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ABSTRACT

Offline Reinforcement Learning (RL), which relies only on static datasets without
additional interactions with the environment, provides an appealing alternative to
learning a safe and promising control policy. Most existing offline RL methods
did not consider relative data quality and only crudely constrained the distribu-
tion gap between the learned policy and the behavior policy in general. More-
over, these algorithms cannot adaptively control the conservative level in more
fine-grained ways, like for each state-action pair, leading to a performance drop
especially over highly diversified datasets. In this paper, we propose an Adaptive
Conservative Q-Learning (ACQL) framework that enables more flexible control
over the conservative level of Q-function for offline RL. Specifically, we present
two adaptive weight functions to shape the Q-values for collected and out-of-
distribution data. Then we discuss different conditions under which the conser-
vative level of the learned Q-function changes and define the monotonicity with
respect to data quality and similarity. Motivated by the theoretical analysis, we
propose a novel algorithm with the ACQL framework, using neural networks as
the adaptive weight functions. To learn proper adaptive weight functions, we de-
sign surrogate losses incorporating the conditions for adjusting conservative levels
and a contrastive loss to maintain the monotonicity of adaptive weight functions.
We evaluate ACQL on the commonly-used D4RL benchmark and conduct exten-
sive ablation studies to illustrate the effectiveness and state-of-the-art performance
compared to existing offline DRL baselines.

1 INTRODUCTION

With the help of deep learning, Reinforcement Learning (RL) has achieved remarkable results on a
variety of previously intractable problems, such as playing video games (Silver et al., 2016), con-
trolling robot (Kalashnikov et al., 2018; Akkaya et al., 2019) and driving autonomous cars (Yu et al.,
2020a; Zhao et al., 2022). However, the prerequisite that the agent has to interact with the envi-
ronments makes the learning process costly and unsafe for many real-world scenarios. Recently,
offline RL (Lange et al., 2012; Prudencio et al., 2022) has been proposed as a promising alternative
to relax this requirement. In offline RL, the agent directly learns a control policy from a given static
dataset, which is previously-collected by an unknown behavior policy. Offline RL enables the agent
to achieve comparable or even better performance without additional interactions with environment.

Unfortunately, stripping the interactions from the online RL, offline RL is very challeng-
ing due to the distribution shift between the behavior policy and the learned policy. It of-
ten leads to the overestimation of values of out-of-distribution (OOD) actions (Kumar et al.,
2019; Levine et al., 2020) and thus misleads the policy into choosing these erroneously esti-
mated actions. To alleviate the distribution shift problem, recent methods (Kumar et al., 2019;
Jaques et al., 2019; Wu et al., 2019; Siegel et al., 2020) proposed to constrain the learned
policy to the behavior policy in different ways, such as limiting the action space (Fujimoto
et al., 2019), using KL divergence (Wu et al., 2019) and using Maximum Mean Discrepancy
(MMD) (Kumar et al., 2019). Besides directly constraining the policy, other methods (Ku-
mar et al., 2020; Yu et al., 2021a;b; Ma et al., 2021) choose to learn a conservative Q-function
to constrain the policy implicitly and thus alleviate the overestimation problem of Q-function.
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Figure 1: Performance gaps of CQL with different
conservative levels on HalfCheetah tasks.

However, most previous methods optimize all
transition samples equally rather than selec-
tively adapting, which may be overconserva-
tive especially for those non-expert datasets
with high data diversity. As shown in Fig-
ure 1, a more conservative (with a larger al-
pha) CQL (Kumar et al., 2020) agent achieves
higher returns on expert dataset while suffering
from performance degradation on the random
dataset, indicating for high-quality data, higher
conservative level works better and vice versa.
It clearly shows the importance of the conser-
vative level on the final results. Therefore, it is
more proper to use adaptive weights for differ-
ent transition samples to control the conserva-
tive level, such as raising the Q-values more for
good actions and less for bad actions.

In this paper, we focus on how to constrain the
Q-function in a more flexible way and propose
a general Adaptive Conservative Q-Learning (ACQL) framework, which sheds the light on how to
design a proper conservative Q-function. To achieve more fine-grained control over the conservative
level, we use two adaptive weight functions to estimate the conservative weights for each transition
sample. In the proposed framework, the form of the adaptive weight functions is not fixed, and we
are able to define particular forms according to practical needs. We theoretically discuss in detail that
the correlation between the different conservative levels and their corresponding conditions that the
weight functions need to satisfy. We also formally define the monotonicity of the weight functions
to depict the property that weight functions should raise the Q-values more for good actions and less
for bad actions.

With the guidance of theoretical conditions, we propose one practical algorithm with learnable neu-
ral networks as adaptive weight functions. Overall, ACQL consists of three components. Firstly,
we preprocess the fixed dataset to calculate the transition quality measurements, showing the data
quality and similarity as pseudo labels. Then, with the help of the measurements, we construct sur-
rogate losses to keep the conservative level of ACQL between the true Q-function and CQL. We
also add contrastive loss to maintain the monotonicity of adaptive weight functions with respect to
data quality and similarity. Lastly, we train the adaptive weight functions, actor network and critic
network alternatively.

We summarize our contributions as follows: 1) We propose a more flexible framework ACQL that
supports the fine-grained control of the conservative level in offline DRL. 2) We theoretically analyze
how the conservative level changes conditioned on different forms of adaptive weight functions. 3)
With the guidance of the proposed framework, we present a novel practical algorithm with carefully
designed surrogate and contrastive losses to control the conservative levels and monotonicity. 4)
We conduct extensive experiments on the D4RL benchmark and the state-of-the-art results well
demonstrate the effectiveness of our framework.

2 RELATED WORK

Imitation Learning. To learn from a given static dataset, Imitation Learning (IL) is the most
straightforward strategy. The core spirit of IL is to mimic the behavior policy. As the simplest
form, behavior cloning still hold a place for offline reinforcement learning, especially for expert
dataset. However, having expert datasets is only a minority of cases. Recently some methods (Chen
et al., 2020; Siegel et al., 2020; Wang et al., 2020; Liu et al., 2021) aim to filter sub-optimal data
and then apply the supervised learning paradigm afterward. Specifically, BAIL (Chen et al., 2020)
performed imitation learning only on a high-quality subset of dataset purified by a learned value
function. However, these methods often neglect the information contained in the bad actions with
lower returns and thus often fail in tasks with non-optimal datasets. We believe these methods are
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beneficial to our framework ACQL, since they split different data regions where different conserva-
tive levels can be set.

Model-free Offline RL. A large number of model-free offline RL methods aim to maximize the
returns while constraining the learned policy and the behavior policy to be close enough. There are
various ways for the direct constraint on policy including minimizing the KL-divergence (Jaques
et al., 2019; Wu et al., 2019; Zhou et al., 2020), MMD (Kumar et al., 2019), or Wasserstein dis-
tance (Wu et al., 2019), and adding behavior cloning regularization (Fujimoto & Gu, 2021). The
policy can be also constrained implicitly by actions space reduction (Fujimoto et al., 2019), im-
portance sampling based algorithms (Sutton et al., 2016; Nachum et al., 2019), the implicit form
of KL-divergence (Nair et al., 2020; Peng et al., 2019; Simão et al., 2020),uncertainty quantifica-
tion (Agarwal et al., 2020; Kumar et al., 2019) or a conservative Q-function (Kumar et al., 2020;
Ma et al., 2021; Sinha et al., 2022). More recently, Onestep RL (Brandfonbrener et al., 2021) and
IQL (Kostrikov et al., 2021b) proposed to improve the policy after the convergence of Q functions.
Trajectory Transformer (TT) (Janner et al., 2021) and Decision Transformer (DT) (Chen et al.,
2021) leverages the advantage of Transformer (Vaswani et al., 2017) to optimize on trajectories. In
this work, we propose a flexible framework ACQL for the model-free methods that constrain on
Q-functions. ACQL supports defining different conservative levels for Q-function over each state-
action pair, where CQL (Kumar et al., 2020) is one special case when all levels equal.

Model-based Offline RL. Recently, model-based methods (Janner et al., 2019; Kidambi et al., 2020;
Yu et al., 2020b; 2021b; Matsushima et al., 2020) attract much attention for offline RL. They first
learn the transition dynamics and reward function as a proxy environment which can be subsequently
used for policy search. Given the proxy environment, offline methods (Ross & Bagnell, 2012;
Kidambi et al., 2020), or run planning and trajectory optimization like LQR (Tassa et al., 2012) and
MCTS (Browne et al., 2012) can be directly used for controlling. Although model-based offline RL
can be highly sample efficient, direct use of it can be challenging due to distribution shift issue. In
this paper, we only focus on model-free offline RL.

3 PROBLEM STATEMENT

We consider the environment as a fully-observed Markov Decision Process (MDP), which is rep-
resented by a tuple (S,A,P , r, ρ0, γ). The MDP consists of the state space S, the actions space
A, the transition probability distribution function P : S × A × S → [0, 1], the reward func-
tion r : S × A × S → R, the initial state distribution ρ0(s) and the discount factor γ ∈ (0, 1).
The goal is to learn a control policy π(a|s) that maximizes the cumulative discounted return
Gt =

∑∞
t=0 γ

tr(st, at, st+1|s0 ∼ ρ0, at ∼ π(·|st), st+1 ∼ P (·|st, at)). In the Actor-Critic frame-
work, the learning process repeatedly alternates between the policy evaluation that computes the
value function for a policy and the policy improvement that obtains a better policy from the value
function. Given a current replay buffer (dataset) D = {(s, a, r, s′)} consisting of finite transition
samples, the policy evaluation is defined as follows:

Q̂k+1 ← argmin
Q

Es,a,s′∼D

[(
(BπQ̂k(s, a)−Q(s, a)

)2
]
, (1)

where k is the iteration number and the Bellman operator is defined as BπQ̂k(s, a) = r(s, a) +

γEa′∼πk(a′|s′)[Q̂
k(s′, a′)]. Note that the empirical Bellman operator B̂π is used in practical, which

backs up only one transition, because it is difficult to contain all possible transitions (s, a, s′) in D,
especially for continuous action space. After approximating the Q-function, the policy improvement
is performed as the following:

π̂k+1 ← argmax
π

Es∼D,a∼πk(a|s)

[
Q̂k+1(s, a)

]
. (2)

Compared to online RL, offline RL only allows learning from a fixed dataset D collected by an
unknown behavior policy πβ , while prohibiting additional interactions with the environment. One
of core issues in offline RL is the existence of the action distribution shift during training (Kumar
et al., 2019; Wu et al., 2019; Jaques et al., 2019; Levine et al., 2020).
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4 ADAPTIVE CONSERVATIVE Q-LEARNING FRAMEWORK (ACQL)

In this section, we propose a general framework, Adaptive Conservative Q-Learning (ACQL),
which enables more flexible control over the conservative level of Q-function, compared to other
Q-function constrained algorithms (Kumar et al., 2020; Ma et al., 2021; Yu et al., 2021a;b). With-
out loss of generality, we can consider the dataset collected by the behavior policy usually contains
the data with both high and low returns, even though the behavior policy is a random policy. At the
same time, among the actions sampled from the particular distribution µ, there are also (relatively)
good and bad actions instead of all actions having the same returns. In that case, we need a more
flexible and fine-grained control method to constrain the Q-function for each state-action pair. To-
wards our goal, we propose to use two adaptive weight functions dµ(s, a) and dπβ

(s, a) to control
the conservative level over the distribution µ and empirical behavior policy π̂β , respectively. Now
the family of optimization problems of our framework ACQL is presented as below:

min
Q

max
µ

(
Es∼D,a∼µ(a|s) [dµ(s, a) ·Q(s, a)]− Es∼D,a∼π̂β(a|s)

[
dπβ

(s, a) ·Q(s, a)
])

+
1

2
Es,a,s′∼D

[(
Q(s, a)− B̂πQ̂k(s, a)

)2
]
+R(µ). (3)

Note that the form of the adaptive weight functions dµ(s, a) and dπβ
(s, a) is not fixed and can be

customized according to different situations. It is their arbitrary form that supports us in shaping
the Q-function more finely. In the following, we discuss the conditions about how we can adjust
the conservative level of ACQL compared to the true Q-function and CQL (Kumar et al., 2020),
and the properties that the adaptive weight functions dµ(s, a) and dπβ

(s, a) should have. First, we
list different conditions on which ACQL is more conservative than the true Q-function in different
levels in Proposition 4.1.

Proposition 4.1 (The conservative level of ACQL). For any µ with suppµ ⊂ supp π̂β , without
considering the sampling error between the empirical B̂πQ̂ and true Bellman backups BπQ̂, the
conservative level of ACQL can be controlled over the Q-values. The learned Q-function Q̂π is
more conservative than the true Q-function Qπ point-wise, if:

∀s ∈D, a,
dµ · µ− dπβ

· πβ

πβ
≥ 0. (4)

Moreover, as shown in Appendix A, we can also control the conservative level over other regions
like the V-values or empirical MDP by changing the state, action space in Equation (4). As a special
instance of our framework ACQL, CQL (Kumar et al., 2020) proposes to constraint the conservative
level over the excepted V-values. And CQL performs the optimization for all state-action pairs with
the same weight α, which may be too rigid and over conservative for some scenarios. Now, if we
replace the ”≥” to ”≤” in Equation (4), we can get the conditions on which ACQL is less conser-
vative than the true Q-function. Following (Auer et al., 2008; Osband et al., 2016; Kumar et al.,
2020), we also show that ACQL bounds the gap between the learned Q-values and true Q-values
with the consideration of the sampling error between the empirical B̂πQ̂ and actual Bellman opera-
tor BπQ̂. Due to the space limitation, we present the proposition and proof in Appendix A. Besides
the comparison to the true Q-function, we also give a theoretical discussion about the comparison to
CQL (Kumar et al., 2020) in the following.

Proposition 4.2 (The conservative level compared to CQL). For any µ with suppµ ⊂ supp π̂β ,
given the Q-function learned from CQL is Q̂π

CQL(s, a) = Qπ − α
µ−πβ

πβ
, similiar as in 4.1, the

conservative level of ACQL compared to CQL can be controlled over the Q-values. The learned
Q-function Q̂π is less conservative than the CQL Q-function Q̂π

CQL point-wise, if:

∀s ∈D, a,
(α− dµ)µ− (α− dπβ

)πβ

πβ
≥ 0. (5)

Besides the discussion about the conservative level of ACQL, to depict the property that a good
action should have a higher Q-value than a bad action, we formally define the monotonicity of the
adaptive weight functions as following:
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Definition 4.1 (The monotonicity of the adaptive weight functions). For any state s ∈ D, the
monotonicity of the adaptive weight functions is defined as that a good action a ∈ A with a higher
true Q value has a lower dµ value and higher dπβ

value:

∀si, sj ∈D, ai, aj ∈ µ(a|s), dµ(si, ai)− dµ(sj , aj) ∝ Q∗(sj , aj)−Q∗(si, ai), (6)
∀si, sj ∈D, ai, aj ∈ π̂β(a|s), dπβ

(si, ai)− dπβ
(sj , aj) ∝ Q∗(si, ai)−Q∗(sj , aj), (7)

where Q∗ is the optimal Q-function. In Definition 4.1, we use the optimal Q-function which is a
natural ideal metric to measure the action quality to define the monotonicity. However, it is a ill-
posed problem since if we know the optimal Q-function, we can directly train an optimal policy
and solve the problem. And we also do not know what the optimal proportional relationship should
be. In the next section 5, we construct a contrastive loss using transition quality measurements to
approximate this property for ACQL. All the proofs are provided in Appendix A.

5 ACQL WITH LEARNABLE WEIGHT FUNCTIONS

In this section, derived from the theoretical discussion, we propose one practical ACQL algorithm in
the guidance of theoretical conditions with learnable neural network as adaptive weight functions. To
adaptively control the conservative level, there are three steps for ACQL. Firstly, we preprocess the
fixed dataset to calculate the transition quality measurements. Then, with the help of the transition
quality measurements, we construct surrogate losses to control the conservative level of ACQL.
We also add contrastive losses to maintain the monotonicity. Lastly, we train the adaptive weight
functions, actor network and critic network alternatively.

5.1 TRANSITION QUALITY MEASUREMENTS

To seek a replacement for the optimal Q-function Q∗ in Definition 4.1, we firstly preprocess the
fixed dataset and calculate the transition quality measurements for each state-action pair. Note that
different tasks may have different magnitudes of Q-values, thus it is better to seek a normalized
measurement ranging in (0, 1). For the action in the fixed dataset, we define Relative Transition
Quality m(s, a) by combining both the single step reward and the whole discounted trajectory return
to measure the data quality:

∀(s, a) ∈D,m(s, a) =
1

2
(rnorm(s, a) + gnorm(s, a)), (8)

where rnorm = rcur−rmin

rmax−rmin
and gnorm = gcur−gmin

gmax−gmin
. The rmin, rmax, gmin, gmax are the min-

imum and maximum values of the single step reward and the Monte Carlo return of the whole
trajectory in the dataset respectively. Note that the range of m(s, a) is (0, 1) and the higher m(s, a)
indicates that a is a better action. For the OOD actions, since they do not appear in the dataset and
we are not able to use the single rewards and Monte Carlo returns, we choose to use both the quality
of its corresponding in-dataset action m(s, ain) and the Euclidean distance between the OOD action
and action in the dataset with the same state.

∀(s, ain) ∈D, aµ ∈ µ(a|s),m(s, aµ) =
1

2

(
m(s, ain)−

1

2
||aµ − ain||2 + 1

)
. (9)

Consistent with m(s, ain), we shift and scale in Equation 9 to make the range of m(s, aµ) is also
(0, 1) and the higher m(s, aµ) indicates that aµ is a better action. Note that m(s, aµ) is calculated
over every training batch. We argue that the above Equations 8 and 9 is only a simple and effec-
tive way to be the replacement of the optimal Q-function and it can be served as a baseline for
future algorithms. Many methods including the "upper envelope" in BAIL (Chen et al., 2020) and
uncertainty estimation in (Yu et al., 2020b) have the potential to be incorporated in ACQL.

5.2 OPTIMIZATION TO CONTROL THE CONSERVATIVE LEVEL

Suppose we present the functions dµ, dπβ
as deep neural networks, the key point is how to design

the loss functions. Recapping the Equations (4) and (5), we have known the conditions for different
conservative level and thus adapt them to the loss functions. More specifically, we incorporate
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the conditions, which aims to learn a Q-funtion more conservative than true Q-function but less
conservative than CQL, into the hinge losses as shown in the following:

Lcl_true(dµ, dπβ
) = max(0, dπβ

· πβ − dµ · µ+ C1 · πβ), (10)

Lcl_cql(dµ, dπβ
) = max(0, (dµ − α) · µ− (dπβ

− α) · πβ + C2 · πβ), (11)
where C1 and C2 are used to control the soft margin of the conservative level compared to the true
Q-function and CQL respectively. A higher C1 means a more conservative Q-function than true Q-
function, while a higher C2 represents a less conservative Q-function than CQL. However, C1 and
C2 are difficult to tune and not adaptive enough as fixed hyperparameters. We leverage the relative
transition quality to calculate C1 and C2 automatically based on the property in Definition 4.1 that
a good action should have less conservative Q-value and thus a lower C1 and a higher C2.

C1(s, a) = (1−m(s, a)) · rmax, (12)
C2(s, a) = m(s, a) · rmax. (13)

The ranges of C1 and C2 are both (0, rmax). Note that C1 and C2 are the soft margin over the
Q-values, thus we use the maximum single reward rmax as the maximum margin to avoid excessive
fluctuations in policy evaluation. Nevertheless, during the optimization for Lcl_true and Lcl_cql,
we find it is prone to cause arithmetic underflow since the logµ, logπβ

is usually very small like
-1000, then the resulting µ(a|s) and πβ(a|s) become 0 after exponentiation operation. To avoid the
arithmetic underflow problem, we use a necessity of Equations (4) and (5) to form surrogate losses.

Lemma 5.1 For x > 0, lnx ≤ x− 1. lnx = x− 1 if and only if x = 1.

The proof is provided in Appendix A. Then the resulting surrogate losses are the following:
Lcl_true(dµ, dπβ

) = max(0, dπβ
· (lnπβ + 1)− dµ · (lnµ+ 1) + C1 · (lnπβ + 1)), (14)

Lcl_cql(dµ, dπβ
) = max(0, (dµ − α)(lnµ+ 1)− (dπβ

− α)(lnπβ + 1) + C2(lnπβ + 1)). (15)

5.3 OPTIMIZATION TO MAINTAIN THE MONOTONICITY

Besides the surrogate losses to control the conservative levels of ACQL, we also construct con-
trastive loss to main the monotonicity as stated in Definition 4.1. We use Mean Squared Error
(MSE) for simplicity. The contrastive loss is defined as the following:
∀(si, ai), (sj , aj) /∈D, (sk, ak), (sl, al) ∈D, (16)

Lmono(dµ, dπβ
) = ∥(σ(dµ(si, ai))− σ(dµ(sj , aj)))− (σ(m(sj , aj))− σ(m(si, ai)))∥22 (17)

+ ∥
(
σ(dπβ

(sk, ak))− σ(dπβ
(sl, al))

)
− (σ(m(sk, ak))− σ(m(sl, al)))∥22, (18)

where we use the softmax operation σ(·) over the current batch of the training data to unify the
orders of magnitude between the adaptive weights and transition quality measurements.

5.4 FINAL OBJECT

To learn a conservative Q-function, the adaptive weight should be positive, and thus we add a regu-
larizer term as the following:

Lpos(dµ, dπβ
) = max(0,−dµ) +max(0,−dπβ

), (19)
The final object for training the adaptive weight functions dµ, dπβ

is:

L(dµ, dπβ
) = Lcl_true(dµ, dπβ

) +Lcl_cql(dµ, dπβ
) +Lmono(dµ, dπβ

) +Lpos(dµ, dπβ
). (20)

ACQL is built on the top of the CQL (Kumar et al., 2020), which sets µ = π and R(µ) =
−DKL(µ,Unif(a)) in Equation 3 in Section 5. And the optimization problem becomes:

min
Q

max
π

min
dµ,dπβ

(
Es∼D,a∼π(a|s) [dµ(s, a) ·Q(s, a)]− Es∼D,a∼π̂β(a|s)

[
dπβ

(s, a) ·Q(s, a)
])

+
1

2
Es,a,s′∼D

[(
Q(s, a)− B̂πQ̂k(s, a)

)2
]
−DKL(π, Unif(a)) +L(dµ, dπβ

). (21)

During the training process, we add weight neural networks dµ, dπβ
and train the weight networks, Q

networks and policy networks alternatively. Due to the space limitation, the implementation details
are provided in Appendix B.
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Table 1: Normalized results on D4RL Gym-MuJoCo environments.

Task Name BC BCQ BEAR BRAC-v BRAC-p AWR TD3+BC F-BRC CQL ACQL
halfcheetah-e-v0 107.0 - 108.2 -1.1 3.8 - 105.7 108.4 103.5 97.7
halfcheetah-m-e-v0 35.8 64.7 53.4 41.9 44.2 52.7 97.9 93.3 62.4 93.2
halfcheetah-m-r-v0 38.4 38.2 38.6 47.7 45.4 40.3 43.3 43.2 46.2 46.4
halfcheetah-m-v0 36.1 40.7 41.7 46.3 43.8 37.4 42.8 41.3 44.4 42.8
halfcheetah-r-v0 2.1 2.2 25.1 31.2 24.1 2.5 10.2 33.3 35.4 31.3

halfcheetah-sum 219.4 - 267.0 166.0 161.3 - 299.9 319.5 291.9 311.4

hopper-e-v0 109.0 - 110.3 3.7 6.6 - 112.2 112.3 112.2 116.3
hopper-m-e-v0 111.9 110.9 96.3 0.8 1.9 27.1 112.2 112.4 98.7 111.8
hopper-m-r-v0 11.8 33.1 33.7 0.6 0.6 28.4 31.4 35.6 48.6 77.3
hopper-m-v0 29.0 54.5 52.1 31.1 32.7 35.9 99.5 99.4 58.0 85.8
hopper-r-v0 9.8 10.6 11.4 12.2 11.0 10.2 11.0 11.3 10.8 12.7
hopper-sum 271.5 - 303.8 48.4 52.8 - 366.3 371.0 328.3 403.9
walker-e-v0 125.7 - 106.1 0.0 -0.2 - 105.7 103.0 107.2 116.1
walker-m-e-v0 6.4 57.5 40.1 81.6 76.9 53.8 101.1 105.2 111.0 94.5
walker-m-r-v0 11.3 15.0 19.2 0.9 -0.3 15.5 25.2 41.8 26.7 45.2
walker-m-v0 6.6 53.1 59.1 81.1 77.5 17.4 79.7 78.8 79.2 81.8
walker-r-v0 1.6 4.9 7.3 1.9 -0.2 1.5 1.4 1.5 7.0 11.8
walker-sum 151.6 - 231.8 165.5 153.7 - 313.1 330.3 331.1 349.4

6 EXPERIMENTS

6.1 COMPARISONS TO OFFLINE RL BASELINES

We conducted all the experiments on the commonly-used offline RL benchmark D4RL (Fu et al.,
2020), which includes many task domains (Todorov et al., 2012; Brockman et al., 2016; Rajeswaran
et al., 2017) and a variety of dataset types. Aiming to provide a comprehensive comparison, we
compared ACQL to many state-of-the-art model-free algorithms including behavioral cloning (BC),
SAC-off (Haarnoja et al., 2018), BEAR (Kumar et al., 2019), BRAC (Wu et al., 2019), AWR (Peng
et al., 2019), BCQ (Fujimoto et al., 2019), aDICE (Nachum et al., 2019) TD3+BC (Fujimoto & Gu,
2021), Fisher-BRC (Kostrikov et al., 2021a), and CQL (Kumar et al., 2020). For the sake of fair
comparisons, we directly reported the results of all baselines from the D4RL whitepaper (Fu et al.,
2020) and their original papers. To be consistent with previous works, we trained ACQL for 1.0
M gradient steps and evaluated for 10 episodes every 1000 training iterations. The results are the
average values of 10 episodes over 3 random seeds and are obtained from the workflow proposed
by (Kumar et al., 2021).

Gym-MuJoCo Tasks. The Gym-MuJoCo tasks include "halfcheetah", "hopper" and "walker" with
5 kinds of dataset types of each, ranging from expert data to random data. For brevity, we marked
"-expert", "-medium-expert", "-medium-replay", "-medium" and "random" as "-e", "-m-e", "-m-r",
"-m" and "-r" respectively. Table 1 shows the normalized returns of all 15 Gym-MuJoCo version-0
tasks. We can observe that ACQL outperforms other baselines on Hopper and Walker environments
by a large margin. From the perspective of the dataset types, ACQL is very a balanced algorithm
that achieves excelling results on all kinds of datasets with expert, medium and random data. We
also built additaional comparisons to more state-of-the-art model-free algorithms including Decision
Transformer (DT) (Chen et al., 2021), AWAC (Nair et al., 2020), Onestep RL (Brandfonbrener et al.,
2021), TD3+BC (Fujimoto & Gu, 2021), IQL (Kostrikov et al., 2021a) and CQL (Kumar et al., 2020)
on version-2 datasets in Appendix C.1.

Adroit Tasks. The adroit tasks (Rajeswaran et al., 2017) are high-dimensional robotic manipulation
tasks with sparse reward and include expert data and human demonstrations from narrow distribu-
tions. Table 2 shows the normalized returns of all 12 Kitchen tasks. ACQL delivers higher perfor-
mance than other baselines on "cloned" datasets, i.e., with mixed expert data and human demonstra-
tions.

Franka Kitchen Tasks. The Franka Kitchen tasks (Gupta et al., 2019) include complex trajectories
as the offline datasets and aim to evaluate the "stitching" ability of the agent on a realistic kitchen
environment. Table 3 shows the normalized returns of all 3 Kitchen tasks. We can see that ACQL
consistently exceeds CQL, BC and other baselines on all 3 kinds of datasets, since ACQL can control
the conservative level adaptively.

AntMaze Tasks. The AntMaze tasks mimic real-world robotic navigation tasks that aim to control
an "Ant" quadruped robot to reach the goal location from a start location with only 0-1 sparse
rewards given. Due to the space limitation, we reported the experimental results in Appendix C.3
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Table 2: Normalized results on D4RL Adroit environments.

Task Name BC SAC-Off BEAR BRAC-p BRAC-v AWR BCQ aDICE CQL ACQL
door-cloned-v0 -0.1 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.4 6.6
door-expert-v0 34.9 7.5 103.4 -0.3 -0.3 102.9 99.0 0.0 101.5 101.5
door-human-v0 0.5 3.9 -0.3 -0.3 -0.3 0.4 0.0 0.0 9.9 0.2

hammer-cloned-v0 0.8 0.2 0.3 0.3 0.3 0.4 0.4 0.3 2.1 12.7
hammer-expert-v0 125.6 25.2 127.3 0.3 0.3 39.0 107.2 0.3 86.7 77.3
hammer-human-v0 1.5 0.5 0.3 0.3 0.2 1.2 0.5 0.3 4.4 10.6
pen-cloned-v0 56.9 23.5 26.5 1.6 -2.5 28.0 44.0 -2.9 39.2 47.6
pen-expert-v0 85.1 6.1 105.9 -3.5 -3.0 111.0 114.9 -3.5 107.0 143.1
pen-human-v0 34.4 6.3 -1.0 8.1 0.6 12.3 68.9 -3.3 37.5 54.7

relocate-cloned-v0 -0.1 -0.2 -0.3 -0.3 -0.3 -0.2 -0.3 -0.3 -0.1 0.1
relocate-expert-v0 101.3 -0.3 98.6 -0.3 -0.4 91.5 41.6 -0.1 95.0 60.4
relocate-human-v0 0.0 0.0 -0.3 -0.3 -0.3 0.0 -0.1 -0.1 0.2 0.1

Table 3: Normalized results on D4RL Franka Kitchen environments.

Task Name BC SAC-Off BEAR BRAC-p BRAC-v AWR BCQ aDICE CQL ACQL
kitchen-complete-v0 33.8 15.0 0.0 0.0 0.0 0.0 8.1 0.0 43.8 50.2
kitchen-mixed-v0 47.5 2.5 47.2 0.0 0.0 10.6 8.1 2.5 51.0 55.9
kitchen-partial-v0 33.8 0.0 13.1 0.0 0.0 15.4 18.9 0.0 49.8 51.7

6.2 COMPARISONS AMONG DIFFERENT CONSERVATIVE LEVELS

To demonstrate more intuitively that ACQL can adaptively control the conservative level, we com-
pared ACQL to CQL with different α values ranging from 1, 2, 5, 10, 20. The different α values
represent different conservative levels and a higher α means more conservative. Figure 2 plotted the
learning curves of ACQL and CQL with 5 kinds of α on the Hopper-v0 environments. We also pro-
vided a more detailed Figure 4 and a Table 8 of the quantitative results in Appendix C.2. From the
Figure 2, one trend we can clearly observe is that CQL with a higher conservative level can usually
achieve higher performance on expert datasets as opposed to that a lower conservative level is more
effective for random datasets. Moreover, it is difficult for CQL to achieve satisfactory performance
on all kinds of dataset with a fixed α. It is exactly the issue that the ACQL focuses on. Since ACQL
generates adaptive weight for each state-action pair and control the conservative level in a more
fine-grained way, ACQL can achieve balanced and state-of-the-art results for different dataset types.

Table 4 shows the comparisons of average Q-values over the datasets on HalfCheetah-v0 environ-
ments. We can observe that as the α of CQL increase, the learned Q-values decreases, since a higher
α represents a higher conservative level. Compared to CQL, the Q-values learned by ACQL is
higher than CQL showing ACQL is less conservative than CQL while the Q-values do not explode.

6.3 ABLATION STUDY

Effect of the Proposed Losses. Due to the space limitation, we reported the quantitative results on
the Hopper environment including 5 kinds of datasets in Table 5. More results about other environ-
ments are provided in Appendix C.4. As shown in Table 5, when we only control the conservative
level using Lcl_true (second row) or Lcl_cql (third row), ACQL dropped its performance seriously,
with only around 21.0 of normalized returns even on expert dataset. Without using Lmono and Lpos

to limit the range of the adaptive weights, it is prone to learn erroneously adaptive weights and the
errors increase like a snowball as the policy evaluation repeats and lead to failure.

Figure 2: Learning curves comparing to CQL with different conservative levels on Hopper-v0 envi-
ronments.
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Table 4: Comparisons of average Q-values over the datasets on HalfCheetah-v0 environments.

Task Name CQL-1 CQL-2 CQL-5 CQL-10 CQL-20 ACQL
halfcheetah-expert-v0 1276.3 1252.9 1221.9 1202.7 1178.3 1271.1
halfcheetah-medium-expert-v0 901.9 803.6 627.5 545.7 439.1 755.1
halfcheetah-medium-replay-v0 283.5 237.6 72.3 -178.1 -248.3 452.4
halfcheetah-medium-v0 103.8 -9.1 -49.7 -241.1 -313.6 385.9
halfcheetah-random-v0 154.6 126.7 76.9 40.5 29.4 304.1

Table 5: Ablation Study on Gym-MuJoCo Hopper-v0 environments in terms of normalized results.

Lcl_true Lcl_cql Lmono Lpos hopper-e hopper-m-e hopper-m-r hopper-m hopper-r
1 ✓ 21.7 8.3 33.1 52.8 10.6
2 ✓ 21.5 31.5 38.2 58.4 24.3
3 ✓ ✓ 34.8 85.4 66.9 41.7 12.5
4 ✓ ✓ ✓ 114.4 112.4 71.5 56.3 10.7

5 ✓ ✓ ✓ ✓ 116.3 111.8 77.3 85.8 12.7

Visualization of the Adaptive Weights. To further check the monotonicity of the adaptive weight
functions, we visualized the adaptive weights and the corresponding relative transition quality mea-
surements for HalfCheetah-random-v0 dataset in Figure 3. Note that all values are normalized to
uniform the magnitudes and are sorted according to the quality measurements. In the left of Fig-
ure 3, dµ_rand are the dµ(s, a) where s are in dataset and a are sampled randomly, while dµ_policy
are the dµ(s, a) where a are predicted from the training policy. We can see the trend that as the qual-
ity measurements (green and red points) increase, the adaptive weights dµ (blue and yellow points)
decrease, indicating the Q-values of good OOD state-action pairs should be suppressed less. In the
right of Figure 3, dπβ

_dataset are the dπβ
(s, a) where s, a are sampled from the dataset. As the the

quality measurements (green points) increase, the adaptive weights dπβ
(blue points) also increase,

indicating the Q-values of good in-dataset state-action pairs should be higher.

Figure 3: Visualization of the adaptive weights and relative transition quality m(s, a) on
HalfCheetah-random-v0 dataset.

7 CONCLUSION

In this paper, we proposed a flexible framework named Adaptive Conservative Q-Learning (ACQL),
which sheds the light on how to control the conservative level of the Q-function in a fine-grained
way. In ACQL, two weight functions, corresponding to the out-of-distribution (OOD) actions and
actions in the dataset, are introduced to adaptively shape the Q-function. More importantly, the
form of these two adaptive weight functions is not fixed and it is possible to define particular forms
for different scenarios, e.g., elaborately hand-designed rules or learnable deep neural networks. We
provide a detailed theory analysis about how the conservative level of the learned Q-function changes
under different conditions and define the monotonicity of the adaptive weight functions. To illustrate
the feasibility of our framework, we propose a novel practical algorithm using neural networks as
the weight functions. With the guidance of the theoretical analysis, we construct two surrogate
and contrastive losses to control the conservative level and maintain the monotonicity. We build
extensive experiments on commonly-used offline RL benchmarks and the state-of-the-art results
well demonstrate the effectiveness of our method.
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A PROOFS

Proposition A.1 (The conservative level of ACQL). For any µ with suppµ ⊂ supp π̂β , without
considering the sampling error between the empirical B̂πQ̂ and true Bellman backups BπQ̂, the
conservative level of ACQL can be controlled at three levels according to different conditions:
1) Control over the Q-values. The learned Q-function Q̂π

ACQL is more conservative than the true
Q-function Qπ point-wise, if:

∀s ∈D, a,
dµ · µ− dπβ

· πβ

πβ
≥ 0. (22)

2) Control over the V-values. The excepted values of learned Q-function Q̂π
ACQL is more conserva-

tive than excepted values of the true Q-function Qπ , if:

∀s ∈D,
∑
a

dµ · µ− dπβ
· πβ

πβ
≥ 0. (23)

3) Control over the empirical MDP. The learned Q-function Q̂π
ACQL is more conservative over the

empirical MDP, if: ∑
s∈D

∑
a

dµ · µ− dπβ
· πβ

πβ
≥ 0. (24)

Proof of Proposition A.1. Without considering the sampling error between the empirical B̂πQ̂ and
true Bellman backups BπQ̂, we first show the optimization problem of Q-function in ACQL as the
following:

Q̂k+1
ACQL ← min

Q

(
Es∼D,a∼µ(a|s) [dµ(s, a) ·Q(s, a)]− Es∼D,a∼πβ(a|s)

[
dπβ

(s, a) ·Q(s, a)
])

+
1

2
Es,a,s′∼D

[(
Q(s, a)−BπQ̂k(s, a)

)2
]
(25)

By setting the derivative of Equation 25 to 0, we can obtain the form of the resulting Q-function
Q̂k+1 in ACQL:

∀s ∈D, a,
∂Q̂k+1

ACQL

∂Q
= 0 (26)

⇒ dµ · µ− dπβ
· πβ + πβ · (Q−BπQ̂k) = 0 (27)

⇒ Q̂k+1
ACQL = BπQ̂k −

dµ · µ− dπβ
· πβ

πβ
. (28)

Note that the true Q-function is only derived from the true Bellman operator Qk+1 = BπQ̂k. Based
on the Equation 28, we have exactly the condition to control the conservative level over the Q-
function as shown in Equation 22. If we want to relax the conservative level like requiring to control
over the V-values or the empirical MDP, we can easily relax the Equation 28 to the integration over
each state or the whole empirical MDP as shown in Equations (23) and (24) respectively. For the
conditions where we want to make the learned Q-function Q̂π

ACQL is less conservative than the true
Q-function Qπ , we can easily replace the "≥" to "≤" in Proposition A.1.

Next we show that ACQL bounds the gap between the learned Q-values and true Q-values with the
consideration of the sampling error between the empirical B̂πQ̂ and actual Bellman operator BπQ̂.
Following (Auer et al., 2008; Osband et al., 2016; Kumar et al., 2020), the error can be bounded
by leveraging the concentration properties of B̂π . We introduce the the bound in brief here: with
high probability ≥ 1− δ, |B̂πQ̂−BπQ̂|(s, a) ≤ Cr,P ,δ√

|D(s,a)|
,∀s, a ∈ D, where Cr,P ,δ is a constant

relating to the reward function r(s, a), environment dynamic P (·|s, a), and δ ∈ (0.1).
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Proposition A.2 (ACQL bounds the gap between the learned Q-values and true Q-values). Consid-
ering the sampling error between the empirical B̂πQ̂ and true Bellman backups BπQ̂, with a high
probability ≥ 1 − δ, the gap between the learned Q-function Q̂π

ACQL and the true Q-function Qπ

satisfies the following inequality:

∀s ∈D, a, g(s, a)− err(s, a) ≤ Q̂π
ACQL(s, a)−Qπ(s, a) ≤ g(s, a) + err(s, a), (29)

where

g(s, a) = −
[
(I − γPπ)−1 dµ · µ− dπβ

· π̂β

π̂β

]
(s, a), (30)

err(s, a) =

[
(I − γPπ)−1 Cr,P ,δRmax

(1− γ
√
|D|)

]
(s, a) ≥ 0. (31)

1) Thus, if dµ(s, a) = dπβ
(s, a) = α,∀s ∈ D, a, it is the case of CQL, where the V̂ π lower-bounds

the V π with a large α instead of a point-wise lower-bound for Q-function.
2) If g(s, a) ≥ err(s, a),∃s ∈D, a, with the left inequality, the learned Q-function Q̂π

ACQL is more
optimistic than the true Q-function Qπ in these regions.
3) If g(s, a) ≤ −err(s, a),∃s ∈ D, a, with the right inequality, the learned Q-function Q̂π

ACQL is
more conservative than the true Q-function Qπ in these regions.

Note that the term err(s, a) is a positive value for any state-action pair. Given the bounds in Proposi-
tion A.2, instead of only knowing the size relationship (i.e., more or less conservative), we can con-
trol the fine-grained range of the gap more precisely by carefully designing dµ(s, a) and dπβ

(s, a).

Proof of Proposition A.2. In Proposition A.1, we calculate the gap between the learned Q-function
Q̂π

ACQL and the true Q-function Qπ , representing the conservative level, without the sampling error
between the empirical B̂πQ̂ and true Bellman backups BπQ̂. Now we can obtain a more precise
bound for the conservative level with the consideration of the sampling error. Following (Auer et al.,
2008; Osband et al., 2016; Kumar et al., 2020), we can relate the empirical Bellman backups B̂πQ̂
and true Bellman backups BπQ̂ as the following: with high probability ≥ 1− δ, δ ∈ (0, 1),

∀Q, s, a ∈D, |B̂πQ̂−BπQ̂|(s, a) ≤ Cr,P ,δRmax

(1− γ)
√
|D(s, a)|

, (32)

where Rmax is the upper bound for the reward function (i.e., |r(s, a)| ≤ Rmax), Cr,P ,δ is a constant
relating to the reward function r(s, a), environment dynamic P (·|s, a). More detailed proofs of the
relationship are provided in (Kumar et al., 2020).
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For the right inequality in Equation 29, we reason the fixed point of the Q-function in ACQL as the
following:

|B̂πQ̂ACQL −BπQ̂ACQL|(s, a) ≤
Cr,P ,δRmax

(1− γ)
√
|D(s, a)|

(33)

⇒ B̂πQ̂ACQL ≤ BπQ̂ACQL +
Cr,P ,δRmax

(1− γ)
√
|D(s, a)|

(34)

⇒ B̂πQ̂ACQL −
dµ · µ− dπβ

· π̂β

π̂β
≤ BπQ̂ACQL −

dµ · µ− dπβ
· π̂β

π̂β
+

Cr,P ,δRmax

(1− γ)
√
|D(s, a)|

(35)

⇒ Q̂π
ACQL ≤ BπQ̂ACQL −

dµ · µ− dπβ
· π̂β

π̂β
+

Cr,P ,δRmax

(1− γ)
√
|D(s, a)|

(36)

⇒ Q̂π
ACQL ≤ (r + γPπQ̂π

ACQL)−
dµ · µ− dπβ

· π̂β

π̂β
+

Cr,P ,δRmax

(1− γ)
√
|D(s, a)|

(37)

⇒ Q̂π
ACQL ≤ (I − γPπ)−1

[
r −

dµ · µ− dπβ
· π̂β

π̂β
+

Cr,P ,δRmax

(1− γ)
√
|D(s, a)|

]
(38)

⇒ Q̂π
ACQL ≤ Qπ − (I − γPπ)−1 dµ · µ− dπβ

· π̂β

π̂β
+ (I − γPπ)−1 Cr,P ,δRmax

(1− γ)
√
|D(s, a)|

(39)

⇒ Q̂π
ACQL −Qπ ≤ g(s, a) + err(s, a). (40)

For the left inequality in Equation 29, we have the similar process as the following:

|B̂πQ̂ACQL −BπQ̂ACQL|(s, a) ≤
Cr,P ,δRmax

(1− γ)
√
|D(s, a)|

(41)

⇒ B̂πQ̂ACQL ≥ BπQ̂ACQL −
Cr,P ,δRmax

(1− γ)
√
|D(s, a)|

(42)

⇒ B̂πQ̂ACQL −
dµ · µ− dπβ

· π̂β

π̂β
≥ BπQ̂ACQL −

dµ · µ− dπβ
· π̂β

π̂β
− Cr,P ,δRmax

(1− γ)
√
|D(s, a)|

(43)

⇒ Q̂π
ACQL ≥ BπQ̂ACQL −

dµ · µ− dπβ
· π̂β

π̂β
− Cr,P ,δRmax

(1− γ)
√
|D(s, a)|

(44)

⇒ Q̂π
ACQL ≥ (r + γPπQ̂π

ACQL)−
dµ · µ− dπβ

· π̂β

π̂β
− Cr,P ,δRmax

(1− γ)
√
|D(s, a)|

(45)

⇒ Q̂π
ACQL ≥ (I − γPπ)−1

[
r −

dµ · µ− dπβ
· π̂β

π̂β
− Cr,P ,δRmax

(1− γ)
√
|D(s, a)|

]
(46)

⇒ Q̂π
ACQL ≥ Qπ − (I − γPπ)−1 dµ · µ− dπβ

· π̂β

π̂β
− (I − γPπ)−1 Cr,P ,δRmax

(1− γ)
√
|D(s, a)|

(47)

⇒ Q̂π
ACQL −Qπ ≥ g(s, a)− err(s, a). (48)

Proposition A.3 (The conservative level compared to CQL). For any µ with suppµ ⊂ supp π̂β ,
given the Q-function learned from CQL is Q̂π

CQL(s, a) = Qπ − α
µ−πβ

πβ
, similiar as in A.1, the

conservative level of ACQL compared to CQL can be controlled at least at three different levels
according to different conditions:
1) Control over the Q-values. The learned Q-function Q̂π is less conservative than the CQL Q-
function Q̂π

CQL point-wise, if:

∀s ∈D, a,
(α− dµ)µ− (α− dπβ

)πβ

πβ
≥ 0. (49)
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2) Control over the V-values. The excepted values of learned Q-function Q̂π is less conservative
than excepted values of the true Q-function Qπ , if:

∀s ∈D,
∑
a

(α− dµ)µ− (α− dπβ
)πβ

πβ
≥ 0. (50)

3) Control over the empirical MDP. The learned Q-function Q̂π is less conservative over the empir-
ical MDP, if: ∑

s∈D

∑
a

(α− dµ)µ− (α− dπβ
)πβ

πβ
≥ 0. (51)

Proof of Proposition A.3. As shown in CQL (Kumar et al., 2020), we first recap the optimization
problem of CQL as the following:

Q̂k+1
CQL ← min

Q
α
(
Es∼D,a∼µ(a|s) [Q(s, a)]− Es∼D,a∼πβ(a|s) [Q(s, a)]

)
+
1

2
Es,a,s′∼D

[(
Q(s, a)−BπQ̂k(s, a)

)2
]
. (52)

We can observa that CQL is the a special case of ACQL where the adaptive weight functions dµ(s, a)
and dπβ

(s, a) are both constant α. By setting the derivative of Equation 52 to 0, we can obtain the
form of the resulting Q-function Q̂k+1 in CQL:

∀s ∈D, a,
∂Q̂k+1

CQL

∂Q
= 0 (53)

⇒ α · µ− α · πβ + πβ · (Q−BπQ̂k) = 0 (54)

⇒ Q̂k+1
CQL = BπQ̂k − α

µ− πβ

πβ
. (55)

Similar to the proof of Proposition A.1, we calculate the difference between the Q-values of ACQL
and CQL in Equations (28) and (55) as the following:

∀s ∈D,a, Q̂k+1
ACQL − Q̂k+1

CQL (56)

= BπQ̂k −
dµ · µ− dπβ

· πβ

πβ
−BπQ̂k + α

µ− πβ

πβ
(57)

=
(α− dµ)µ− (α− dπβ

)πβ

πβ
. (58)

If we want to learn a less conservative Q-function than CQL in ACQL, we need to make the differ-
ence in Equation 58 greater than 0, as shown in Equation 49. If we want to relax the conservative
level like requiring to control over the V-values or the empirical MDP, we can easily relax the Equa-
tion 58 to the integration over each state or the whole empirical MDP as shown in Equations (50)
and (51) respectively. For the conditions where we want to make the learned Q-function Q̂π

ACQL

is more conservative than the CQL Q-function Q̂π
CQL, we can easily replace the "≥" to "≤" in

Proposition A.3.

Lemma A.1 For x > 0, lnx ≤ x− 1. lnx = x− 1 if and only if x = 1.

Proof of Lemma A.1.

Suppose f(x) = lnx − x + 1, then f ′(x) = 1−x
x . It is easy to know that f(x) ↑ over (0, 1) and

f(x) ↓ over (1,+∞). Then f(x) ≤ f(1) = 0.
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B EXPERIMENTAL DETAILS

Software. We run our experiments with the following packages and softwares:

• d4rl 1.1
• Python 3.8.13
• Pytorch 1.10.0+cu111
• Gym 0.23.1
• MuJoCo 2.1.5
• mujoco-py 2.1.2.14
• dm-control 1.0.2
• numpy 1.22.3
• h5py 3.6.0

Table 6: Implementation Details of ACQL.

Hyperparameter Value

ACQL
Hyperparameter

Critic learning rate 3e-4
Actor learning rate 1e-5
Target update rate 5e-3
Optimizer Adam (Kipf & Welling, 2016)
Batch size 256
Discount factor 0.99
Lagrange for α False
α 20.0
Training steps 1.5 M
Evaluation frequency 1000
Evaluation episodes 10
Weight function learning rate 3e-4
Behavior policy training steps 1.0 M

ACQL
Network

Architectures

Actor type Tanh & Gaussian
Actor hidden layers 3
Actor hidden dim [256, 256, 256]
Actor activation function ReLU (Agarap, 2018)
Critic hidden layers 3
Critic hidden dim [256, 256, 256]
Critic activation function ReLU
Weight function hidden layers 3
Weight function hidden dim [256, 256, 256]
Weight function ouput dim 2
Weight function activation function ReLU

Implementation Details of ACQL. In ACQL, we represent two adaptive weight functions dµ(s, a)
and dπβ

(s, a) by one neural network, which has the same network architecture as the Q-function but
the output dimension is 2. During each gradient descent step, we train the weight network, the Q
networks and the policy networks in turn. We list all the hyperparameters and network architectures
of ACQL in Table 6.
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C ADDITIONAL EXPERIMENTS

C.1 COMPARISONS TO OFFLINE RL BASELINES ON GYM-MUJOCO-V2 DATASETS

Aiming to provide a more comprehensive comparison, we compared ACQL to many state-of-
the-art model-free algorithms including behavioral cloning (BC), 10%BC, Decision Transformer
(DT) (Chen et al., 2021), AWAC (Nair et al., 2020), Onestep RL (Brandfonbrener et al., 2021),
TD3+BC (Fujimoto & Gu, 2021), IQL (Kostrikov et al., 2021a) and CQL (Kumar et al., 2020)
on the version-2 dataset. For the sake of fair comparisons, we directly reported the results of all
baselines from the D4RL whitepaper (Fu et al., 2020) and their original papers.

Table 7 shows the normalized returns of all 15 Gym-MuJoCo tasks on the version 2 datasets. Due to
most baselines did not report their results on "-expert" datasets, we conducted experiments on other
4 types of datasets. We can observe that ACQL consistently outperforms other baselines on all three
environments, specifically on the Hopper environment, i.e., achieving normalized returns 302.9 for
hopper-sum compared to 268.2 from CQL which is the second rank. From the perspective of the
dataset types, ACQL is a very balanced algorithm that achieves excelling results on all kinds of
dataset with expert, medium and random data. Furthermore, we find that ACQL can achieve higher
performance than other baselines when there are more medium and random data in datasets, we
argue it is because ACQL can adaptively calculate the weights for data with different qualities and
thus learn a better policy. For instance, while the best result on hopper-random-v2 of other baselines
is 9.6 from AWAC, the result of ACQL is 31.4, which is more than 3 times better.

Table 7: Normalized results on D4RL Gym-MuJoCo environments.

Task Name BC 10%BC DT AWAC OnestepRL TD3+BC IQL CQL ACQL
halfcheetah-m-e-v2 55.2 92.9 86.8 36.8 93.4 90.7 86.7 91.6 87.9
halfcheetah-m-r-v2 36.6 40.6 36.6 40.5 38.1 44.6 44.2 45.5 46.3
halfcheetah-m-v2 42.6 42.5 42.6 37.4 48.4 48.3 47.4 44.0 48.4
halfcheetah-r-v2 2.3 2.0 2.2 2.2 6.9 11.0 - 18.6 25.9
halfcheetah-sum 136.7 178.0 168.2 116.9 186.8 194.6 178.3 199.7 208.5
hopper-m-e-v2 52.5 110.9 107.6 80.9 103.3 98.0 91.5 105.4 82.2
hopper-m-r-v2 18.1 75.9 82.7 37.2 97.5 60.9 94.7 95.0 97.9
hopper-m-v2 52.9 56.9 67.6 72.0 59.6 59.3 66.3 58.5 91.4
hopper-r-v2 4.8 4.1 7.5 9.6 7.8 8.5 - 9.3 31.4
hopper-sum 128.3 247.8 265.4 199.7 268.2 226.7 252.5 268.2 302.9
walker-m-e-v2 107.5 109.0 108.1 42.7 113.0 110.1 109.6 108.8 108.3
walker-m-r-v2 26.0 62.5 66.6 27.0 49.5 81.8 73.9 77.2 85.5
walker-m-v2 75.3 75.0 74.0 30.1 81.8 83.7 78.3 72.5 84.9
walker-r-v2 1.7 1.7 2.0 5.1 6.1 1.6 - 2.5 5.2

walker-sum 210.5 248.2 250.7 104.9 250.4 277.2 261.8 261.0 283.9

C.2 COMPARISONS AMONG DIFFERENT CONSERVATIVE LEVELS

To demonstrate more intuitively that ACQL can adaptively control the conservative level, we com-
pared ACQL to CQL with different α values ranging from 1, 2, 5, 10, 20. The different α values
represent different conservative levels and a higher α means more conservative.

Figure 4 plotted the learning curves of ACQL and CQL with 5 kinds of α. From the Figure 4, one
trend we can clearly observe is that CQL with a higher conservative level can usually achieve higher
performance on expert datasets as opposed to that a lower conservative level is more effective for
random datasets. For instance, the CQL agent with α = 20 (green line) delivered rapidly increasing
results as the training epochs increased on the halfcheetah-expert dataset (top left corner), while
hovered at the bottom of the plot on the halfcheetah-random dataset (top right corner). Moreover,
it is difficult for CQL to achieve satisfactory performance on all kinds of dataset with a fixed α.
It is exactly the issue that the ACQL focuses on. Since ACQL generates adaptive weight for each
state-action pair and control the conservative level in a more fine-grained way, ACQL can achieve
balanced and state-of-the-art results for different dataset types. In addition, in the plot of hopper-
medium-replay task (2th row, 2th column), ACQL outperformed CQL agents by a large margin,
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Figure 4: Learning curves comparing to CQL with different conservative levels.

Table 8: Normalized results on D4RL Gym-MuJoCo environments.

Task Name CQL-1 CQL-2 CQL-5 CQL-10 CQL-20 ACQL
halfcheetah-e-v0 9.8 18.7 67.1 84.5 96.3 97.7
halfcheetah-m-e-v0 9.7 12.0 17.4 40.0 53.9 93.2
halfcheetah-m-r-v0 48.9 47.5 45.7 44.4 43.9 46.4
halfcheetah-m-v0 43.9 43.3 41.7 39.9 39.2 42.8
halfcheetah-r-v0 36.8 35.3 33.6 19.7 13.7 31.3

halfcheetah-sum 149.1 156.8 205.5 228.5 247.0 311.4
hopper-e-v0 28.2 48.5 75.6 112.6 112.9 116.3
hopper-m-e-v0 116.1 114.1 112.9 113.5 113.4 111.8
hopper-m-r-v0 33.3 32.1 29.5 29.1 27.1 77.3
hopper-m-v0 99.8 93.3 51.7 56.5 46.4 85.8
hopper-r-v0 11.5 11.2 10.9 10.7 10.4 12.7
hopper-sum 288.9 299.2 280.6 322.4 310.2 403.9
walker-e-v0 44.5 103.0 84.4 108.9 109.7 116.1
walker-m-e-v0 21.7 37.1 86.9 103.5 101.6 94.5
walker-m-r-v0 56.1 43.8 30.0 19.9 11.4 45.2
walker-m-v0 86.9 85.3 82.9 82.2 81.1 81.8
walker-r-v0 0.5 -0.2 8.3 3.5 4.9 11.8
walker-sum 209.7 269.0 292.5 318.0 308.7 349.4
all-sum 647.7 725.0 778.6 868.9 865.9 1064.7

showing the significance of adaptive weight for each data sample instead of using the same weight
α.

Table 8 showed the quantitative results of ACQL and CQL with 5 kinds of α. From the Table 8, one
trend we can clearly observe is that CQL with a higher conservative level can usually achieve higher
performance on expert datasets as opposed to that a lower conservative level is more effective for
random datasets. For instance, the CQL agent with α = 20 delivered high performance value of
96.3 on the halfcheetah-expert dataset, while dropped its performance dramatically to 13.7 on the
halfcheetah-random dataset. Moreover, it is difficult for CQL to achieve satisfactory performance
on all kinds of dataset with a fixed α. It is exactly the issue that the ACQL focuses on. Since ACQL
generates adaptive weight for each state-action pair and control the conservative level in a more
fine-grained way, ACQL can achieve balanced and state-of-the-art results for different dataset types.
In addition, on the hopper-medium-replay task, ACQL outperformed CQL agents by a large margin,
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Table 9: Normalized results on D4RL AntMaze environments.

Task Name BC 10%BC DT AWAC OnestepRL TD3+BC IQL CQL ACQL
antmaze-large-diverse-v0 0.0 6.0 0.0 1.0 0.0 0.0 47.5 14.9 0.0
antmaze-large-play-v0 0.0 0.0 0.0 0.0 0.0 0.2 39.6 15.8 0.0
antmaze-medium-diverse-v0 0.0 9.8 0.0 0.7 0.0 3.0 70.0 53.7 0.0
antmaze-medium-play-v0 0.0 5.4 0.0 0.0 0.3 10.6 71.2 61.2 22.2
antmaze-umaze-diverse-v0 45.6 50.2 53.0 49.3 60.7 71.4 62.2 84.0 76.8
antmaze-umaze-v0 54.6 62.8 59.2 56.7 64.3 78.6 87.5 74.0 94.9

showing the significance of adaptive weight for each data sample instead of using the same weight
α.

C.3 COMPARISONS TO OFFLINE RL BASELINES ON ANTMAZE TASKS

The AntMaze tasks mimic real-world robotic navigation tasks that aim to control an "Ant"
quadruped robot to reach the goal location from a start location with only 0-1 sparse rewards
given. Aiming to provide a more comprehensive comparison, we compared ACQL to many state-
of-the-art model-free algorithms including behavioral cloning (BC), 10%BC, Decision Transformer
(DT) (Chen et al., 2021), AWAC (Nair et al., 2020), Onestep RL (Brandfonbrener et al., 2021),
TD3+BC (Fujimoto & Gu, 2021), IQL (Kostrikov et al., 2021a) and CQL (Kumar et al., 2020).
For the sake of fair comparisons, we directly reported the results of all baselines from the D4RL
whitepaper (Fu et al., 2020) and their original papers.

Table 9 shows the normalized returns of all 6 AntMaze tasks. We can observe that ACQL delivers
state-of-the-art performance on umaze-diverse-v0 and umaze-v0 datasets, demonstrating its effec-
tiveness on small mazes. However, while IQL can achieve better performance on larger mazes like
"-large" and "-medium" tasks, ACQL fails in these scenarios. The experimental results show that
it is more difficult for ACQL to tell whether the state-action pairs are good or bad when only 0-1
sparse rewards are given.

C.4 ADDITIONAL ABLATION STUDY

Besides the main results of comparison to other baselines and a detailed comparison to different
conservative levels, we also conducted extensive ablation studies for ACQL to study the effect of
the proposed losses. We reported the quantitative results on the all Gym-MuJoCo environments
including 15 kinds of datasets in Tables 10, 11 and 12.

Table 10: Ablation Study on D4RL Gym-MuJoCo HalfCheetah-v0 environments in terms of nor-
malized results.

Lcl_true Lcl_cql Lmono Lpos halfcheetah-e halfcheetah-m-e halfcheetah-m-r halfcheetah-m halfcheetah-r
1 ✓ 9.9 15.2 28.5 16.4 5.4
2 ✓ ✓ 57.8 23.9 39.9 33.5 24.1
3 ✓ 8.8 22.5 47.6 47.0 26.9
4 ✓ ✓ 6.7 19.9 49.6 46.4 9.8
5 ✓ ✓ 34.7 47.7 38.3 38.1 21.4
6 ✓ ✓ ✓ 42.3 75.3 42.5 43.1 23.5
7 ✓ ✓ ✓ 27.1 37.7 44.3 40.3 31.2

8 ✓ ✓ ✓ ✓ 97.7 93.2 46.4 42.8 31.3
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Table 11: Ablation Study on D4RL Gym-MuJoCo Hopper-v0 environments in terms of normalized
results.

Lcl_true Lcl_cql Lmono Lpos hopper-e hopper-m-e hopper-m-r hopper-m hopper-r
1 ✓ 21.7 8.3 33.1 52.8 10.6
2 ✓ ✓ 31.8 31.3 36.6 51.9 31.7
3 ✓ 21.5 31.5 38.2 58.4 24.3
4 ✓ ✓ 21.9 36.5 70.1 93.5 12.9
5 ✓ ✓ 34.8 85.4 66.9 41.7 12.5
6 ✓ ✓ ✓ 61.9 74.5 95.4 70.9 11.7
7 ✓ ✓ ✓ 114.4 112.4 71.5 56.3 10.7

8 ✓ ✓ ✓ ✓ 116.3 111.8 77.3 85.8 12.7

Table 12: Ablation Study on D4RL Gym-MuJoCo Walker environments in terms of normalized
results.

Lcl_true Lcl_cql Lmono Lpos walker-e walker-m-e walker-m-r walker-m walker-r
1 ✓ 23.3 32.4 22.5 9.3 18.2
2 ✓ ✓ 93.7 38.5 30.4 27.3 11.9
3 ✓ 11.6 28.3 64.8 20.2 17.5
4 ✓ ✓ 55.1 22.4 29.7 82.8 3.5
5 ✓ ✓ 6.3 113.5 63.4 13.3 21.7
6 ✓ ✓ ✓ 110.2 55.5 21.4 62.2 10.7
7 ✓ ✓ ✓ 102.9 81.1 28.5 81.1 11.2

8 ✓ ✓ ✓ ✓ 116.1 94.5 45.2 81.8 11.8
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