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Abstract. With the increasing number of CT scan examinations, there
is a need for automated methods such as organ segmentation, anomaly
detection and report generation to assist radiologists in managing their
increasing workload. Multi-label classification of 3D CT scans remains
a critical yet challenging task due to the complex spatial relationships
within volumetric data and the variety of observed anomalies. Exist-
ing approaches based on 3D convolutional networks have limited abili-
ties to model long-range dependencies while Vision Transformers suffer
from high computational costs and often require extensive pre-training
on large-scale datasets from the same domain to achieve competitive
performance. In this work, we propose an alternative by introducing a
new graph-based approach that models CT scans as structured graphs,
leveraging local slice triplets nodes processed through spectral domain
convolution to enhance multi-label anomaly classification performance.
Notably, our method exhibits strong cross-dataset generalization, and
demonstrates competitive performance while achieving robustness to z-
axis translation. We further conduct an ablation study to analyze the
contribution of each component.

Keywords: 3D Medical Imaging · Chest Computed Tomography · Graph
Neural Network · Spectral domain · Multi-label Anomaly Classification.

1 Introduction

Computed Tomography (CT) is a fundamental modality in modern medical
imaging, providing radiologists with detailed cross-sectional views of the human
body to detect and characterize abnormalities. However, the increasing volume
of CT scans has led to an important demand for automated deep learning-based
methods to assist radiologists with their growing workload [6]. Deep learning has
already demonstrated success in various CT-related tasks [1], including anomaly
detection [16], organ segmentation [21], image restoration [34], report genera-
tion [17], and synthetic volume reconstruction [16] for patient-specific modeling.
Among these tasks, multi-label classification of anomalies in 3D CT volumes
remains particularly challenging due to the computational complexity of pro-
cessing volumetric data and the diverse range of pathological patterns. Early
deep learning approaches leverage 3D Convolutional Neural Networks (CNNs),
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effectively capturing local spatial features but suffering from limited capabili-
ties to model long-ranges dependencies [24]. More recently, Vision Transformers
(ViTs) [12], initially designed for natural language processing [30], have been
adapted to both 2D [15] and 3D [18] medical imaging. By enabling long-range
spatial interactions through self-attention, ViTs have shown promise in various
medical imaging tasks [3] through its capabilities to capture global information.
However, they remain computationally expensive, requiring large-scale pretrain-
ing to generalize effectively [18]. Our work introduces CT-Graph, a new GNN-
based framework that models 3D chest CT scans as structured graphs, where
each node represents a triplet of adjacent axial slices and edges are weighted by
inter-slice spacing. This design enables efficient integration of local and global
context while preserving spatial structure. Our approach offers the following key
advantages:
– CT-Graph demonstrates strong cross-dataset generalization, maintaining con-

sistent performance when trained on a public Turkish 3D chest CT dataset
and evaluated on a separate dataset from the United States.

– Our edge weighting strategy based on z-axis distance spacing incorporates
spatial awareness with no additional learnable parameters. Ablation studies
confirm the effectiveness of GNN modules and graph connectivity patterns.

– By leveraging spectral domain convolution, CT-Graph improves anomaly
classification performance and achieves robustness to z-axis translation.

2 Related Work

2.1 3D Visual Encoder

Feature aggregation in 3D medical imaging is crucial for balancing local and
long-range dependencies while maintaining global spatial awareness. Early deep
learning architectures primaliry relied on 3D CNNs [1], which effectively cap-
ture local spatial dependencies. These models have been widely applied to tasks
such as anomaly detection [20] and segmentation [27]. However, their intrin-
sic locality limits their ability to model long-range dependencies, which can be
crucial for capturing global anatomical structures [24]. The self-attention mecha-
nism [31], initially introduced for natural language processing tasks was rapidly
adapted to the visual domain with ViTs [12]. The extension of ViTs [18] and
Swin Transformers [33] to 3D tasks has shown promise in applications such as
dense image captioning [9] and video processing [23]. In the context of CT imag-
ing, GenerateCT leverages CT-ViT, inspired by ViViT [2], to integrate spatial
and causal attention but requires extensive pretraining, limiting its practical ap-
plicability [18]. To mitigate computational challenges in 3D volume processing,
CT-Net [13] proposes to group triplets of adjacent slices to replicate the three-
channel structure of RGB images, extracting features using a pretrained 2D
ResNet [19]. While CT-Net subsequently passes these representations through a
lightweight 3D CNN for dimensionality reduction, CT-Scroll [11] leverages an al-
ternating global-local attention module to enable feature interactions, effectively
reducing the number of parameters while improving classification performance.
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Fig. 1: CT-Graph introduces a structured graph-based architecture, where triplet
axial slice features define nodes. Node interactions are modeled through spectral-
domain convolutions, enabling contextual aggregation prior before classification.

2.2 Graph Neural Networks

In various application domains such as biology [28] or transportation [25], graphs
are a common representation of data found in nature [32]. A graph, denoted as
G = {V, E} consists of a set of edges E which model the connections between a
set of nodes V. In deep learning, GNNs have become the main approach for tasks
involving graph-structured data [4], where each node is associated with a vector
representation, which is iteratively updated through neighborhood aggregation
during the forward message passing process. Representative models mainly in-
clude Convolutional GNNs, which aggregate neighboring node features through
graph-based convolutions [10] or Attentional GNNs, which leverage attention
mechanisms to weigh the importance of neighbors’ contributions [7]. In medical
imaging, GNNs have been used in tasks such as medical knowledge integration
in radiology report generation [22] and Whole Slide Image analysis [14].

3 Method

As shown in Figure 1, CT-Graph models the 3D CT scan as a graph of triplet
axial CT slices connected by their physical z-axis distance. Each node corre-
sponds to a triplet of axial slices connected by neighborhood nodes with an edge
weighted by their physical distance. Node features interact through a GNN mod-
ule before being summed and given to a classification head.
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Triplet Slices Feature Extraction. Following a strategy similar to CT-Net [13],
we partition the input volume x ∈ R240×480×480 into non-overlapping triplets of
slices, noted {xt

i}80i=1 forming a tensor of dimension 80×3×480×480. Each triplet
is processed by a ResNet [19] ΦResNet pretrained on ImageNet [29] to extract a
corresponding feature map. The feature maps are then processed independently,
with each one being passed through a Global Average Pooling (GAP) layer [11]
ΦGAP to obtain a compact vector representation for each triplet, noted hi ∈ R512

(i ∈ {1, . . . , 80}), such that:

hi = (ΦGAP ◦ ΦResNet)(x
t
i), ∀ i ∈ {1, . . . , 80} . (1)

Graph Construction. We define the volumetric representation as a graph G =
(V, E , H,A), where:

– V = {vi}Ni=1 is the set of nodes, where each node vi represents a triplet of
consecutive slices. Hence, the number of nodes is N = 80.

– E ⊆ V×V is the set of edges, where an edge (vi, vj) ∈ E is weighted based on
a function of inter-triplet distance and z-axis spacing. An undirected edge
(vi, vj) ∈ E is established if and only if the corresponding triplet slices are
separated by at most q ∈ N+ other triplet slices in the sequence, such that:

E = {(vi, vj) | |i− j| ≤ q} . (2)

– H = {h1, . . . , hN} ∈ RN×d is the node feature matrix, where hi ∈ Rd denotes
the feature embedding of node vi (∀ i ∈ {1, . . . , N}). We set d = 512.

– A ∈ RN×N is the weighted adjacency matrix, where Aij = wi,j ∈ R+ encodes
the connectivity and spatial relationship between triplets, wi,j being the edge
weight such that:

Aij =

{
wij , if (vi, vj) ∈ E
0, otherwise.

(3)

Graph Neural Network module. A key challenge in this formulation is the
variability in anatomical positioning across patients due to differences in scan
length and body proportions. Traditional spatial graph convolutions, such as
GraphConv [26], aggregate information from fixed local neighborhoods, which
can be suboptimal in this context as anatomical structures do not consistently
align across scans. Instead, we leverage Chebyshev convolutions [10] to define
graph convolutions in the spectral domain. Unlike spatial approaches, which
struggle with non-uniform neighborhood structures [8], ChebConv utilizes poly-
nomial approximations of the graph Laplacian [5] to capture hierarchical feature
representations while preserving spatial localization. This allows the model to
adapt to variations in caudal-cranial slice positioning and effectively learn long-
range anatomical relationships, making it more robust to inter-patient variabil-
ity. Our GNN module, denoted as ΦGNN, consists of 3 Chebyshev Convolutional
Layers [10], each noted fn (n ∈ {0, 1, 2}), matching the depth of CT-Scroll [11]
for fair comparison. For each layer, the scaled and normalized Laplacian L̂ is
defined as:

L̂ =
2

λmax
(D −A)− I , (4)
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where λmax is the largest eigenvalue of the graph Laplacian L = D−A. The
degree matrix D is a diagonal matrix where Di,i =

∑N
j=1 wi,j . wi,j denotes the

edge weight from source node i to target node j, defined such that:

wi,j = 1 +
1

1 + dist(i, j)
= 1 +

1

1 + 3× |i− j| × sz
, (5)

where sz is the spacing along the z-axis in decimetre. The convolution oper-
ation is parameterized using Chebyshev polynomials Tj(L̂) ∈ RN×N , resulting
in a recurrence relation for the transformation of the node feature matrix. Let
Z0 = H be the initial node feature matrix, θk ∈ Rd×d be the learnable parame-
ters, and K be the Chebyshev filter size fixed to 3 for all experiments, to align
with common practice [10]. The recurrence relation is given by:

Zn+1 = fn(Z
n) =

K−1∑
k=0

Tk(L̂)Z
nθk, ∀ n ∈ {0, 1, 2} . (6)

The GNN module ΦGNN produces the final output vector representation,
which we denote as Z = Z3 ∈ RN×d and which is defined as:

Z = {z31 , . . . , z3N} = ΦGNN(H) = (f2 ◦ f1 ◦ f0)(h1, . . . , hN ) . (7)

Feature aggregation. The obtained vector representations are aggregated through
summation to derive a vector representation, denoted as z̄ ∈ Rd, which is subse-
quently passed to a classification head Ψ implemented as a lightweight multilayer
perceptron. Ψ predicts the logit vector ŷ ∈ R18. The model is trained on a multi-
label classification task using Binary Cross-Entropy as the loss function.

4 Experimental results

4.1 Dataset preparation

We train and evaluate our methods on the public CT-RATE dataset [16], which
consists of non-contrast chest CT scans with 18 annotated anomalies extracted
from radiology reports. The training set includes 17,799 unique patients, while
the validation and test sets both contain 1,314 unique patients. Additionally,
we extend our evaluation on the publicly available Rad-ChestCT dataset [13],
comprising non-contrast chest CT scans from 1,344 unique patients, focusing on
the 16 anomalies shared with CT-RATE [16]. Consistent with prior work [17,
11], volumes for both datasets are center-cropped or padded to a resolution of
240×480×480, with a spacing of 0.75 mm on the x and y and 1.5 mm on the
z axis. Hounsfield Unit values are clipped to the range [−1000, 200], reflecting
practical diagnostic limits [17].

4.2 Implementation Details

CT-Graph and baseline methods are trained with a batch size of 4 using the
AdamW optimizer with (β1, β2) = (0.9, 0.99) and a weight decay of 0.01. The
learning schedule follows a cosine decay with a warm-up phase of 20,000 steps,
a maximum learning rate of 0.0001, and training runs for 200,000 iterations.
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Table 1: Quantitative evaluation on the CT-RATE and Rad-ChestCT test sets.
Reported mean and standard deviation metrics were computed over 5 indepen-
dant runs. Best results are in bold, second best are underlined.

Dataset Method AUROC Accuracy F1 Recall

CT-RATE

Random Pred. 49.88±0.62 49.89±0.31 27.78±0.51 50.42±1.05

ViViT [2] 79.19±0.28 75.95±0.71 49.91±0.28 66.39±1.48

Swin3D [23] 79.94±0.15 75.95±0.25 50.64±0.25 67.96±0.58

CT-Net [13] 79.37±0.27 77.37±0.40 51.39±0.50 66.42±1.99

CT-Scroll [11] 81.80±0.22 79.49±0.45 53.97±0.21 65.36±1.91

CT-Graph 82.44±0.14 78.66±0.36 54.59±0.17 68.77±0.92

Rad-ChestCT

Random Pred. 49.68±0.55 50.40±0.32 35.91±0.41 51.51±0.75

ViViT [2] 67.83±0.38 60.22±1.15 48.59±0.97 69.27±1.64

Swin3D [23] 67.29±0.23 60.67±0.60 47.98±0.41 66.76±0.63

CT-Net [13] 67.71±0.83 60.05±1.93 47.53±0.93 68.45±1.18

CT-Scroll [11] 71.21±0.37 63.02±0.93 48.55±0.54 66.63±1.49

CT-Graph 72.18±0.29 62.60±0.52 49.52±0.76 69.30±1.48

4.3 Quantitative results

We evaluate model performance using standard classification metrics: AUROC,
Accuracy and F1-Score (F1) which is the harmonic mean of precision and re-
call. For each method and each label, we select the threshold that maximizes
F1-Score on the validation set and report all metrics on the test set. We com-
pare our method against ViViT [2], a video-adapted Vision Transformer which
also forms the architectural basis for CT-ViT, and Swin3D [33], an extension
of Swin Transformer for volumetric data. We also include CT-Net [13] and CT-
Scroll [11], two 2.5D approaches that employ CNN-based feature extractors. CT-
Net relies on convolutional layers for feature aggregation and dimensionality re-
duction, whereas CT-Scroll leverages an alternating attention mechanism to cap-
ture cross-slice dependencies. ResNet-based models used ImageNet pre-trained
weights; others were initialized via weight inflation [35] for comparability. Table 1
shows that CT-Graph consistently outperforms all baselines across AUROC, F1-
Score and Recall. On the CT-RATE test set, our method achieves an F1-Score of
54.59, representing a +∆1.15% improvement over CT-Scroll [11] and +∆5.93%
over CT-Net [13]. For the F1-Score, a paired t-test comparing the performance
of CT-Graph against each baseline consistently yields a p-value < 0.01, demon-
strating statistical significance. As shown in Fig. 2.a, CT-Graph yields the largest
improvements on diffuse anomalies such as bronchiectasis, mosaic attenuation,
and lung opacity. Reffering to Fig. 2.b, both attention and spectral convolution
demonstrate robustness to z-axis translations, whereas standard convolution is
sensitive to such shifts. To evaluate this property, we simulate patient body shifts
by applying controlled translations along the z-axis with appropriate padding.
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Fig. 2: (a) Per-anomaly F1-Score comparison for the 3 anomalies with highest
improvement over baselines. (b) Model robustness to z-axis volume shift. F1 are
reported for volumes translated along the z-axis with minimum-value padding.

(a) Per-anomaly F1-Score (b) Robustness to volume translation

Connectivity Module AUROC Accuracy F1

Fully connected

GATv2Conv [7] 81.56±0.03 78.04±0.31 53.72±0.34

GraphConv [26] 81.99±0.40 78.15±0.31 53.73±0.36

ChebConv [10] 82.34±0.12 79.01±0.55 54.40±0.15

Neighbourhood

GATv2Conv [7] 82.22±0.05 78.59±0.25 54.06±0.19

GraphConv [26] 82.33±0.18 78.68±0.52 54.16±0.24

ChebConv [10] 82.47±0.26 79.12±0.53 54.41±0.12

Table 2: Comparison of graph connectivity schemes and GNN modules, evaluated
on the CT-RATE test set. The neighborhood size is fixed to 16 for these runs.

4.4 Ablation study

Comparison of representative GNNs. Table 2 highlights the performance
gains achieved by incorporating Chebyshev Convolutions [10] in our GNN mod-
ule. Compared to a direct neighborhood aggregation approach [26], ChebConv
improves AUROC by +∆0.42% and F1-Score by +∆1.25%, suggesting that
spectral-domain convolutions may enhance feature aggregation while demon-
strating robustness to variations in cranial-caudal slice positioning (Fig. 2). In-
ference time takes approximately 70 milliseconds for all GNN variants.
Graph construction. Table 2 also shows that constructing a neighborhood
graph leads to consistent improvements in AUROC and F1-score compared to a
fully connected graph across all GNN variants. Table 3 also demonstrates that
constraining the aggregation module’s receptive field to a localized neighborhood
improves anomaly classification performance, yielding a better balance between
precision and recall. We adopt q = 16 as the optimal configuration.



8 Anonymized Author et al.

Table 3: Impact of the neighbourhood size, using GraphConv as the GNN mod-
ule. Neighborhood size, denoted as q, refers to the number of nodes each node
is connected to via unweighted undirected edges.
Neighbourhood size AUROC Accuracy F1 Score Recall Precision

4 82.22±0.05 78.97±0.58 53.76±0.24 66.02±0.92 47.84±0.22

16 82.33±0.18 78.68±0.52 54.14±0.24 67.99±0.75 47.34±0.30

80 (Fully connected) 81.99±0.40 78.15±0.31 53.73±0.36 69.34±0.91 45.80±0.59
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Fig. 3: Impact of the edge weighting functions, on the CT-RATE test set. We
use a GraphConv module and a fully connected graph for all experiments.

Impact of the weight function. Among the evaluated edge weighting func-
tions, the inverse function (see Eq. 5) with z-axis spacing measured in decimeters
(dm) yields the best classification performance, as illustrated in Figure 3.

5 Discussion and Conclusion

In this work, we introduced CT-Graph, a new graph-based approach for multi-
label anomaly classification from 3D Chest CT volumes. Each scan is repre-
sented as a structured graph, where nodes correspond to triplets of adjacent ax-
ial slices. To enable effective feature aggregation across this graph, we leverage a
spectral approach based on Chebyshev convolution, which captures both short-
range and long-range dependencies along the axial direction. Additionally, we
show that incorporating spatially-aware graph structures, through both weighted
edges and constrained neighborhood connectivity, enhances performance across
multiple Graph Neural Network variants. CT-Graph demonstrates robustness to
variations in patient body positioning along the z-axis and provides a flexible
framework for modeling volumetric data. Future work may include anatomical
segmentation-driven graph construction, transformer-based hybridization with
mini-patch representations, and systematic exploration of architectural factors
such as convolution depth and Chebyshev filter size.
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