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ABSTRACT

Diffusion probabilistic models (DPMs), widely recognized for their potential to
generate high-quality samples, tend to go unnoticed in representation learning.
While recent progress has highlighted their potential for capturing visual semantics,
adapting DPMs to graph representation learning remains in its infancy. In this
paper, we introduce Graffe, a self-supervised diffusion model proposed for
graph representation learning. It features a graph encoder that distills a source
graph into a compact representation, which, in turn, serves as the condition to
guide the denoising process of the diffusion decoder. To evaluate the effectiveness
of our model, we first explore the theoretical foundations of applying diffusion
models to representation learning, proving that the denoising objective implicitly
maximizes the conditional mutual information between data and its representation.
Specifically, we prove that the negative logarithm of denoising score matching loss
is a tractable lower bound for the conditional mutual information. Empirically,
Graffe delivers competitive results under the linear probing setting on node and
graph classification, achieving state-of-the-art performance on 9 of the 11 real-
world datasets. These findings indicate that powerful generative models, especially
diffusion models, serve as an effective tool for graph representation learning.

1 INTRODUCTION

Self-supervised learning (SSL), which enables effective data understanding without laborious human
annotations, is emerging as a key paradigm for addressing both generative and discriminative tasks.
When we revisit the evolution of SSL across these two tasks, interestingly, a mutually reinforcing
manner becomes evident: Progress in one aspect often stimulates progress in the other. For instance,
autoencoder (Hinton & Salakhutdinov, 2006), which initially made a mark in feature extraction,
laid the foundation for the success of VAEs (Kingma, 2013) for sample generation. Conversely,
breakthroughs in generative tasks like autoregression (Radford, 2018) and adversarial training
(Goodfellow et al., 2020), have deepened our understanding of representation learning, driving the
development of iGPT (Chen et al., 2020) and BigBiGAN (Donahue & Simonyan, 2019).

Recently, diffusion models (Ho et al., 2020; Song et al., 2020) have demonstrated astonishing genera-
tion quality in different domains, particularly in terms of realism, detail depiction, and distribution
coverage. A natural question arises: can we draw on the successful experiences of diffusion models to
enhance representation learning? This issue is particularly pressing in the context of graph learning,
since generation—the ability to create—plays a less critical role compared to discrimination on
graphs, e.g., social networks, citation networks, and recommendation networks. The question seems
not difficult to address, as generation is considered one of the highest manifestations of learning thus
having powerful capability to learn high-quality representation (Krathwohl, 2002; Johnson et al.,
2018; Wang et al., 2023; Hudson et al., 2024); however, the reality is much more complex.

To generalize the representation learning power of diffusion models on graph data, two main im-
pediments must be addressed: @ the non-Euclidean nature of graph data, which complicates the
direct application of diffusion models and necessitates consideration of both structural and feature
information; @ the absence of an encoder component in diffusion model prevents us from obtain-
ing explicit data representation and finetuning encoder in downstream tasks. Motivated to overcome
these challenges, we investigate how to adapt diffusion models to graph representation learning and
enhance their discrimination performance.
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Figure 1: The overall framework of Graffe. (Left) The input graph has certain nodes corrupted and
is subsequently fed into a GNN encoder to obtain node representations as the condition. The decoder
then receives both the noisy graph features x; and the condition z as inputs to perform denoising,
aiming to restore the original node features x(. (Right) The diffusion process of graph features and
the architecture of GraphU-Net decoder.

This work is particularly relevant to approaches that use diffusion models to capture high-level
semantics for classification tasks while enhancing representational capacity. Those approaches can be
broadly categorized into two main groups: (i) one treats part of the diffusion model itself as a feature
extractor (implicit-encoder pattern) (Xiang et al., 2023; Chen et al., 2024; Yang et al., 2024). They
obtain the latent representation from a certain intermediate layer, which inevitably exposes them to
challenge @. (ii) Another line of work jointly trains the diffusion model and an additional feature
extractor (explicit-encoder pattern) (Abstreiter et al., 2021; Wang et al., 2023; Hudson et al., 2024).
However, the latter pattern have struggled to surpass their contrastive and auto-encoding counterparts.

In this paper, we propose Graffe, which shares a philosophy similar to the explicit-encoder pattern.
Starting with the optimization objective for diffusion-based SSL, we analyze diffusion representation
learning (DRL) and show that it maximizes the mutual information lower bound between the learned
representation and the original input, with more informative representations leading to lower denoising
score matching loss, and vice versa. This suggests that DRL implicitly follows a principle akin to
the InfoMax principle (Linsker, 1988; Hjelm et al., 2018), which we call the Diff-InfoMax principle.
Furthermore, we observe from the frequency domain of graph features that DRL excels in capturing
high-frequency information. Inspired by our theoretical insights, we instantiate our model with a
graph neural network (GNN) encoder for explicit representation extraction and a tailored diffusion
decoder, both trained from scratch in tandem. The encoder transforms the graph structure and feature
information into a compact representation, which acts as a condition for the decoder together with
noisy features to guide the denoising process. The main contributions of this work are three-fold:

@ We theoretically prove that the negative logarithm of the denoising score matching loss is a tractable
lower bound for conditional mutual information. Building on this, we introduce the Diff-InfoMax
principle, an extension of the standard InfoMax principle, showing that DRL implicitly follows it.

® We propose an effective diffusion-based representation learning method catering to graph tasks,
termed as Graffe. Equipped with random node masking and customized diffusion architecture for
different task types, it can achieve sufficient graph understanding and obtain representations with rich
semantic information.

® We conduct extensive experiments on 11 classification tasks under the linear protocol, spanning
node- and graph-level tasks of diverse domains. Our method can achieve state-of-the-art or near-
optimal performance across all datasets. On Computer, Photo, and COLLAB datasets, our model
set a new accuracy record of 91.3%, 94.2% and 81.3%, respectively.

2 PRELIMINARY

2.1 BACKGOUND ON DIFFUSION MODEL

Diffusion Probabilistic Models (DPMs) construct noisy data through the stochastic differential
equation (SDE):
dx; = f(t)xdt + g(t)dw, ey
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where f(t),g(t) : R — R is scalar functions such that for each time ¢ € [0,7], x¢|x¢ ~
N(ayxg,02I) oy, o4 are determined by f(t), g(t), w; € R? represents the standard Wiener
process. Anderson (1982) demonstrates that the forward process (1) has an equivalent reverse-time
diffusion process (from 7T to 0) as the following equation so that the generating process can be
equivalent to numerically solve the reverse SDE (Ho et al., 2020; Song et al., 2020).

dx; = [f(t)x: — ¢*(t) Vi log pe(x¢)] At + g(t)dwy,  x7 ~ pr(x7), @

where w; represents the Wiener process in reverse time, and Vy log p;(x) is the score function. To
get the score function Vy log p;(x;) in (2), we usually take neural network sg(x, t) parameterized by
6 to approximate it by optimizing the Denoising Score Matching loss (Song et al., 2020):

X . . < 2
0* = arg;nm Lpsy = arg;nm Et{)\(t)ExOEx”xO [Hse(x, t) — Vy, longt(xt\xo)Hz] }, 3)

where A(t) is a loss weighting function over time. In practice, several methods are used to reparame-
terize the score-based model. The most popular approach (Ho et al., 2020) utilizes a noise prediction
model such that eg(x¢,t) = —0¢Se(x¢, t), while others employ a data prediction model, represented
by x¢(x¢,t) = (Xt — or€g(X¢,t))/as. The DSM loss is equivalent to the following data prediction
loss after changing the weighting function:

£x0,DSM =E; {/\(t)]EXOEXtIXU [HX@(Xt, t) - XOHZ]} : )

2.2 INFOMAX PRINCIPLE

Unsupervised representation learning is a key challenge in machine learning, and recently, there has
been a resurgence of methods motivated by the InfoMax principle (Linsker, 1988; Hjelm et al., 2018).
Mutual Information (MI) quantifies the "amount of information" obtained about one random variable
X by observing the other random variable Y. Formally, the MI between X and Y with joint density
p(z,y) and marginal densities p(x) and p(y), is defined as the Kullback-Leibler divergence between
the joint distribution and the product of the marginal distribution

&)

x’
I(X; Y) = DKL(P(X7Y)||PX X Py) = Ep(a:,y) |:10g p(y)} .

p(x)p(y)

The InfoMax principle chooses a representation f(x) by maximizing the mutual information between
the input x and the representation f(z). However, estimating MI, especially in high-dimensional
spaces is challenging in nature. And one often optimizes a tractable lower bound of MI in prac-
tice (Poole et al., 2019).

3 AN INFORMATION-THEORETIC PERSPECTIVE ON DIFFUSION
REPRESENTATION LEARNING

Despite some empirical attempts at Diffusion Representation Learning (DRL), its theoretical founda-
tions remain largely uncharted. In this section, we analyze the DRL through the lens of Information
Theory, establishing a connection between the DRL objective and mutual information.

3.1 THE ROLE OF EXTRA INFORMATION IN IMPROVING RECONSTRUCTION

Conditional diffusion models exhibit superior generation quality and lower denoising score matching
loss compared to their unconditional counterparts, as observed by (Dhariwal & Nichol, 2021; Zhang
et al., 2022). Figure 2 illustrates the denoising score matching loss for the label conditional task
(Label curve) is lower than that for the unconditional task (Vanilla curve). This improvement is
attributed to the additional information provided by class labels, which aids the diffusion model in
effectively denoising noisy data. One might consider class labels c as a special feature extracted
from data: ¢ = E4(x) where E,, is a classifier that outputs class labels. This leads to speculation
that more informative representations further enhance the denoising process and lower the denoising
score matching loss conditioned on the representations. Thus intuitively one can jointly train the
diffusion model conditioning on an additional feature extractor £, (Abstreiter et al., 2021; Hudson
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Figure 2: The comparison of denoising losses using different conditions on Cora datasets. (Vanilla)
The denoising loss without condition information. (Label) Class label information obtained via linear
embedding. (Representation) Learned representations obtained from Graffe.

et al., 2024), as the reconstruction denoising loss will guide the feature extractor to produce more
informative representations. Formally, the learning objective for DRL is as follows:

Cxo.,DSM,qS =E; {)\(t)Eonxt\xo [”X@(Xtv L, E¢(XU)) - X0||2] } : (©6)
In the next part of this section, we elucidate the intuition that more informative representations lead
to lower denoising score matching loss from a theoretical standpoint. We eliminate the effects of
limited network capacity or optimization errors, allowing us to investigate the influence of additional
conditions on the denoising score matching loss under ideal conditions—specifically when the
network capacity is adequate and optimization achieves its optimal state. The following theorem
demonstrates that the denoising score matching objective has a positive lower bound, even when the
network’s capacity is sufficiently large.

Theorem 1. The denoising score matching objective Ly, psu has a strictly positive lower bound,
regardless of the network capacity and expressive power

Iggn Lx,.DSM :n}(inIEt (A ExoEx, %o [Ix6(x2:) — x0/1?] }
=E; {\(t)Ex, [Tr(Cov[xo|x¢])]} > 0,

where Tr is the Trace of matrix and Cov is the covariance matrix. The conditioned denoising score
matching objective objective Ly, psm,s has a non-negative lower bound, i.e.

min Ly, 0506 = Ee {A()Exo,x, [Tr(Covlxolxt, Eg (x0)])]} > 0. ®)

)

The proof is in Appendix A. Theorem 1 reveals an attractive property of the denoising score matching
loss: its minimum value is determined by the uncertainty of the conditional distribution (the trace
of the covariance matrix serves as a multidimensional generalization of variance). Additionally,
Theorem 2 demonstrates that the supplementary information provided by the feature extractor E
reduces the lower bound of DSM by decreasing the uncertainty of the conditional distribution through
more informative representations.

Theorem 2. The conditioned denoising score matching objective L« psn,¢ has a smaller minimum
compared with the vanilla objective:

n)l{in Lyo.DSM,¢ < n}cin Ly, DSM- )
] ]

The proof is in Appendix A. Theorem 2 offers a qualitative insight, indicating that informative
representations diminish the uncertainty in the conditional distribution. Figure 2 shows the denoising
score matching loss for the representation conditional task (Representation curve) is lower than both
the unconditional task (Vanilla curve) and the label conditional task (L.abel curve). This suggests
that the learned representation contains richer information than class labels alone.

3.2 DIFF-INFOMAX PRINCIPLE

Intuitively a poor representation dominated by noise provides little useful information, failing to
assist the diffusion model in denoising. In contrast, a rich and informative representation enhances
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the model’s denoising capabilities. In this section, we will quantitatively analyze this from an
information-theoretic perspective. Notably, the DRL objective is closely related to the conditional
mutual information between Ey(xo) and x¢ given x;.

Theorem 3. Suppose xo € R, let Ly, psir.ot = Exox, [Tr(Cov[xo|x:, Ey(x0)])] be the condi-
tional denoising score matching loss at time t, and let h(x|y) be the conditional entropy of x given
y, then the negative logarithm of denoising score matching loss is a lower bound for the conditional
mutual information between data and feature, which quantifies the shared information between xg
and E4(xq), given the knowledge of x,

where C' = log K

I(x0; Ep(x0)|%¢) > —log Lx,. Dsr,e0 + C, e

2
+ gh(xo|xt) is a constant.
(10)

The proof is in Appendix A. Theorem 3 indicates that | Diffusion Loss vs Linear Probing Accuracy
minimizing the diffusion reconstruction objective is o
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proposes to choose a representation f(x) by max-
imizing I(x; f(x)). Motivated by Theorem 3, we
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linear probing accuracy (y-axis) on the Photo
dataset.

propose the Diff-InfoMax principle:

Diff-InfoMax principle Choosing a representation f(x) by maximizing fg A (x; f(x)|x¢)dt,
where x; = a;x + 04£ is a data corrupted by Gaussian Noise and A(t) € R is a weighting function.

The first key distinction between the Diff-InfoMax principle and the original InfoMax principle is
that Diff-InfoMax optimizes the conditional mutual information I (x; f(x)|x;), which quantifies the
shared information between x and f(x), given the knowledge of x;. The second difference lies in
Diff-InfoMax’s use of a multi-level criterion, encouraging the representation to maximize information
about x while excluding the information from x;. By accounting for different noise levels in x;,
I(x; f(x)|x;) promotes the representation to capture varying levels of structural detail. Furthermore,
we demonstrate that the original InfoMax principle is a special case of the proposed Diff-InfoMax
principle.

Remark 1. The original InfoMax principle can be viewed as a special case of the Diff-InfoMax
principle when \(t) = 0p(t). Then fOT or()I(x; f(x)|x¢)dt = I(x; f(x)|xr) = I(x;f(x))
because x is a pure Gaussian noise and independent with x and f(x).

Similar to MI, estimating conditional MI is particularly challenging in high-dimensional spaces.
We address this by optimizing a tractable lower bound of conditional MI, specifically the DRL
objective. We believe that the Diff-InfoMax principle opens up new avenues for integrating diffusion
models with representation learning. Additionally, there are alternative methods for optimizing novel
variational lower bounds of the conditional MI objective, which we reserve for future exploration.

3.3 EFFECTS ON FREQUENCY DOMAIN

Frequency-aware Analysis Several works (Yang et al., 2023; Si et al., 2024; Dieleman, 2024) have
noted that during the noising process, the high-frequency components of the data are corrupted first,
followed by the low-frequency components. Conversely, in the generation process, low-frequency
components are generated initially, with high-frequency components added later. Then the diffusion
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model performs a role generating high-frequency components given noisy data which mainly consists
of low-frequency data. From this frequency domain perspective, I(x; f(x)|x:) guides the feature
extractor to focus on components with frequencies exceeding a certain threshold, with different time
t corresponding to different frequency thresholds.

Graph Feature BWGNN (Tang et al., 2022) defines a metric Energy Ratio to assess the concentra-
tion of graph features in low frequencies. They observe that perturbing graph features with random
noise results in a ’right-shift’ of energy, indicating a reduced concentration in low frequencies and an
increased concentration in high frequencies. This finding aligns with our analysis of the frequency
domain. Consequently, DRL operates in the spectral space of graph features, excelling at capturing
high-frequency information in these features."

4 THE GRAFFE APPROACH

As inspired by the above theoretical insights and to overcome the challenges mentioned in section 1,
the Graffe framework follows the explicit-encoder pattern and couples a graph encoder Ey with a
conditional diffusion decoder Dy. Given an input graph G = (X, A), the encoder achieves perception
of both structural and feature information and extracts a compact representation z = E4(G) for each
node. Then, the decoder receives both noisy feature x; and encoded representation z to reconstruct
the original feature X = Dpy(x;,t,z). The overall framework is demonstrated in fig. 1. We next
introduce the Graffe in detail.

4.1 THE GRAPH ENCODER

The encoder module is the core part of our model. Since we are not concerned with generative
capabilities, the encoder is the only parameterized module used in downstream tasks, and its capability
directly impacts task performance. We consider two factors that guide the training lean toward
representation learning: one is the expressive capacity of the encoder, which refers to whether it can
fully perceive graph data to provide strong representations. The other is the adequacy of encoder
training, which involves whether the optimization of the objective function can effectively coordinate
the optimization of both the encoder and decoder.

For the first factor, we follow prior work Hou et al. (2022; 2023); Zhao et al. (2024) on the encoder
selection, which adopted GAT (Velickovic et al., 2017) and GIN (Xu et al., 2018) for node and graph
tasks, respectively, as both theoretical and empirical evidence demonstrate that they have strong
expressive capabilities for graph tasks. This also ensures fair comparison in subsequent experimental
analysis. Specifically, their message-passing mechanism can be expressed as:

h{®) = comMB (hﬁ,’“*”,AGGR{hSﬁ*” fu€ /\/(v)}> . 1<k<IL, (11)

where hg,k) denotes representation of node v at the k-th layer, N (v) is the set of neighboring nodes
connected to node v and L is the number of layers. AGGR(-) and COMB(-) are used for aggregating
neighborhood information and combining ego- and neighbor-representations, respectively. For graph-
level tasks, the READOUT(+) function aggregates node features from the final iteration to obtain the
entire graph’s representation.

It is worth noting that even given a powerful representation learner, there is a potential risk that
the model training may tend to ignore the information in z. This is because the input x to the
encoder and the reconstruction target by the decoder are the same, which might lead the model
to learn a "shortcut”. Consider an extreme case where the encoder performs an identity matrix
mapping Ey(-) = Z(-) on the input features, the optimization objective transforms to L, psm =
Et {A(t)Ex,Ex,x, [l%0(x¢,t,%0) — 0[] }. In this scenario, the encoder obtains a poor capability
to extract graph semantics, since the loss can easily approach zero. To this end, we randomly zero out
partial node features before inputting them into the encoder.

Formally, let X € R™*? be a feature matrix. Define a masking vector R[mask) consisting of n
Bernoulli random variables with probability m, then the modified matrix X’ can be expressed as:

Rimask) ~ Bernoulli(1 —m)", X' = diag(hpmqsk)) X- (12)
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Using corrupted node features as input not only effectively prevents the model from learning shortcuts,
but also reduces redundancy in attributed graphs. This approach essentially creates a more challenging
self-supervision task for learning robust and meaningful representations.

4.2 THE DIFFUSION DECODER

Reconstruction objective. Unlike image features, graph data incorporates feature and structural
information, prompting the question of which to prioritize for reconstruction. Previous work in
graph SSL has explored both directions: for example, GraphMAE (Hou et al., 2022) focuses only
on feature information, while another concurrent work, MaskGAE (Li et al., 2023), only targets
topological attributes. It is worth noting that in many graph learning datasets, features are often
one-hot embeddings, and topology is represented by adjacency matrices—both of which are highly
sparse, thus making it difficult to make decisions based on the nature of data. We empirically tested
reconstructing features, topology, and their combination. Results in table 3 demonstrate that feature
reconstruction performs best, outperforming the hybrid approach, with topology-only reconstruction
yielding the worst results. Therefore, we choose features x as the target for reconstruction.

Customized instantiation of decoder. In decoder design, we draw on the experience of using the
U-Net architecture from the visual domain as a backbone model for diffusion training. The U-Net
architecture Ronneberger et al. (2015) provides representations of different granularities through
up- and down-sampling Si et al. (2024). Additionally, it aligns well with the strict dimensional
requirements of diffusion models. Specifically, when handling graph-level tasks, we propose Graph-
UNet, which adopts GNN layers to replace the convolutional layers in the vanilla U-Net. In this
context, each graph in a mini-batch can be likened to an image in a visual diffusion model; by
uniformly sampling time step ¢ ~ Uniform(0, T") within a mini-batch, we ensure that the level of
feature noise within each graph remains consistent.

However, for node-level tasks, if we instantiate the decoder with GNNgs, it becomes problematic to
use different time steps for different nodes, as this would lead to message passing propagating node
information at varying noise levels. Therefore, to enable the model to clearly perceive distinct noise
levels and conduct training in a principled manner, we replace the GNN layers with the MLP network.
Please refer to appendix B for more details of Graph-Unet.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. Our experiments primarily involve node-level and graph-level datasets. For node clas-
sification tasks, we select 6 datasets drawn from various domains for evaluation. These include
three citation networks: Cora, CiteSeer, and PubMed Sen et al. (2008); two co-purchase graphs:
Photo and Computer Shchur et al. (2018); and a large dataset from the Open Graph Benchmark:
arXiv Hu et al. (2020a). The above evaluation datasets represent real-world networks and graphs
from diverse fields. For graph classification tasks, we select 5 datasets for training and testing:
IMDB-B, IMDB-M, PROTEINS, COLLAB, and MUTAG Yanardag & Vishwanathan (2015). Each
dataset comprises a collection of graphs, with each graph assigned a label. In graph classification
tasks, the node degrees are used as attributes for all datasets. These features are further processed
using one-hot encoding as input to the model.

Evaluation protocols. We follow the experimental settings from (Hassani & Khasahmadi, 2020;
Velickovic et al., 2019). First, we train a GNN encoder and a decoder using the proposed Graffe in
an unsupervised manner. Then, we freeze the encoder parameters to infer the node representations.
We train a linear classifier to evaluate the representation quality and report the average accuracy on
test nodes over 20 random initializations. For node classification tasks, we use the public data splits
of Cora, Citeseer, and PubMed as specified in (Hassani & Khasahmadi, 2020; Thakoor et al.,
2021; Velickovic et al., 2019) and adopt GAT (Velickovic et al., 2017) as the graph encoder. For
graph classification tasks, we follow the experimental setup by Hou et al. (2022) and adopt the GIN
(Xu et al., 2018) as the graph encoder. We feed the graph-level representations into the downstream
LIBSVM classifier Chang & Lin (2001) to predict labels. The average 10-fold cross-validation
accuracy and standard deviation after 5 runs.
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Table 1: Empirical performance of self-supervised representation learning for node classification in
terms of accuracy (%, 7). We highlight the best- and the second-best performing results in boldface
and underlined, respectively.

| Dataset | Cora CiteSeer ~ PubMed Ogbn-arxiv Computer Photo
Supervised GCN 81.5£0.5 70.3+0.7 79.0£04  71.7+0.3 86.5£0.5  92.440.2
perves GAT 83.0+£0.7 72.5+0.7 79.0£0.3  72.1+£0.1 86.9+£0.3  92.6+0.4
GAE 71.5+04 65.8+04 721405 63.6£0.5 85.1£04 91.0+0.2
GPT-GNN 80.1+1.0 68.4+1.6 76.3+0.8 - - -
GATE 83.2+0.6 71.840.8 80.9+0.3 - - -
DGI 82.3+0.6 71.8+0.7 76.8+0.6 70.3£0.2 84.0+0.5  91.6£0.2

MVGRL 83.5+0.4 73.3+0.5 80.1£0.7 - 87.5+0.1 91.7+0.1
GRACE 81.9+04 71.24+0.5 80.6+£04  71.540.1 86.3+0.3 92.240.2
BGRL 82.740.6  71.1£0.8 79.6+£0.5 71.6%0.1 89.74+0.3 92.9+0.3
Self-supervised InfoGCL 83.5+0.3 73.54+04 79.1+£0.2 - - -

CCA-SSG 84.0+0.4 73.1+£0.3 81.0£04  71.24+0.2 88.7+0.3 93.1+£0.1
GraphMAE 84.2+0.4 734404 81.1£04  71.84+0.2 88.6+0.2 93.6+0.2
GraphMAE2 | 84.1+0.6 73.1+£04 80.9+£0.5 71.840.0 89.2+404 933 +0.2
MaskGAE. 44 | 83.8£0.3 729402 82.7£03  71.04+0.3 89.4+0.1 933 +0.0
MaskGAEq;, | 84.3£0.3 73.840.8 83.6+0.5 71.2+0.3 89.5+0.1 933 +0.1
DDM 83.4+0.2 72.5+£0.3 79.6+£0.8 71.3+0.2 89.940.2  93.840.2
Bandana 84.5+0.3 73.6+0.2 83.7+0.5 71.1+£0.2 89.6+0.1 934 +0.1

| Graffe | 84.8404 74.3+04 81.0+0.6 72.1+£02 913402  94.240.1

Implementation details. In our study, we employ either Adam (Kingma, 2014) or AdamW
(Loshchilov, 2017) as the optimizer, complemented by a cosine annealing scheduler (Loshchilov
& Hutter, 2016) to enhance model convergence across different datasets. Moreover, we configure
the learning rate for the encoder to be twice that of the decoder, a strategy that has demonstrated
empirical effectiveness in promoting training stability. In terms of the noise schedule, we explore
several candidate approaches, including sigmoid, linear, and inverted schedules, ultimately selecting
the most appropriate method based on their performance for each dataset. Detailed hyper-parameter
configurations are provided in the appendix C.

5.2 NODE CLASSIFICATION

For comprehensive comparison, we select the following three groups of SSL methods as primary
baselines in our experiments. @ Auto-encoding methods: GAE (Kipf & Welling, 2016), GATE (Salehi
& Davulcu, 2019), GraphMAE(Hou et al., 2022), GraphMAE2(Hou et al., 2023), MaskGAE(Li et al.,
2023), Bandana(Zhao et al., 2024) @ Contrastive methods: GRACE (Zhu et al., 2021), CCA-SSG
(Zhang et al., 2021), InfoGCL (Xu et al., 2021), DGI(Velickovic et al., 2019), MVGRL (Hassani &
Khasahmadi, 2020), BGRL (Thakoor et al., 2021), GCC (Qiu et al., 2020) @ Others: GPT-GNN (Hu
et al., 2020b), DDM (Yang et al., 2024). The performance of 6 linear probing node classification
tasks is summarized in table 1. The results not reported are due to unavailable code or out-of-memory.
Generally, it can be found from the table that our Graffe shows strong empirical performance
across all datasets, delivering five out of six state-of-the-art results. The outstanding results validate
the superiority of our proposed model.

We make other observations as follows: (i) Note that previous work has already achieved pretty
high performance. For example, the current state-of-the-art DDM only obtains a 0.24% absolute
improvement over the second-best baseline, Bandana, in terms of average accuracy on the Computer
dataset. Our work pushes that boundary with absolute improvement up to 1.46% over DDM. (ii) Our
method surpasses the supervised training baseline on almost all tasks. For instance, in the Computer
dataset, the GAT baseline achieves an accuracy of 86.9 under fully supervised training; however,
Graffe improves upon this by 4.4 percentage points. Interestingly, this further corroborates our
theoretical findings presented in section 3.1 and illustrated in fig. 2. It demonstrates that our proposed
model is able to obtain meaningful and high-quality embeddings.

5.3 GRAPH CLASSIFICATION

For graph classification tasks, we further include the graph kernel methods (Shervashidze et al., 2011;
Yanardag & Vishwanathan, 2015) and graph2vec (Narayanan et al., 2017) following Hou et al. (2022).
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Table 2: Experiment results in self-supervised representation learning for graph classification. We
report accuracy (%) for all datasets. We highlight the best- and the second-best performing results in
boldface and underlined, respectively.

|  Dataset | IMDB-B IMDB-M PROTEINS COLLAB MUTAG

Supervised GIN 75.1£5.1 52.3+2.8 76.2+2.8 80.2+1.9 89.4+5.6
P DiftPool 72.6£3.9 - 75.1£3.5 78.9£2.3 85.0+10.3
Graph Kernels WL 72.30+3.44 46.95+0.46 72.92+0.56 - 80.72+3.00
P ) DGK 66.96+0.56 44.55+0.52 73.30+0.82 - 87.44+2.72
graph2vec 71.104+0.54 50.44+0.87 73.30£2.05 - 83.15+£9.25

Infograph 73.03+0.87 49.69+0.53 74.444+0.31 70.65+1.13 89.01£1.13

GraphCL 71.144+0.44 48.58+0.67 74.39+0.45 71.36+1.15 86.80+1.34

JOAO 70.21£3.08 49.20+0.77 74.55+0.41 69.50+0.36 87.35+1.02

Self-supervised GCC 72.0 494 - 78.9 -

MVGRL 74.20£0.70 51.20+0.50 - - 89.70+1.10

InfoGCL 75.104+0.90 51.40+0.80 - 80.00£1.30 91.20+1.30

GraphMAE 75.5240.66 51.63+0.52 75.30+0.39 80.32+0.46 88.19+1.26

DDM 74.054+0.17 52.024+0.29 71.61£0.56 80.70+£0.18 90.15+0.46
Graffe | 76.20+0.23 52.440.37 74.36+0.12 81.28+0.15 91.46+0.26

The performance of Graffe on 5 datasets is summarized in table 2. It can be observed that our
method demonstrates performant results on different tasks, achieving state-of-the-art results on 4 out
of 5 datasets. This further indicates that Graffe, as a new class of generative SSL, holds significant
potential in representation learning. Furthermore, similar to observations in node classification, our
method also outperforms fully supervised counterparts.

5.4 ABLATION STUDY

To demonstrate
the necessity of each module in our model, we con-

Effect of different components Table 3: Ablation of different components.

, R . Node-level ‘ Cora Computer Photo
duct ablation study to validate the different compo-
ts of Graffe. S ificall ider th A Recons. 77.6 86.2 91.7
nents of Graffe. Specifically, we consider three as- 4 %" x Recons, 80.1 374 0
pects for ablation: reconstruction objectives, masking w/o Mask 825 88.5 9.5
strategies, and decoder selection. We select Cora,  w. GAT decoder 83.2 89.8 92.9
Computer, and Photo for node-level tasks, and Graife 84.8 91.3 942
IMDB-B, COLLAB, and MUTAG for graph-level tasks. Graph-level | IMDB-B  COLLAB MUTAG
The experimental results are pr.esented in table 3. Our A Recons. 702 715 836
observations are as follows: (i) The performance of A + X Recons. 71.6 77.6 86.8
reconstructing only feature (i.e., the Graffe model) I\V/IfPl\gaSkd ;Zg %g gég
. . : W. ccodaer . . .
surpasses that of the mixed reconstruction, with the e 762 813 015

worst performance occurring when reconstructing
only topology. This suggests that explicitly reconstructing structural information leads to perfor-
mance degradation. (if) The masking strategy is particularly critical for node-level tasks, as its
removal results in significant performance drops, while the impact is less noticeable for graph-level
tasks. (iii) The choice of decoder layers is critical for different task types. For node-level tasks, using
an MLP layer yields better results compared to a GAT layer, while the opposite is true for graph-level
tasks. This aligns with our intuitive analysis in section 4.2, indicating that the propagation of noise is
detrimental to diffusion representation learning.

Evaluation of mask ratio

Computer MUTAG

Effect of mask ratio Since mask strategy is a crucial 94 B m=0
o . | — =0.1
component of our framework, it is necessary to evaluate 62 = m=03
how to choose a proper m. We conduct an empirical oo M 07
B m=0.9

analysis on Cora, Computer and MUTAG dataset and
consider a candidate list covering the value ranges of m:
[0,0.1,0.3,0.5,0.7,0.9]. As shown in fig. 4, the optimal ]

masking choice varies across different datasets. For the .

Cora and Computer datasets, the best performance is - HH I
achieved when m = 0.7, whereas on the MUTAG dataset, 80- I_IH ‘

the best results are obtained without applying any masking. o

Accuracy (%)

©
>

©
N

Figure 4: The effect of mask ratio m.
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Moreover, a higher mask ratio even leads to performance decline on graph-level tasks. This suggests
that the selection of the mask ratio should be tuned according to the specific task requirements, as
there is no one-size-fits-all solution.

6 RELATED WORK

6.1 SELF-SUPERVISED LEARNING ON GRAPHS

Contrastive methods Being popular in SSL, contrastive methods aim to learn discriminative
representations by contrasting positive and negative samples. The key to obtain distinguishable
representations lies in the way of constructing contrastive pairs. DGI (Velickovic et al., 2019) and
InfoGraph (Sun et al., 2019), based on MI maximization, corrupt graph feature and topology to
construct negative samples. To avoid the underlying risk of semantic damage, GRACE (Zhu et al.,
2020), GCA (Zhu et al., 2021), and GraphCL (You et al., 2020) use other graphs within the same
batch as negatives. Other works, i.e., BGRL (Thakoor et al., 2021) and CCA-SSA (Zhang et al.,
2021), propose to achieve contrastive learning free of negatives yet demanding strong regularization
or feature decorrelation. A line of works borrow from data augmentation in the field of computer
vision (CV) to construct constrastive pairs, including feature-oriented ((Thakoor et al., 2021; You
et al., 2020; Zhu et al., 2020), shuffling (Velickovic et al., 2019)), perturbation (Hu et al., 2020b; You
et al., 2020)), and graph-theory-based (random walk (Hassani & Khasahmadi, 2020; Qiu et al., 2020).

Generative methods Generative self-supervised methods aim to learn informative representations
using learning signals from the data itself, usually by maximizing the marginal log-likelihood of
the data. GPT-GNN Hu et al. (2020b), following the auto-regressive paradigm, iteratively generates
graph features and topology, which is unnatural as most graph data has no inherent order. GAE and
VGAE Kipf & Welling (2016) learn to reconstruct the adjacency matrix by using the representation
learned from GCN, while other graph autoencoders Salehi & Davulcu (2019); Hou et al. (2022)
further combine it with feature reconstruction with tailored strategies. However, these generative
methods are usually not principled in terms of probabilistic generative models and often prove to be
inferior to the contrastive ones.

6.2 DIFFUSION MODELS FOR REPRESENTATION LEARNING

The very first attempt has combined auto-encoders with diffusion models—e.g., DiffAE (Preechakul
et al., 2022), a non-probabilistic auto-encoder model that produces semantically meaningful latent.
InfoDiffusion (Wang et al., 2023), as the first principled probabilistic generative model for represen-
tation learning, augments DiffAE with an auxiliary-variable model family and mutual information
maximization. Similarly, Zhang et al. (2022) uses a pre-trained diffusion decoder and designs a
re-weighting scheme to fill in the posterior mean gap. Targeting image classification tasks, Wei et al.
(2023); Gao et al. (2023); Hudson et al. (2024) combine latent diffusion with the self-supervised
learning objective to get meaningful representations. The decoder-only models (Xiang et al., 2023;
Chen et al., 2024), directly use the representations from intermediate layers without auxiliary en-
coders. However, the use of expressive diffusion models for graph representation learning remains
under-explored. DDM (Yang et al., 2024) takes an initial step, but the proposed diffusion process is
not mathematically rigorous and principled.

7 CONCLUSION

In this paper, we introduce Graffe, a self-supervised diffusion representation learning (DRL)
framework designed for graphs, achieving state-of-the-art performance on self-supervised graph
representation learning tasks. We establish the theoretical foundations of DRL and prove that the
denoising objective is a lower bound for the conditional mutual information between data and its
representations. We propose the Diff-InfoMax principle, an extension of the standard InfoMax
principle, and demonstrate that DRL implicitly follows it. Based on these theoretical insights and
customized design for graph data, Graf fe excels in node and graph classification tasks. We provide
discussion about limitations and future work in appendix C.
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A PROOFS OF THEOREMS

A.1 PROOF OF THEOREM 1
Theorem 1. The denoising score matching objective Ly, psar has a strictly positive lower bound,
regardless of the network capacity and expressive power

min Ly, pgnr = min By {A(1)Ex, B, x, [[I%0(x:, ) — xo0]*] }

=E, {)\( VEx, [Tr(Covixglx:])]} > 0.

The conditioned denoising score matching objective objective Lx, psir,¢ has a non-negative lower
bound, i.e.

(13)

H)l(in Lxo.DsM,6 = Bt {\(t)Ex, x, [Tr(Cov[xo|x¢, Eg(x0)])]} > 0. (14)
Proof.
argmin Ly, psm
Xg
=argmin[E, {/\(t)Eonxt|x0 [||xa(xt, t) — X()H2] }
Xg

= argmin E; {/\(t)IExmxt [er(xt, t) — Elxo|x¢] + E[xo|x¢] — x0||2]}
Xg

=argmin B, { \(t)Ex, x, [|[%0(x¢,t) — Elxo|x]||” + 2(x0(xs, t) — E[xo|x:], E[x0|x:] — x0)]
Xg

+ A1) Exg.x, [[EBxolx:] —xol|] }
:ar%cminEt{/\(t)Exmxt [11x0(x¢, ) — Elxolx]||” + 2(x0(x¢, t) — E[xo|x:], E[xo|x] — x0)] }-
15)

Note that
Exox, [(x0(x¢t, 1) — E[xo|x¢], E[x0[x¢] — x0)]

B, By e, [(X6 (X6, 1) — Elxo[x¢], Efxo %] = x0)] (16)

=Ex, [(x0(xt, 1) — Elxo[x¢], Exyjx, [Elxo[x:] — xo])] -
Due to the property of conditional expectation, we have that

Bocolx, [E[x0[xt] — xo] = E[xo|x¢] — E[xo[x¢] = 0. (17)
Thus we have
Exo x, [(X0(xt, 1) — E[xo[x:], E[x0[x¢] — %0)] = 0. (18)
Thus
argmin Ly, psm
Xo

:argxr;linEt{)\(t)ExO’xt [||X9(xt,t) — E[xo|x¢]||1 + 2(x0(x¢, 1) — E[xo|x¢], E[x0|x¢] — x0>] }
:argxr;linEt{)\(t)ExO’xt [||X9(xt,t) — E[x0|xt]||2] }

=E[xg|x¢].
(19)

Substitute the minimizer of Ly, psas into it, we get the minimum of Ly, psas

minﬁxo,DSM
—mlnEt {)\ ) Eso Ex,1xo [||X9(xt7t) — x0||2]}

=E, {)\(t ExoEx,|xo [||E[X0|xt} - x0||2]}

=E; {A(t)Ex, Exyx, [(Elx0[x:] = x0)" (E[x0[x:] — x0)] } (20)
=E¢ {\(H)Ex, Excopx, [Tr((E[xo]x:] —x0)" (E[x0[x:] —x0))] }

=E, {)\(t)ExtExO‘xt [Tr(( [x0|x¢] — x0)(E[xo|x¢] — xO)T)]}

=B {A(t) [ r(E X0 |X¢ [( [xo[xt] — x0)(E[xo|x¢] — XO)T])”

=E; {\(t)Ex, [Tr(Cov[xg|x:])]} > 0.

t
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The minimum is strictly positive for non-degenerated distributions x¢ |x;.

The proof of conditioned denoising score matching objective is similar.

argmin Lx, psm,e
X0

=argmin [E, {/\(t)Eonxt|xo [er(xt, t, Ey(x0)) — X()HQ]}
Xg

= argmin B {\(£)Ex, x, [[I%0(xt, t, Es(%0)) — E[xo[xs, Eg(x0)] + E[xo|xt, By (x0)] — %o?] }
Xg

= argmin By {\(1)Ex, x, [[%0(xt,t, Es(x0)) — E[xo|x:, Eg(x0)][1*] +
Xg

+ 2A(1) Exo x, [(x0(xt,t, Ep(x0)) — E[xo[xt, E(x0)], E[xo|x¢, Es(x0)] — Xo0)]
+ A(H)Ex x, [IE[xol%:, Bg(x0)] — x0lI*] }
:argxreninIEt{/\(t)IExO’xt [||xe(xt,t, E4(x0)) — E[xo\xt7E¢(xo)]||2]
+ 2M(1)Exg x, [(X0(x¢, 1, Eg(x0)) — E[Xo[%s, Ep(x0)], E[xo|xt, Eg(x0)] — %0)] } on
Note that
Exox. [(X0(Xt, T, Eg(x0)) — E[xo[xt, E(%0)], E[x0[x¢t, Eg(x0)] — %0)]
=Eoy xe, 5 (x0) [(X0(Xt, 1, B (%0)) — Elxo[xt, Eg(x0)], E[xo[x¢, Ep(X0)] — Xo)]
=B, B4 (x0) Exolxr . B (x0) (X0 (Xt t, Eg(X0)) — E[xo[x¢, Ep(x0)], E[x0[%t, ¢ (%0)] — Xo0)]

=Ex, B, (x0) [(X0(Xt, T, Bg(x0)) — E[Xo[x¢, By (%0)], Exolx,, B, (x0) [E[X0[x¢, Eg(x0)] — x0])] -
(22)
Due to the property of conditional expectation, we have that

By lxe, B (x0) [E[X0[Xt, Eg(x0)] — x0] = E[xo|x¢, By (%0)] — E[xo|x¢, Eg(x0)] = 0. (23)
Thus we have
By, [(Xo(Xt, T, Eg(x0)) — E[xo|xs, By (x0)], E[xo|x¢, Ey(x0)] — %0)] = 0. (24)
Thus

argmin Ly, psm,é
X0

= argmin Et{)\(t)IExnyt [||xe(xt, t,Ey(x0)) — Elxo|x¢, E¢(x0)]|m
Xg
+ 2(6)Excg i, [0 (1, , B (%0)) = Elxofxs, Eg(x0)], Elxolxt, Eg(x0)] —x0)] } (%)
= argmin B¢ {\()Ex, x, [[[X0(xt,t, Eg(x0)) — E[xo|xt, B (x0)]|?]
X¢
=E[xo|x, Eg(x0)]-
Substitute the minimizer of Ly, psas into it, we get the minimum of Ly, psas

min £XO,DSM,¢

—mlnEt {)\ Eonxt\xo [||xe(xt,t E4(x0)) — x0||2]}

=, {/\( )ExoEx,jxo [IE[Xo|x¢, Eg(x0)] — x0||*] }

=E¢ {A\(6)Ex,. 2, (x0) Bxoer. 2o (x0) [([E[X0 (%1, Egp(%0)] = %0)" (B[x0|%¢, B (x0)] — x0)] }

=E¢ {A(t)Ex,, £, (x0)Exolx:. B (x0) [TT((E[Xo[%¢, By (%0)] — %0)" (Elxo|x¢, Ey(%0)] — %0))] }
=E¢ {A\(t)Ex,, £, (xo)Exolx:, B (x0) [TT((E[Xo[x¢, Eg(x0)] — x0) (E[xo|x¢, Es(x0)] — %x0)7)] }
=B { M) Ex,. 4 (x0) [Tr(Baco s B, (x0) [(ElXo %, B (x0)] — x0)(Elx0|x1, By (x0)] —%0)"])] }
=E,; {\(t)Ex, £ o (x0) [ Tr(Cov[xo|xy, E, (xo)})]}

=E, {)\(t)]ExO,xt [Tr(Cov[xo|x¢, Eg(x0)])]} =
(26)
]
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A.2 LEMMAS

Lemma 1. U and V are two square-integrable random variables. U is G-measurable and E [V|G] =
0, then

E[|U+VIP]=E[IU*] +E[|VI?]. 27)
Proof.
E[|U + V|]?] 08)
=E [|[U]]?] + E [|IVI]*] +2E[(U, V)],
while
E[(U,V)]=E[E[U, V)|g]] = E[(U,E[V|G])] = 0. (29)
O

Lemma 2. X is a random variable, F and G are two o-algebras such that G C F, then we have
E [|E[X|F]I°] > E[|E[X|g] 7] (30)

Proof. Let U = E[X|G] and V = E [X|F] — E[X]G], U is G-measurable and according to the
tower property of conditional expectation

E[V|g] =E [E[X|F]|g] - E[X]|g] = E [X|g] — E[X|G] = 0. 31)

According to lemma 1, we have
E[|E[X|F]|?] = E[IE [X|]|]°] + E [|E[X|F] - E[X|G]|*’] > E[|E[X|F][I]. (32)
O

Lemma 3. Let I1; be the set of distribution p(x) on R™ satisfying the following condition:
E,[X]=0, Tr (COV [X]) =t. (33)
P

Then the n-dimensional Gaussian distribution with mean 0 and covariance matrix 3 = %In is the
maximum entropy distribution in 11;

Proof. We know that any probability distribution on R,, with finite means and finite covariances
has its entropy bounded by the entropy of the n-dimensional Gaussian with the same means and
covariances. Thus the maximum entropy distribution in R,, lies among the n-dimensional Gaussians
in IT;, which are the distributions of the form

1 xI'y—1x
px(x) T et eXp( 5 ) (34)

where 3 is a positive-definite symmetric matrix with trace t. The entropy of py is
hps) = 3 (n -+ log ((2n)" det(5). G5)
The arithmetic-geometric mean inequality on the eigenvalues of 3 derives
%ﬂﬂnzvﬁﬁi (36)

The equality holds if and only if all the eigenvalues of 3 are equal. Therefore

2t
h@gsZ<LH%<Z)>. (37)

Thus the n-dimensional Gaussians with mean 0 and covariance %In is the maximum entropy distri-
bution in II;.

Lemma 4. The following multi-dimensional law of total variance holds

Tr (Cov [Y]) = E [T (Cov [Y|X])] + Tr (Cov [E [Y|X]]). (38)
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Proof.
Tr (Cov [Y])
. . (39)
— Ty (IE [YY?] - E[Y]E[Y] ) .
Due to the property of conditional expectation, we have
E[YY'] =E[E[YY?|X]] =E [Cov [Y|X] +E[Y|X]E [Y|X}T} . (40)

E[YY'] -E[Y]|E[Y]" =E [Cov [Y[X] + E[Y|X]E [Y|X]T} _EE[YIX]EE[Y|X]]”

= E[Cov[Y|X]] +E [E [Y|X|E [Y|X]T} _E[E[YX]EE[Y|X]"
= E [Cov [Y[X]] + Cov [E[Y|X]].

(41

Take trace operation on both sides, we have
Tr (Cov [Y]) = E [Tr (Cov [Y|X])] + Tr (Cov [E [Y|X]]) . (42)
O

A.3 PROOF OF THEOREM 2

Theorem 2. The conditioned denoising score matching objective Ly, psnr,¢ has a smaller minimum
compared with the vanilla objective:

min Ly, psm,e < min Ly, psm. 43)
X X
Proof.
min Lx, psm = Ey {A\(¢)Ex, [Tr(Cov[xg|x¢])]} > 0. (44)
Xg
rr)lcisn Lxo.D5M,¢ = Bt {A\(t)Ex, x, [Tr(Cov[xo|x¢, Eg(x0)])]} > 0. (45)

It’s sufficient to prove the following inequality
Exo x, [Tr(Covixo[xt; Ep(x0)])] < Ex, [Tr(Covlxolx:])], (46)
which is equivalent to show
Exyx; [[E[Xol%t, Bp(x0)] = %01 < Exqx, [IIE[x0lxe] = xol[*] - (47)

Note that )
Exo . [IIE[Xo|xt, Eg(x0)] — %o||”]

)]
=Exox [IEXolxt, Eg(x0)][1] + Exqx, [[I%0l]

= Exox, [2(E[x0[x¢, Eg(x0)], %0)]

=Eux x, [||E[X0|XtaE¢ XO)] | ] + Exg x: “|X0H

= Ex, 5y (x0) Bxolx:. B, (x0) [2{E[X0 %, Eg (x0)], %0)]
=Ex, x, [”E[XO|XtaE¢(XO)]”2] + Exg,x, [”XOHq

— 2By, B, (xo) {E[Xo0[%t; Eg(x0)], E[xo[x¢, E(x0)])]
=Eoox, [[1%0]|”] = Exg e, [IE[Xo|x:, Eg(x0)]1%] -

(43)

Similarly, we have
Exox: [IE[Xo|%:] — %o[%]

=Exox, [[%0]1%] = Exo.x, [[Exolx:]?] -
Thus it’s equivalent to proving the following inequality

Exox: [IIE[xo[x][I*] < Exgx, [IE[xo0|%e, Bo (x0)]]|] - (50)

Note that the o-algebra o(x;) C o(x¢, Ey(x0)), according to lemma 2, the result holds. O

(49)
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A.4 PROOF OF THEOREM 3

Theorem 3. Suppose xo € R%, let Ly psir.ot = Exgx, [Tr(Covixo|x:, Ey(x0)])] be the condi-
tional denoising score matching loss at time t, and let h(x|y) be the conditional entropy of x given
y, then the negative logarithm of denoising score matching loss is a lower bound for the conditional
mutual information between data and feature, which quantifies the shared information between x
and Ey(xo), given the knowledge of x,

d 2
I(x0; E¢(x0)|%¢) > —log Lx,. Ds,et + C,  where C =log — + —h(x¢|x¢) is a constant.

2re  d
(S
Proof. According to Lemma 3, we have
h(xo|x: = x, Ey(x0) = y) < g <1 + log( m T (Covxolx: d X, By (xo) yD)) .52
d 2h =x,FE =
Tr (Covixglx; = x, Ey(x0) =y]) > —exp (xopxs =%, Ey(x0) = y) . (53)
2me d
Taking expectation on both sides and applying Jensen’s inequality (exp is a convex function)
d 2h(xq|x¢, Fy(x
Ex x, [Tr(Covlxo|xs, Ey(x0)])] > s— exp (olx, Bo(x0)) ), (54)
2me d
Therefore, an upper bound for the conditional entropy is given by
d 2me
h(xo|x¢, Eg(x0)) < §log TEXO’X" [Tr(Cov{xo|x¢, Eg(x0)])] |- (55)
We have a lower bound of the mutual information
I(x0;x¢, Eg(x0))
=h(xo) — ’;(X0|Xt72E¢>(X0)) 56)
me
>h(xg) — 3 log <dExo,Xt [Tr(Cov|xg|x¢, E¢(x0)])]>.
According to the chain rule of mutual information
I(xo;x¢, Eg(x0)) = I(x0;%¢) + I(x0; Egp(%0)|%¢), (57)
we have
d 2Te
5108 | —Exqx, [Tr(Covixolxe, Eg(x0)])] ) 2 h(x0) — L(x0: %) — I (x0; E (x0)[x:) (58)

> h(xo|x¢) — I(x0; Ep(x0)|%¢).

Thus we have proved that

By [T1(Covxabe, By xol)] = 5 xp ( Gh05alx) ) exp (TG Exso)lx)). (59

But we have
Lo, D5M,b,t = Exo x, [Tr(Covixo|xt, Ey(x0)])] - (60)
Thus J )
Lxy.DSM, bt > e exp (dh(X0|Xt)) exp (—I(xo; Ep(x0)|%¢))- (61)
We get the result after rearranging the above equation
d 2
I(x0; Ey(x0)|x¢) > —log Ly, DsM,¢,t + 10g Ime + gh(x0|xt). (62)
O
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B ARCHITECTURE OF GRAPH-UNET

As illustrated on the right side of fig. 1, our decoder adopts a UNet-like architecture, comprising a
contracting path (left side) and an expansive path (right side). However, since up-sampling and down-
sampling operations cannot be directly applied to graph data, we instead represent the granularity
of modeling through dimensional reduction and expansion. Specifically, due to the requirement of
the diffusion model that the input and output dimensions match the original feature dimensions, we
introduce additional input and output layers to perform dimensional mappings. In the contracting path,
repeated dimensional reduction is performed using either GNN layers or MLP layers, depending on
different task types, which halves the number of hidden dimensions at each step. In the expansive path,
dimensional expansion is repeated, but before each mapping, the hidden state of the corresponding
contracting path with the same dimension is added via skip connections, which differs from the
original UNet’s concatenation.

It is also important to note that, in addition to the noisy data x;, the decoder also receives the condition
z and time ¢ as inputs. We encode the time information using two linear layers with SiLU activation
(Elfwing et al., 2018), and employ positional encoding to enable the model to distinguish temporal
order. Furthermore, a key challenge is how to fuse x;, z, and ¢. Based on experimental results, the
optimal approach for node-level tasks is to directly sum these three components after encoding, as
shown below:

h(+Y) = h® 4 MLP, (¢) + MLP,(2) (63)
where MLP,(-) and MLP,(+) are both MLP layer to achieve dimensional mapping.

For graph-level tasks, we follow the approach commonly used in the field of computer vision, utilizing
Adaptive Normalization layers (Dhariwal & Nichol, 2021; Hudson et al., 2024) to fuse the three
components:

h(+h = AdaNorm(h(l), z,t) = zs(tsLayerNorm(h(l)) +ty) + Zp (64)

where (¢s,tp) and (zs, zp) are both obtained by linear projection.

C HYPER-PARAMTER CONFIGURATIONS

Table 4: Hyper-parameter configurations for node classification datasets.

‘ Dataset ‘ Cora CiteSeer PubMed Ogbn-arxiv Computer Photo
feat_drop 0.3 0.4 0.2 0.1 0.4 0.1
att_drop 0.1 0.2 0.2 0.2 0.2 0.3
num_head 4 4 2 2 2 4
Hyper- ‘ num_hidden 1024 1024 1024 256 512 512
ypet-parameters learning_rate le-4 le-4 le-4 le-3 le-4 3e-4
mask_ratio 0.7 0.7 0.7 0.7 0.7 0.7
noise_schedule | sigmoid sigmoid  sigmoid inverted quad sigmoid
optimizer Adam Adam Adam Adam Adam Adam

Table 5: Hyper-parameter configurations for graph classification datasets.

\ Dataset \ IMDB-B IMDB-M PROTEINS COLLAB MUTAG
feat_drop 0.2 0.2 0.2 0.2 0.2
num_hidden 512 512 512 256 256
Hyper-parameters learning_rate 1.5e-4 1.5e-4 1.5e-4 1.5e-4 le-4
mask_ratio 0 0 0 0.3 0
noise_schedule | sigmoid  sigmoid sigmoid sigmoid  sigmoid

optimizer AdamW  AdamW AdamW AdamW  AdamW
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D ADDITIONAL EXPERIMENTS

D.1 ABLATION STUDY ON ENCODER BACKBONE

To evaluate how much impact the choice of encoder has on the performance of Graffe and other
baselines, we conduct ablation studies on the encoder backbone using three classic datasets: Cora,
Citeseer, and PubMed. We chose GRACE (Zhu et al., 2021) and CCA-SSG (Zhang et al., 2021) as
baselines for contrastive learning and GraphMAE (Hou et al., 2022), MaskGAE (Li et al., 2023), and
Bandana (Zhao et al., 2024) as baselines for the MAE family. The experimental results are shown in
Table 6.

Table 6: Ablation study on different encoder design.

Method Cora Citeseer Pubmed
GCN GAT GCN GAT GCN GAT

GRACE 81.9+0.4 81.0+0.6 71.2+0.5 71.5+£0.5 80.6£0.4 78.9+0.2
GraphMAE 82.54+0.5 842404 72.6+0.6 73.44+04 80.9+0.2 81.1+£04
CCA-SSG 84.0+0.4 82.7+0.6 73.1£0.3 72.34+0.6 81.0+0.5 80.7£0.9
“MaskGAE.q4. 83.8£0.3 82.0+0.1 72.9+0.2 72.0+04 82.7+0.3 81.2+0.1
Bandana 84.5+0.3 83.1£0.6 73.6+0.2 73.7+£0.5 83.7+£0.5 81.5+0.8
Graffe 83.2+0.5 84.8+0.4 73.2+0.2 743+04 80.5£0.4 81.0£0.6

Results marked with ™ are taken from the original literature.

The results show significant performance declines for many methods when substituting GCN for
GAT, such as CCA-SSG, MaskGAE, and Bandana on Cora and Citeseer dataset, which also aligns
with observations in Table 5 of MaskGAE (Li et al., 2023). In contrast, for GraphMAE and Graffe,
switching their GAT backbones to GCN cause a noticeable drop in performance. We believe different
SSL methods have distinct encoder preferences and using GAT or GCN as the encoder in graph SSL
is not universally optimal.

D.2 ABLATION STUDY ON GRAPH-UNET BACKBONE

As mentioned in Appendix B, we chose the Unet structure because it can capture information at
different granularities while strictly ensuring input-output dimensional consistency. During our early
exploration, we also tested using a simple MLP or GNN as the decoder. The experimental results on
Cora, Photo, and IMDB-B datasets are shown in Table 7. It is worth noting that the GNN decoder
adopts the same architecture as the encoder: GAT for node-level tasks and GIN for graph-level tasks.

Table 7: Ablation study on different decoder design.

Decoder Cora Computer IMDB-B
MLP 82.6+0.5 89.1+£0.1 75.0£0.6
GNN (GAT/GIN) 80.2£0.3 88.1+0.1 74.5+0.5
Graph-Unet 84.8+0.4 91.3£0.2 76.2£0.2

We can observe that using either an MLP or GNN as the decoder results in significantly poorer
performance compared to the Graph-Unet. Moreover, for node-level tasks, employing a GNN as
the decoder leads to a substantial performance drop. This observation aligns with our analysis in
Section 4.2, where we note that GNNs can cause interference among nodes due to varying degrees of
noise introduced during the diffusion process.
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E DISCUSSIONS

Intuitive guide for choosing masking ratio m. As shown in Appendix C, although the optimal
mask ratio differs across datasets, there are clear trends across different tasks. For instance, a larger
mask ratio generally yields better results in node classification, while the opposite is true for graph
classification. We hypothesize that this may be due to the combined effect of the graph characteristics
and diffusion representation learning. Here we provide some intuitive understanding. In graph
classification tasks, where graphs are typically small and have simpler connectivity, a small mask
ratio is suggested to avoid significant information loss. Conversely, in node classification tasks,
where there are more nodes and more complex connections, a large mask ratio is suggested since
overly detailed modeling can cause the model to become overly focused on intricate information. We
suggest that when selecting the mask ratio, one should first assess the characteristics of the graph and
then determine an appropriate candidate for the mask ratio accordingly.

Limitations and future work Despite the significant contributions of this study to the understand-
ing of DRL and significant performance on graph tasks, there are certain limitations that should
be acknowledged to provide a comprehensive perspective. The proposed Diff-InfoMax principle
involves a weighting function over time. How to dynamically adjust the weighting function over
different data and tasks remains an unsolved problem. Additionally, methods to optimize alternative
variational lower bounds of the Diff-InfoMax principle are left for future exploration. From an
empirical perspective, we believe that the structure, or the non-Euclidean nature of graphs, is crucial
information for graph representation learning. Therefore, an intriguing question remains regarding
the deeper understanding of explicitly incorporating structural modeling into diffusion representation
learning, which is a highly non-trivial task. Moreover, our method does not have an advantage in
terms of time efficiency. Improvements in training speed and further refinements in model design are
left as directions for future research.
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