Under review as a conference paper at ICLR 2026

FAST ESTIMATION OF WASSERSTEIN DISTANCES VIA
REGRESSION ON SLICED WASSERSTEIN DISTANCES

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the problem of efficiently computing Wasserstein distances for multiple
pairs of distributions drawn from a meta-distribution. To this end, we propose a fast
estimation method based on regressing Wasserstein distance on sliced Wasserstein
(SW) distances. Specifically, we leverage both standard SW distances, which
provide lower bounds, and lifted SW distances, which provide upper bounds, as
predictors of the true Wasserstein distance. To ensure parsimony, we introduce two
linear models: an unconstrained model with a closed-form least-squares solution,
and a constrained model that uses only half as many parameters. We show that
accurate models can be learned from a small number of distribution pairs. Once es-
timated, the model can predict the Wasserstein distance for any pair of distributions
via a linear combination of SW distances, making it highly efficient. Empirically,
we validate our approach on diverse tasks, including Gaussian mixtures, point-
cloud classification, and Wasserstein-space visualizations for 3D point clouds.
Across various datasets such as MNIST point clouds, ShapeNetV2, MERFISH Cell
Niches, and scRNA-seq, our method consistently provides a better approximation
of Wasserstein distance than the state-of-the-art Wasserstein embedding model,
Wasserstein Wormhole, particularly in low-data regimes. Finally, we demonstrate
that our estimator can also accelerate Wormhole training, yielding RG-Wormhole.

1 INTRODUCTION

Optimal Transport (OT) and Wasserstein distances (Villani, 2009; Peyré & Cuturi, 2019) have be-
come essential tools in machine learning, widely used for quantifying the similarity or dissimilarity
between probability distributions. Fundamentally, the Wasserstein distance measures the minimum
cost required to "transport" mass from one distribution to another, effectively capturing the un-
derlying geometry of the data. Thanks to their clear geometric interpretation and mathematical
robustness, Wasserstein distances have found applications across various fields, such as generative
modeling |Genevay et al.|(2018), computational biology Bunne et al.| (2023), chemistry Wu et al.
(2023)), and image processing [Feydy et al.[(2017). Despite its utility, computing the exact Wasserstein
distance is computationally expensive. It typically requires solving a large-scale linear program to
find an optimal transport plan, with a time complexity of O(n?logn) for discrete distributions of
size n. This high cost severely limits its use in large-scale or real-time settings.

In many applications, Wasserstein distances are computed (repeatedly) for many pairs of distributions,
e.g., dataset comparisons (Alvarez-Melis & Fusi, [2020), 3D point-cloud autoencoder (Achlioptas
et al., |2018)), point-cloud nearest neighbor classification/regression (Rubner et al.| |1998), learning
embeddings for distributions (Kolouri et al.,[2021)), density-density regression (Chen et al.,[2023)),
and so on. Therefore, the high computational complexities of the Wasserstein distance become the
main bottleneck to scaling up these applications. As a result, speeding up the computation of the
Wasserstein distance has become a vital task in practice.

To address this bottleneck, a straightforward improvement is to speed up the computation of the
Wasserstein distance. For example, entropic regularization (Cuturi, 2013) enables fast approximation
via Sinkhorn iterations, while other methods exploit the structure in the transport plan, such as low-
rank approximations (Scetbon et al.|[2021)). In addition, some approaches rely on strong structural
assumptions, such as the Bures-Wasserstein metric (Dowson & Landau, |1982) gives a closed-form
solution for the exact 2-Wasserstein distance (W5) under the Gaussian assumption on distributions.

Under review as a conference paper at ICLR 2026

Another approach is to cast computing Wasserstein distances for many pairs of distributions as a
learning problem, i.e., learning a model first to predict the Wasserstein distance given any pair of
distributions, then use the model later for the mentioned downstream tasks. For example, Deep
Wasserstein Embedding (DWE) (Courty et al., |2018) trains a Siamese convolutional network to
match OT distances between 2D images, while Wasserstein Wormhole (Haviv et al., [2024)) employs
transformer-based architectures to learn embeddings of distributions, allowing Euclidean distances
in the learned space to approximate Wasserstein distances efficiently. While effective, these deep
learning-based methods require significant computational resources and time to train, and their
performance may degrade when limited training data are available. Moreover, these approaches are
limited to empirical distributions because of the use of neural networks.

In this work, we propose a novel approach to predict the Wasserstein distance without relying on any
neural networks or learned embeddings. Moreover, the proposed approach relies on a parsimonious
model and can handle both continuous and discrete distributions. In particular, we propose to regress
the Wasserstein distance on sliced Wasserstein (SW) distances (Rabin et al., [2010; Mahey et al.,
2023; Nguyen & Hol 2023; Liu et al.| [2025; Deshpande et al., [2019; Rowland et al., 2019). In greater
detail, we introduce linear models with Wasserstein distances as the response and SW distances as the
predictors. We provide estimates of the models via efficient least-squares estimates. In addition, since
sliced Wasserstein distances have low computational complexity, the resulting Wasserstein regressor
is computationally efficient.

Contribution: In summary, our main contributions are three-fold:

1. We introduce the first regression framework where the Wasserstein distance serves as the response
variable and various sliced Wasserstein (SW) distances act as predictors, in the setting of random
pairs of distributions. This framework not only uncovers the relationship between the Wasserstein
distance and its SW-based approximations but also enables efficient estimation of the Wasserstein
distance. Specifically, we use SW distance (Bonneel et al., |2015), Max-SW (Deshpande et al.| [2019),
and energy-based SW (Nguyen & Ho, |2023)), all of which provide lower bounds on the Wasserstein
distance, as predictors. In addition, we incorporate lifted SW distances, which provide upper bounds,
including projected Wasserstein (Rowland et al.,[2019), Minimum SW generalized geodesics (Mahey
et al.,[2023)), and expected sliced distance (Liu et al.| 2025)).

2. We propose two linear models for the regression problem and describe their estimation via
least-squares. The first model is unconstrained and admits a closed-form least-squares solution. The
second model incorporates constraints that leverage the known bounds between SW distances and the
Wasserstein distance, thereby reducing the number of parameters by half. Based on these estimations,
we obtain a fast method to approximate the Wasserstein distance for any pair of distributions, with
the same computational complexity as that of computing SW distances.

3. Empirically, we demonstrate that our approach yields accurate estimates of the Wasserstein
distance, particularly in low-data regimes. We first evaluate its accuracy through simulations with
Gaussian mixtures. We then apply the estimated distances to visualize distributional data and to
perform k-NN classification on ShapeNetV2 point clouds. Next, we benchmark our method against
Wasserstein Wormhole, the state-of-the-art Wasserstein embedding model, across four datasets of
increasing dimensionality: MNIST point clouds, ShapeNetV2, MERFISH cell niches, and scRNA-seq.
Finally, we propose RG-Wormhole, a variant of Wasserstein Wormhole that replaces its Wasserstein
computations with our estimates, preserving accuracy while substantially reducing training time.

Organization. Section reviews preliminaries on the Wasserstein distance, its sliced variants, and
their computation. Section |3|introduces our regression framework for approximating Wasserstein dis-
tances from sliced variants, together with both constrained and unconstrained linear models. SectionE]
reports the experimental results. The appendices provide supplementary experiments (mixtures of
Gaussians and distributional space visualizations), detailed experimental settings, theoretical proofs,
and additional related work.

Notations. For any d > 2, let S¥~! := {# € R? : ||0|| = 1} denote the unit sphere in R?, and
let 4(S%1) denote the uniform distribution on it. For p > 1, we write P,(X) for the set of all
probability measures on X" with the finite p th moment. Given two sequences a,, and b,,, the notation
an, = O(b,) means that a, < Cb, for all n > 1, for some universal constant C > 0. For a
measurable map P, the notation Py denotes the push-forward of y through P. Additional notation
will be introduced as needed.

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

We first review definitions and computational aspects of the Wasserstein distance and its related
properties in one dimension.

Wasserstein distance. Wasserstein-p (p > 1) distance | Villani| (2008)); |[Peyré et al.| (2019) between
two distributions p € P,(R%) and v € P,(R?) (dimension d > 1) is defined as:

WP(u,v) = inf z — y|Pda(z,y), 1
2wy = ot [o= ylpiney) m

where II(p, v) = {m € P(R? x RN} | [pa dm(z,y) = pu(x), [z dr(z,y) = v(y)} is the set of all
transportation plans i.e., joint distributions which have marginals be two comparing distributions.
When 4 and v are discrete distributions i.e., = Y | @;6,, (n > 1) and v = Z;"':l Bjdy; (m > 1)
where vazlm =3B =landa; >0, >O0foralls =1,...,nand j = 1,...,m,
Wasserstein distance between p and v defined as: W2 (p,v) = min,er(a,g) 21y Z;nzl lx; —
yjll5yis, where T'(a, B) = {y € RY™ [11 = q, v T1 = B}. Without loss of generality, we assume

that n > m. Therefore, the time complexity for solving this linear programming is O(n? log n) Peyré
& Cuturi|(2019) and O(n?), which are expensive.

One-dimensional Case. When d = 1, the Wasserstein distance can be efficiently calculated. For
the continuous case, Wasserstein-2 distance has the following form: W} (u,v) = fol |EN(t) —
F1(t)|Pdt, where Fr Land F;! denote the quantile functions of x and v respectively. Here, the
transportation plan is 7, ,y = (F,; ', F;; ')f4([0, 1]). When 1 and v are discrete distributions, i.e.
p=31 @iy, (n>1)andv =3 ", 3;0,,, quantile functions of x and v are:

n i—1 i m j—1 J

F =Y znl [Y ap <t<d ag | F1O=> vyl (Zﬁu) <t< Z%) :
i=1 j=1 j=1 j=1 i=1 i=1

where z(;) < ... < () and yqy < ... < ygy) are the sorted supports (or order statistics).

Therefore, the one-dimensional Wasserstein distance can be computed in O(nlogn) in time and
O(n) in space (assuming that n. > m).

Random Projection. A key technique that plays a vital role in later discussion is random projection.
We consider a function Py : R? — R where § ~ o(6) (o(0) ~ P(S%1)) is a random variable.
For simplicity, we consider the traditional setup where 6 ~ U (S%~1) and Py(z) = (#,) (Bonneel
et al.| 2015} [Rabin et al.l [2012). However, the following discussion holds for any other types of
projections (Kolouri et al.,2019; Bonet et al.,[2023b;2025;(2023¢). For p € Pp(Rd) andv € Pp(Rd),
one-dimensional projected Wasserstein distance with Py is defined as:

1
WP (u,v; Py) = WP (Pytp, Potv) :/ |F () = Fr, (t)[Pdt.)
0

The second approach to construct a Wasserstein-type discrepancy from one-dimensional projection is
using lifted transportation plan. There are many ways to construct such lifted plan using disintegration
of measures (Muzellec & Cuturi, 2019; [Tanguy et al., [2025). In practice, the most used way (Liu
et al.| 2025; Tanguy et al.| [2025)) is:

WP = [lla = ylldn a.0) ®
R x R4

- / / & — Y[dpie, © vy (2,)y o (11, 12), (@)
RxR J Pyt (t1)x Py (t2)

where 7 € TI(p,v) is the lifted transportation plan, T(Pytp, Potr) 18 the optimal transport plan
between Pyt and Pytiv, i, and vy, are disintegration of 1 and v at t; and ¢ the function Py, and
® denotes the product of measures. When dealing with discrete measures and v, WZ(,u, v; Py)
can still be computed efficiently (Mahey et al.,[2023; |Liu et al., 2025) i.e., O(nlogn) in time and
O(n) in space (assumed that n > m). The quantity WZ(”’ v; Py) is known as lifted cost (Tanguy.
et al.| 2025) or sliced Wasserstein generalized geodesic (Mahey et al.| [2023]; [Liu et al., 2025). From
previous work (Nguyen & Hoj, [2023; Mahey et al.| 2023} |[Tanguyl, |2023)), we know the following
relationship W, (1, v; Pg) < Wi (p,v) < Wy (p,v; Py).

Under review as a conference paper at ICLR 2026

3 REGRESSION OF WASSERSTEIN DISTANCE ONTO SLICED OPTIMAL
TRANSPORT DISTANCES

In this section, we present a framework for regressing the Wasserstein distance onto sliced Wasserstein
distances, propose some models, and discuss related computational properties.

3.1 SLICED WASSERSTEIN AND LIFTED SLICED WASSERSTEIN

Sliced Wasserstein distances. Given y € P,(R) and v € P,(R?), a sliced Wasserstein-p distance
can be defined as follows (Rabin et al., 2012 Nguyen, 2025)):

SWE(u,v;0) = Eguo [WZ(MW;P@)] J ©)

where Py : R? — R is the projection function, WP (u,v; Py) is the one-dimensional projected

Wasserstein distance (equation , and o € P(S?1) is the slicing distribution. By changing the
slicing distribution, we can obtain variants of SW. There are three main ways: 1. Fixed prior: The
simplest way is to choose o to be a fixed and known distribution, e.g., the uniform distribution
U(S?1) as in the conventional SW (Rabin et al., [2012). 2. Optimization-based: We can also find
o that prioritizes some realizations of # that satisfies a notion of informativeness. For example, o
can put more masses to realizations of 6 where W7 (11, v; Pp) have high value, i.e., setting infor-
mativeness as discriminativeness. For example, we can find o by solving (Nguyen et al., [2021):
SUD, e p(si—1) Bomo [WH (1, v; Pp)], where M(S?~1) C P(S?"!) be a set of probability measures
on S?~1. When M(S?71) = {6y | € S¢~1}, max sliced Wasserstein distance (Deshpande et al.,
2019) is obtained: Max-SW (1, v) = maxgega—1 W, (u, v; Pp)]. 3. Energy-based: An optimization-
free way to select o is to design it as an energy-based distribution with the unnormalized density:
po(0) o< f(W5(1,v; Pp)), where f is often chosen to be an increasing function on the positive

real line, i.e., an exponential function. This choice of slicing distribution leads to energy-based SW
(EBSW) (Nguyen & Ho\ [2023)).

Empirical estimation. For SW, Monte Carlo estimation is used to approximate the distance:
=P ii.d _

SW,(n,v;61,...,0) = %Zlewg(u, v; Pp,), where 0y,...,01 "~° U(SYY) (L > 0) are
projecting directions (other sampling techniques can also be used (Nguyen et al., [2024; [Nguyen
& Ho, 2024; |Sisouk et al., [2025)). For Max-SW, we can use 61 which is the solution of an
optimization algorithm with 7" > 0 iterations, e.g., projected gradient ascent (Nietert et al., |2022) or
Riemannian gradient ascent|Lin et al.| (2020): Max-S Wﬁ(,u7 v;fp) = Wi (u,v; Py). For EBSW,
one simple way to estimate the distance is to use importance sampling: Eﬁﬁ/ﬁ(w501, ...,00) =

L~ 1r7p . A FWE(uvi Py) -~ d—1
ZZZI wlwp(% v; P@l)? where w; = ZLL/=1 f(ﬂg(#=V?P9“) and Gla SRR) 0L M(S)

Lower bounds. We summarize the connection between SW, Max-SW, EBSW, and Wasserstein
distance in the following remark. The detail of the proof can be found in Nguyen & Hol(2023).

Remark 1. Given any ;1 € P,(RY) and v € P,(R?), we have:
(a) SWy(p,v) < EBSW,(p,v) < Max-SW,(u,v) < Wy(p,v),

(b) S/ﬁ/p(,u,u;Hl, .00 < Emp(,u,yﬂh oy 0n) S Wy, v) forany 0y, ... ,05, € ST,
(c) Mﬁwz(u, v;07) < W, (u, v) for any fp € S¢1.

Lifted sliced Wasserstein distances. Given ;1 € P,(R%) and v € P,(R?), a lifted sliced Wasserstein-
p distance can be defined as follows (Rowland et al., 2019):

LSWP(p,v;0) =B |Wo(p,v; Po)| (6)

where Py : R? — R is the projection function, Wz(u, v; Py) is the SWGG (equation , and
o € P(S%1) is the slicing distribution. Similar to SW, we can obtain variants of PW by choosing
o. 1. Fixed prior: The original LSW is introduced as in projected Wasserstein (PW) in Rowland
et al. (2019), which uses the uniform distribution &/ (S‘i_l). 2. Optimization-based: In contrast to

Under review as a conference paper at ICLR 2026

the case of one-dimensional projected Wasserstein, which is always a lower bound of Wasserstein
distance, SWGG is always an upper bound of Wasserstein distance. Therefore, it is desirable
to select ¢ that can minimize the corresponding lifted cost, that leads to min SWGG distance:
Min-SWGG,(p, v) = mingega—1 W (1, v; Pp). 3. Energy-based: Similar to the case of EBSW,
authors in|Liu et al.[(2025)) proposes to choose ¢ as an energy-based distribution with the unnormalized
density: p,(0) oc f(=WJ(u,v; Pp)), where f is often chosen to be an exponential function with
temperature. The authors name the distance as expected sliced transport (EST).

Empirical estimation. For PW, Monte Carlo samples are used to approximate the distance:
PWﬁ(u, vibh,....00) = 1 Zlel Wﬁ(u, v; Py,), where 0y,...,0, il U(S?1). For Min-
SWGG, we can use éT which is the solution of an optimization algorithm with 7" > 0 iterations,
e.g., simulated annealing (Mahey et al., [2023)), gradient ascent with a surrogate objective (Mahey

et al., [2023), and differentiable approximation (Chapel et al., [2025): MinTS’WGGi(u, v; éT) =
Wﬁ(u, v; PéT)' For EST, importance sampling estimation is used: ES\TZ(M, v;0y,...,01)) =

L . =5p) N (=W (mviPe))) - d—1
> iy WiW o, (1, v; Py,), where iy = S TPy and 0y,...,0p ~U(S*1).

Upper bounds. We summarize the connection between PW, Min-SWGG, EST, and Wasserstein
distance in the following remark. The connection between Min-SWGG, EST, and Wasserstein
distance is discussed in Mahey et al.|(2023); |Liu et al.| (2025). The connection between EST and PW
can be generalized from the connection between EBSW and SW in|[Nguyen & Ho|(2023)).

Remark 2. Given any p € Pp(R?Y) and v € P,(R?), we have:
(@) Wy(u,v) < Min-SWGG, (1, v) < EST, (1, v) < PWy(u,v),

(b) Wy(u,v) < ES\TP(/L, vib1,...,01) < ﬁﬁ/p(/i, v;01,...,01) forany 0y,...,0p € S,

(c) Wp(p,v) < Min—/SWGGz(u, v; 07) for any 07 € ST 1,

3.2 REGRESSION OF WASSERSTEIN DISTANCE ON SLICED WASSERSTEIN DISTANCES

We consider the setting where we observe pairs of distributions (u1,v1), ..., (un,vn) ~ P(u,v).
Here, P(u, v) is the meta distribution, and we are interested in relating W, (u;, v;) with K > 0 SW

distances S})”(M, Vi)yeoo, S,()K) (pi,v;) fori=1,..., N. We first start with a general model.
Definition 1 (Regression of Wasserstein distance onto SW distances). Given a meta distribution
P(u,v) € P(Py(RY) x P,(RY)), K > 0 SW distances 51(71)7 . .,S]gK), a regression model of
Wasserstein distance onto SW distances is defined as follows:

W, v) = F(ST (), .., ST (,v) + e, @)

where (,v) ~ P(u,v), f € F is the regression function, and € is a noise model such that E[e] = 0.

To estimate f, one natural estimator is the least square estimate:

frse = arg?ggE [(f(s;(;l)(li’y)’ e Sz()K)(/JvV)) — Wp(,u’y)))Z}) 8

It is worth noting that the function f can be constructed in both parametric ways (e.g., deep neural
networks) or non-parametric ways (e.g., using kernels). However, in order to have a simple and
explainable model, we consider linear functions in this work.

Linear Regression of Wasserstein distance onto SW distances. We now propose linear estimations
of Wasserstein distances from SW distances.
Definition 2 (Linear Regression of Wasserstein distance onto SW distances). Given a meta distri-

bution P(11,v) € P(P,(RY) x P,(RY)), K > 0 SW distances Sz(jl), ce S,(,K), the linear regression
model of Wasserstein distance onto SW distances is defined as follows:

K
WP(N7V) = Zwksz(,k)(ﬂ,l/) + e,)
k=1

where (u,v) ~ P(u,v) and ¢ is a noise model such that Ele] = 0.

Under review as a conference paper at ICLR 2026

W
Wou'$
SLy(p,v) Wlir) SUpw)

wSLy(p,v) + (1= w)SUp (1, v)

" span(SU,..., 819}

Figure 1: Linear regression of the Wasserstein distance vector W on sliced Wasserstein (SW) distances
S ST The left figure illustrates a linear model, interpreted as the Lo projection of the Wasserstein
distance onto the linear span of the SW distances. The right figure depicts a special case of a constrained linear
model with only two SW distances as predictors, which can be seen as a midpoint method.

Again, we use least-squares estimation to obtain an estimate of w.

Remark 3. The least square estimator admits the following closed form:
-1
wrsg =E [Sp(,u, v)Sp(H, V)T] E [Sp(p,)Wy (p,v)] (10)
where S, (u,v) = (SI(,U(M, 17 P S,()K)(,u, V).

The detail of Remark [3] in given in Appendix [A.J] In practice, we can sample
(1,v1), -« (par, var) ~ P(u, v) to approximate the expectation in equation Let S € RfXK be
the SW distances matrix i.e., Sik = S;(,k)(ui, v;)fori=1,..., M, and W e Rf be the Wasserstein
distances vector i.e., W; = W, (i, v;) fori = 1,..., M, we have the sample-based least-squares
estimate: Wy g = (5’ TS)*15' TW , which is an unbiased estimate of w. It is well-known that the
linear model can be seen as ILy projection of the Wasserstein distances vector W onto the linear span
of the SW distances vectors S, ..., S5) We illustrate the idea in the left figure in Figure
From Section[3.1] we know that SW distances are either lower bounds or upper bounds of Wasserstein
distance. Therefore, natural estimation can be formed using midpoint method. In particular, given a
lower bound SL,, (i, v) and a upper bound SU, (i, v), we can predict the Wasserstein distance as
w1 SLy (1, v) + weSUL (1, v) with 0 < wq < land we =1 — wy.

Definition 3 (Constrained Linear Regression of Wasserstein distance onto SW distances). Given a
meta distribution P(u,v) € P(Pp(RY) x P,(R?)), K > 0 SW distances SLZ(}), cee SL;K) which
are lower bounds of W, and K > 0 SW distances SU}gl), ey SU,(,K) which are lower bounds of W,
the constrained linear regression model is defined as follows:

K

K

1 1

Wlp,v) = - > wrSLE (u,v) + % Y (1= wi)SUP (p,v) +e, (11)
k=1 k=1

where 0 < wg, < 1, (p,v) ~ P(u,v) and ¢ is a noise model such that E[e] = 0.

To estimate w = (w1, . . ., wk) under the constrained model, we again form the least square estimate,
which can be solved using quadratic programming and Monte Carlo estimation. In a special case
where K = 1, i.e., having one lower bound and one upper bound, we can have a closed-form.

Remark 4. For the case K = 1 with a lower bound SL, (1, v) and an upper bound SUp(u,v), a
closed-form of the least square estimate under the constrained model can be formed:

E[(SUp(p, v) = SLp(p,) (SUp (1, v) = Wyp(p1, v))]
E[(SUp(,v) = SLy(p, v)?] '

WCLSE = (12)

The detail of Remarkain given in Appendix[A.2] The corresponding sample-based estimator for the
m SU. i Vi —SL iV SU. i3 Vi —Wp isVi . .

=l Z%(MZ?L)1(SU:((;Z;,W))E(S Lpp((;i,w))z evi)) We show the idea in the
right figure in Figure[T} Compared to the unconstrained model, the constrained model has half of
the parameters. In addition, it adds inductive bias to the model, which is often helpful when having
limited observed samples.

model is: Wcrsg = &L

Wasserstein Distance Estimation with Few-Shot Regression. We recall that we observe
(w1,1), -, (un,vN) ~ P(u,v) in practice. It is not computationally efficient to compute the

Under review as a conference paper at ICLR 2026

Table 1: £-NN accuracy on point-cloud classification on ShapeNetV?2 dataset.

Methods | R? | k=1 | k=3 | k=5 | k=10 | k=15

WD | - | 83.6% =+ 0.0% | 83.5% = 0.0% | 84.2% % 0.0% | 82.9% =+ 0.0% | 79.2% + 0.0%
RG-s | 0.868 £ 0.02 | 82.1% % 0.1% | 81.7% = 0.1% | 80.8% =+ 0.1% | 79.4% % 0.2% | 75.5% £ 02%
RG-e | 0.926 & 0.04 | 82.5% % 0.1% | 82.2% = 0.1% | 80.9% % 0.2% | 79.6% % 0.3% | 75.7% + 03%
RG-0 | 0.774 £ 038 | 65.1% % 0.3% | 67.7% = 0.3% | 67.6% % 0.5% | 66.7% % 0.5% | 66.0% £ 0.5%
RG-se | 0.935 % 0.02 | 82.5% % 0.4% | 82.2% + 0.4% | 82.6% + 0.5% | 81.9% % 0.5% | 76.5% £ 0.5%
RG-seo | 0.937 £ 0.01 | 82.8% % 0.4% | 83.3% £ 0.5% | 83.5% + 0.7% | 82.3% + 0.7% | 77.9% £ 0.1%

discussed least square estimates using all NV pairs of distributions since those estimates require

evaluation of Wasserstein distances. We then sample a subset (u}, 1), ..., (4, v},) from the
original set with M << N. After obtaining an estimate @ from (u},v}),..., (uy,V},), we can

form estimations of the Wasserstein distances for other pairs and any new pair of distributions given
their SW distances. -

Computational complexities. We assume that NV pairs of distributions have the number of supports
be at most n and in d dimensions. For fitting the estimate on M pairs, we need to compute M K
SW distances (using L projecting directions) which costs O(M K Ln(logn + d)) in time and M
Wasserstein distances which costs O(Mn?(nlogn + d)). Computing the least square estimate has
the time complexity of O(M K2 + K?3). Then, we compute (N — M)K SW distances which costs
O((N—M)K Ln(log n+d)) and predict (N — M) Wasserstein distances which costs O((N — M) K).
Total time complexity is O(N K Ln(logn +d)) + Mn?(nlogn+d)) + MK?+ K+ (N — M)K)
compared to O(Nn?(nlogn + d)) of computing Wasserstein distances for all N pairs.

Extensions on regression. In this work, we focus on regressing the Wasserstein-p distance. If
other ground metrics are used e.g., geodesic distances on manifolds, variants of SW distances
such as spherical sliced Wasserstein distances (Bonet et al., [2023a}; [Tran et al., 2024} |Quellmalz
et al., [2023)), hyperbolic sliced Wasserstein distances (Bonet et al., [2023b), sliced Wasserstein for
distributions over positive definite matrices (Bonet et al., [2023c)), and other non-linear variants
of sliced Wasserstein (Bonet et al., 2025}, |Chapel et al., 2025} Tanguy et al.| [2025}; [Kolouri et al.,
2019). However, they might not be upper/lower bounds of the corresponding Wasserstein distances.
Moreover, to incorporate uncertainty quantification, we can also perform Bayesian inference (Box &
Tiaol 2011), e.g., putting a prior on the regression function.

4 EXPERIMENTS

We define some specific model instances: RG-o uses Max-SW and Min-SWGG as predictors; RG-s
uses SW and PWD as predictors; RG-e uses EBSW and EST as predictors. We also consider two
extensions: RG-se combines SW, EBSW, PWD, and EST, and RG-seo combines all six variants. For
each instance, we have a constrained version and an unconstrained version as discussed.

We evaluate our methods in five parts, each with a distinct goal. First, in Section[4.1] we test practical
use via k-NN on ShapeNetV2, reporting accuracy under different metrics. Second, in Section4.2] we
benchmark RG variants against Wormhole across MNIST point clouds, ShapeNetV2, MERFISH Cell
Niches Zhang et al.|(2021)), and scRNA-seq atlas |Persad et al.| (2023)), reporting R>/MSE/MAE in
low-data regimes. Third, in Section @ we combine our framework with Wormhole to introduce
RG-Wormhole, a hybrid that matches Wormhole’s performance while requiring far less training time.
We compare training time under varying batch sizes and epochs, as well as embedding, reconstruction,
barycenter, and interpolation quality. In Appendix [B.T} we run Mixture of Gaussian simulations to
verify that our methods approximate the true Wasserstein distance from low to high dimensions. In
Appendix [B.3] we visualize metric-induced geometry with UMAP |MclInnes et al| (2018). Throughout,
N denotes the number of training-set sizes, and M, the number of samples drawn from the training

set, yielding M = % pairs used to estimate RG coefficients.

4.1 POINT CLOUD CLASSIFICATION

We evaluate unconstrained RG variants over a classification task over 10-class ShapeNetV2 with
500 training samples (N=500) and estimate RG weights from 10 samples (My=10) drawn from the
training set. The details of the experimental setting and full results are provided in Appendix

Under review as a conference paper at ICLR 2026

Table 2: Approximation quality of Wormhole and RG variants across four datasets under a training set size of
100 samples. Each cell reports R%, MSE, and MA) with respect to the exact Wasserstein distance.

Methods MNIST Point Cloud ShapeNetV2 MERFISH scRNA-seq

R? MSE MAE R? MSE MAE R? MSE MAE R? MSE MAE
Wormhole [028 43x107! 51x1071]065 6.6x1072 1.8x10°1[-3.6 8.0x 1074 21x1072]0.04 7.0x 1073 7.8x 1072
RG-s (constr.) 084 8.9x1072 23x1071]088 2.0x 1072 1.1x107*]091 1.6x107° 3.0x 1072 | 1.00 3.7x107° 3.0x 1073
RG-e (constr.) 086 8.7x1072 23x1071]090 1.7x 1072 1.0x 107092 1.3x107° 3.0x 1072 |1.00 1.3x107° 1.0x 1073
RG-o (constr.) 077 1.4x107' 2.8x1071]0.66 52x 1072 1.8x 107|075 4.8x107° 6.0x1072]0.99 6.1 x 107" 6.0x 1072
RG-se (constr.) 084 9.8x1072 24x1071{092 1.4x1072 9.3x1072[091 1.5x107° 3.0x 1072|100 2.4x107° 2.0x10"%

RG-seo (constr.) | 0.85 9.0 x 1072 2.3 x 1071|091 1.7x1072 1.0x 1071|092 1.3x107° 3.0x 107%|1.00 2.2x107° 2.0x 1072

RG-s (unconstr) [0.93 4.5x 1072 1.6 x 1071]094 1.1 x 1072 82x1072]096 6.3x 1076 2.0x 1072]099 86 x 107> 7.0x 1073
RG-e (unconstr.) [0.92 5.4 x 1072 1.8x1071{092 1.5x 1072 9.8x1072[096 6.9x 1076 2.0x1072[099 7.0x 107° 6.0 x 1073
RG-o (unconstr.) [0.77 1.4x 107! 3.0x 1071|075 3.8 x 1072 1.6 x 107 [0.89 8.7 x10"% 2.9 x 1072|082 2.9x 1073 52x 1072
RG-se (unconstr.) [0.93 4.0x 1072 1.5x 1071{095 9.9 x 1072 7.8 x1072[098 2.9x 1076 1.0x 1073|100 3.0 x 107> 4.0 x 1073
RG-seo (unconstr.) | 0.93 4.0 x 1072 1.5 x 1071 {0.95 9.8 x 1073 7.8 x1072[097 6.8 x 1076 2.0x 1072|099 6.8 x 107> 7.0x 1073

airplane cup lamp vase chair

data

RG-seo Wormhole

reconstruction

W =0.071 W =0.138 W = 0.088 W =0.152 W =0.103

Figure 2: ModelNet40: a RG-Wormhole variant in reconstruction experiment.

RG-seo Wormhole

Lamp A Lamp B

Figure 3: ModelNet40: a RG-Wormhole variant in interpolation experiment.

Results. Table|[I|reports k-NN accuracy on ShapeNetV2 under different metrics. As expected, WD
achieves the best accuracy, with 84.2% at k=5. Among single sliced-based metrics, SW and EBSW,
are the strongest, though they cap at about 72.5% top-1. Our RG methods close much of the gap
to Wasserstein. Both RG-s and RG-e consistently achieve around 82.5% top-1 accuracy with high
correlation to Wasserstein (R? ~ 0.9). The multi-metric extensions further improve stability: RG-se
and RG-seo reach up to 83.5% accuracy with R? as high as 0.93, essentially matching Wasserstein.

4.2 COMPARISONS OF RG VARIANTS VS. WORMHOLE IN LOW-DATA REGIMES

We compare our RG framework with Wormhole within the same training sizes, matching the pre-
processing of (Haviv et al.| 2024) across four datasets spanning dimensionality: MNIST pixel
point clouds (2D), ShapeNetV2 point clouds (3D), MERFISH Niche Cells (254D), and scRNA-seq
(2,500D). We train on N € {10, 50, 100, 200} random pairs and evaluate R?/MSE/MAE against exact
WD. For fairness, the number of training pairs for Wormhole equals the number used to estimate the
linear coefficients for RG variants, i.e., Mo=N'. Full results appear in Figures [(HI3| with settings in
Appendix [B.4} Table [2] summarizes the M=100 case, and other M, follow the same pattern.

Results. Across all four datasets, RG variants consistently outperform Wormhole at small training
sizes. Wormhole is weaker primarily because it is data hungry and its performance improves as
we add samples, yet under comparable budgets it still trails our methods. By contrast, RG variants
are already accurate with few pairs, with unconstrained variants are slightly stronger, whereas
constrained variants converge faster and are preferable at the very smallest sizes. RG-se and RG-seo
are the strongest when given sufficient samples though the latter can lag at the tiniest sizes before its
weights settle but becomes top-performing quickly and still requires far fewer pairs than Wormhole.

Under review as a conference paper at ICLR 2026

4.3 RG-WORMHOLE: ACCELERATING WORMHOLE WITH REGRESSION OF WASSERSTEIN

The previous comparison reveals a clear trade-off. RG framework is lightweight and data-efficient,
but it does not produce Euclidean embeddings and therefore cannot support interpolation experiments.
Wormbhole, in contrast, learns Euclidean embeddings that enable interpolation and reconstruction,
but it is computationally heavy because training requires many Wasserstein evaluations (pairwise
distances within each mini-batch and reconstruction losses), which slows and raises training cost.

RG-Wormbhole. To combine the strengths of both, we introduce RG-Wormhole. We first calibrate
a RG surrogate on a small set of exact Wasserstein pairs from the same data domain and freeze
its weights. We then keep the Wormhole architecture, optimizer, and schedule unchanged, and
simply replace every use of the Wasserstein distance with the calibrated surrogate in both the encoder
(pairwise distances in the batch) and the decoder (reconstruction loss). No other component is
modified. This substitution makes each training step much faster while preserving the performance.

We run five experiments of both models to empirically show that RG-Wormhole is much faster
than Wormhole while keeping similar effectiveness. First, we measure training time by training
Wormbhole and RG-Wormhole under the same optimizer and schedule, sweeping batch sizes 4-20 and
reporting wall-clock time for training-set sizes NV € {10, 50, 100, 200}. Second, we assess encoders
via R?/MSE/MAE between learned pairwise distances and exact Wasserstein. Third, we evaluate
decoders via the Wasserstein loss between each input shape and its reconstruction. Fourth, we
examine barycenters by decoding each class’s mean embedding and visualizing results. Finally, we
study interpolation by decoding linear paths between two embeddings and visualizing the trajectories.
Across all experiments, hyperparameters match Wormhole; the only change in RG-Wormhole is
replacing every use of the Wasserstein distance in the encoder and decoder losses with the calibrated
unconstrained RG variants. For RG-Wormhole, we estimate the RG coefficient using 10 random
training samples (M, =10) before plugging into Wormhole. We provide some results in Figured2H3)|
though the details of experimental settings and full results can be found in Appendix[B.3]

Results. Replacing every Wasserstein call in Wormhole with a calibrated RG variants preserves per-
formance while cutting compute. First, in the training-time comparison (Figure [T4]in Appendix B.5),
RG-Wormhole is far faster than Wormhole across all batch sizes and training budgets, with a very
large gap. As batch size increases, Wormhole’s time grows almost exponentially, while RG-Wormhole
rises only slightly, close to linear or even flat. Next, we verify that the trained models have similar
quality. For the encoder, Figures[I5|and[I6]in Appendix show pairwise distances that align with
the ground-truth Wasserstein and embeddings that match Wormhole, with essentially identical R?,
MSE, and MAE. For the decoder, Figures[I7]and[T8]in Appendix [B.5]evaluate reconstructions against
the original point clouds using the Wasserstein distance, and both RG-Wormhole and Wormbhole pro-
duce very small and nearly identical distances. Finally we test whether RG-Wormhole preserves the
geometry needed for downstream use. The decoded class barycenters from RG-Wormhole are clean
and class consistent and they match those from Wormhole, we refer to FigurdI9]in Appendix
We also interpolate by moving linearly in the embedding space and decoding along the path, and the
trajectories from RG-Wormhole are smooth and semantically meaningful with no visible artifacts, we
refer to Figurg20|in Appendix Overall RG-Wormhole matches Wormhole while training much
faster, which makes it a practical choice when compute is limited.

5 CONCLUSIONS

We introduced a regression framework mapping Wasserstein to sliced Wasserstein distances under
a meta-distribution of random distribution pairs. Two simple linear models enable lightweight
estimation, leading to the RG framework for few-shot Wasserstein approximation. We derived
constrained and unconstrained forms and validated them through Mixture of Gaussian simulations,
point cloud classification, and metric-space visualizations, where the surrogate closely matched the
exact distance. Compared to Wormhole on MNIST, ShapeNetV2, MERFISH, and scRNA-seq, our
method achieved better performance in low-data regimes. Replacing Wasserstein calls in Wormhole
with our method yielded RG-Wormhole, preserving accuracy while greatly reducing training time.

Under review as a conference paper at ICLR 2026

REFERENCES

Panos Achlioptas, Olga Diamanti, loannis Mitliagkas, and Leonidas Guibas. Learning representations
and generative models for 3d point clouds. In International conference on machine learning, pp.
40-49. PMLR, 2018.

David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. Advances
in Neural Information Processing Systems, 33:21428-21439, 2020.

Clément Bonet, Paul Berg, Nicolas Courty, Francois Septier, Lucas Drumetz, and Minh-Tan Pham.
Spherical sliced-Wasserstein. International Conference on Learning Representations, 2023a.

Clément Bonet, Laetitia Chapel, Lucas Drumetz, and Nicolas Courty. Hyperbolic sliced-Wasserstein
via geodesic and horospherical projections. In Topological, Algebraic and Geometric Learning
Workshops 2023, pp. 334-370. PMLR, 2023b.

Clément Bonet, Benoit Malézieux, Alain Rakotomamonjy, Lucas Drumetz, Thomas Moreau, Matthieu
Kowalski, and Nicolas Courty. Sliced-Wasserstein on symmetric positive definite matrices for
m/eeg signals. In International Conference on Machine Learning, pp. 2777-2805. PMLR, 2023c.

Clément Bonet, Lucas Drumetz, and Nicolas Courty. Sliced-wasserstein distances and flows on
cartan-hadamard manifolds. Journal of Machine Learning Research, 26(32):1-76, 2025.

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and Radon Wasserstein
barycenters of measures. Journal of Mathematical Imaging and Vision, 1(51):22—45, 2015.

George EP Box and George C Tiao. Bayesian inference in statistical analysis. John Wiley & Sons,
2011.

Charlotte Bunne, Stefan G Stark, Gabriele Gut, Jacobo Sarabia Del Castillo, Mitch Levesque,
Kjong-Van Lehmann, Lucas Pelkmans, Andreas Krause, and Gunnar Rétsch. Learning single-cell
perturbation responses using neural optimal transport. Nature methods, 20(11):1759-1768, 2023.

Laetitia Chapel, Romain Tavenard, and Samuel Vaiter. Differentiable generalized sliced Wasserstein
plans. arXiv preprint arXiv:2505.22049, 2025.

Yaqing Chen, Zhenhua Lin, and Hans-Georg Miiller. Wasserstein regression. Journal of the American
Statistical Association, 118(542):869-882, 2023.

Nicolas Courty, Rémi Flamary, and Mélanie Ducoffe. Learning Wasserstein embeddings. In
International Conference on Learning Representations, 2018.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in
Neural Information Processing Systems, pp. 2292-2300, 2013.

Ishan Deshpande, Yuan-Ting Hu, Ruoyu Sun, Ayis Pyrros, Nasir Siddiqui, Sanmi Koyejo, Zhizhen
Zhao, David Forsyth, and Alexander G Schwing. Max-sliced Wasserstein distance and its use for
GAN:Ss. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
10648-10656, 2019.

DC Dowson and BV666017 Landau. The fréchet distance between multivariate normal distributions.
Journal of multivariate analysis, 12(3):450-455, 1982.

Jean Feydy, Benjamin Charlier, Francois-Xavier Vialard, and Gabriel Peyré. Optimal transport for
diffeomorphic registration. In Medical Image Computing and Computer Assisted Intervention-
MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017,
Proceedings, Part 1 20, pp. 291-299. Springer, 2017.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with Sinkhorn
divergences. In International Conference on Artificial Intelligence and Statistics, pp. 1608—1617.
PMLR, 2018.

Doron Haviv, Russell Zhang Kunes, Thomas Dougherty, Cassandra Burdziak, Tal Nawy, Anna Gilbert,
and Dana Pe’er. Wasserstein wormhole: Scalable optimal transport distance with Transformer. In
Forty-first International Conference on Machine Learning, 2024.

10

Under review as a conference paper at ICLR 2026

Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde. Generalized
sliced Wasserstein distances. In Advances in Neural Information Processing Systems, pp. 261-272,
2019.

Soheil Kolouri, Navid Naderializadeh, Gustavo K. Rohde, and Heiko Hoffmann. Wasserstein
embedding for graph learning. In International Conference on Learning Representations, 2021.

Tianyi Lin, Chenyou Fan, Nhat Ho, Marco Cuturi, and Michael Jordan. Projection robust Wasserstein
distance and Riemannian optimization. Advances in Neural Information Processing Systems, 33:
9383-9397, 2020.

Xinran Liu, Rocio Diaz Martin, Yikun Bai, Ashkan Shahbazi, Matthew Thorpe, Akram Aldroubi,
and Soheil Kolouri. Expected sliced transport plans. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL |https://openreview.net/forum?id=
P701Vt1BdU.

Guillaume Mahey, Laetitia Chapel, Gilles Gasso, Clément Bonet, and Nicolas Courty. Fast optimal
transport through sliced generalized wasserstein geodesics. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 35350-35385, 2023.

Leland Mclnnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Boris Muzellec and Marco Cuturi. Subspace detours: Building transport plans that are optimal on
subspace projections. In Advances in Neural Information Processing Systems, pp. 6917-6928,
2019.

Khai Nguyen. An introduction to sliced optimal transport. arXiv preprint arXiv:2508.12519, 2025.

Khai Nguyen and Nhat Ho. Energy-based sliced Wasserstein distance. Advances in Neural Informa-
tion Processing Systems, 2023.

Khai Nguyen and Nhat Ho. Sliced Wasserstein estimator with control variates. International
Conference on Learning Representations, 2024.

Khai Nguyen, Nhat Ho, Tung Pham, and Hung Bui. Distributional sliced-Wasserstein and applications
to generative modeling. In International Conference on Learning Representations, 2021.

Khai Nguyen, Nicola Bariletto, and Nhat Ho. Quasi-monte carlo for 3d sliced Wasserstein. In
International Conference on Learning Representations, 2024.

Sloan Nietert, Ziv Goldfeld, Ritwik Sadhu, and Kengo Kato. Statistical, robustness, and computational
guarantees for sliced wasserstein distances. Advances in Neural Information Processing Systems,
35:28179-28193, 2022.

Sitara Persad, Zi-Ning Choo, Christine Dien, Noor Sohail, Ignas Masilionis, Ronan Chaligné, Tal
Nawy, Chrysothemis C Brown, Roshan Sharma, Itsik Pe’er, et al. Seacells infers transcriptional
and epigenomic cellular states from single-cell genomics data. Nature biotechnology, 41(12):
1746-1757, 2023.

Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11(5-6):355-607, 2019.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355-607, 2019.

Michael Quellmalz, Robert Beinert, and Gabriele Steidl. Sliced optimal transport on the sphere.
Inverse Problems, 39(10):105005, 2023.

Julien Rabin, Julie Delon, and Yann Gousseau. Regularization of transportation maps for color and
contrast transfer. In 2010 IEEE International Conference on Image Processing, pp. 1933—-1936.
IEEE, 2010.

11

https://openreview.net/forum?id=P7O1Vt1BdU
https://openreview.net/forum?id=P7O1Vt1BdU

Under review as a conference paper at ICLR 2026

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its application
to texture mixing. In Scale Space and Variational Methods in Computer Vision: Third International
Conference, SSVM 2011, Ein-Gedi, Israel, May 29-June 2, 2011, Revised Selected Papers 3, pp.
435-446. Springer, 2012.

Mark Rowland, Jiri Hron, Yunhao Tang, Krzysztof Choromanski, Tamas Sarlos, and Adrian Weller.
Orthogonal estimation of Wasserstein distances. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 186—195. PMLR, 2019.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. A metric for distributions with applications to
image databases. In Sixth international conference on computer vision (IEEE Cat. No. 9SCH36271),
pp- 59-66. IEEE, 1998.

Meyer Scetbon, Marco Cuturi, and Gabriel Peyré. Low-rank sinkhorn factorization. In International
Conference on Machine Learning, pp. 9344-9354. PMLR, 2021.

Keanu Sisouk, Julie Delon, and Julien Tierny. A user’s guide to sampling strategies for sliced optimal
transport. Transactions on Machine Learning Research, 2025. ISSN 2835-8856.

Eloi Tanguy. Convergence of sgd for training neural networks with sliced Wasserstein losses. arXiv
preprint arXiv:2307.11714, 2023.

Eloi Tanguy, Laetitia Chapel, and Julie Delon. Sliced optimal transport plans. arXiv preprint
arXiv:2508.01243, 2025.

Huy Tran, Yikun Bai, Abihith Kothapalli, Ashkan Shahbazi, Xinran Liu, Rocio Diaz Martin, and
Soheil Kolouri. Stereographic spherical sliced Wasserstein distances. International Conference on
Machine Learning, 2024.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media,
2008.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Fang Wu, Nicolas Courty, Shuting Jin, and Stan Z Li. Improving molecular representation learning
with metric learning-enhanced optimal transport. Patterns, 4(4), 2023.

Meng Zhang, Stephen W Eichhorn, Brian Zingg, Zizhen Yao, Kaelan Cotter, Hongkui Zeng, Hongwei
Dong, and Xiaowei Zhuang. Spatially resolved cell atlas of the mouse primary motor cortex by
merfish. Nature, 598(7879):137-143, 2021.

12

Under review as a conference paper at ICLR 2026

Supplement to “Fast Estimation of Wasserstein Distances via
Regression on Sliced Wasserstein Distances'

A DETAILS

A.1 DETAILS OF REMARK[3

We derive the gradient:
.
Vo |) - Wyt

= VuE | (@ S8 (1) = Wyl v) T (@7 81 (1,0) = Wy (p1,)))]

= VE [T S0 (11,0) S5 (1,) Tw| = 29 [SI) (0,1) TwW (1, 1) (13)
= E |[Vuw SO (11,0)8) (1, 1) w| = 2B [V S0 (1) TwWy(mv)| (14)
— 2[S9 (1, 1) SO (11,0)T | @ — 2B [S 11, 0) Wy (1, v)| (15)

Setting the gradient to 0, we obtain

Guse =& [P (0,8 (1,0) | B[S (0)W) 16)

which completes the proof.

A.2 DETAILS OF REMARK[4]

From the definition, we recall the model:

K
Wy (p ZwkS’L(), v) +Z 1—wg)S (u, V) +e. (17)
k=1 k=1

With K = 1, we rewrite the model as follows:
Wp(p,v) = wSLy(p,v) + (1 = w)SU (1, v) + ¢, (18)
which is equivalent to
Wy (u,v) = SU (1, v) = w(SLyp(p,v) — SUp(1,v)) + €. (19)

Since equation[T9]is again an unconstrained linear model, we can obtain the least-squares estimate by
following Appendix

e ap — EISUp (1) = SLy(1, 1)) (SUy (11,0) = Wi,)
E[(SU,(u,v) — SLy(p,v)?] ;

which concludes the proof.

(20)

B EXPERIMENTS

B.1 GAUSSIAN SIMULATION

We study how a lower—upper bound pair approximates the Wasserstein distance as dimension
grows. We simulate 3-component Gaussian mixtures for d=1...100 (10 seeds), with 200 points per
component. For each pair we compute the exact Wasserstein and six sliced-based metrics. Focusing
on RG-o, RG-s, and RG-e, we fit a constrained weight w € [0, 1] and report the estimated weight @
and R? versus the exact Wasserstein.

Results. We refer to Figure [for the result. The fits are strong for all three methods and all
dimensions: R? is always above 0.8 and quickly rises to =~ 0.9-1.0. We also see a clear pattern in the

13

Under review as a conference paper at ICLR 2026

weights: as dimension grows, the weight on the lower bound goes down, so the upper-bound metric
gets more weight and eventually dominates. In short, high dimensions favor the upper bound, while
lower dimensions rely more on the lower bound.

Components & Metric Componer
sw wd — = R ——ebsw —o— est —o-- A7

w o ebs
nsion: RG-0 Optimal w* and R per dimension: RG-s Optimal w* and R per dimension: RG-e

Optimal w
Optimal w*
Optimal w

20) 60 80 100 20 a0 60 80 160 20 4o 60 80 160
Dimension Dimension Dimension

Figure 4: Optimal w* and R? in each dimension

B.2 POINT CLOUD CLASSIFICATION

Experimental settings. We construct a 10-class subset, centralize, normalize each shape so that all
coordinates lie in [—1, 1]3, and uniformly subsample 2,048 points per shape. For each class we select
50 training examples and 100 test examples. We then compute pairwise distance matrices between
train and test sets under different metrics, and evaluate classification accuracy using a k-nearest
neighbor classifier with & € {1,3,5,10,15}. Besides the six individual sliced-based metrics, we
include all RG variants in unconstrained version. We use 10 samples drawn from the training set to
estimate the linear coefficient of RG variants.

Table 3: k-NN accuracy on point-cloud classification on ShapeNetV?2 dataset.

| Methods | R? | k=1 | k=3 | k=5 | k=10 | k=15 |
WD - 83.6% = 0.0% | 83.5% % 0.0% | 84.2% £ 0.0% | 82.9% = 0.0% | 79.2% = 0.0%
SWD - 72.4% % 0.0% | 71.4% £ 0.0% | 70.4% £ 0.0% | 69.0% == 0.0% | 66.7% = 0.0%
PWD - 42.6% % 0.0% | 42.9% £ 0.0% | 40.4% £ 0.0% | 39.3% = 0.0% | 39.0% =+ 0.0%
EBSW - 72.5% % 0.0% | 69.2% % 0.0% | 60.4% £ 0.0% | 67.9% = 0.0% | 65.3% = 0.0%
EST - 39.1% =+ 0.0% | 40.4% % 0.0% | 40.2% =% 0.0% | 38.0% == 0.0% | 36.5% = 0.0%
Max-SW - 60.3% % 0.0% | 54.6% % 0.0% | 57.7% £ 0.0% | 57.6% = 0.0% | 56.8% = 0.0%
Min-SWGG - 36.4% £ 0.0% | 37.6% == 0.0% | 35.0% = 0.0% | 32.9% = 0.0% | 30.8% =% 0.0%
RG-s 0.868 £ 0.02 | 82.1% £ 0.1% | 81.7% = 0.1% | 80.8% % 0.1% | 79.4% & 0.2% | 75.5% =+ 0.2%
RG-¢ 0.926 = 0.04 | 82.5% £ 0.1% | 82.2% =+ 0.1% | 80.9% + 0.2% | 79.6% % 0.3% | 75.7% =% 0.3%
RG-0 0.774 £ 0.38 | 65.1% % 0.3% | 67.7% = 0.3% | 67.6% + 0.5% | 66.7% % 0.5% | 66.0% == 0.5%
RG-se 0.935 £ 0.02 | 82.5% =% 0.4% | 82.2% £ 0.4% | 82.6% % 0.5% | 81.9% % 0.5% | 76.5% == 0.5%
RG-seo 0.937 £ 0.01 | 82.8% £ 0.4% | 83.3% £ 0.5% | 83.5% % 0.7% | 82.3% £ 0.7% | 77.9% % 0.7%

B.3 METRIC SPACE VISUALIZATION

Experimental settings. We visualize the geometry each metric induces on ShapeNetV2. From 10
categories, we randomly sample 500 shapes per class, normalize each shape so that all coordinates lie
in [—1, 1]3, and keep 2,048 points per shape. For every method, we compute the pairwise distance
matrix, then feed to UMAP to obtain 2D embeddings. We use 10 samples drawn from the training set
to estimate the linear coefficient of RG variants.

Results. The result is visual in Figures E} Across methods, the true Wasserstein produces well-
separated class clusters with clear margins. The RG variants produce embeddings that are visually very
close to the Wasserstein embeddings, preserving both local compactness and the global arrangement
of classes. By contrast, single sliced baselines are weaker. SWD and EBSW keep some structure but
blur boundaries, while Max-SW and Min-SWGG show more mixing and noise.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

h V2 bedd of Sh V2 bedd of ShapeNetV2: Embeddings of RG-o
- .
13 res 10 .
12 ¥
....... : “
n X
| ‘,
4
10 - ,
2 i §
o
s
-
B |
W 3 2 T 3 T 8 3 o it 7 5 T T PR 3 T 3 5 w1z
ShapeNetV2: Embeddings of PWD ShapeNetV2: Embeddings of RG-s
Labet Label
12 o L o 15 ’
L o
o " 19
J el G, | | « | ' SotPRe S8 00 4B | K- - w
; ; »
. o '
o
3 i 5 5) 3 3 3) s
ShapeNetV2: Embeddings of EST ShapeNetV2: Embeddings of RG-e
o Label Label
’ L
8
& — L
bive | e 2 e % O} | R . ‘
4 [J
...... X . I
2 a
o am o
2
o
B - R
e '
-
o 7 B 5 5 ity 7 &) 7 7 B =] 3 [T
ShapeNetV2: Embeddings of RG-se ShapeNetV2: Embeddings of RG-seo Shap v2: of stein
2 ' Label ‘ Label 5 ‘
1 i Joarraun.
. moniiar frmonior 2
10 ‘ Y JENE Y T "
. = & e
. o ‘ - osses ,

4&'.;

Figure 5:

15

Embeddings of methods in ShapeNetV2 dataset.

Label

Label

Label

Under review as a conference paper at ICLR 2026

B.4 COMPARISON OF RG VARIANTS VS. WORMHOLE IN LOW-DATA REGIMES

Experimental Settings. We compare our proposed RG framework against Wormbhole, a state-of-the-
art Wasserstein approximation method. To ensure fairness, we follow the exact preprocessing protocol
of Haviv et al.| (2024). We consider four datasets spanning a wide range of dimensionalities: (i)
MNIST point clouds, obtained by thresholding 28 x 28 grayscale images and treating the active pixels
as 2D point coordinates; (ii) ShapeNetV?2 point clouds, where each CAD model is uniformly sampled
into 2,048 points in 3D and normalized; (iii) MERFISH Cell Niches, where each cell is represented
by the 50 m neighborhood of its gene-expression profile embedded in a 254-dimensional space; and
(iv) scRNA-seq atlas data, where cells are aggregated into MetaCells that form 2,500-dimensional
gene-expression point clouds. We vary the number of training pairs N € {10, 50, 100,200} by
drawing pairs uniformly, and evaluate on 10,000 independently sampled test pairs. For each dataset
and training size, we report R2, MSE, and MAE with respect to the exact Wasserstein.

The original Wormhole codebase is built on JAX and TensorFlow, which are not compatible with our
environment. Accordingly, we reimplemented Wormhole in PyTorch.

Data Preprocessing. We follow the same preprocessing pipeline as/Haviv et al.| (2024)).

MNIST Point Clouds. We turn MNIST 28 x 28 images into 2D point clouds by thresholding
pixel values at 0.5 and keeping the coordinates of the active pixels.

* ShapeNetV2 Point Clouds. We use ShapeNetCore.v2 with 15k points per shape. Each
shape is normalized to fit inside a unit cube with coordinates in [—1, 1]3. We then split each
shape into 10k training points and 5k test points, and randomly sample 2,048 points from
each point cloud.

« MERFISH Cell Niches. We scale each gene’s expression to [—1, 1] and divide by v/d,
where d is the number of genes. For each cell, we use spatial positions to find its 11 nearest
neighbors within a 50 ;m radius, keeping only cells with enough neighbors with its cell-type
label.

» scRNA-seq. We select 2,500 highly variable genes, normalize counts (library-size 10*

and log(14-z)), and scale each gene to [—1, 1] divided by v/d (d=2500). We then cluster
cells with K-means. For each cluster seed, we consider it as a cloud, labeled by the seed’s
annotation.

Wormbhole training hyperparameters. We follow the Transformer autoencoder setup of Wormhole
with the configuration below:

Table 4: Wormbhole training hyperparameters.

Component Setting

Batch size 10

Optimizer / LR Adam, 1r = 10~*

LR schedule ExponentialLR, final factor ~ 0.1 over all epochs
Epochs 2,000 epochs (20,000 steps)

Transformer depth num_layers =3

Attention heads num_heads =4

Embedding dim emb_dim= 128

MLP hidden dim mlp_dim= 512

Attention dropout attention_dropout_rate = 0.1
Decoder coeff. coeff_dec=0.1

16

864
865

866

867
868
869
870
871

872
873
874
875
876
877
878
879
880
881

882
883
884
885
886
887
888
889
890
891

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

MNIST Point Cloud: vs MNIST Point Cloud: vs MNIST Point Cloud: vs , MNIST Point Cloud: vs
® = [T -
HeE - 0508 e S g e - 01201
HAE - 0534 HAE <8 HAE - 5,423

Wormbole (10 tranining samples)

Wormhole (50 tranining samples)

Wormhole (100 tranining samples)

Wormhole (200 tranining samples)

Wasserstein

Wasserstein

Wasserstein

Wasserstein

MNIST Point Cloud: RG-s (constr.) vs Wasserstein

MNIST Point Cloud: RG-s (canstr.) vs Wasserstein

MNIST Point Cloud: RG-s (constr.) vs Wasserstein

[T
S0 02
RN

MNIST Point Cloud: RG-s (constr.) vs Wasserstein

w - oem
e =0 e 02
o 28

ef (w2 - aan
e =" S 02
e -8

© e
e =5 e 52
i

Wasserstein

Viassersten

Wasserstein

MNIST Point Cloud: RG-e (constr.) vs Wasserstein

Wiasserstein

w
of e i

MNIST Point Cloud: RG-e (constr.) vs Wasserstein

MNIST Point Cloud: RG-e (constr.) vs Wasserstein

W o
Ve 8 Bt 02

o s s

MNIST Point Cloud: RG-e (constr.) vs Wasserstein

e

Wasserstein

Wassersten

Wasserstain

Wiasserstein

MNIST Point Cloud: RG-o (constr.) vs Wasserstein

MNIST Point Cloud: RG-o (constr.) vs Wasserstein

MNIST Point Cloud: RG-o (constr.) vs Wasserstein

MNIST Point Cloud: RG-o (constr.) vs Wasserstein

Nt <"1 3ave o1

RG0 (cor

of e e o
it

Wasserstain

wassarstein

MNIST Point Cloud: RG-se (constr.) vs Wasserstein

Wasserstein

Wasserstain

MNIST Point Cloud: RG-se (constr.) vs Wasserstein

MNIST Point Cloud: RG-se (constr.) vs Wasserstein

5
H

MNIST Point Cloud: RG-se (constr.) vs Wasserstein

Wasserstein

MNIST Point Cloud: RG-seo (constr.) vs Wasserstei

Wasserstein

MNIST Point Cloud: RG-seo (constr.) vs Wasser

Wasserstein

MNIST Point Cloud: RG-seo (constr.) vs Wasserstei

MNIST

Wasserstein

Figure 6: MNIST Point Cloud

of 10, 50, 100 and 200.

Wassersteln

17

Wasserstein

Wasserstein

: Wormhole and RG variants (constrained/unconstrained) across training set sizes

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

MNIST Point Cloud: vs MNIST Point Cloud: vs MNIST Point Cloud: vs , MNIST Point Cloud: vs
w -
HeE - 0508

Wormbole (10 tranining samples)

Wormhole (50 tranining samples)

HAE - 0534

Wormhole (100 tranining samples)

Wormhole (200 tranining samples)

Wasserstein

Wasserstein

Wasserstein

MNIST Point Cloud: RG-s (unconstr.) vs Wasserstein

Wasserstein

MNIST Point Cloud: RG-s (unconstr.) vs Wasserstein

w o
o e b 0
it

RG.

£
g

MNIST Point Cloud: RG-5 (unconstr.) vs Wasserstein

W oo
e =5 e 02
[Rh

MNIST Point Cloud: RG-s (unconstr.) vs Wasserstein

© o
e E e 52
F o

Wasserstein

Viassersten

MNIST Point Cloud: RG-e (unconstr.) vs Wasserstein

Wasserstein

Wiasserstein

MNIST Point Cloud: RG-e (unconstr.) vs Wasserstein

MNIST Point Cloud: RG-e (unconstr.) vs Wasserstein

KG e (unconstr) (50 training pairs)

MNIST Point Cloud: RG-e (unconstr.) vs Wasserstein

Wasserstein

Wassersten

7 T
Wasserstein

Wiasserstein

MNIST Point Cloud: RG-o (unconstr.) vs Wasserstein

RG-o fun

MNIST Point Cloud: RG-0 (unconstr.) vs Wasserstein

| MNIST Point Cloud: RG-0 (unconstr.) vs Wasserstein

B e o1
e - ades

MNIST Point Cloud: RG-o (unconstr.) vs Wasserstein

Wasserstein

wassarstein

MNIST Point Cloud: RG-se (unconstr.) vs Wasserstein

Wasserstain

Wasserstein

MNIST Point Cloud: RG-se (uncanstr.) vs Wasserstein

@ oo
e =i 02
g 257

MNIST Point Cloud: RG-se (unconstr.) vs Wasserstein

W e
o
e 283

MNIST Point Cloud: RG-se (unconstr.) vs Wasserstein

Wasserstein

Viassersten

MNIST Point Cloud: RG-seo (unconstr.) vs Wasserstein

Wasserstein

MNIST Point Cloud: RG-seo (unconstr.) vs Wasserstein

Wasserstein

MNIST Point Cloud: RG-seo (unconstr.) vs Wasserstein

MNIST Point Cloud: RG-seo (unconstr.) vs Wasserstein

of e e
DR

RG se0 (unconstr) (50 traning pars)

Wasserstein

Wassersten

Wasserstern

Wiasserstein

Figure 7: MNIST Point Cloud: Wormhole and RG variants (constrained/unconstrained) across training set sizes

of 10, 50, 100 and 200.

18

Under review as a conference paper at ICLR 2026

ve . vs i vs i vs
- o -
e - 0113 HSE - 0065
HAE - 8,208 WAE - 8188

Warmhole (200 tranining samples)

Wormhole (100 tranining samples)

Wormhole (10 tranining samples)
Wormhole (50 tranining samples)

Wasserstein Wasserstein Wasserstein Wasserstein

RG-s (constr.) vs Wasserstein RG-s (constr.) vs Wasserstein RG-s (constr.) vs Wasserstein RG-s (constr.) vs Wasserstein

(R
s 4 02
et

© o
e =1 7w 52
YaF T 1oe

(10 training pairs)

RG:s (constr) (50 training pairs)

RG:3 (constr) (200 trining pairs)

RGs

Wasserstein

Wasserstein

viassersten Wasserstein

RG-e (constr.) vs Wasserstein RG-e (constr) vs Wasserstein RG-e (constr.) vs Wasserstein RG-e (constr.) vs Wasserstein

o)
S e 6 B 1 ape 02

RS (constr) (50 training pairs)

G- (canstr) (200 traiing pairs)

Wasserstein Wasseriten Wasserstein Viasserstein

RG-a (constr.) vs Wasserstein RG-0 (constr) vs Wasserstein RG-0 (constr.) vs Wasserstein RG-a (constr) vs Wasserstein

S e a2 Wt i 22ge 02
WD Yag - 63as

R0 (constr) (50 trining pairs)

RG-0 (constr) (200 traiing pairs)

Wasserstein Vassarstein Wasserstein Wiasserstein

RG-se (constr.) vs Wasserstein RG-se (constr.) vs Wasserstein RG-se (constr.) vs Wasserstein RG-se (constr) vs Wasserstein

0 training pairs)

RG-e (constr) (10 training pairs)

RGse (constr) (50 training pairs)
RG-s (constr) (200 training pairs)

Wasserstein Wasserstein Wasserstein

RG-seo (constr.) vs Wasserst RG-seo (constr) vs Wasserst

RG-seo (constr.) vs Wasserstein

RG-seo0 (constr) (50 training pairs)

RG-se0 (constr) (200 training pirs)

Wasserstein Wasserstein Wiasserstein Wasserstein

Figure 8: ShapeNetV2 Point Cloud: Wormhole and RG variants (constrained/unconstrained) across training set
sizes of 10, 50, 100, and 200.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

vs

vs

vs vs

- 060
HSE - 0302
WE - 0461

Wormhole (10 tranining samples)

Wormhole (50 tranining samples)

Wormhole (100 tranining samples)

WE - 0043
|| e - 0140

Wormhole (200 tranining samples)

Wasserstein

RG-s (unconstr.) vs Wasserstein

Wasserstein

RG-s (unconstr.) vs Wasserstein

Wasserstein

RG-s (unconstr.) vs Wasserstein RG-s (unconstr.) vs Wasserstein

Wasserstein

b

e 2

onste) (10 raining pairs)

RG:s (unce

o

nconst) (100 training pairs)

RGs

r

Wasserstein

viassersten

RG-e (unconstr) vs Wasserstein

RG-e (unconstr.) vs Wasserstein

ianstr) (10 taining pairs)

RG-e (une

G

onstr) (100 training pairs)

e tuncs

Wasserstein

RG-0 (unconstr.) vs Wasserstein

RG-0 (unconstr) vs Wasserstein

Wasserstein Viassersten

Wasserstein

S e a2
Wi

inconstr) (10 training pairs)

RGo fu

[
g - a3

nsir) (100 training pairs)

RG-0 uncor

"3 e 02
e -

RG-o (unconstr.) vs Wasserstein RG-0 (unconstr.) vs
P i
o350 02

W S

Wasserstein

RG-se (unconstr.) vs Wasserstein

Wasserstern

RG-se (unconstr.) vs Wasserstein

P

RGse funconstr) (10 training pairs)

@ oo
e = s 02
g - 0o

anste) (100 training pairs)

se funes

W han

T

RG-se (unconstr.) vs Wasserstein

str.) vs Wasserstein

r) vs

inconstr] (10 traiing pairs)

RG-se0 (u

Wasserstein

nconstr) (100 training pairs)

s

Wasserstein

Figure 9: ShapeNetV2 Point Cloud: Wormhole and RG variants (constrained/unconstrained) across tr

sizes of 10, 50, 100, and 200.

Wassersten

20

T 7 T

Wasserstein Wiasserstein

aining set

Under review as a conference paper at ICLR 2026

MERFISH Cell Niches: vs MERFISH Cell Niches: vs MERFISH Cell Niches: vs MERFISH Cell Niches: vs
o E on (& =36 . k - .
e = 77300 o) | e T alseits

WAE - 21602 FAE - 176602

: 2 H g
B . oo g
2 2 2 2
3 2 s b
2 2o . o
£ £ - £
H Sow S, B
Wasserstein Viasserstein Wasserstein Wasserstein
MERFISH Cell Niches: RG-s (constr) vs Wasserstein MERFISH Cell Niches: RG:s (constr.) vs Wasserstein MERFISH Cell Niches: RG-s (constr) vs Wasserstein MERFISH Cell Niches: RG:s (constr) vs Wassersteln

w o @ oan
e "1 5o 05 B 0s
LR L ere | B D oaby

005
oot B D5 a

W oo
wied | MaE 2 oo

0 waining pairs)
0 training pairs)

RG:s (constr
RGs (canstr) (100 training pairs)

RGs (canst) 200 taining palrs)

whasserstein Wasserstein Wasserstein Wasserstein

MERFISH Cell Niches: RG-e (constr.) vs Wasserstein MERFISH Cell Niches: RG-e (constr.) vs Wasserstein MERFISH Cell Niches: RG-e (constr.) vs Wasserstein MERFISH Cell Niches: RG-e (constr.) vs Wasserstein

Fon Bou Fou
fon - B
i B H
Wassersein Wasserstein Wasserstein wassersion
MERFISH Cell Niches: RG-0 (constr) vs Wasserstein MERFISH Cell Niches: RG-o (constr.) vs Wasserstein MERFISH Cell Niches: RG-o (constr.) vs Wasserstein MERFISH Cell Niches: RG-o (constr.) vs Wasserstein

RG (constr) (200 training pairs)

R0 (constr) (50 trining pairs)

Wassorstein Wosserstein Wasserstein ’ isserstein
MERFISH Cell Niches: RG-se (constr.) vs Wasserstein MERFISH Cell Niches: RG-se (constr.) vs Wasserstein MERFISH Cell Niches: RG-se (constr.) vs Wasserstein MERFISH Cell Niches: RG-se (constr.) vs Wasserstein

RGse (constr) (200 training samples)

RG:se (constr) (100 training samples)

H £
§ i
g 9
g H

Wasserstein Wasserstein Wasserstein Wasserstein

MERFISH Cell Niches: RG-seo (constr.) vs Wassersty MERFISH Cell Niches: RG-seo (constr.) vs Wasserst MERFISH Cell Niches: RG-seo (constr.) vs Wassersteir

H
g

[

RG-seo (constr) (200 training samples)

RG-seo (constr) (10 training samples)
RG-seo (constr) (100 training samples)

RG-se0 (const

Wassersteln Wasserstein Wasserstein Wasserstein

Figure 10: MERFISH Cell Niches: Wormhole and RG variants (constrained/unconstrained) across training set
sizes of 10, 50, 100, and 200.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

MERFISH Cell Niches: vs MERFISH Cell Niches: vs MERFISH Cell Niches: vs MERFISH Cell Niches: vs
917 wf (R =38 e e | Ro=-1an .
€ - 28003 HSE L 73000 ¥EE - 300 02 HSE < 4.2e-00
HAE - 476 62 £ - 201002 FAE - 176602

nining samples)

Wormhole (50 tranining samples)

WAE - 21602

Wormhole (10

Wormhole (200 tranining samples)

Wasserstein

MERFISH Cell Niches: RG-s (unconstr.) vs Wasserstein

Wasserstein

MERFISH Cell Niches: RG-s (unconstr.) vs Wasserstein

W5 am o o
Wasserstein

£y o o
Wasserstein

MERFISH Cell Niches: RG-s (unconstr.) vs Wasserstein

W oo
o | haE 2 o

onste) (10 training pairs)

RGs (unce

w056

fe e 56
e | B 2 5a

W oo
e e S 06
1o | WaE - G

MERFISH Cell Niches: RG-s (unconstr.) vs Wasserstein

RGs

e | b 2 e

Jnconst) (200 taining pais)

w - oa

whasserstein

MERFISH Cell Niches: RG-e (unconstr.) vs Wi

Wasserstein

MERFISH Cell Niches: RG-e (unconstr) vs.

Wasserstein

e Gase
] e I o

iconstr) (10 training palrs)

un

RGe

et

R

(onconste) (100 training palrs)

RGe (unconstz) (200 aining palrs)

MERFISH Cell Niches: RG-e (unconstr:) vs Wasserstein

Wasserstein

" Wassersten

Viassersten

MERFISH Cell Niches: RG-0 (unconstr.) vs Wasserstein

Wt <2 31503
Wk < 3idae

nconstr) (10 training pairs)

RG0 (u

inconstr) (50 training pairs)

RGo ur

of [hse i Re e

MERFISH Cell Niches: RG-0 (unconstr.) vs Wasserstein

nstr) (100 training p3irs)

RG o uncor

MERFISH Cell Niches: RG-o (unconstr.) vs Wasserstein

RG-0 (unconstr) (200 training pais)

po " e 01

Wassorstein

Wasserstein

MERFISH Cell Niches: RG-se (unconstr.) vs Wasserstein

i 0 /
HaE 2

iconstr) (10 training pairs)

RG se fun

Wasserstein

MERFISH Cell Niches: RG-seo (unconstr.) vs Wasserstell

o (osm A
D e a

MERFISH Cell Niches: RG-se (unconstr.) vs Wasserstein

W oo
so] o R e
o

MERFISH Cell Niches: RG-se (unconstr.) vs Wasserstein

nstr.) vs Wasserstes

W o
o] [m 50
Do

MERFISH Cell Niches: RG-se (unconstr.) vs Wasserstein

pr

Wasserstein

Figure 11:
sizes of 10, 50, 100, and 200.

22

MERFISH Cell Niches: Wormhole and RG variants (co

Wasserstein

Viassersten

nstrained/unconstrained) across training set

Under review as a conference paper at ICLR 2026

RNA-seq Atlas: vs i ScRNA-seq Atlas: vs i RNA-seq Atlas: vs
B - wol [®

Hse - 0627 S 9,612 WSE < B

e - 6714t

NAE - 5695 i3

:
i

RN

Warmhole (200 tranining samples)

H
B
E
§u

Wormhole (.
Wormhole (50 tranining samples)

Wasserstein Wasserstein Wasserstein : Wasserstein

SCRNA-seq: RG-s (constr.) vs Wasserstein ScRNA-seq: RG-s (constr.) vs Wasserstein ScRNA-seq: RG-s (constr.) vs Wasserstein SCRNA-seq: RG-s (constr.) vs Wasserstein

| e / | B Vi | e F
’ e - rd s pd

RIS / '

Wasserstein : Wasserstein Wassersten Wasserstein
SCRNA-seq: RG-e (constr.) vs Wasserstein ScRNA-seq: RG-e (constr.) vs Wasserstein SCRNA-seq: RG-e (constr.) vs Wasserstein SCRNA-seq: RG-e (constr.) vs Wasserstein

/

T [

= # | Bt P

B!
Wasserstein Viaserstein Wiasserstein Wasserstain
ScRNA-seq: RG-o (constr:) vs Wasserstein scRNA-seq: RG-0 (constr.) vs Wasserstein SCRNA-seq: RG-o (constr.) vs Wasserstein ScRNA-seq: RG-o (constr) vs Wasserstein

vof (m-oom of (meam wol (w-omm oo (m=0om
i / a6 05 / s onces / ™6 Tioaos /

Wasserstein Wastersiein Wiasserstein Wassersien
ScRNA-seq Atlas: RG-se (constr.) vs Wasserstein ScRNA-seq Atlas: RG-se (constr.) vs Wasserstein SCRNA-seq Atlas: RG-se (constr,) vs Wasserstein ScRNA-seq Atlas: RG-se (constr.) vs Wasserstein

; P

/

Wasserstein Wasserstein Wasserstein Wasserstein
ScRNA-seq Atlas: RG-seo (constr.) vs Wasserstein SCRNA-seq Atlas: RG-seo (constr.) vs Wasserstein ScRNA-seq Atlas: RG-seo (constr:) vs Wasserstein ScRNA-seq Atlas: RG-seo (constr.) vs Wasserstein

oo [< omm

v ,,,./

iing samples)

Wasserstein Wasserstein Wassersteln

Wasserstein

Figure 12: scRNA-seq: Wormhole and RG variants (constrained/unconstrained) across training set sizes of 10,
50, 100, and 200.

23

Under review as a conference paper at ICLR 2026

Wormhole (10 tranining samples)

RG e (Uncanste) (10 waining palrs)

ng pairs) _

R seo (uncons

RNA-seq Atlas: vs

ScRNA-seq Atlas: vs

Atlas: vs

Atlas: vs

of R
st

Wormhole (100 tranining samples)

£ -0 007
WE - 0078

Warmhole (200 tranining samples)

HSE - 0.887
e - 6677

Wasserstein

9: RG-s (unconstr.) vs Wasserstein

Wasserstein

ScRNA-seq: RG-s (unconstr.) vs

Wasserstein

ScRNA-seq: RG-s (unconstr.) vs Wasserstein

Wasserstein

9: RG-s (unconstr.) vs Wasserstein

nconstr) (50 training pairs)

RGs (o

ining

RGs

inconstc) (200 tra

Wasserstein

ScRNA-seq: RG-e (unconstr.) vs Wasserstein

st (50 training paivs)

AG-e (uncan:

tunco

caining palrs)

) (200

Wassersiein

ScRNA-seq: RG-e (unconstr.) vs Wasserstein

o |
e

Wasserstein

ScRNA-seq: RG-0 (unconstr.) vs Wasserstein

Wasserstain

ScRNA-seq: RG-0 (unconstr.) vs Wasserstein

g o

RG- (u

nconstr) (50 trani

scRNA-seq: RG-se (unt

ScRNA-seq: RG-se (us

canste) (50 training pairs)

RG-se fun

i)

caining pa

RG se funconsiz) (200

ing

nconstr) (50 tra

RG-se0 (u

SCRNA-seq: RG-seo (unconstr.) vs Wasserstein

#6500 (unconstr

we

ScRNA-seq: RG-seo (unconstr.) vs Wasserstein

aining par

we

ScRNA-seq: RG-seo (un:

B

Wiasserstein

Wasserstain

Figure 13: scRNA-seq: Wormhole and RG variants (constrained/unconstrained) across training set sizes of 10,

50,

100, and 200.

24

Under review as a conference paper at ICLR 2026

B.5 RG-WORMHOLE: ACCELERATING WORMHOLE WITH REGRESSION OF WASSERSTEIN

Experimental Settings. We run five experiments to show that RG-Wormhole is much faster than
Wormhole with similar effectiveness. First, we measure training time by training both models under
the same optimizer and schedule, sweeping batch sizes from 4 to 20 and reporting wall-clock time for
training sets of 10, 50, 100, and 200 pairs. Second, we assess encoders by computing R2/MSE/MAE
between pairwise distances in the learned embedding space and exact Wasserstein. Third, we evaluate
decoders by reporting the Wasserstein loss between each input and its reconstruction. Fourth, we
examine barycenters by decoding the mean embedding of each class and visualizing results. Fifth,
we study interpolation by decoding linear paths between two embeddings and illustrating trajectories.
Across all experiments, hyperparameters match Wormhole; the only change in RG-Wormhole is
replacing Wasserstein in encoder and decoder losses with the calibrated unconstrained RG. We use 10
samples from the training set to estimate RG coefficients. Except for embedding experiment which
uses ShapeNetV?2 dataset, other experiments use ModelNet40 dataset, same as (Haviv et al.}, [2024).

-Wormhole vs. Wormhole Time C; i G-Wormhole vs. Wormhole Time C; i vs. Wormhole

gt (sec
:
ot (sec)
\\
\
\
‘.\

\L

Total training time (sec

N\
\

\

N

Total training time (sec

Batch size (10 trining samples) Batch size (50 training samples) Batch size (100 training sampies) Batch size (200 training sampies)

Flgure 14: Tralmng time comparison of Wormbhole and RG Wormhole methods on point cloud datasets w1th
varying number of training samples.

ShapeNetv2: RG-e Wormhole s Wasserstein ShapeNetv2: RG-0 Wormhole vs Wasserstein ‘ShapeNetv2: RG-s Wormhole vs Wasserstein ShapeNetv2: RG-se Wormhole vs Wasserstein ShapeNetv2: RG-seo Wormhole vs Wasserstein

Figure 15 ShapeNetVZ RG Warmhole (constralned model) vs. Wormhole

ShapeNetv2: RG-e Wormhole vs Wasserstein ShapeNetv2: RG-0 Wormhole vs Wasserstein ShapeNetv2: RG-s Wormhole vs Wasserstein ShapeNetv2: RG-se Wormhole vs Wasserstein ShapeNetv2: RG-seo Wormhole vs Wasserstein

Flgure 16 ShapeNetVZ RG Wormhole (unconstramed model) vs. Wormhole

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Wormhole

RG-o0 Wormhole

RG-s Wormhole

RG-e Wormhole

data

reconstruction

data

reconstruction

data

reconstruction

data

reconstruction

airplane cup lamp vase

y

w

airplane

w

=0.058

=0.115 W =0.128 W =0.103 W = 0094

airplane cup lamp vase

"

w

H
w

W
»

= 0.061 W =0.121 W = 0.084 W = 0.090
airplane cup lamp vase

= 0.106 W = 0.140 W = 0.084 W = 0.093

Figure 17: ModelNet40: RG-Wormhole vs Wormhole reconstruction experiment

26

chair

W = 0.104

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

RG-se Wormhole

RG-seo Wormhole

data

reconstruction

data

reconstruction

airplane

W = 0.105
airplane

"

W =0.071

cup lamp vase

W =0.138 W =0.088 W =0.152

Figure 18: ModelNet40: RG-Wormhole reconstruction experiment

27

W = 0.098
chair

W =0.103

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

RG-se Wormhole RG-e Wormhole RG-s Wormhole RG-o0 Wormhole Wormhole

RG-seo Wormhole

airplane

airplane

airplane

airplane

airplane

ot

airplane

bed chair cup lamp

bed chair cup lamp

bed chair cup lamp

bed chair cup lamp

Figure 19: ModelNet40: RG-Wormhole barycenter experiment

28

toilet

toilet

toilet

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

RG-se Wormhole RG-e Wormhole RG-s Wormhole RG-o0 Wormhole Wormhole

RG-seo Wormhaole

Lamp A

Figure 20: ModelNet40: RG-Wormhole barycenter experiment

29

Lamp B

Under review as a conference paper at ICLR 2026

MNIST Point Cloud: Optimal weights of RG (constr.)

1.0 component

= PWD
- eBsW
- ST

- Maxsw
- MinSWGG

0.6

0.4

0.24
|

0.0-
< o o 2
S © & & s

0.8

Weight

Figure 21: MNIST Point Cloud: Optimal weight of RG variants (constrained) across different training samples.

MNIST Point Cloud: Optimal weights of RG (unconstr.)

16
Component
- sw
—_
14 - EBSW
=
—axsw
12 - MinSWGG
10
2
0.8
K]
=
06
0.4
02
L L
e o o e)
< <1 < 7 S
< <« < S Q~0

Figure 22: MNIST Point Cloud: Optimal weight of RG variants (unconstrained) across different training

samples.

ShapeNetV2: Optimal weights of RG (constr.)

Component
-
=
0.8 - == EBSW
=i
= s
= e
0.6
o
<
)
Q
g 0.4
0.2
0.0+ I
2 o o 2 X}
! ! x E B
E & < S &

Figure 23: ShapeNetV2: Optimal weight of RG variants (constrained) across different training samples.

30

Under review as a conference paper at ICLR 2026

ShapeNetV2: Optimal weights of RG (unconstr.)

Component

= PWD
- EBSW

= EsT
- MaxsW
1.25 1 mm MinSWGG
1.00
0.75
0.50
0.25
0.00

<2 o) 5 2
K < ¢ g
RS RS & &

Weight

Figure 24: ShapeNetV2: Optimal weight of RG variants (unconstrained) across different training samples.

MERFISH Cell Niches: Optimal weights of RG (constr.)

| component
- sw

= PWD
—EBSW
= EsT
- axsW
0.8 == MinSWGG

0.2

0.0- I

Figure 25: MERFISH Cell Niches: Optimal weight of RG variants (constrained) across different training
samples.

MERFISH Cell Niches: Optimal weights of RG (unconstr.)

Component
601 = s
=
=%
40 { mmm Maxsw
= e
20
N - a1 1
o
=y
Ry
Q
=20
=
—-40
-60
-80
-100
2 o 3 12 O
E £ & & &
< & S < s

Figure 26: MERFISH Cell Niches: Optimal weight of RG variants (unconstrained) across different training
samples.

31

Under review as a conference paper at ICLR 2026

scRNA-seq Atlas: Optimal weights of RG (constr.)

Component

= PWD
- eBsW
- ST

- Maxsw
0.8 == MinSWGG

0.2

0.0

Figure 27: scRNA-seq Atlas: Optimal weight of RG variants (constrained) across different training samples.

scRNA-seq Atlas: Optimal weights of RG (unconstr.)

Component
151 mm sw
- WD
- EBSW
- ST
— MaxSW
10 mm MinsWGG

g | i

-5

< o] 12
A o y 9 2
& < Y

Figure 28: scRNA-seq Atlas: Optimal weight of RG variants (unconstrained) across different training samples.

ModeiNetso: RG: (b, bed -» hed, e cnain > (e, aiptane) odletso: G- (cup,cup) > tcup,chan) , tollet > o, beo) ModeiNet40: G- (airplans,arpane) - (airlane, cup)
. I
o
N E £ B
o i § §
£ £ g
goe H g
~ o
— © " T e - e

Figure 29: ModelNet40 Intra class

> (chair chain) ModalNetao: RG-s (cup, chair) - (cup, cup) . bed) -> (tolle, tollet) todeiNeta0: RG-s (airplane, cup) -> (airplane, airplan

ModelNetao: RG- -

mFigure 30: ModelNet40 Inter class

32

	Introduction
	Preliminaries
	Regression of Wasserstein distance onto Sliced Optimal Transport distances
	Sliced Wasserstein and Lifted Sliced Wasserstein
	Regression of Wasserstein distance on sliced Wasserstein distances

	Experiments
	Point Cloud Classification
	Comparisons of RG variants vs. Wormhole in low-data regimes
	RG-Wormhole: Accelerating Wormhole with Regression of Wasserstein

	Conclusions
	Details
	Details of Remark 3
	Details of Remark 4

	Experiments
	Gaussian Simulation
	Point Cloud Classification
	Metric Space Visualization
	Comparison of RG variants vs. Wormhole in low-data regimes
	RG-Wormhole: Accelerating Wormhole with Regression of Wasserstein

