic
molecules with an average of 17.5 atoms (8.2 heavy atoms).

The QM9 dataset has been extensively used to develop and validate machine learning models for
molecular property prediction. However, it has also recently become the central benchmark for de
novo molecule generation, particularly in the development of diffusion models [10, 15].

2.4.2 GEOM

While QM9 features only smaller-than-druglike molecules, GEOM [1] is a larger-scale dataset of
molecular conformers. It features 430,000 molecules, of which 317,928 are mid-sized organic
molecules from AICures and MoleculeNet [26], and 133,258 molecules are from QM9, resulting in
an average molecule size of 44.4 atoms (20.1 heavy atoms). For each molecule, a variable number of
conformers are given along with their approximate internal energy as calculated with XTB [2]. From
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Dataset Pass rate
RDKit PoseBusters

QM9 91% 81%
GEOMno h 90% 70%
ZINC 64% 40%

Table 1: Performance comparison of the unconditional EDM across diverse molecular datasets,
including QM9 (comprising small molecules), GEOMno h (representing larger compounds) , and a
subset of the ZINC database (encompassing highly drug-like molecules).

this dataset, Hoogeboom et al. [10] retain the 30 lowest energy conformations for each molecule in
their work.

Similar to Peng et al. [17], we use a version of GEOM from which hydrogen have been removed
(GEOMno h), as the positions of hydrogen atoms can often be inferred with a high level of confidence
[9]. This not only reduces the computational demand of training, but also facilitates more effective
learning of heavy atom placements. This leads to the GEOMno h dataset becoming the quickest to
train on among the three druglike datasets. We therefore use the GEOMno h dataset for conducting
ablation tests.

2.4.3 ZINC

ZINC [23] is a database of commercially-available compounds containing over 230 million pur-
chasable compounds in ready-to-dock, 3D formats.

We generate a training set by selecting a subset of 660,000 molecules from the druglike catalog of the
ZINC database. Unlike GEOM, this subset is curated without repeat conformers. Hydrogen atoms
are not included, and the average molecule comprises 26.8 heavy atoms.

3 Results and discussion

In this section, we evaluate the performance of EDM, both conditional and non-conditional, on QM9,
GEOMno h and ZINC. We begin by training the non-conditional model on all datasets and evaluating
them as outlined above. We next performed a series of ablation tests on the GEOMno h dataset. These
tests are used to identify a sensible ratio and distortion level of the distorted molecules. Additionally,
we verify that we can sample from both the high-quality and low-quality areas of the learned space to
confirm there is a discernible difference.

Subsequently, using the optimal ratio and distortion level identified from the ablation tests, we train
conditional models for all three datasets: QM9, GEOMno h, and our ZINC subset. Finally, we assess
the broader applicability of the quality conditioning method by assessing it with GCDM and EquiFM.

3.1 Performance with no conditioning

First, we assess the performance of EDM when trained without conditioning on all three datasets.
For QM9, we use the pretrained model provided by Hoogeboom et al. Table 1 shows that the QM9
dataset—comprised of smaller-than-druglike molecules—has the highest baseline model performance,
with RDKit and PoseBusters pass rates of 91% and 81%, respectively (see SI for a full breakdown of
the results). The baseline model also has a high performance when trained on the GEOMno h dataset,
with pass rates of 90% and 70%.

The non-conditioned model trained on the ZINC subset exhibits a much lower RDKit sanitisation pass
rate of 64%, and relatively poor PoseBusters pass rate of 40%. Unlike EDM trained on GEOMno h,
which mostly faced connectivity issues, the most common failures of the molecules from the ZINC
subset trained model are in bond lengths and bond angles, passing tests for only 44% and 48% of
occurrences, respectively (see SI for a full breakdown of the results).

This decrease in performance compared to GEOMno h could be due to the increased diversity of
the dataset: our ZINC dataset does not include repeat conformers of the same molecule, whereas
GEOMno h includes up to 30 conformers of each unique molecule. The model might therefore allocate
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more attention to learning atom types—designing the actual molecule—as opposed to improving its
capacity for 3D conformer generation. However, a potentially more likely explanation is the actual
molecules that make up the GEOMno h dataset. The ZINC subset comprises entirely medium-sized
compounds, whereas GEOMno h, in addition to containing some medium-sized molecules, also
incorporates the entirety of QM9, and as Table 4 shows, EDM has a high performance using the QM9
dataset. The inclusion of QM9 in GEOMno h also means that the average molecule size is smaller
than that of ZINC subset, which may also give EDM an advantage on GEOMno h type molecules
compared to the larger molecules in ZINC.

Overall, our findings indicate that while the baseline, non-conditional EDM model demonstrates
proficiency in generating small to medium-sized compounds, its performance deteriorates on a
dataset comprising of exclusively medium-sized molecules, resulting in the generation of numerous
molecules with physically implausible bond lengths and angles. We next explore steering the model
away from generating physically implausible molecules via our conditioning method.

3.2 Ablation tests

To identify the optimal proportion of distorted molecules and the required degree of distortion for
effective conditional training, we performed ablation studies using the GEOMno h dataset. This
dataset was selected due to its inclusion of drug-like molecule sizes, unlike QM9, whilst being a more
computationally tractable set to train than the ZINC dataset.

We introduced varying numbers of distorted molecules at different distortion levels (ranging from 0Å,
indicating no distortion, to the maximum distortion, DmaxÅ) into the original GEOMno h dataset. We
defined dataset ratios based on the number of distorted and original molecules: for example, a 1:50
ratio indicates one distorted molecule was added for every fifty original molecules. We evaluated
each model’s performance by training conditioned models and sampling 100 molecules, ensuring
that the samples were from the low-distortion-factor region of the learned space (formally, enforcing
D = 0Å).

The model trained on a dataset with a ratio of 1:50 distorted molecules and a maximum distortion of
0.25Å exhibited the joint highest RDKit parsability rate of 97%, and the highest PoseBusters pass rate
at 81%. While several models reached 97% RDKit sanitisation rates (namely 1:20, Dmax = 0.5Å
and 1:50, Dmax = 0.5Å), these models exhibited slightly lower PoseBusters pass rates (75% and
78%, respectively). Increasing or decreasing Dmax further resulted in PoseBusters performance
decreasing across all ratios, primarily due to failures in the internal energy test.

This observation suggests that if the training includes molecules that are too distorted, the model
does not effectively learn to distinguish between subtly flawed and acceptable molecular structures.
Distorted molecules should therefore still bear some resemblance to realistic conformers, albeit
with deliberately infeasible bond lengths and angles. On the other hand, insufficient distortion
compromises the effectiveness of the conditioning classifier, and the models struggle to distinguish
between high-quality and low-quality conformations, leading to poor performance in generating
desirable molecules.

These results demonstrate the concept of conditioned training on negative data, and give an idea of
the extent of distortion and frequency of distorted molecules to add. We used a ratio of 1:50, and
Dmax = 0.25Å for all subsequent tests, but note that any dataset would likely benefit from different
exact values of these parameters.

We also examined the quality of molecules generated when sampling from the low-quality region
of the learned space (formally, D = DmaxÅ). The molecules sampled using D= DmaxÅ are, as
expected, worse than both the conditioned models and the baseline model in terms of PoseBusters
pass rates, with the highest reaching only 53%. This poor performance is mainly attributed to failures
in the internal energy test.

The RDKit parsability rates of certain models’ molecules (specifically 1:20, D = 0.1Å and 1:50,
D = 0.1Å) surpass the baseline model. This observation underscores the importance of incorporating
comprehensive evaluations, such as those encompassed by the PoseBusters suite, in the assessment
of generative models.
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Maximum distortion
permitted, Dmax (Å)

Ratio of distorted:non-distorted molecules
1:20 1:50 1:100

Pass Rate Pass Rate Pass Rate
RDKit PoseBusters RDKit PoseBusters RDKit PoseBusters

0.1 96% 73% 96% 77% 96% 77%
0.25 95% 52% 97% 81% 96% 77%
0.5 97% 75% 97% 78% 95% 68%
1 93% 57% 89% 54% 62% 8%

Table 2: Performance comparison of EDM trained conditionally on GEOMno h using a distortion
factor, D, and sampled with D=0Å across various ratios of distorted:non-distorted molecules and
maximum distortion values in angstrom.

Maximum distortion
permitted, Dmax (Å)

Ratio of distorted:non-distorted molecules
1:20 1:50 1:100

Pass Rate Pass Rate Pass Rate
RDKit PoseBusters RDKit PoseBusters RDKit PoseBusters

0.1 91% 46% 96% 53% 81% 26%
0.25 81% 2% 81% 2% 72% 4%
0.5 49% 0% 28% 0% 38% 0%
1 41% 0% 46% 0% 29% 0%

Table 3: Performance comparison of EDM trained conditionally on GEOMno h using a distortion
factor, D, and sampled with D=DmaxÅ across various ratios of distorted:non-distorted molecules
and maximum distortion values in angstrom.

Having established the parameters to use for distorted molecules—both in terms of quality and extent
of distortion—that should be included in a dataset to conditionally train EDM, and shown that we
can conditionally sample from the high and low-quality areas of the learned space, we move on to
applying this method to other datasets.

3.3 Conditioning on distortion factor

Pass Rate
Dataset RDKit PoseBusters

QM9 baseline 91% 81%
conditioned 73% 53%

GEOMno h
baseline 90% 70%
conditioned 97% 81%

ZINC baseline 64% 40%
conditioned 90% 63%

Table 4: Performance comparison of EDM trained on diverse molecular datasets using the baseline
model with no conditioning, and EDM conditionally trained on distortion factor using a dataset
generated with Dmax = 0.25Å and 1:50 distorted molecules, and sampled with D=0Å. The highest
performance for each dataset is shown in bold.

Building upon the insights gained from the ablation tests, we generated conditional versions of each
dataset by using the parameters Dmax = 0.25Å and a ratio of distorted:non distorted molecules of
1:50. We trained conditional models on each of these modified datasets, sampled 100 molecules from
each, and evaluated their quality using RDKit and PoseBusters. The results of this evaluation are
presented in table 4.

When using the QM9 dataset, the highest-performing molecules on both RDKit and PoseBusters tests
were generated using the non-conditioned EDM model. Conditional training resulted in a relatively
uniform decrease in performance across all PoseBusters tests. This may be attributed to the fact
that EDM was specifically developed to perform effectively with QM9. Further, the molecules in
this dataset are small (smaller than 9 heavy atoms), which our earlier results suggest facilitates the
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model’s ability to distinguish between high-quality and low-quality conformers without needing
examples of the latter.

The models trained conditionally on GEOMno h and ZINC both generated molecules with improved
RDKit sanitisation rates and PoseBusters scores. For GEOMno h, as discussed in the ablation tests
(see SI), the biggest issues in the baseline were bond angles (80%), followed by bond lengths and
internal energy (86%). Conditioning improved performance across all these metrics, reaching 94%,
95%, and 90%, respectively.

Training conditionally with ZINC also resulted in significant improvements across the PoseBusters
tests: the lowest pass rates for both the baseline and conditioned models were in bond length/angles,
steric clash, and internal energy. The most notable increase in performance for the conditioned model
was the improved pass rate for atom connectivity, with this score jumping from 59% to 96%.

Having demonstrated that the conditioning method enhances the structural plausibility of generated
molecules when EDM is trained on ZINC or GEOMno h, we extend our investigation to determine
whether this improvement holds for other models.

3.4 Testing the Conditioning Method on Additional Models

To evaluate the broader applicability of our method, we apply it to two other models: GCDM [15] and
EquiFM [21]. The performance of these models when trained on GEOMno h and ZINC is presented
in Tables 5a and 5b, respectively.

RDKit PoseBusters

GEOMno h
baseline 100% 83%
conditioned 94% 89%

ZINC baseline 78% 64%
conditioned 100% 78%

(a) Performance of GCDM

RDKit PoseBusters

GEOMno h
baseline 97% 57%

conditioned 95% 44%

ZINC baseline 76% 39%
conditioned 96% 87%

(b) Performance of EquiFM

Table 5: Performance comparison of GCDM and EquiFM when trained on GEOMno h and our ZINC
subset using the default setup (baseline) or conditionally trained on distortion factor using a dataset
generated with Dmax = 0.25Å and 1:50 distorted molecules, and sampled with D=0Å. The highest
performance for each dataset is shown in bold.

For both datasets, the molecules generated by GCDM trained with conditioning outperform those
produced by the baseline model as assessed with PoseBusters. The improvement observed with the
conditioned model is even more pronounced than with the original EDM. This aligns with findings
from the GCDM paper, which found that their model generates not only more stable molecules but
also more property-specific ones when property conditioning is applied. This suggests that GCDM is
more effective at distinguishing between different property values, and in this case, between high-
and low-quality regions of the learned space. Training EquiFM using the conditional method does
not improve the plausibility of generated molecules when using GEOMno h, in which many molecules
suffer from connectivity issues (see SI for full breakdown of results). It does, however, improve the
plausability of generated molecules when using the ZINC dataset, by a margin similar to that shown
by EDM.

In conclusion, our conditioning method that was developed and tested with EDM is able to, without
modification, enhance molecular plausibility across different models when looking at GEOMno h
and ZINC, with GCDM showing particularly notable improvements. These results suggest that the
conditioning approach is broadly applicable and beneficial.

4 Conclusions

In this work, we have demonstrated the effectiveness of including low-quality conformers in a training
set and conditioning a diffusion model on a label representing conformer quality to enhance the
generation of high-quality druglike molecules. By leveraging datasets derived from GEOM and ZINC,
alongside a conditioning method proposed by Hoogeboom et al., we have successfully improved the
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validity of generated molecules. Our approach, which focuses on sampling molecules with labels
corresponding to low distortion factors, leads to enhancements in RDKit parsability and validity as
assessed by PoseBusters for the original EDM, as well as for a subsequent diffusion model, GCDM,
and a flow-matching model, EquiFM.

Our findings underscore the importance of considering the quality of conformers in molecule genera-
tion processes. The results show that by training models to discern between favorable and unfavorable
molecular conformations, we can selectively sample from the high-quality region of learned space,
resulting in significant improvements in the validity of generated molecules.

Moving forward, further research could explore additional conditioning methods and datasets to
continue improving the quality and diversity of generated molecules. Additionally, investigating
the applicability of our approach to other areas of molecular design and exploration could yield
valuable insights for drug discovery and beyond. Overall, our study provides a promising avenue for
generating valid drug-sized molecules efficiently and effectively.
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A Supplementary Information

A.1 Conditioning on internal energy

The eXtended Tight Binding (XTB) program [2] is a computational chemistry software package used
for molecular modeling and simulations. It is based on the semi-empirical tight-binding approach,
which approximates the electronic structure of molecules using a simplified set of parameters derived
from quantum mechanics. XTB extends traditional tight-binding methods by incorporating additional
empirical corrections to improve the accuracy of calculated properties. It is well-suited for studying
large molecular systems where the computational cost of more accurate methods such as density
functional theory (DFT) becomes prohibitive.

We use the default implementation of XTB to perform singlepoint energy calculations for each of the
molecules, both distorted and original, for QM9, GEOMno h, and our ZINC dataset. For the original
GEOM dataset, the original conformers have energy annotations calculated with the same method,
so we only carry out this calculation for the distorted molecules. We carry out this process using
two different annotation types: a ‘distortion factor’, a quantity that represents the extent to which the
coordinates have been altered, and an internal energy value, obtained by scoring both original and
distorted conformers with the extended tight binding program (XTB) [2].

We’ve observed that for medium-sized, drug-like compounds, conditioning on a distance-based
distortion factor results in improvements for RDKit sanitisation and PoseBusters tests. To investigate
whether using a potentially more meaningful label—specifically, an internal energy value obtained
using XTB—improves the conditioned models, we followed the previous distortion process. For one
in every fifty molecules in each dataset, we generated a distorted version by distorting each atom’s
coordinates by up to 0.25 Å and added these distorted molecules back to the dataset. These distorted
molecules were then passed through an XTB single-point energy calculation. The same calculation
was applied to all high-quality, non-distorted molecules in all datasets, excluding the original GEOM
dataset, which already has energy annotations calculated with XTB. We then trained each of the
models conditionally, and once trained, we sampled 100 molecules from each, this time enforcing D
= Emin, where Emin is a fixed value for each dataset corresponding to the lowest internal energy
annotation of any molecule in it. Then we once again assessed all 100 molecules using RDKit and
PoseBusters (Table 6).

As observed when conditioning on distortion factor, both QM9 and the original GEOM dataset
generated lower quality molecules when conditioning with internal energy was carried out. QM9
saw a further decrease in performance when using internal energy, while molecules generated by the
model trained on GEOM saw a slight boost in RDKit performance but still exhibited a PoseBusters
pass rate of 0%, ultimately being outperformed by the baseline molecules.

Conversely, conditionally training EDM on GEOMno h with internal energy resulted in increased
performance compared to both the baseline and the conditioned model using the distance distortion
factor. The RDKit and PoseBusters pass rates reached 98% and 84%, respectively. The model trained
on ZINC, however, exhibited a decrease in both RDKit and PoseBusters pass rate. These pass rates
were also lower than those of the molecules generated with the ZINC model trained conditionally on
distortion factor.

When using the distance based distortion factor, we enforced D=0Å when sampling, as this repre-
sented molecules that had not undergone any distortion. The distortion factor, ranging from 0Å to
DmaxÅ, provides a straightforward measure of how much the structure of a molecule has been al-
tered. In contrast, internal energy values, although physically meaningful, are challenging to compare
directly between different molecules. Each molecule can have a low internal energy corresponding to
a high-quality conformer and a high one corresponding to a low-quality conformer, but the lowest
energy conformers of some molecules may still have higher energy values than the highest energy
annotations of others. This inconsistency likely contributed to the observed performance decreases
when conditioning on internal energy.

A.2 Full PoseBusters outputs

Below we provide the full outputs for each model’s molecules when assessed with PoseBusters.
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Dataset RDKit PoseBusters

QM9 baseline 91% 81%
XTB 57% 19%

GEOM baseline 82% 24%
XTB 34% 0%

GEOMno h
baseline 90% 70%
XTB 98% 84%

ZINC baseline 64% 40%
XTB 65% 36%

Table 6: Performance comparison of EDM trained on diverse molecular datasets using a baseline
(the unconditional EDM), and using a conditioned model, for which the model is trained on an XTB
internal energy estimate. The highest performance for each dataset is shown in bold.
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