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Abstract

Deep Reinforcement Learning (DRL) policies are vulnera-
ble to unauthorized replication attacks, where an adversary
exploits imitation learning to reproduce target policies from
observed behavior. In this paper, we propose Constrained Ran-
domization of Policy (CRoP) as a mitigation technique against
such attacks. CRoP induces the execution of sub-optimal
actions at random under performance loss constraints. We
present a parametric analysis of CRoP, address the optimality
of CRoP, and establish theoretical bounds on the adversarial
budget and the expectation of loss. Furthermore, we report the
experimental evaluation of CRoP in Atari environments un-
der adversarial imitation, which demonstrate the efficacy and
feasibility of our proposed method against policy replication
attacks.

Introduction
Deep Reinforcement Learning (DRL) is a learning framework
for sequential decision-making leveraging neural networks
for generalization and function approximation. With the grow-
ing interest in DRL and its integration in commercial and
critical systems, the security of such algorithms have become
of paramount importance (Behzadan and Munir 2018).

In tandem with DRL, similar advancements have been
made in Imitation Learning (IL) techniques that utilize expert
demonstrations to learn and replicate the expert’s behavior
in sequential decision making tasks. Deep Q-Learning from
Demonstration (DQfD)(Hester et al. 2017) is an IL variant
that has enabled DRL agents to converge quicker to an op-
timal policy. However, recent work in (Behzadan and Hsu
2019a) and (Chen et al. 2020) demonstrate that IL can also
be exploited by adversaries to replicate other agents’ policies
from passive observation of their behavior. This gives rise to
risks concerning intellectual property and adversarial infor-
mation gain for more effective active attacks. Current state
of the art in countering such attacks include watermarking
(Behzadan and Hsu 2019b)(Chen et al. 2021), which enables
the post-attack identification of replicated policies.

In this paper, we propose an active mitigation technique
against policy imitation attacks, named Constrained Random-
ization of Policy (CRoP). The proposed technique is based
on intermittent randomization of a trained policy, constrained
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on a threshold for maximum amount of acceptable loss in
the expected return. The goal is to increase the adversary’s
imitation training cost, measured as the minimum number
of training iterations and observed demonstrations required
for training a replica that matches the target policy’s perfor-
mance.

The main contributions of this paper are: (1) We propose
and formulate CRoP as a mitigation technique against adver-
sarial policy imitation, (2) We present a formal analysis of
the bounds on expected loss of optimality under CRoP, (3)
We formally establish bounds on the adversary’s imitation
cost induced by CRoP. (3) We report the results of empirical
evaulation of adversarial imitation via DQfD against CRoP
agents in classical DRL benchmarks, and demonstrate the
efficacy and feasibility of CRoP in those settings.

The remainder of this paper is organized as follows: we
introduce CRoP as a mitigation technique against policy imi-
tation, and analyze the optimality of a CRoP policy in relation
to an optimal policy. The analysis further establishes a lower
bound on adversarial budget induced by CRoP. The following
section reports the experimental evaluation of CRoP in three
Atari benchmark environments, along with measurements
of the training and test-time performance of DQfD-based
adversarial imitation learning agents targeting CRoP-enabled
policies. We conclude the paper with a summary of findings
and remarks on future directions of research.

Constrained Randomization of Policy
In the remainder of this paper, we assume the target policy
aims to solve a Markov Decision Process (MDP) denoted
by the tuple < S,A,R, T, γ > where S is a finite state
space, A is a finite action space, T defines the environment’s
transition probabilities, a discount value γ ∈ [0, 1), and a
reward function R : S × A → [0, 1]. The solution to this
MDP is a policy π : S → A that maps states to actions.
An agent implementing a policy π can measure the value
of a state V (s) = max

a
(rs,a + γV (s′)), where s′ is the next

state. Similarly, the value of a state-action pair is given by
Q(s, a) = max

a
(rs,a + γQ(s′, a′)) where s′ is the next state

and a′ is the next action.
Constrained Randomization of Policy (CRoP) is an action

diversion strategy from an optimal policy under constrained
performance deviation from optimal. Let â ∈ Â where â are



candidate actions that satisfy |Q(s, π(s))−Q(s, âi)| < ρ. In
other words, Â is the space of all candidate actions for s ∈ S
excluding the optimal action π(s). We define CRoP as the
function below:

f(s) =

{
π(s) Pr (δ) or Â = ∅
Ââ∼U(Â) Pr(1− δ)

(1)

Where U(Â) is the uniform distribution over Â. This defi-
nition of ρ threshold is the difference of Q-values. We have
three variations of ρ for CRoP: Q-value difference (Q-diff)
as described in Equation 1, and two measures inspired by the
advantage function: advantage-inspired difference (A-diff),
and positive advantage-inspired difference (A+-diff). A-diff
CRoP is thus defined as:

Ã(st, at) = Q(st, at)− V (st−1) > −ρ (2)

A+-diff’s ρ has the condition Â(st, at) ≥ 0. A-diff and A+-
diff’s ρ are interpreted as 1-step hindsight estimation which
is relevant to the trajectory taken instead of only pure future
estimate as with Q-diff, eg. played badly, now play safe vs.
plan to feint ahead. However, the selection of ρ should con-
sider estimation error due to either finite training or function
approximation. One can look to the analysis of learning com-
plexity as a method of finding error bounds to derive a safety
margin for ρ. We choose these three threshold variations
because their performance vary across the environments, im-
plying that being able to successfully deviate from optimal
policy is conditioned on the environment dynamics itself as
well as the defender’s tolerance for loss which may not be
captured by a single threshold such as Q-diff’s. We cannot
use the traditional Advantage since V (s) = max

a
Q(s, a) im-

plies Q-diff’s implementation would have a similar impact in
regards to threshold. Additionally, it is important to recognize
that CRoP is similar to that of a ϵ-greedy policy; however, the
difference lies on the constraint expected loss that ϵ-greedy
does not guarantee.
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Figure 1: Visualization that π′ is an (ϵ+ϵ′)-optimal to Q∗/V ∗

By definition, a policy π is ϵ-optimal if there exists a non-
negative constant ϵ such that vπ(x) ≥ V (x) − ϵ for all ini-
tial states x in S. Some definitions include that it occurs at
P (1− δ), which we will abide by. In other words, ϵ-optimal
policies are within an ϵ neighborhood of V ∗, specifically
V ∗ − V π < ϵ for all a ∈ A and s ∈ S at probability (1− δ).
As illustrated in Figure 1, π∗ is the optimal and greedy policy
extracted from V ∗ where π is the extracted policy from V π

and π′ is the extracted policy from V π′
, we see that π′ may

be expressed as an (ϵ+ ϵ′)-optimal to Q∗/V ∗ when evaluated
for the initial states and to follow a greedy policy thereafter.
Since we do not assume π to be an optimal policy, it is possi-
ble for π′ to be more optimal than π. However, it is notewor-
thy that an evaluation of optimality based on the difference
to the value function does not imply extracted policies with
small error to V ∗ resemble the optimal policy when assessed
on behavioral differences. Theorem1 establishes that CRoP
policy f is at worst (ϵ + ϵ′)-optimal to Q∗ at probability
(1−δ) as an evaluation of the initial states assuming a greedy
policy is followed after. However, an evaluation for com-
mitting to following CRoP thereafter (or for any evaluation
of a trajectory under CRoP via sequence of Q-values) will
have compounding sub-optimality or horizon dependent error.
However, ϵ-optimal can have compounding error in expecta-
tion regardless of CRoP. Therefore, instead for any fix length
horizon T , we know that π′ will be (T×ϵ+ϵ′)-optimal to the
sum of the taken trajectory’s states taken under π′ evaluated

by V ∗. In other words,
T∑
V ∗(s) −

T∑
V ′(s) < T × ϵ + ϵ′

for a finite state trajectory set s ∈ S of cardinality T under
π′; however, this is different than a trajectory taken under π∗.
We cannot evaluate an optimal trajectory from local view;
however, since we allow the defender to modify ρ, one can
simply stop the deviating behavior to cease and bound the
compounding error at state s, though the error in a trajectory
measured by difference in the sum of Q-values from Q∗ may
continue to compound.

Theorem 1 Given Q∗(st, at) − Qπ(st, at) < ϵ′ at probability
(1−δ) and |Qπ(st, at)−Qπ′

(st, at)| ≤ ϵ for all s ∈ S and a ∈ A,
then Q∗(st, at)−Qπ′

(st, at) ≤ ϵ+ ϵ′ at probability (1− δ). π′

is an (ϵ+ ϵ′)-optimal to Q∗/V ∗ at probability (1− δ).

Proof. Given Q∗(st, at)−Qπ(st, at) < ϵ′ at probability (1− δ)

and |Qπ(st, at)−Qπ′
(st, at)| ≤ ϵ for all s ∈ S and a ∈ A, then

Q∗(st, at)−Qπ′
(st, at) ≤ ϵ+ ϵ′ at probability (1− δ).

Let Qdiff = Q∗(st, at) − Qf (st, at) + |Qf (st, at) −
Qπ′

(st, at)|. Given that Q(s, a) ∈ (0, 1
1−γ

), at (1− δ) probability:

Q∗(st, at)−Qπ′
(st, at) ≤ Qdiff ≤ ϵ+ ϵ′ (3)

We consider two common approaches to IL: (1) Behav-
ioral Clones (BC) which are supervised learners, and (2)
reinforcement learning from demonstration techniques such
as DQfD, which augment RL with IL. Work by (Ke et al.
2020) shows that: BC minimizes the KL divergence, Genera-
tive Adversarial Imitation Learning (GAIL) (Ho and Ermon
2016) minimize the Jensen Shannon divergence and DAgger
(Ross, Gordon, and Bagnell 2011) minimizes total variance.
For BC, CRoP affects the maximum likelihood in a similar
manner to data poisoning attacks like label flipping (Xiao,
Xiao, and Eckert 2012) or class imbalance. In regard to GAIL,
the discriminator from a GAN prioritizes expert experiences
so unless modified for decay when out-performed, additional
penalty is given to the training policy. Furthermore, when
CRoP lowers the action distribution for a∗ according to δ
probability and increases the distribution for candidate ac-
tions, it results in smaller maximal difference for DAgger.
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Figure 2: Test-time evaluation of target agent under various CRoP thresholds across 10 episodes
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Figure 3: Test-time evaluation of replicated policies and the target DDQN agent across 10 episodes
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Figure 4: Imitating DQfD agents training on CRoP-induced demonstrations

Budget Analysis for Perfect Information Adversary
The adversary objective is one of two objectives: (1) policy
replication such as behavioral imitation or structural similar-
ity in learned parameters, (2) training computation cost reduc-
tion. A defender’s objective is to minimize adversarial gain
or maximize the adversary’s budget while simultaneously
maximizing their protected policy’s return; however, since
the minimization of adversarial gain results in performance
deterioration, a defender must also determine the tolerance
of performance deterioration.

We measure the adversary’s budget in the sample quantity
or trajectories that it can acquire through a passive attack.
Nair and Doshi-Velez (Nair and Doshi-Velez 2020) derive
upper and lower bounds on the sample complexity of direct
policy learning and model-based imitation learning in relaxed
problem spaces. This follows the research of RL sample effi-
ciency and Offline RL(Levine et al. 2020). However, in this
work we divert from a direct treatment of sample efficiency to
consider information optimality from observed target demon-
stration without environment interaction. Consider the set T
where τi (∀, τi ∈ T ) which is composed of a T -length chain
of (s, a)-pairs. Assume each (s, a)-pair has two possible out-
comes, optimal at P (δ) or sub-optimal at P (1− δ). Assume
pair and trajectory uniqueness, this would contain 2T trajec-

tories where T is the length of the horizon. To obtain optimal
target π, we would require all trajectories except the event
of a complete sub-optimal trajectory (1 − δ)T . Let τw be
the worst-case trajectory and m̂ be the sum of the expected
number of trajectories for each sequential pull from T . It
follows that:

E[m̂] =

2T−1∑
1

1/(1− P (τw) +
∑
τi∈T̂

− P (τi)) (4)

Intuitively, we see in the denominator the probability of
pulling unseen trajectories given the trajectories in T̂ and
known probability for all τi ∈ T̂ . We know an expectation on
expensive to obtain informative trajectories from π. However,
typically an adversary has a fixed budget and therefore we
would want to know what to expect given their budget B,
here we calculate for a budget measured in optimal state-
action pairs. To calculated an expected number of optimal
state-action pairs, we find a t < T such that:

B ≈
t∑

i=1

E[mi] =

t∑
i=1

1

δ
(5)

Given we can reset to the previous state and resample until
we obtain an optimal state-action pair. This would give an



expectation for the adversary to obtain t optimal state-action
pairs with B budget. This can be extended to the expectation
of number of trajectories by approximating B, similar to
Equation 5 where we find a t < T , but with Equation 4.

Policy Evaulation and Expectation of Loss
We see that the Q-value under f will be either equivalent or
less than the Q-value under target policy π which dictates se-
lected a′. Furthermore, the expected return Gf

t for stochastic
policy f with uniform sampling from Â is expressed as the
following:

Gf
t = δ

N∑
t=0,1,2...

γt

[
rst,a∗

t

]
+

1− δ

|Â|

N∑
t=0,1,2...

γt

[∑
ât

rst,ât

]
(6)

With Equation 6, Gf
t is the weighted sum of an optimal

expected return at probability δ and the expected return across
all rewards given by candidate actions at probability (1− δ).
Given G∗

t and Gf
t , the difference between the expected return

in Q-value form is exactly:

G∗
t −Gf

t = (1− δ)
[
Qπ(st, at)− E[Qf (st, ât)]

]
(7)

Since Qπ(st, at)− E[Qf (st, ât)] < ρ, then the expectation
loss G∗

t − Gf
t ≤ (1 − δ)ρ ≤ ρ. This expectation of loss

is calculated from the current state’s forward estimation of
future reward. We see there exists an upperbound, call it E[L]
which is derived from the evaluation of trajectory returns
taken under f which is the agent’s local reference. This is
important to defenders because they can estimate when to
cease CRoP given its local view:

N∑
t=0

|Qπ(st, at)−E[Qf (st, ât)]| ≤ N×(1−δ)ρ ≤ N×ρ = E[L]

(8)

Experimental Evaluation
We investigate DQfD as our adversarial IL method and eval-
uate test-time and training time performance across three
Atari environments: Breakout, Cartpole, and Space Invaders.
We train DQfD agents under default parameters (supplied
in supplements) with CRoP induced demonstrations, a con-
trol DQfD agent (our baseline IL comparison), and a de-
fault, double DQN (DDQN) agent which provided the expert
demonstrations and as well as be a baseline performance
comparison for IL agents. The results of a parameter search
on trained DDQN policies from Stable-Baseline Zoo (Raffin
2018) and the count of candidate timesteps are presented in
the longer extension of this paper. The test evaluations of the
target policy under selected thresholds of CRoP follow in
Figure 2 to show that the selected ρ and δ values reflect the
evaluation of average reward performance. The trade-off on
δ and ρ is similar to an allowance of high or low variance in
Q-value. One can draw a similarity of the defender’s selec-
tion of δ and ρ as risk-adverse, risk-neutral, and risk-seeking
behaviors determined by the defender. The results, illustrated
in Figure 4, demonstrate that the performance of imitated

policies generally remain below their control/baseline DQfD
agents for earlier spans of training episodes. We compare
it to the baseline DQfD because the baseline demonstrates
the performance of a DQfD agent with no mitigation against
adversarial ease-dropping on state-actions performed by the
target agent. CRoP may induce variance similar to optimistic
initialization, for example, work by (Kamiura and Sano 2017)
and (Szita and Lörincz 2009). However, we argue that by
adding deviating behavior to the assumed optimal target pol-
icy, the target policy is withholding the maximal information
gain an adversary can observe, thus increasing their adver-
sarial budget. Figure 3 depicts the comparison of test-time
performance among agents trained with various values of δ
and ρ. We emphasize the constrains in CRoP are expected
loss which are not true performance loss. This supports the
need for several threshold variations because policies under
CRoP behaved differently across the environments.

Conclusion
This study investigated the threat emanating from passive pol-
icy replication attacks through adversarial usage of Imitation
Learning. We proposed Constrained Randomization of Policy
(CRoP), a deviation from optimal policy under a threshold
constraint, as a mitigation technique against such attacks.
We perform a parameter search and empirically evaluate the
target policy under CRoP in comparison to the target policy
without protection. We analyzed its performance with regards
to ϵ-optimality, estimated impact on adversarial cost, and the
expectation of loss. Furthermore, we empirically evaluated
CRoP across 3 Atari game benchmarks, and verified the ef-
ficacy and efficiency of CRoP against DQfD-based policy
replication attacks, demonstrating that it is possible for the
target policy to accomplish its task while deviating behav-
ior in a bounded manner to increase the adversarial cost for
successful policy replication.
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