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Abstract

The remarkable performance of large language001
models (LLMs) in zero-shot language under-002
standing has garnered significant attention.003
However, employing LLMs for large-scale in-004
ference or domain-specific fine-tuning requires005
immense computational resources due to their006
substantial model size. To overcome these lim-007
itations, we introduce a novel method, namely008
GENCO, which leverages the strong generative009
power of LLMs to assist in training a smaller010
and more adaptable language model. In our011
method, an LLM plays an important role in the012
self-training loop of a smaller model in two013
important ways. Firstly, we utilize an LLM014
to generate multiple augmented texts for each015
input instance to enhance its semantic mean-016
ing for better understanding. Secondly, we017
additionally generate high-quality training in-018
stances conditioned on predicted labels, ensur-019
ing the generated texts are relevant to the labels.020
In this way, GENCO not only corrects the er-021
rors of predicted labels during self-training but022
also eliminates the need for extensive unlabeled023
texts. In our experiments, GENCO outperforms024
previous state-of-the-art methods when only025
limited (< 5% of original) in-domain text data026
is available. Notably, our approach surpasses027
Alpaca-7B with human instructions, highlight-028
ing the significance of self-training.029

1 Introduction030

Zero-shot text classification poses a challenge in031

predicting class labels for text instances without032

requiring labeled instances for supervised training.033

Effective solutions to this problem is crucial for034

many real-world applications, as it diminishes the035

labor-intensive process of manual labeling. With036

the remarkable advancements of large language037

models (LLMs) (Brown et al., 2020; Ouyang et al.,038

2022) in recent years, exploiting the generative039

capabilities of such models to tackle zero-shot text040

classification problems has emerged as a critical041

research question.042

Recent research in zero-shot text classification 043

primarily falls into two distinct groups. The first 044

approach applies LLM (with billions of parame- 045

ters) in label prediction with the help of human in- 046

structions or prompts (Ouyang et al., 2022; Chiang 047

et al., 2023a). However, even a relatively smaller 048

LLM such as Alpaca-7B (Taori et al., 2023) necessi- 049

tate considerable computational power and time for 050

large-scale inference and model fine-tuning. With- 051

out domain-specific fine-tuning, LLMs struggle to 052

discern between classes characterized by unclear 053

decision boundaries. 054

The second approach to zero-shot classification 055

involves the self-training of smaller language mod- 056

els, often comparable in size to BERT (Meng et al., 057

2020; Schick and Schütze, 2020; Gera et al., 2022; 058

Wang et al., 2023). In these methods, the models 059

predict "pseudo labels" for unlabeled instances, and 060

then use these instances alongside their assigned 061

pseudo labels as supervised data for model fine- 062

tuning. This process is iterated for the model to 063

incrementally adapt to the target domain. However, 064

these techniques hinge on accessing a substantial 065

volume of unlabeled texts from the intended do- 066

main, sometimes reaching the magnitude of mil- 067

lions as indicated in table 1, a volume that may not 068

always be feasible in many practical contexts. Fur- 069

thermore, due to the capacity limitation of small 070

language models, the pseudo label predictions are 071

prone to error potentially jeopardizing the efficacy 072

of the self-training loops. 073

In this paper, we introduce a novel approach 074

called Generation-driven Contrastive Self-Training 075

(GENCO). This approach adeptly combines the 076

language understanding ability of LLMs with 077

the adaptability and efficiency of smaller models. 078

Drawing inspiration from PESCO (Wang et al., 079

2023), we treat zero-shot classification as a sen- 080

tence alignment task and employ contrastive self- 081

training with smaller models. We provide a the- 082

oretical analysis of how self-training can bolster 083
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classification generalization. Crucially, we sidestep084

the dependency on extensive unlabeled texts by085

capitalizing on the generative strengths of LLMs.086

Our approach exploits the LLM generation087

power in two ways. Firstly, to enhance pseudo label088

prediction, we employ an LLM to generate multi-089

ple variations or extensions of an input text. This090

augmentation strategy enriches the available infor-091

mation for the classifier, enabling it to make better092

predictions based on a more comprehensive un-093

derstanding of the input. Secondly, we employ the094

LLM to craft new training instances conditioned on095

the pseudo labels, ensuring the generated content096

is closely aligned with its assigned pseudo label.097

This tackles the prevalent issue of mislabeling in098

self-training. In summary, this paper makes three099

key contributions:100

• We propose a novel approach that enables101

smaller models to acquire knowledge from102

LLMs within the self-training loop. Our103

method is compatible with any new LLMs104

to effectively train better classifier on target105

domains. In our experiments, our small model106

outperforms Alpaca with human instructions.107

• We explore the more challenging setting of108

zero-shot classification where only a limited109

number of unlabeled texts are available. In110

this setting, we improve the performance over111

strong baselines.112

• We provide theoretical proof to support the113

effectiveness of the proposed contrastive loss114

for self-training.115

2 Preliminary: Zero-shot Text116

Classification as Sentence Alignment117

Given a set of N unlabeled documents X =118

{x1, x2, · · · , xN} and a set of L category descrip-119

tions C = {c1, c2, · · · , cL}, the goal is to learn a120

scoring function g(x, ci) that takes document x and121

label description ci as input and produces a similar-122

ity score as the measure of how well the document123

and the label match to each other.124

In the zero-shot setting, text classification can be125

formulated as a sentence alignment problem (Wang126

et al., 2023), where both the input sentence and the127

label descriptions are encoded using a pre-trained128

sentence encoder like SimCSE (Gao et al., 2021).129

The similarity scores between the sentence and la-130

bel embeddings are used to predict related labels.131

The performance can be further improved by con- 132

verting a short label description into a full sentence 133

via prompts (Wang et al., 2023; Hong et al., 2022). 134

For example, the label “sports" can be converted to 135

“This is an article about sports." Subsequently, we 136

represent the label prompt for a label description ci 137

as pi. The scoring function can be implemented as 138

follows: 139

g(x, ci) = sim (fθ(x), fθ(pi)) (1) 140

where fθ(·) is the sentence encoder parameterized 141

by θ and sim(·, ·) is a similarity function such as 142

dot product or cosine similarity. 143

Given an input text at inference time, the pre- 144

dicted label is the one with the highest similarity 145

score: 146

ŷ = argmax
j

g (x, cj) (2) 147

3 Our Method: GENCO 148

GENCO is a self-training framework (Meng et al., 149

2020; Schick et al., 2021; Wang et al., 2023) that 150

harnesses the generative power of LLMs to train 151

a smaller pre-trained sentence encoder in an itera- 152

tive manner. Each self-training step consists of two 153

parts. First, we apply equation 2 to predict pseudo 154

labels for unlabeled instances. Second, we fine- 155

tune model on pseudo-labeled data with a proposed 156

contrastive self-training objective. In section 3.2 157

and 3.3, we will introduce two types of augmenta- 158

tion with LLM to enhance the self-training process. 159

3.1 Contrastive Self-Training Objective 160

One well-known challenge of self-training is its 161

tendency to exhibit overconfidence in certain la- 162

bels due to the model inductive bias (Xie et al., 163

2016). Extensive research has shown that soft la- 164

beling (Xie et al., 2016; Meng et al., 2020), label 165

smoothing (Müller et al., 2019), and entropy reg- 166

ularization (Grandvalet and Bengio, 2004) can ef- 167

fectively tackle this issue. Motivated by these, we 168

propose to incorporate soft-labeling and entropy 169

regularization into a contrastive loss. 170

Given an input text x, the distribution of the 171

predicted label space is: 172

P (ŷi|x; θ) =
exp(sim(fθ(x), fθ(pi)))∑

c∈C exp(sim(fθ(x), fθ(pc)))
(3) 173

Here, ŷi is the predicted label and pi is a label 174

prompt for the predicted label. To prevent the 175
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Input (Observed) Text 
+ Instruction

Starbucks’ president, 
Orin Smith, plans to 
retire because he wants 
to focus on philanthropy, 
family and sports.

Label Prompt 
(Embedding)
Category: Politics 

news.
GPT

Sample 1

…Sample 2

Sample K

Smith will step down 
from his CEO role in 

March 2005 …

Mr. Smith who has 
held his job for 10 

years …

The board will select 
the successor who …

Category: 
Business news.

Category: Sports 
news.

Category: 
Technology news.

Merged 
Embedding

Similarity 
ComparisonEncode & 

taking average

Multiple Versions 
of Generated Text

Instruction: 
Elaborate the text in a 
few sentences.

…

Figure 1: Enriching textual semantics through LLM Generation: The input text and an instruction are fed into the
LLM to generate multiple pieces of elaborated texts, each of which is concatenated to the original input to obtain an
augmented text. The embeddings of the augmented texts are then averaged to obtain a merged embedding, which is
used for label prediction and contrastive loss in the self-training process.

model from being overconfident, we define the176

weights of the labels as:177

Q(ŷi|x; θ) =
exp(sim(fθ(x), fθ(pi))/τ)∑

c∈C exp(sim(fθ(x), fθ(pc))/τ)
(4)178

, where τ ≤ 1 is the temperature. A lower tempera-179

ture implies a sharper distribution and thus greater180

weights in the predicted label. We drop the notation181

of θ for convenience.182

Combining the above P (ŷi|x) and Q(ŷi|x), we183

propose a text to label (t2l) contrastive loss:184

Lt2l = −
N∑
i=1

L∑
j=1

Q(ŷj |xi) logP (ŷj |xi) (5)185

When τ → 0, Q(ŷ|x) becomes categorical distribu-186

tion and the loss reduces to a supervised contrastive187

learning loss (Khosla et al., 2020) with pseudo la-188

bel ŷ as the target:189

Lτ→0
t2l = −

N∑
i=1

logP (ŷ|xi) (6)190

It encourages the model to predict label ŷ given x191

with more confident. On the other hand, when τ =192

1, the loss reduces to a minimization of conditional193

entropy function H:194

Lτ=1
t2l = H (C | X) (7)195

= −
N∑
i=1

L∑
j=1

P (ŷj |xi) logP (ŷj |xi) (8)196

We show a theorem such that minimizing the loss197

function equation 5 can achieve similar effects En-198

tropy Regularization (Grandvalet and Bengio, 2006,199

2004), which is a means to enforce the cluster as- 200

sumption such that the decision boundary should 201

lie in low-density regions to improve generalization 202

performance (Chapelle and Zien, 2005). 203

Theorem 1. Consider a binary classification prob- 204

lem with linearly separable labeled examples. 205

When 0 < τ < 1, optimizing equation 5 with gradi- 206

ent descend will enforce the larger margin between 207

classes and achieves max margin classifier under 208

certain constraint. 209

We place our formal theorems and proofs in Ap- 210

pendix B. Theorem 2 suggests that self-training 211

is an in-domain fine-tuning that maximizes class 212

separation, which serves as an explanation of why 213

training on pseudo labels can enhance performance 214

even if no extra labeling information is provided. 215

In our experiment, we show that self-training of a 216

smaller model can outperform LLM (Alpaca-7B) 217

prediction, justifying the claim empirically. We 218

set τ = 0.1 (refer to Appendix A.2) to balance su- 219

pervised classification and low density separation 220

between classes. 221

While self-training can potentially improve 222

model generalization, the limitations are obvious: 223

1) pseudo labels are prone to error and may neg- 224

atively affect model training. 2) self-learning re- 225

quires a significant load of unlabeled data, which 226

may not always be available. Next, we intro- 227

duce generation-driven approaches to improve self- 228

training with LLM, such as an instruction-tuned 229

GPT (Alpaca-7B). 230

3.2 Semantic Enrichment using LLM 231

In this section, we propose a way to enrich the 232

semantic information of an input text with multiple 233
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Instruction: 
Discuss the sports
aspect of the article. 

Input (Observed) Text

Starbucks’ president, 
Orin Smith, plans to 
retire because he wants 
to focus on philanthropy, 
family and sports.

GPT

Conditionally Augmented Text

Smith is a lifelong sports fan and has been an 
avid athlete throughout his life. He has long 
been a supporter of youth sports programs 
and has worked tirelessly to promote sports 
to promote health, fitness, and teamwork.

+

Instruction/Prompt

Label prompt  
for sports

True label: business
Pseudo label: sports

Conditional 
Augmentation Decision 

boundary

Label prompt 
for business

Mislabeled instance

Correctly labeled instance

Label prompt embedding

Generated 
“sports-like” 
instance Conditional augmentation

Figure 2: Conditional text augmentation to address mislabeling in self-training: When a pseudo label is incorrect, it
can mislead the training process and decrease classification performance. We generate augmented text conditioned
on the pseudo label, aiming to make the generated text closer to the majority members in the category of the pseudo
label. This approach aims to improve the quality of the generated instances for self-training.

LLM-generated pieces of text. When the input234

text is relatively short, such as consisting of only235

one or a few sentences, the information may not236

be sufficient for alignment-based method to match237

relevant labels.238

A remedy is to query an LLM to elaborate the in-239

put and generate multiple pieces of extended texts.240

As shown in figure 1, the instruction, "Elaborate the241

text with a few sentences," steers the LLM towards242

creating relevant expansions and continuations for243

the input text x. These augmented texts, denoted244

as xaug, serve for two purposes: 1) improving the245

quality of pseudo label, and 2) forming the positive246

pair in contrastive learning, as detailed below:247

Enhancing pseudo label quality. We enhance248

pseudo label prediction by enriching the input em-249

bedding of equation 2 by:250

1

K

K∑
i=1

fθ(x⊕ x
aug
i ), (9)251

where ⊕ is the concatenation operator for text and252

x
aug
i is the i-th sample from Pg(·|x). The mean253

of the embeddings summarize the information in-254

duced by LLM.255

Constructing positive training pairs. We pro-256

pose a contrastive loss between input text and gen-257

erated text as another training objective. Let I be258

a training batch and A(i) be the set of augmented259

texts with the same pseudo-label as input xi. Our260

objective encourages proximity between x and xaug261

(sampled from A(i)) in the embedding space: 262

Lt2g =
∑
i∈I

−1

|A(i)|∑
xaug∈A(i)

log
exp(sim(fθ(xi), fθ(x

aug)))∑
j∈I exp(sim(fθ(xi), fθ(xj)))

.
(10) 263

3.3 Crafting Training Pairs with LLM 264

Self-training can introduce bias into a classifier due 265

to mislabeling instances. To address this issue, we 266

propose to generate high quality pseudo-labeled 267

data pairs, as shown in figure 2. Consider an in- 268

stance where an article about the retirement of Star- 269

bucks’ president, whose true label is "business", is 270

mistakenly labeled as "sports". Training the model 271

with this incorrect label blurs the distinction be- 272

tween the business and sports categories. 273

To mitigate this issue, we employ the LLM to 274

conditionally augment the input text based on the 275

sports category. This is achieved by framing in- 276

structions like, "Discuss the sports aspects of the 277

article". Consequently, the produced text mirrors 278

typical articles within the sports category. By op- 279

timizing this newly generated text, instead of the 280

original mislabeled instance, we correct its place- 281

ment relative to the decision boundary separating 282

"sports" and "business". Essentially, by creating 283

texts based on pseudo labels, we synthesize train- 284

ing pairs that enhance the separation of class labels 285

in the embedding space, thereby addressing the 286

challenges of mislabeling inherent to self-training. 287

Let xcond be the conditionally augmented text, 288
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Algorithm 1: Self-training with GPT assisted in the loop
Require: Unlabeled texts X , label descriptions C, instruction-tuned GPT model g(·).
Initialization: Classifier fθ(·) initialized with pre-trained sentence encoder. Empty dictionary
GenDict to cache conditional generated text.

Input augmentation: For each observed text, generate K samples of augmented text from Pg(·|x).
for t : 1 → T self-training iterations do

Use fθ(·) to generate pseudo-labels ŷ (eq.2) and soft-target Q (eq.4) for texts with input
augmentation in Section.3.2. Sample a balanced subset of pseudo-labeled training pairs of
size St according to prediction confidence;

for each training sample (x, ŷ) do
if key (x, ŷ) ∈ GenDict then

Fetch generated texts from GenDict ▷ Use cached generated text;
else

Generate M samples from Pg(·|x, ŷ) ▷ Conditional augmentation in Section 3.3;
Add generated texts to GenDict ▷ Cached generated text;

Use sampled training pairs and the conditionally generated text to update the parameters θ of
fθ(·) with the objective function L = Lg2l + Lt2g from equation 10 and 11.

the modified equation 5 is:289

Lg2l = −
N∑
i=1

L∑
j=1

Q(ŷj |xcond
i ) logP (ŷj |xcond

i ) (11)290

3.4 Algorithm for Self-training291

We apply self-training with equation 10 and 11 in292

an iterative way as shown in Algorithm 1 with LLM293

assisting in the loop. During training, we found294

that a balanced sampling that keeps the same num-295

ber (St for iteration t) of training for each category296

is important for the stability of self-training. Ad-297

ditionally, we use a dictionary GenDict to cache298

the conditional generated text to avoid repeated299

generation for better efficiency.300

4 Experiments301

4.1 Datasets and Experimental Settings302

We conduct experiments on 4 benchmark text clas-303

sification datasets: AG News, DBpedia, Yahoo An-304

swers and Amazon, with the statistics shown in ta-305

ble 1. In the experiments, we initialize our sentence306

encoder with supervised SimCSE Roberta-base307

model (110M parameters) (Gao et al., 2021). For308

the generative model, we use the Alpaca-7B (Taori309

et al., 2023) as our choice of LLM, which is a GPT310

model fine-tuned with human instructions (Touvron311

et al., 2023). The label prompts and the instruc-312

tion template are illustrated in table 3 in Appendix.313

Please refer to section A in Appendix for imple-314

mentation details.315

4.2 Baseline Methods 316

Alpaca-7B is a LLM baseline for zero-shot clas- 317

sification. We solicit the LLM for zero-shot clas- 318

sification with the instruction "Classify the text 319

by outputting a single category from [label cate- 320

gories]". 321

iPET (Schick and Schütze, 2020) formulates zero- 322

shot text classification as a cloze test, where a pre- 323

trained BERT (Devlin et al., 2018) model is used to 324

predict the output label(s) by completing a prompt 325

such as “This article is about _", which is concate- 326

nated right after an input document. An iterative 327

self-training algorithm is used in iPET to improve 328

the model for better generalization. 329

LOTClass (Meng et al., 2020) applies the BERT 330

model to extract keywords related to the label 331

names from unlabeled texts and then create pseudo 332

labels based on the extracted keywords. LOTClass 333

also applies a self-training algorithm to further im- 334

prove the classification performance. 335

PESCO (Wang et al., 2023) formulates zero-shot 336

classification as sentence alignment and uses con- 337

trastive self-training to improve the model perfor- 338

mance. As an augmentation, it selects salient sen- 339

tences from documents to create additional positive 340

training pairs. 341

4.3 Experimental Results 342

In table 2, we present a comparison of the test 343

accuracy of our model with other baselines on 344

four benchmark classification datasets. Specifi- 345
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Dataset Classification Type #Classes #Train #Test Avg Length
AG News News Topic 4 120,000 7,600 38
DBPedia Wikipedia Topic 14 560,000 70,000 50

Yahoo Answers Question Answering 10 1,400,000 60,000 70
Amazon Product Review Sentiment 2 3,600,000 400,000 78

Table 1: Statistics of datasets for multi-class text classification.

ID Self-train Methods AG News DBpedia Yahoo Answers Amazon
1 – Supervised 94.2 99.3 77.3 97.1
2 No SimCSE (Sentence-enc) 74.5 73.8 55.6 88.8
3 No Alpaca-7B (LLM) 77.4 60.6 52.1 86.6
4 Yes iPET 86.0 85.2 68.2 95.2
5 Yes LOTClass 86.4 91.1 – 91.6
6 – Supervised-downsample* 93.8 98.7 76.5 97.0
7 Yes PESCO* 85.0 96.6 65.8 92.4
8 Yes GENCO * 89.2 98.3 68.7 95.4
9 Yes GENCO * - CA 87.5 97.6 65.1 94.3
10 Yes GENCO * - IA 86.2 97.1 63.5 93.6
11 Yes SimCSE + Self-training (Eq 5) 83.2 94.3 62.7 91.5

Table 2: Comparison of classification methods on benchmark datasets. The test accuracy of best performing
zero-shot method is highlighted in bold phase. Row 7-11 (with *) use a down-sampled dataset with 4k (3.4%),
11.2k (2%), 15k (<1%), 20k (<1%) unlabeled training instances respectively. Rows 9-11 are ablation tests with
input augmentation (IA) or conditional augmentation (CA) removed.

cally, rows 1-5 are experiments using the entire346

(unlabeled) training set and rows 6-11 use a down-347

sampled dataset with 4k (3.4%), 11.2k (2%), 15k348

(<1%), 20k (<1%) unlabeled training instances349

from the original datasets respectively.350

Comparison with Alpaca-7B: While Alpaca-7B351

(row 3) has demonstrated strong instruction fol-352

lowing ability to solve problems without any train-353

ing, it exhibits lower performance compared to354

GENCO (row 8) and other self-training methods on355

classification task. The reason could be attributed356

to the domain adaptation effect of self-training.357

Classification tasks involve comparing instances,358

such as an article being more likely to belong to359

the “sports" category when compared to articles360

in the “business" category. In our analysis in sec-361

tion 3.1, self-training enforces the separation be-362

tween classes to improve the generalization ability.363

This can be further supported when the number of364

classes increases in DBpedia and Yahoo Answers365

dataset, the performance of Alpaca gets worse. Fur-366

thermore, Alpaca-7B takes 9 minutes per 10k in-367

stances on one A6000 gpu while GENCO takes 10368

seconds, which is roughly x50 speed up.369

Comparison with SOTA Methods: Both iPET370

(row 4) and LOTClass (row 5) use self-training al- 371

gorithm for zero-shot classification, but GENCO 372

outperforms the previous self-training methods 373

even with significantly fewer instances (< 5% of 374

original size). The iPET model improves pseudo 375

label prediction with an ensembling about 15 mod- 376

els to reduce prediction variance. In comparison, 377

our approach improves pseudo label prediction by 378

ensembling augmented text embedding during self- 379

training, leading to improved performance and a 380

more memory efficient alternative. While LOT- 381

Class uses a BERT model to extract keywords for 382

each category as an augmentation, it is less ex- 383

pressive than using an LLM to generate coherent 384

human language as augmentation. PESCO (row 385

7) is the most recent SOTA with contrastive self- 386

training and introduced an augmentation technique 387

by learning on salient sentences. However, the 388

method still requires a large amount of data to be 389

effective. In scenarios where only a limited num- 390

ber of unlabeled texts are available, PESCO still 391

underperforms our model. 392

Effectiveness of Contrastive Self-training: Row 393

2 represents the sentence encoder baseline with 394

SimCSE, whereas row 11 represents SimCSE + 395
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Figure 3: Per class F1 (upper) and ranking-based precision (lower) for classification performance with input
augmentation.

contrastive self-training algorithm as per equation 5.396

The result shows that incorporating contrastive397

self-training leads to significant gains. Compare398

row 3 (Alpaca-7B) with row 11. Despite being a399

larger model in scale, Alpaca-7B still outperforms400

the self-training approach across all benchmark401

datasets, underscoring the effectiveness of class402

separation with self-training for classification task.403

4.4 Analysis of LLM Augmentation404

In this section, we denote the input augmentation in405

section 3.2 as IA and the conditional augmentation406

based on pseudo label in section 3.3 as CA. Rows407

9 and 10 in table 2 shows ablation tests with CA408

and IA removed. Overall, our LLM data augmen-409

tation, with and without conditioning on pseudo410

label, both lead to improved performance, due to411

their ability to provide more accuracy pseudo label412

and high quality synthetic training pairs.413

Effectiveness of IA: In this evaluation, we inves-414

tigate the effectiveness of input augmentation for415

first round pseudo-labeling without training. We416

evaluate the performance of our model on two417

datasets, namely AG News and Yahoo Answers,418

using two evaluation metrics: per class F1 metric419

and ranking-based precision metric according to420

prediction confidence. The per class F1 metric pro-421

vides an insight into how well the model performs422

on each individual class by balancing precision and423

recall. In the upper part of figure 3, our findings in-424

dicate that LLM augmented data leads to improved425

performance across all categories for AG News and426

in eight out of ten classes for Yahoo Answers. 427

In the lower part of figure 3, we employ a 428

ranking-based precision metric to assess the quality 429

of the most confident cases. Our results demon- 430

strate that using augmented data yields better pre- 431

cision for the most confident cases. Notably, our 432

study on the Yahoo Answers dataset indicates that 433

the predictions are better calibrated with the use 434

of augmented data, implying that highly confident 435

samples exhibit better precision. Conversely, such 436

a trend was not observed in unaugmented data, 437

where the top 30 had higher accuracy than the top 438

10. Better calibration justifies the sampling from 439

the most confident pools for self-training, making 440

it a more reliable method for improving model per- 441

formance. 442

Effectiveness of CA: To study the quality of con- 443

ditional generation based on class labels, we first 444

present examples of generated texts from an sample 445

in AG News dataset, shown in table 6 in Appendix. 446

Each example is a cherry-picked sample out of five 447

random samples. The generated text expands on a 448

specific aspect regarding the label while retaining 449

the original meaning of the observed text. 450

In the left of figure 4, we show a heatmap of 451

the probability when a conditionally generated text 452

(vertical) aligns with the corresponding label class 453

(horizontal). The highest probability occurs along 454

the diagonal, indicating that the conditionally aug- 455

mented text based on pseudo label has a closer 456

meaning to the corresponding label class. In the 457

right of figure 4, we plot the distribution of the gen- 458
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Figure 4: The left figure shows a heatmap of the probability when a conditionally generated text based on pseudo
label aligns with each of the label prompts. The right figure shows the distribution of the generated text plotted
using T-SNE (sports category is out of scope).

erated text plotted using T-SNE. The embeddings459

were obtained by our sentence encoder trained on460

the 100-th (out of 1000) iteration. We selected two461

instances that were misclassified as business and462

located close to the decision boundary. The aug-463

mented text, conditioned on the business category,464

was found to be closer to the label prompt embed-465

ding of the business category. This demonstrates466

the effectiveness of our method to generate less467

confusing training pairs away from the decision468

boundary and closer to the pseudo label centroid.469

5 Related Work470

Knowledge Distillation from GPT: To leverage471

the language modeling power of large model, previ-472

ous works distills LLM (Honovich et al., 2022; Chi-473

ang et al., 2023b), generate text and label pairs (Yoo474

et al., 2021; Ye et al., 2022; Meng et al., 2022) to475

train a classifier for downstream tasks. However,476

generating training data from scratch can lead to477

low-quality data with unrelated or ambiguous ex-478

amples analyzed in (Gao et al., 2022). Our genera-479

tion is grounded in the context of the corpus with480

enrichment in semantic and diversity, providing a481

practical alternative to generation-based methods482

for zero-shot text classification and knowledge dis-483

tillation.484

Zeroshot Text Classification: Zeroshot text clas-485

sification predicts class labels without labeled in-486

stances (Cho et al., 2023; Fei et al., 2022) and can487

be formulated as sentence alignment (Gao et al., 488

2021; Hong et al., 2022; Shi et al., 2022; Wang 489

et al., 2023; Zhang et al., 2023) between document 490

and labels. Sentence encoders are typically trained 491

with contrastive learning, which optimizes repre- 492

sentations by pulling inputs with similar semantics 493

closer in the embedding space and pushing inputs 494

with different semantics further apart. Our model 495

applies LLM to generate training pairs for con- 496

trastive learning to train robust classification with 497

limited instances available. 498

6 Conclusion 499

In conclusion, our proposed approach, GenCo, ef- 500

fectively addresses the difficulties and limitations 501

of using LLMs directly for zero-shot text classi- 502

fication. By leveraging the generative power of 503

an LLM in a self-training loop of a smaller, sen- 504

tence encoder classifier with contrastive learning, 505

GENCO outperform state-of-the-art methods on 506

four benchmark datasets. Our approach is particu- 507

larly effective when limited in-domain text data are 508

available. The success of our approach highlights 509

the potential benefits of incorporating the genera- 510

tive power of LLM into iterative self-training pro- 511

cesses for smaller zero-shot classifiers. We hope 512

that our work will inspire further research in this 513

direction, ultimately leading to more efficient and 514

effective NLP models. 515
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7 Limitations516

The main goal of our paper is to promote the usage517

of LLMs (Alpaca-7B in our case) to assist in train-518

ing of a smaller model (Roberta-SimCSE) on zero-519

shot classification tasks. We are aware that there520

are rooms more experiments with self-training al-521

gorithms, such as how the temperature of our loss522

function can affect the training stability. Currently,523

we mainly use that as a theoretical motivation of524

leveraging decision boundaries between classes,525

but tuning the temperature will be additional work526

to do.527

Another part is data efficiency. We have shown528

that using GPT generated data can alleviate the data529

hungry issue for deep learning models. However,530

when there is abundant of data, generating training531

instances with LLM can be expensive with less532

gains. Also, due to compute and buget limitations,533

we didn’t use larger LLMs for our experiments, as534

an estimiated cost will be around 150$ per dataset535

with the GPT-3.5 at time of writing.536

Finally, we realize that more tricks and engineer-537

ing designs are employed in our experiments and538

please refer to our code for reference.539
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A Experiments 670

A.1 Implementation Details 671

The label prompts are shown in the upper part of 672

table 3. The label prompts are similar to the ones 673

used in in PESCO (Wang et al., 2023). We solicit 674

LLM for text augmentation with the instruction 675

template in the lower part of table 3, which is the 676

same ones used for Alpaca fine-tuning. 677

For the generation parameters, we used 678

temperature=0.8, top_p=0.95, and sample 679

K=5 augmented texts for each instance with 680

min_length = 64 and max_length = 128. For 681

the self-training of sentence encoder model, we 682

used batch_size=3 ∗ |C| (|C| is the number of cat- 683

egories), lr=1e-5, the max length is 128 for AG 684

News and DBPedia and 192 for Yahoo Answers 685

and Amazon. All the experiments are performed 686

on NVIDIA RTX A6000 gpus. Please refer to our 687

code for details. 688

Label Prompt
(1)Category: [label].
(2)It is about [label].
Instruction-based (Conditional) Augmentation
Below is an instruction that describes a task, paired
with an input that provides further context. Write a
response that appropriately completes the request.
### Instruction:
Elaborate the text in a few sentences.
(Discuss the [pseudo label] aspects of the article.)
### Input:
[text]
### Response:

Table 3: The designed prompts for enhanced label de-
scription and conditional augmentation based on pseudo
label.

A.2 Selection of Temperature in Eq 5 689

As shown in table 4, we include the results with 690

over 5 runs on each dataset. We found τ = 0.1 to 691

be a reasonble choice with slightly better perfor- 692

mance, but we acknowledge that the difference is 693

rather small, sometimes fall within std. The choice 694

of τ may serve more of a theoretical motivation 695

rather than practically concerns (as acknowledged 696

in limitation). The theoretical framework unifies 697

previous soft labeling approaches in (Meng et al., 698

2020; Wang et al., 2023) and is easier for the proof 699

of theorem. 700

A.3 Inference Time Augmentation 701

While GENCO doesn’t require LLMs during infer- 702

ence, in our ablation test in table 5, we study the 703
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Agnews DBpedia Yahoo Answers Amazon
τ=1.0 82.75 ± 0.06 93.77 ± 0.07 62.66 ± 0.06 91.39 ± 0.06
τ=0.5 83.04 ± 0.05 94.19 ± 0.05 62.70 ± 0.10 91.44 ± 0.06
τ=0.1 83.18 ± 0.05 94.29 ± 0.05 62.74 ± 0.08 91.48 ± 0.05
τ=0.05 83.03 ± 0.05 94.34 ± 0.03 62.77 ± 0.10 91.42 ± 0.04
τ=0.01 83.02 ± 0.05 94.33 ± 0.03 62.76 ± 0.11 91.42 ± 0.04

Table 4: For the choice of temperature τ in equation 5, we include the results with over 5 runs on each dataset. We
found τ = 0.1 to be a reasonble choice with slightly better performance, but we acknowledge that the difference is
rather small, sometimes fall within std.

impact of inference time augmentation (assuming704

GPT is available at test time) and self-training on705

the performance metric. To test inference time aug-706

mentation, we performed experiments on a down-707

sampling of both training and testing instances.708

Our results show that inference time augmenta-709

tion (rows with "IA") leads to a performance gain710

of 1-2%, with a more substantial improvement ob-711

served for AG News and Yahoo Answers. This712

may be attributed to the fact that AG News has an713

average text length of only 38 words, and the Ya-714

hoo Answers dataset includes many answers with715

only one phrase. Inference time augmentation ef-716

fectively enhances the quality of shorter text inputs.717

A.4 Qualitative Examples for Conditionally718

Generated Examples on Pseudo-label719

In table 6, we show generated examples of a sam-720

ple text from the Agnews dataset. We generate721

5 examples conditioned on each of the 4 labels,722

and cherry-pick one for each label in the table pre-723

sentation. The example shows that the topic of a724

generated text is related to the label which is con-725

ditioned on, while pertains the original meaning.726

This opens a path to leverage the language under-727

standing ability of LLM for data augmentation,728

especially during self-training.729
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ID Self-train Methods AG News DBpedia Yahoo Answers Amazon
# unlabeled train 4k (3.4%) 11.2k (2%) 15k (< 1%) 20k (< 1%)

# test 7.6k 28k 20k 20k
1 No Sentence-enc 75.6 73.4 55.5 89.6
2 No Sentence-enc + Inf-Aug 78.2 74.7 57.4 90.2
3 Yes Self-train 83.3 96.3 62.5 91.1
4 Yes Self-train + Inf-Aug 83.9 96.8 64.3 91.3
5 Yes GENCO 89.2 98.4 68.6 95.3
6 Yes GENCO + Inf-Aug 89.7 98.5 70.2 95.4

Table 5: Evaluation of inference time augmentation. "Inf-Aug" represents input augmentation added during
inference.

Observed Text Starbucks Corp’s president and chief executive, Orin Smith, said Tuesday he plans
to retire early next year because he wants to slow down and focus on philanthropy,
family and sports.

Politics The announcement of Orin Smith’s retirement is likely to have political implications
for Starbucks Corporation... His replacement will have big shoes to fill, and the
decision could have long-term effects on the company’s policies and direction.

Sports ...Sports have always been a major part of Smith’s life, as he was a college athlete
and later went on to become the CEO of Starbucks. It is clear that sports have had a
major influence on his life and he wants to make time for them in his retirement.

Business Starbucks Corp has seen great success under the leadership of Orin Smith, with the
company’s stock price more than tripling since he became CEO in 2005. This success
has allowed him to retire early and . . .

Technology Orin Smith’s plan to retire early next year is an example of how technology has
changed the way we work and live. By utilizing technology, Smith is able to take
advantage of the increasingly popular trend of “work-life balance" ...

Table 6: Examples of generated text conditioned on pseudo labels in the left column.
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B Proof of Theorems 730

Theorem 2. Consider a binary classification problem with linearly separable labeled examples, when 731

0 < τ < 1, optimizing Lt2l = −
∑N

i=1

∑L
j=1Q(ŷj |xi) logP (ŷj |xi) with gradient descend will enforce 732

the larger margin between classes. 733

Proof. We use dot product ⟨·, ·⟩ as implementation of similarity function. Let the embedding of instance i 734

be xi = fθ(xi) and the embedding of label prompt j be ec = fθ(pc), c ∈ {1, 2} for binary classification. 735

Then, 736

P (ŷ1|xi; θ) =
exp(⟨xi, e1⟩)

exp(⟨xi, e1⟩) + exp(⟨xi, e2⟩)
=

1

1 + exp(−⟨xi, e1 − e2⟩)
(12) 737

P (ŷ2|xi; θ) = 1− P (ŷ1|xi; θ) (13) 738

Notation-wise, define di = ⟨xi, e1 − e2⟩, then 739

P (ŷ1|xi; θ) =
1

1 + e−di
(14) 740

P (ŷ2|xi; θ) = 1− 1

1 + e−di
(15) 741

(16) 742

In binary classification, the margin is simply

margin =

{
di xi is class 1
−di xi is class 2

For soft-label distribution Q, 743

Q(ŷ1|xi; θ) =
1

1 + e−di/τ
(17) 744

Q(ŷ2|xi; θ) = 1− 1

1 + e−di/τ
(18) 745

(19) 746

Then Lt2l is derived as 747

Lt2l =
N∑
i=1

log(1 + e−di) +
die

−di/τ

1 + e−di/τ
(20) 748

Calculate the derivative of Lt2l w.r.t di, 749

∂Lt2l

∂di
=

−die
−di/τ

τ(e−di/τ + 1)2
+

e−di/τ − e−di

(e−di/τ + 1)(e−di + 1)
(21) 750

For the first part of equation 21, the sign depends on −di. For the second part, the sign depends on
e−di/τ − e−di . When 0 < τ < 1, {

e−di/τ − e−di < 0 when di > 0

e−di/τ − e−di > 0 when di < 0

Therefore, 751{
∂Lt2l
∂di

< 0 when di > 0
∂Lt2l
∂di

> 0 when di < 0
(22) 752

One step of gradient descend optimizes d by d′i = di − η ∂Lt2l
∂di

. From equation 22, we get the conclusion 753

that |d′i| > |di|. In other words, the margin becomes larger after optimization, which finishes the proof. 754
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Theorem 3. Under the setting in Theorem 2, let mi be the margin of instance i and consider the constraint755

mi ≤ B for all i, the classifier converges to a max margin classifier, as the bound B goes to infinity.756

Proof. Using the definition from Theorem 2,757

Lt2l =
N∑
i=1

log(1 + e−di) +
die

−di/τ

1 + e−di/τ
(23)758

The margin mi for instance i can be written as mi =

{
di xi is class 1
−di xi is class 2

.759

The equation 23 can be written as760

Lt2l =
∑
yi=0

log(1 + e−mi) +
mie

−mi/τ

1 + e−mi/τ
+

∑
yj=1

log(1 + emj )− mje
mj/τ

1 + emj/τ
(24)761

Let m∗ = min(mi) be the minimal margin, let N1 and N2 be the number of instances in class 1 and class762

2 respectively which reaches the minimal margin. From the gradient analysis in equation 22, the examples763

with mi > m∗ has loss lower bounded by that with minimal margin. Then764

Lt2l = N1(log(1 + e−m∗
) +

m∗e−m∗/τ

1 + e−m∗/τ
) +N2(log(1 + em

∗
)− m∗em

∗/τ

1 + em∗/τ
)

+O(log(1 + e−m∗
) +

m∗e−m∗/τ

1 + e−m∗/τ
) +O(log(1 + em

∗
)− m∗em

∗/τ

1 + em∗/τ
)

(25)765

When B approaches ∞, for N1 part in equation 25,766

log(1 + e−m∗
) +

m∗e−m∗/τ

1 + e−m∗/τ
∼ e−m∗

+m∗e−m∗/τ (26)767

When m → B, limm→B e−m∗ → 0, and limm→B m∗e−m∗/τ = limm→B
1

1/τem
∗/τ = 0 by L’Hopital’s768

rule.769

For N2 part in equation 25,770

log(1 + em
∗
)− m∗em

∗/τ

1 + em∗/τ
∼ log(1 + em

∗
)−m∗ (27)771

When m → B, limm→B log(1 + em
∗
)−m∗ = limm→B log(1 + 1

em∗ ) = 0.772

Therefore, the loss is minimized when the minimal margin is maximized and thus the classifier converges773

to a max margin classifier when B goes to infinity.774
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