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Abstract

In order to fully understand the neural activity of Caenorhabditis elegans, we
need a rich, quantitative description of the behavioral outputs it gives rise to. To
this end, we quantify the behavioral dynamics of the worm with autoregressive
hidden Markov models (AR-HMMs), a class of models that has recently yielded
some insight into mouse behavior [1]. These models explicitly encode three hy-
potheses: (i) while the instantaneous posture of the worm is represented as a high-
dimensional vector of points along the body, the first four principal components,
or eigenworms, capture a significant fraction of the postural variance; (ii) within
this four dimensional space, the postural dynamics are well-approximated with
linear autoregressive models; and (iii) the linear autoregressive model switches
over time as the worm transitions between different discrete behaviors, like forward
crawling, reverse crawling, pausing, and turning. We show how AR-HMMs seg-
ment recordings of freely crawling C. elegans into meaningful discrete behaviors,
providing a quantitative description of postural dynamics and a rigorous framework
for assessing, comparing, and simulating worm behavior.

1 Introduction

Caenorhabditis elegans is a model organism for neuroscience. We know its complete connectome [2]
and, with recent developments [3, 4], we can optically image nearly all of its neurons as it freely
explores its environment. However, in order to fully understand this neural activity, we need a
quantitative description of its behavioral outputs. We provide such a description with autoregressive
hidden Markov models (AR-HMMs), which decompose behavior into a sequence of discrete latent
states, or syllables: basic units of behavior that are strung together in time to create smooth behavioral
trajectories. These are popular methods for unsupervised behavioral analysis [1] of freely behaving
mice; we find they are also well-suited to worm behavior.

We begin with measurements of the worm’s body posture as it crawls around its environment. At each
point in time, the posture is represented as a sequence of tangent angles at evenly spaced points along
the worm’s body. Following [5], we project this posture onto the first four principal components to
obtain vectors xt ∈ R4 for each time frame t. As these vectors evolve, the posture is represented
as a four-dimensional time series. Since the worm is roughly sinusoidal, the first two principal
components are approximately a sine and a cosine wave. The projections onto the first two principal
components trace out a ring of fixed radius, and the angular position along the ring encodes the
"phase" of the worm’s posture. This preprocessing pipeline is illustrated in Figure 1A. Our goal is to
model the temporal dynamics of these points in PCA space.
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Figure 1: (A) Summary of data preprocessing pipeline. (B) Graphical model of an AR-HMM. (C) Model output:
inferred segmentation, with each color representing a different state.

2 Autoregressive hidden Markov models (AR-HMMs)

We model behavior as a sequence of discrete states, or syllables, like forward crawling, reverse
crawling, turning, and resting. Each syllable is modeled as an autoregression linking xt to xt+1.
When the worm switches from one syllable to another, it employs a different set of autoregressive
dynamics. This is formalized with an AR-HMM.

At each of the T time steps we have a discrete latent state zt ∈ 1, 2, ...K that follows Markovian
dynamics,

zt+1 | zt, {πk}Kk=1 ∼ πzt (1)

where {πk}Kk=1 is the Markov transition matrix and πk ∈ [0, 1]K corresponds to the k-th row. Given
discrete state zt, the postural dynamics are given by,

xt |xt−1, zt ∼ N (Aztxt−1 + bzt , Qzt) (2)

where Ak, Qk ∈ R4×4 are linear dynamics and covariance matrices, respectively, and bk ∈ R4 is a
bias. The complete parameter set is given by θ = {(πk, Ak, Qk, bk)}Kk=1.

Fig. 1B shows the graphical model of the AR-HMM. The discrete states follow Markovian dynamics
and the instantaneous posture xt (continuous state) depends only on the preceding posture and
the current discrete state. The global parameters θ include the discrete state transition matrix and
the autoregressive dynamics parameters. Fig. 1C shows a segment x1:T with the inferred discrete
states z1:T below.

We fit the AR-HMMs with 1000 iterations of Gibbs sampling, alternating between sampling the
discrete latent states z1:T and the global parameters θ from their conditional distributions. To learn the
number of states, we fit AR-HMMs for different values of K and evaluate the likelihood of held-out
data p(xtest | θ). While the held-out likelihood often continues to increase as we add more discrete
states, the benefits tend to diminish as similar states are subdivided. We will show this in our results.

Based on our understanding of C. elegans, we believe that syllables tend to persist for more than just
a few frames. We encode this belief in the form of a sticky prior on the rows of the transition matrix,

πk ∼ Dir(α1K + κek), (3)

where 1K is a length-K vector of all ones and ek is a length K unit vector with a one in the k-th
position. The hyperparameters α > 0 and κ > 0 control the "concentration" and "stickiness,"
respectively. Larger values of κ bias the prior toward transition matrices closer to the identity matrix.
This in turn prefers discrete state sequences with longer duration states. To set the stickiness parameter,
we use manually-labeled state sequences to obtain a baseline for how long certain highly-identifiable
states, like reverse crawling, should last.
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Figure 2: (A) Predictive log likelihood with respect to multivariate normal distribution of AR-HMMs with
increasing numbers of states and hyperparameters α = 10 and κ = 1010. (B) Overlap between state assignments
in the K = 6 and K = 15 models for a single worm. The K = 6 states are labeled as in Fig. 3, with ‘X’
denoting the one state that was used less than 1% of the time. (C) Mean predictive log likelihood for K = 6 for
different values of κ. (D) Histogram of state durations as a function of κ, with the manually labeled data on the
right for reference.

3 Results

We studied the dataset of worm behavior from Yemini et al. [6]. From this dataset, we chose nine
worms with wild-type N2 alleles recorded at the same temporal scale. The postural coordinates lasted
15 minutes sampled at 30 frames per second and were preprocessed as described in [5] and in Fig. 1.
We then split the data into contiguous train (70%) and test (30%) sets. As a baseline, we evaluated
the held-out likelihood of the test data under a simple multivariate Gaussian model xt ∼ N (µ,Σ)
without any discrete states or autoregressive dynamics. We used maximum likelihood estimates of
the mean and covariance.

We swept through different hyperparameter settings and found that the held-out likelihood was
relatively insensitive to the concentration parameter α (data not shown). We focused our analysis on
the effect of the number of states K and the stickiness κ.

Fig. 2A shows the held-out log likelihood for increasing numbers of discrete states K at a fixed
intermediate value of κ. Here, held-out log likelihood is measured in terms of nats per time-frame
improvement over the baseline Gaussian model. We see diminishing returns as we go beyond K = 6
states, which leads us to choose the six state model.

This choice is further substantiated by Fig. 2B, which shows the overlap in discrete states between
the K = 6 and K = 15 models. To produce this matrix, we first counted how many times the 6-state
model was in state k when the 15-state model was in state k′ for all pairs (k, k′). Then we normalized
the columns to sum to one. We we see that as K increases, states are split into substates. Upon further
investigation, we found that these splits are largely based on differences in crawling velocity. This
will be shown shortly.

We fit AR-HMMs with values of κ logarithmically spaced between 102 and 1010. Large values of the
stickiness parameter introduce a strong preference for self-transitions and penalize switches between
different states. In terms of held-out likelihood, this stickiness hurts our performance, as shown in
Fig. 2C. We see a decrease of about 3 nats per time-frame over this range of κ.

Stickiness, however, plays an important role in producing more realistic state durations. We may
be willing to trade a 3 nat decrease in predictive performance for a segmentation that recapitulates
the known time-scales of behavior. To formalize this, we used the empirical distribution of state
durations in the manually-segmented states of Yemini et al. [6] as a baseline. This is shown as a
"violin plot" in Fig. 2D (right). We choose κ = 1010 as this yields a distribution of discrete state
durations that best matches the manual data.

Having set the model hyperparameters (K,κ, α), we now interrogate the inferred state sequences and
behavioral dynamics. We visualize the dynamics parameters (Ak, bk) for discrete state k with the
vector plots in Fig. 3A. Each arrow in this vector field shows where a point xt would be mapped to
under the linear map Akxt + bk. While these dynamics are applied in 4-dimensional space, we show
their projection onto only the first two principal components. We show the five of the K = 6 states
that were used in at least 1% of time bins. Furthermore, we draw arrows only at the points where
state k was actually used. Thus, the arrows lie around a ring in the first two principal components in
accordance with the postural constraints of the worm (refer back to Fig. 1A).
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Figure 3: (A) Vector plot dynamics for a given worm for xt1 and xt2. (B) Distributions of the manually label
states, classified as forward, reverse and rest.

The first thing we notice is that three of the states (k ∈ {1, 2, 3}) correspond to counter-clockwise
rotations in the space of the first two principal components. Moreover, they correspond to rotations
with different angular velocity (length of arrows). When we compare these to the manually labeled
states of Yemini et al. [6], we find that these three states are examples of forward crawling at different
speeds, as shown via the probability distributions in Fig. 3B.

Likewise we find that our inferred state k = 5 corresponds to reverse crawling in the manual labels.
In PCA space, this is a clockwise rotation. Referring back to Fig. 2B, we see that the K = 15 model

Figure 4: Transition matrix.

eventually splits state 5 into more states, but forward crawling
states are subdivided much more dramatically. This could be
because reverse crawling has a smaller range of velocities, or
because it is a less common behavior. Furthermore, we see that
state 4 is most often manually labeled as a rest state. State 6
was excluded since it was rarely employed (< 1%). We are
continuing to investigate these states and their relation to higher
order components for evidence of turning related behavior.

The transition matrix illustrated in Figure 4 represents the prob-
ability of going from state zt to state zt+1. We have subtracted
the diagonal and re-normalized the rows to better visualize the
relative differences between probabilities. The forward-crawling
states transition to other forward states with different velocities,
or to the rest state. The resting state goes to forward and reverse
states with low velocities. Reverse goes back to rest with high
probability. Comparing this to the neural state transitions inferred
by Kato et al. [3], we see a similar pattern of transitioning between forward and reverse via an
intermediate slow/pause state. We do not find strong dorsal or ventral turning states in our models,
but we expect that these will become apparent as we increase the amount of data and include better
preprocessing to resolve coiled worm postures [7].

4 Conclusion

Quantitative generative models of behavior provide many key features for systems neuroscientists:
the ability to simulate and thereby evaluate models of behavior; an interpretable and unsupervised
decomposition of complex, high-dimensional behavioral recordings; and a set of parameters that
may have measurable neural bases. We are exploring autoregressive hidden Markov models as a
general-purpose framework for quantifying the behavior of C. elegans, and the initial results presented
here suggest that this is indeed a promising route toward understanding the behavior of this important
model organism.
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