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ABSTRACT

We address the problem of efficiently computing Wasserstein distances for multiple
pairs of distributions drawn from a meta-distribution. To this end, we propose a fast
estimation method based on regressing Wasserstein distance on sliced Wasserstein
(SW) distances. Specifically, we leverage both standard SW distances, which
provide lower bounds, and lifted SW distances, which provide upper bounds, as
predictors of the true Wasserstein distance. To ensure parsimony, we introduce two
linear models: an unconstrained model with a closed-form least-squares solution,
and a constrained model that uses only half as many parameters. We show that
accurate models can be learned from a small number of distribution pairs. Once es-
timated, the model can predict the Wasserstein distance for any pair of distributions
via a linear combination of SW distances, making it highly efficient. Empirically,
we validate our approach on diverse tasks, including Gaussian mixtures, point-
cloud classification, and Wasserstein-space visualizations for 3D point clouds.
Across various datasets such as MNIST point clouds, ShapeNetV2, MERFISH Cell
Niches, and scRNA-seq, our method consistently provides a better approximation
of Wasserstein distance than the state-of-the-art Wasserstein embedding model,
Wasserstein Wormhole, particularly in low-data regimes. Finally, we demonstrate
that our estimator can also accelerate Wormhole training, yielding RG-Wormhole.

1 INTRODUCTION

Optimal Transport (OT) and Wasserstein distances (Villani, 2009; Peyré & Cuturi, 2019) have be-
come essential tools in machine learning, widely used for quantifying the similarity or dissimilarity
between probability distributions. Fundamentally, the Wasserstein distance measures the minimum
cost required to "transport" mass from one distribution to another, effectively capturing the un-
derlying geometry of the data. Thanks to their clear geometric interpretation and mathematical
robustness, Wasserstein distances have found applications across various fields, such as generative
modeling Genevay et al. (2018), computational biology Bunne et al. (2023), chemistry Wu et al.
(2023), and image processing Feydy et al. (2017). Despite its utility, computing the exact Wasserstein
distance is computationally expensive. It typically requires solving a large-scale linear program to
find an optimal transport plan, with a time complexity of O(n3 log n) for discrete distributions of
size n. This high cost severely limits its use in large-scale or real-time settings.

In many applications, Wasserstein distances are computed (repeatedly) for many pairs of distributions,
e.g., dataset comparisons (Alvarez-Melis & Fusi, 2020), 3D point-cloud autoencoder (Achlioptas
et al., 2018), point-cloud nearest neighbor classification/regression (Rubner et al., 1998), learning
embeddings for distributions (Kolouri et al., 2021), density-density regression (Chen et al., 2023),
and so on. Therefore, the high computational complexities of the Wasserstein distance become the
main bottleneck to scaling up these applications. As a result, speeding up the computation of the
Wasserstein distance has become a vital task in practice.

To address this bottleneck, a straightforward improvement is to speed up the computation of the
Wasserstein distance. For example, entropic regularization (Cuturi, 2013) enables fast approximation
via Sinkhorn iterations, while other methods exploit the structure in the transport plan, such as low-
rank approximations (Scetbon et al., 2021). In addition, some approaches rely on strong structural
assumptions, such as the Bures-Wasserstein metric (Dowson & Landau, 1982) gives a closed-form
solution for the exact 2-Wasserstein distance (W2) under the Gaussian assumption on distributions.
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Another approach is to cast computing Wasserstein distances for many pairs of distributions as a
learning problem, i.e., learning a model first to predict the Wasserstein distance given any pair of
distributions, then use the model later for the mentioned downstream tasks. For example, Deep
Wasserstein Embedding (DWE) (Courty et al., 2018) trains a Siamese convolutional network to
match OT distances between 2D images, while Wasserstein Wormhole (Haviv et al., 2024) employs
transformer-based architectures to learn embeddings of distributions, allowing Euclidean distances
in the learned space to approximate Wasserstein distances efficiently. While effective, these deep
learning-based methods require significant computational resources and time to train, and their
performance may degrade when limited training data are available. Moreover, these approaches are
limited to empirical distributions because of the use of neural networks.

In this work, we propose a novel approach to predict the Wasserstein distance without relying on any
neural networks or learned embeddings. Moreover, the proposed approach relies on a parsimonious
model and can handle both continuous and discrete distributions. In particular, we propose to regress
the Wasserstein distance on sliced Wasserstein (SW) distances (Rabin et al., 2010; Mahey et al.,
2023; Nguyen & Ho, 2023; Liu et al., 2025; Deshpande et al., 2019; Rowland et al., 2019). In greater
detail, we introduce linear models with Wasserstein distances as the response and SW distances as the
predictors. We provide estimates of the models via efficient least-squares estimates. In addition, since
sliced Wasserstein distances have low computational complexity, the resulting Wasserstein regressor
is computationally efficient.

Contribution: In summary, our main contributions are three-fold:

1. We introduce the first regression framework where the Wasserstein distance serves as the response
variable and various sliced Wasserstein (SW) distances act as predictors, in the setting of random
pairs of distributions. This framework not only uncovers the relationship between the Wasserstein
distance and its SW-based approximations but also enables efficient estimation of the Wasserstein
distance. Specifically, we use SW distance (Bonneel et al., 2015), Max-SW (Deshpande et al., 2019),
and energy-based SW (Nguyen & Ho, 2023), all of which provide lower bounds on the Wasserstein
distance, as predictors. In addition, we incorporate lifted SW distances, which provide upper bounds,
including projected Wasserstein (Rowland et al., 2019), Minimum SW generalized geodesics (Mahey
et al., 2023), and expected sliced distance (Liu et al., 2025).

2. We propose two linear models for the regression problem and describe their estimation via
least-squares. The first model is unconstrained and admits a closed-form least-squares solution. The
second model incorporates constraints that leverage the known bounds between SW distances and the
Wasserstein distance, thereby reducing the number of parameters by half. Based on these estimations,
we obtain a fast method to approximate the Wasserstein distance for any pair of distributions, with
the same computational complexity as that of computing SW distances.

3. Empirically, we demonstrate that our approach yields accurate estimates of the Wasserstein
distance, particularly in low-data regimes. We first evaluate its accuracy through simulations with
Gaussian mixtures. We then apply the estimated distances to visualize distributional data and to
perform k-NN classification on ShapeNetV2 point clouds. Next, we benchmark our method against
Wasserstein Wormhole, the state-of-the-art Wasserstein embedding model, across four datasets of
increasing dimensionality: MNIST point clouds, ShapeNetV2, MERFISH cell niches, and scRNA-seq.
Finally, we propose RG-Wormhole, a variant of Wasserstein Wormhole that replaces its Wasserstein
computations with our estimates, preserving accuracy while substantially reducing training time.

Organization. Section 2 reviews preliminaries on the Wasserstein distance, its sliced variants, and
their computation. Section 3 introduces our regression framework for approximating Wasserstein dis-
tances from sliced variants, together with both constrained and unconstrained linear models. Section 4
reports the experimental results. The appendices provide supplementary experiments (mixtures of
Gaussians and distributional space visualizations), detailed experimental settings, theoretical proofs,
and additional related work.

Notations. For any d ≥ 2, let Sd−1 := {θ ∈ Rd : ∥θ∥2 = 1} denote the unit sphere in Rd, and
let U(Sd−1) denote the uniform distribution on it. For p ≥ 1, we write Pp(X ) for the set of all
probability measures on X with the finite p th moment. Given two sequences an and bn, the notation
an = O(bn) means that an ≤ Cbn for all n ≥ 1, for some universal constant C > 0. For a
measurable map P , the notation P♯µ denotes the push-forward of µ through P . Additional notation
will be introduced as needed.
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2 PRELIMINARIES

We first review definitions and computational aspects of the Wasserstein distance and its related
properties in one dimension.

Wasserstein distance. Wasserstein-p (p ≥ 1) distance Villani (2008); Peyré et al. (2019) between
two distributions µ ∈ Pp(Rd) and ν ∈ Pp(Rd) (dimension d ≥ 1) is defined as:

W p
p (µ, ν) = inf

π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥ppdπ(x, y), (1)

where Π(µ, ν) =
{
π ∈ P(Rd × Rd)} |

∫
Rd dπ(x, y) = µ(x),

∫
Rd dπ(x, y) = ν(y)

}
is the set of all

transportation plans i.e., joint distributions which have marginals be two comparing distributions.
When µ and ν are discrete distributions i.e., µ =

∑n
i=1 αiδxi

(n ≥ 1) and ν =
∑m

j=1 βjδyj
(m ≥ 1)

where
∑N

i=1 αi =
∑m

j=1 βj = 1 and αi ≥ 0, βj ≥ 0 for all i = 1, . . . , n and j = 1, . . . ,m,
Wasserstein distance between µ and ν defined as: W p

p (µ, ν) = minγ∈Γ(α,β)

∑n
i=1

∑m
j=1 ∥xi −

yj∥ppγij , where Γ(α, β) = {γ ∈ Rn×m
+ | γ1 = α, γ⊤1 = β}. Without loss of generality, we assume

that n ≥ m. Therefore, the time complexity for solving this linear programming is O(n3 log n) Peyré
& Cuturi (2019) and O(n2), which are expensive.

One-dimensional Case. When d = 1, the Wasserstein distance can be efficiently calculated. For
the continuous case, Wasserstein-2 distance has the following form: W p

p (µ, ν) =
∫ 1

0
|F−1

µ (t) −
F−1
ν (t)|pdt, where F−1

µ and F−1
ν denote the quantile functions of µ and ν respectively. Here, the

transportation plan is π(µ,ν) = (F−1
µ , F−1

ν )♯U([0, 1]). When µ and ν are discrete distributions, i.e.
µ =

∑n
i=1 αiδxi

(n ≥ 1) and ν =
∑m

j=1 βjδyj
, quantile functions of µ and ν are:

F−1
µ (t) =

n∑
i=1

x(i)I

i−1∑
j=1

α(j) < t ≤
i∑

j=1

α(j)

 , F−1
ν (t) =

m∑
j=1

y(j)I

(
j−1∑
i=1

β(i) < t ≤
j∑

i=1

β(i)

)
,

where x(1) ≤ . . . ≤ x(n) and y(1) ≤ . . . ≤ y(m) are the sorted supports (or order statistics).
Therefore, the one-dimensional Wasserstein distance can be computed in O(n log n) in time and
O(n) in space (assuming that n > m).

Random Projection. A key technique that plays a vital role in later discussion is random projection.
We consider a function Pθ : Rd → R where θ ∼ σ(θ) (σ(θ) ∼ P(Sd−1)) is a random variable.
For simplicity, we consider the traditional setup where θ ∼ U(Sd−1) and Pθ(x) = ⟨θ, x⟩ (Bonneel
et al., 2015; Rabin et al., 2012). However, the following discussion holds for any other types of
projections (Kolouri et al., 2019; Bonet et al., 2023b; 2025; 2023c). For µ ∈ Pp(Rd) and ν ∈ Pp(Rd),
one-dimensional projected Wasserstein distance with Pθ is defined as:

W p
p(µ, ν;Pθ) = W p

p (Pθ♯µ, Pθ♯ν) =

∫ 1

0

|F−1
Pθ♯µ

(t)− F−1
Pθ♯ν

(t)|pdt. (2)

The second approach to construct a Wasserstein-type discrepancy from one-dimensional projection is
using lifted transportation plan. There are many ways to construct such lifted plan using disintegration
of measures (Muzellec & Cuturi, 2019; Tanguy et al., 2025). In practice, the most used way (Liu
et al., 2025; Tanguy et al., 2025) is:

W
p

p(µ, ν;Pθ) =

∫
Rd×Rd

∥x− y∥ppdπθ(x, y) (3)

=

∫
R×R

∫
P−1

θ (t1)×P−1
θ (t2)

∥x− y|ppdµt1 ⊗ νt2(x, y)dπ(Pθ♯µ,Pθ♯ν)(t1, t2), (4)

where πθ ∈ Π(µ, ν) is the lifted transportation plan, π(Pθ♯µ,Pθ♯ν) is the optimal transport plan
between Pθ♯µ and Pθ♯ν, µt1 and νt2 are disintegration of µ and ν at t1 and t2 the function Pθ, and
⊗ denotes the product of measures. When dealing with discrete measures µ and ν, W

p

p(µ, ν;Pθ)
can still be computed efficiently (Mahey et al., 2023; Liu et al., 2025) i.e., O(n log n) in time and
O(n) in space (assumed that n > m). The quantity W

p

p(µ, ν;Pθ) is known as lifted cost (Tanguy
et al., 2025) or sliced Wasserstein generalized geodesic (Mahey et al., 2023; Liu et al., 2025). From
previous work (Nguyen & Ho, 2023; Mahey et al., 2023; Tanguy, 2023), we know the following
relationship W p(µ, ν;Pθ) ≤ Wp(µ, ν) ≤ W p(µ, ν;Pθ).

3
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3 REGRESSION OF WASSERSTEIN DISTANCE ONTO SLICED OPTIMAL
TRANSPORT DISTANCES

In this section, we present a framework for regressing the Wasserstein distance onto sliced Wasserstein
distances, propose some models, and discuss related computational properties.

3.1 SLICED WASSERSTEIN AND LIFTED SLICED WASSERSTEIN

Sliced Wasserstein distances. Given µ ∈ Pp(Rd) and ν ∈ Pp(Rd), a sliced Wasserstein-p distance
can be defined as follows (Rabin et al., 2012; Nguyen, 2025):

SW p
p (µ, ν;σ) = Eθ∼σ

[
W p

p(µ, ν;Pθ)
]
, (5)

where Pθ : Rd → R is the projection function, W p
p(µ, ν;Pθ) is the one-dimensional projected

Wasserstein distance (equation 2), and σ ∈ P(Sd−1) is the slicing distribution. By changing the
slicing distribution, we can obtain variants of SW. There are three main ways: 1. Fixed prior: The
simplest way is to choose σ to be a fixed and known distribution, e.g., the uniform distribution
U(Sd−1) as in the conventional SW (Rabin et al., 2012). 2. Optimization-based: We can also find
σ that prioritizes some realizations of θ that satisfies a notion of informativeness. For example, σ
can put more masses to realizations of θ where W p

p(µ, ν;Pθ) have high value, i.e., setting infor-
mativeness as discriminativeness. For example, we can find σ by solving (Nguyen et al., 2021):
supσ∈M(Sd−1) Eθ∼σ[W

p
p(µ, ν;Pθ)], where M(Sd−1) ⊂ P(Sd−1) be a set of probability measures

on Sd−1. When M(Sd−1) = {δθ | θ ∈ Sd−1}, max sliced Wasserstein distance (Deshpande et al.,
2019) is obtained: Max-SW (µ, ν) = maxθ∈Sd−1 W p(µ, ν;Pθ)]. 3. Energy-based: An optimization-
free way to select σ is to design it as an energy-based distribution with the unnormalized density:
pσ(θ) ∝ f(W p

p(µ, ν;Pθ)), where f is often chosen to be an increasing function on the positive
real line, i.e., an exponential function. This choice of slicing distribution leads to energy-based SW
(EBSW) (Nguyen & Ho, 2023).

Empirical estimation. For SW, Monte Carlo estimation is used to approximate the distance:
ŜW

p

p(µ, ν; θ1, . . . , θL) = 1
L

∑L
l=1 W

p
p(µ, ν;Pθl), where θ1, . . . , θL

i.i.d∼ U(Sd−1) (L > 0) are
projecting directions (other sampling techniques can also be used (Nguyen et al., 2024; Nguyen
& Ho, 2024; Sisouk et al., 2025)). For Max-SW, we can use θ̂T which is the solution of an
optimization algorithm with T > 0 iterations, e.g., projected gradient ascent (Nietert et al., 2022) or
Riemannian gradient ascent Lin et al. (2020): ̂Max-SW

p

p(µ, ν; θ̂T ) = W p
p(µ, ν;Pθ̂T

). For EBSW,

one simple way to estimate the distance is to use importance sampling: ÊBSW
p

p(µ, ν; θ1, . . . , θL) =∑L
l=1 ŵlW

p
p(µ, ν;Pθl), where ŵl =

f(Wp
p(µ,ν;Pθl

))∑L
l′=1

f(Wp
p(µ,ν;Pθ

l′
)

and θ1, . . . , θL ∼ U(Sd−1).

Lower bounds. We summarize the connection between SW, Max-SW, EBSW, and Wasserstein
distance in the following remark. The detail of the proof can be found in Nguyen & Ho (2023).

Remark 1. Given any µ ∈ Pp(Rd) and ν ∈ Pp(Rd), we have:

(a) SWp(µ, ν) ≤ EBSWp(µ, ν) ≤ Max-SWp(µ, ν) ≤ Wp(µ, ν),

(b) ŜW p(µ, ν; θ1, . . . , θL) ≤ ÊBSW p(µ, ν; θ1, . . . , θL) ≤ Wp(µ, ν) for any θ1, . . . , θL ∈ Sd−1,

(c) ̂Max-SW
p

p(µ, ν; θ̂T ) ≤ Wp(µ, ν) for any θ̂T ∈ Sd−1.

Lifted sliced Wasserstein distances. Given µ ∈ Pp(Rd) and ν ∈ Pp(Rd), a lifted sliced Wasserstein-
p distance can be defined as follows (Rowland et al., 2019):

LSW p
p (µ, ν;σ) = Eθ∼σ

[
W

p

p(µ, ν;Pθ)
]
, (6)

where Pθ : Rd → R is the projection function, W
p

p(µ, ν;Pθ) is the SWGG (equation 3), and
σ ∈ P(Sd−1) is the slicing distribution. Similar to SW, we can obtain variants of PW by choosing
σ. 1. Fixed prior: The original LSW is introduced as in projected Wasserstein (PW) in Rowland
et al. (2019), which uses the uniform distribution U(Sd−1). 2. Optimization-based: In contrast to

4
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the case of one-dimensional projected Wasserstein, which is always a lower bound of Wasserstein
distance, SWGG is always an upper bound of Wasserstein distance. Therefore, it is desirable
to select θ that can minimize the corresponding lifted cost, that leads to min SWGG distance:
Min-SWGGp(µ, ν) = minθ∈Sd−1 W p(µ, ν;Pθ). 3. Energy-based: Similar to the case of EBSW,
authors in Liu et al. (2025) proposes to choose σ as an energy-based distribution with the unnormalized
density: pσ(θ) ∝ f(−W p

p(µ, ν;Pθ)), where f is often chosen to be an exponential function with
temperature. The authors name the distance as expected sliced transport (EST).

Empirical estimation. For PW, Monte Carlo samples are used to approximate the distance:
P̂W

p

p(µ, ν; θ1, . . . , θL) = 1
L

∑L
l=1 W

p

p(µ, ν;Pθl), where θ1, . . . , θL
i.i.d∼ U(Sd−1). For Min-

SWGG, we can use θ̂T which is the solution of an optimization algorithm with T > 0 iterations,
e.g., simulated annealing (Mahey et al., 2023), gradient ascent with a surrogate objective (Mahey
et al., 2023), and differentiable approximation (Chapel et al., 2025): ̂Min-SWGG

p

p(µ, ν; θ̂T ) =

W
p

p(µ, ν;Pθ̂T
). For EST, importance sampling estimation is used: ÊST

p

p(µ, ν; θ1, . . . , θL)) =∑L
l=1 ŵlW

p

p(µ, ν;Pθl), where ŵl =
f(−W

p
p(µ,ν;Pθl

))∑L
l′=1

f(−W
p
p(µ,ν;Pθ

l′
)

and θ1, . . . , θL ∼ U(Sd−1).

Upper bounds. We summarize the connection between PW, Min-SWGG, EST, and Wasserstein
distance in the following remark. The connection between Min-SWGG, EST, and Wasserstein
distance is discussed in Mahey et al. (2023); Liu et al. (2025). The connection between EST and PW
can be generalized from the connection between EBSW and SW in Nguyen & Ho (2023).
Remark 2. Given any µ ∈ Pp(Rd) and ν ∈ Pp(Rd), we have:

(a) Wp(µ, ν) ≤ Min-SWGGp(µ, ν) ≤ ESTp(µ, ν) ≤ PWp(µ, ν),

(b) Wp(µ, ν) ≤ ÊST p(µ, ν; θ1, . . . , θL) ≤ P̂W p(µ, ν; θ1, . . . , θL) for any θ1, . . . , θL ∈ Sd−1,

(c) Wp(µ, ν) ≤ ̂Min-SWGG
p

p(µ, ν; θ̂T ) for any θ̂T ∈ Sd−1.

3.2 REGRESSION OF WASSERSTEIN DISTANCE ON SLICED WASSERSTEIN DISTANCES

We consider the setting where we observe pairs of distributions (µ1, ν1), . . . , (µN , νN ) ∼ P(µ, ν).
Here, P(µ, ν) is the meta distribution, and we are interested in relating Wp(µi, νi) with K > 0 SW
distances S(1)

p (µi, νi), . . . , S
(K)
p (µi, νi) for i = 1, . . . , N . We first start with a general model.

Definition 1 ( Regression of Wasserstein distance onto SW distances). Given a meta distribution
P(µ, ν) ∈ P(Pp(Rd) × Pp(Rd)), K > 0 SW distances S

(1)
p , . . . , S

(K)
p , a regression model of

Wasserstein distance onto SW distances is defined as follows:

Wp(µ, ν) = f(S(1)
p (µ, ν), . . . , S(K)

p (µ, ν)) + ε, (7)

where (µ, ν) ∼ P(µ, ν), f ∈ F is the regression function, and ε is a noise model such that E[ε] = 0.

To estimate f , one natural estimator is the least square estimate:

fLSE = argmin
f∈F

E
[(

f(S(1)
p (µ, ν), . . . , S(K)

p (µ, ν))−Wp(µ, ν))
)2]

. (8)

It is worth noting that the function f can be constructed in both parametric ways (e.g., deep neural
networks) or non-parametric ways (e.g., using kernels). However, in order to have a simple and
explainable model, we consider linear functions in this work.

Linear Regression of Wasserstein distance onto SW distances. We now propose linear estimations
of Wasserstein distances from SW distances.
Definition 2 (Linear Regression of Wasserstein distance onto SW distances). Given a meta distri-
bution P(µ, ν) ∈ P(Pp(Rd)× Pp(Rd)), K > 0 SW distances S(1)

p , . . . , S
(K)
p , the linear regression

model of Wasserstein distance onto SW distances is defined as follows:

Wp(µ, ν) =

K∑
k=1

ωkS
(k)
p (µ, ν) + ε, (9)

where (µ, ν) ∼ P(µ, ν) and ε is a noise model such that E[ε] = 0.

5
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Figure 1: Linear regression of the Wasserstein distance vector Ŵ on sliced Wasserstein (SW) distances
Ŝ(1), . . . , Ŝ(K). The left figure illustrates a linear model, interpreted as the L2 projection of the Wasserstein
distance onto the linear span of the SW distances. The right figure depicts a special case of a constrained linear
model with only two SW distances as predictors, which can be seen as a midpoint method.

Again, we use least-squares estimation to obtain an estimate of ω.
Remark 3. The least square estimator admits the following closed form:

ωLSE = E
[
Sp(µ, ν)Sp(µ, ν)

⊤]−1 E [Sp(µ, ν)Wp(µ, ν)] , (10)

where Sp(µ, ν) = (S
(1)
p (µ, ν), . . . , S

(K)
p (µ, ν))⊤.

The detail of Remark 3 in given in Appendix A.1. In practice, we can sample
(µ1, ν1), . . . , (µM , νM ) ∼ P(µ, ν) to approximate the expectation in equation 10. Let Ŝ ∈ RM×K

+ be
the SW distances matrix i.e., Ŝik = S

(k)
p (µi, νi) for i = 1, . . . ,M , and Ŵ ∈ RM

+ be the Wasserstein
distances vector i.e., Ŵi = Wp(µi, νi) for i = 1, . . . ,M , we have the sample-based least-squares
estimate: ω̂LSE = (Ŝ⊤Ŝ)−1Ŝ⊤Ŵ , which is an unbiased estimate of ω. It is well-known that the
linear model can be seen as L2 projection of the Wasserstein distances vector Ŵ onto the linear span
of the SW distances vectors Ŝ(1), . . . , Ŝ(K). We illustrate the idea in the left figure in Figure 1.

From Section 3.1, we know that SW distances are either lower bounds or upper bounds of Wasserstein
distance. Therefore, natural estimation can be formed using midpoint method. In particular, given a
lower bound SLp(µ, ν) and a upper bound SUp(µ, ν), we can predict the Wasserstein distance as
ω1SLp(µ, ν) + ω2SUp(µ, ν) with 0 ≤ ω1 ≤ 1 and ω2 = 1− ω1.
Definition 3 (Constrained Linear Regression of Wasserstein distance onto SW distances). Given a
meta distribution P(µ, ν) ∈ P(Pp(Rd)× Pp(Rd)), K > 0 SW distances SL(1)

p , . . . , SL
(K)
p which

are lower bounds of Wp and K > 0 SW distances SU (1)
p , . . . , SU

(K)
p which are lower bounds of Wp,

the constrained linear regression model is defined as follows:

Wp(µ, ν) =
1

K

K∑
k=1

ωkSL
(k)
p (µ, ν) +

1

K

K∑
k=1

(1− ωk)SU
(k)
p (µ, ν) + ε, (11)

where 0 ≤ ωk ≤ 1, (µ, ν) ∼ P(µ, ν) and ε is a noise model such that E[ε] = 0.

To estimate ω = (ω1, . . . , ωK) under the constrained model, we again form the least square estimate,
which can be solved using quadratic programming and Monte Carlo estimation. In a special case
where K = 1, i.e., having one lower bound and one upper bound, we can have a closed-form.
Remark 4. For the case K = 1 with a lower bound SLp(µ, ν) and an upper bound SUp(µ, ν), a
closed-form of the least square estimate under the constrained model can be formed:

ω̂CLSE =
E [(SUp(µ, ν)− SLp(µ, ν))(SUp(µ, ν)−Wp(µ, ν))]

E[(SUp(µ, ν)− SLp(µ, ν)2]
. (12)

The detail of Remark 4 in given in Appendix A.2. The corresponding sample-based estimator for the
model is: ω̂CLSE =

1
M

∑m
i=1(SUp(µi,νi)−SLp(µi,νi))(SUp(µi,νi)−Wp(µi,νi))

1
M

∑M
i=1(SUp(µi,νi)−SLp(µi,νi)2

. We show the idea in the
right figure in Figure 1. Compared to the unconstrained model, the constrained model has half of
the parameters. In addition, it adds inductive bias to the model, which is often helpful when having
limited observed samples.

Wasserstein Distance Estimation with Few-Shot Regression. We recall that we observe
(µ1, ν1), . . . , (µN , νN ) ∼ P(µ, ν) in practice. It is not computationally efficient to compute the

6
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Table 1: k-NN accuracy on point-cloud classification on ShapeNetV2 dataset.

Methods R2 k=1 k=3 k=5 k=10 k=15

WD – 83.6% ± 0.0% 83.5% ± 0.0% 84.2% ± 0.0% 82.9% ± 0.0% 79.2% ± 0.0%

RG-s 0.868± 0.02 82.1% ± 0.1% 81.7% ± 0.1% 80.8% ± 0.1% 79.4% ± 0.2% 75.5% ± 0.2%
RG-e 0.926± 0.04 82.5% ± 0.1% 82.2% ± 0.1% 80.9% ± 0.2% 79.6% ± 0.3% 75.7% ± 0.3%
RG-o 0.774± 0.38 65.1% ± 0.3% 67.7% ± 0.3% 67.6% ± 0.5% 66.7% ± 0.5% 66.0% ± 0.5%
RG-se 0.935± 0.02 82.5% ± 0.4% 82.2% ± 0.4% 82.6% ± 0.5% 81.9% ± 0.5% 76.5% ± 0.5%
RG-seo 0.937± 0.01 82.8% ± 0.4% 83.3% ± 0.5% 83.5% ± 0.7% 82.3% ± 0.7% 77.9% ± 0.7%

discussed least square estimates using all N pairs of distributions since those estimates require
evaluation of Wasserstein distances. We then sample a subset (µ′

1, ν
′
1), . . . , (µ

′
N , ν′M ) from the

original set with M << N . After obtaining an estimate ω̂ from (µ′
1, ν

′
1), . . . , (µ

′
N , ν′M ), we can

form estimations of the Wasserstein distances for other pairs and any new pair of distributions given
their SW distances. -

Computational complexities. We assume that N pairs of distributions have the number of supports
be at most n and in d dimensions. For fitting the estimate on M pairs, we need to compute MK
SW distances (using L projecting directions) which costs O(MKLn(log n + d)) in time and M
Wasserstein distances which costs O(Mn2(n log n+ d)). Computing the least square estimate has
the time complexity of O(MK2 +K3). Then, we compute (N −M)K SW distances which costs
O((N−M)KLn(log n+d)) and predict (N−M) Wasserstein distances which costs O((N−M)K).
Total time complexity is O(NKLn(log n+d))+Mn2(n log n+d))+MK2+K3+(N −M)K)
compared to O(Nn2(n log n+ d)) of computing Wasserstein distances for all N pairs.

Extensions on regression. In this work, we focus on regressing the Wasserstein-p distance. If
other ground metrics are used e.g., geodesic distances on manifolds, variants of SW distances
such as spherical sliced Wasserstein distances (Bonet et al., 2023a; Tran et al., 2024; Quellmalz
et al., 2023), hyperbolic sliced Wasserstein distances (Bonet et al., 2023b), sliced Wasserstein for
distributions over positive definite matrices (Bonet et al., 2023c), and other non-linear variants
of sliced Wasserstein (Bonet et al., 2025; Chapel et al., 2025; Tanguy et al., 2025; Kolouri et al.,
2019). However, they might not be upper/lower bounds of the corresponding Wasserstein distances.
Moreover, to incorporate uncertainty quantification, we can also perform Bayesian inference (Box &
Tiao, 2011), e.g., putting a prior on the regression function.

4 EXPERIMENTS

We define some specific model instances: RG-o uses Max-SW and Min-SWGG as predictors; RG-s
uses SW and PWD as predictors; RG-e uses EBSW and EST as predictors. We also consider two
extensions: RG-se combines SW, EBSW, PWD, and EST, and RG-seo combines all six variants. For
each instance, we have a constrained version and an unconstrained version as discussed.

We evaluate our methods in five parts, each with a distinct goal. First, in Section 4.1, we test practical
use via k-NN on ShapeNetV2, reporting accuracy under different metrics. Second, in Section 4.2, we
benchmark RG variants against Wormhole across MNIST point clouds, ShapeNetV2, MERFISH Cell
Niches Zhang et al. (2021), and scRNA-seq atlas Persad et al. (2023), reporting R2/MSE/MAE in
low-data regimes. Third, in Section 4.3, we combine our framework with Wormhole to introduce
RG-Wormhole, a hybrid that matches Wormhole’s performance while requiring far less training time.
We compare training time under varying batch sizes and epochs, as well as embedding, reconstruction,
barycenter, and interpolation quality. In Appendix B.1, we run Mixture of Gaussian simulations to
verify that our methods approximate the true Wasserstein distance from low to high dimensions. In
Appendix B.3, we visualize metric-induced geometry with UMAP McInnes et al. (2018). Throughout,
N denotes the number of training-set sizes, and M0 the number of samples drawn from the training
set, yielding M = M0(M0−1)

2 pairs used to estimate RG coefficients.

4.1 POINT CLOUD CLASSIFICATION

We evaluate unconstrained RG variants over a classification task over 10-class ShapeNetV2 with
500 training samples (N=500) and estimate RG weights from 10 samples (M0=10) drawn from the
training set. The details of the experimental setting and full results are provided in Appendix B.2.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Approximation quality of Wormhole and RG variants across four datasets under a training set size of
100 samples. Each cell reports R2, MSE, and MA) with respect to the exact Wasserstein distance.

Methods MNIST Point Cloud ShapeNetV2 MERFISH scRNA-seq
R2 MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE

Wormhole 0.28 4.3 × 10−1 5.1 × 10−1 0.65 6.6 × 10−2 1.8 × 10−1 -3.6 8.0 × 10−4 2.1 × 10−2 0.04 7.0 × 10−3 7.8 × 10−2

RG-s (constr.) 0.84 8.9 × 10−2 2.3 × 10−1 0.88 2.0 × 10−2 1.1 × 10−1 0.91 1.6 × 10−5 3.0 × 10−3 1.00 3.7 × 10−5 3.0 × 10−3

RG-e (constr.) 0.86 8.7 × 10−2 2.3 × 10−1 0.90 1.7 × 10−2 1.0 × 10−1 0.92 1.3 × 10−5 3.0 × 10−3 1.00 1.3 × 10−5 1.0 × 10−3

RG-o (constr.) 0.77 1.4 × 10−1 2.8 × 10−1 0.66 5.2 × 10−2 1.8 × 10−1 0.75 4.8 × 10−5 6.0 × 10−3 0.99 6.1 × 10−5 6.0 × 10−3

RG-se (constr.) 0.84 9.8 × 10−2 2.4 × 10−1 0.92 1.4 × 10−2 9.3 × 10−2 0.91 1.5 × 10−5 3.0 × 10−3 1.00 2.4 × 10−5 2.0 × 10−3

RG-seo (constr.) 0.85 9.0 × 10−2 2.3 × 10−1 0.91 1.7 × 10−2 1.0 × 10−1 0.92 1.3 × 10−5 3.0 × 10−3 1.00 2.2 × 10−5 2.0 × 10−3

RG-s (unconstr.) 0.93 4.5 × 10−2 1.6 × 10−1 0.94 1.1 × 10−2 8.2 × 10−2 0.96 6.3 × 10−6 2.0 × 10−3 0.99 8.6 × 10−5 7.0 × 10−3

RG-e (unconstr.) 0.92 5.4 × 10−2 1.8 × 10−1 0.92 1.5 × 10−2 9.8 × 10−2 0.96 6.9 × 10−6 2.0 × 10−3 0.99 7.0 × 10−5 6.0 × 10−3

RG-o (unconstr.) 0.77 1.4 × 10−1 3.0 × 10−1 0.75 3.8 × 10−2 1.6 × 10−1 0.89 8.7 × 10−4 2.9 × 10−2 0.82 2.9 × 10−3 5.2 × 10−2

RG-se (unconstr.) 0.93 4.0 × 10−2 1.5 × 10−1 0.95 9.9 × 10−3 7.8 × 10−2 0.98 2.9 × 10−6 1.0 × 10−3 1.00 3.0 × 10−5 4.0 × 10−3

RG-seo (unconstr.) 0.93 4.0 × 10−2 1.5 × 10−1 0.95 9.8 × 10−3 7.8 × 10−2 0.97 6.8 × 10−6 2.0 × 10−3 0.99 6.8 × 10−5 7.0 × 10−3
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Figure 2: ModelNet40: a RG-Wormhole variant in reconstruction experiment.
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Figure 3: ModelNet40: a RG-Wormhole variant in interpolation experiment.

Results. Table 1 reports k-NN accuracy on ShapeNetV2 under different metrics. As expected, WD
achieves the best accuracy, with 84.2% at k=5. Among single sliced-based metrics, SW and EBSW,
are the strongest, though they cap at about 72.5% top-1. Our RG methods close much of the gap
to Wasserstein. Both RG-s and RG-e consistently achieve around 82.5% top-1 accuracy with high
correlation to Wasserstein (R2 ≈ 0.9). The multi-metric extensions further improve stability: RG-se
and RG-seo reach up to 83.5% accuracy with R2 as high as 0.93, essentially matching Wasserstein.

4.2 COMPARISONS OF RG VARIANTS VS. WORMHOLE IN LOW-DATA REGIMES

We compare our RG framework with Wormhole within the same training sizes, matching the pre-
processing of (Haviv et al., 2024) across four datasets spanning dimensionality: MNIST pixel
point clouds (2D), ShapeNetV2 point clouds (3D), MERFISH Niche Cells (254D), and scRNA-seq
(2,500D). We train on N ∈{10, 50, 100, 200} random pairs and evaluate R2/MSE/MAE against exact
WD. For fairness, the number of training pairs for Wormhole equals the number used to estimate the
linear coefficients for RG variants, i.e., M0=N . Full results appear in Figures 6–13 with settings in
Appendix B.4; Table 2 summarizes the M0=100 case, and other M0 follow the same pattern.

Results. Across all four datasets, RG variants consistently outperform Wormhole at small training
sizes. Wormhole is weaker primarily because it is data hungry and its performance improves as
we add samples, yet under comparable budgets it still trails our methods. By contrast, RG variants
are already accurate with few pairs, with unconstrained variants are slightly stronger, whereas
constrained variants converge faster and are preferable at the very smallest sizes. RG-se and RG-seo
are the strongest when given sufficient samples though the latter can lag at the tiniest sizes before its
weights settle but becomes top-performing quickly and still requires far fewer pairs than Wormhole.
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4.3 RG-WORMHOLE: ACCELERATING WORMHOLE WITH REGRESSION OF WASSERSTEIN

The previous comparison reveals a clear trade-off. RG framework is lightweight and data-efficient,
but it does not produce Euclidean embeddings and therefore cannot support interpolation experiments.
Wormhole, in contrast, learns Euclidean embeddings that enable interpolation and reconstruction,
but it is computationally heavy because training requires many Wasserstein evaluations (pairwise
distances within each mini-batch and reconstruction losses), which slows and raises training cost.

RG-Wormhole. To combine the strengths of both, we introduce RG-Wormhole. We first calibrate
a RG surrogate on a small set of exact Wasserstein pairs from the same data domain and freeze
its weights. We then keep the Wormhole architecture, optimizer, and schedule unchanged, and
simply replace every use of the Wasserstein distance with the calibrated surrogate in both the encoder
(pairwise distances in the batch) and the decoder (reconstruction loss). No other component is
modified. This substitution makes each training step much faster while preserving the performance.

We run five experiments of both models to empirically show that RG-Wormhole is much faster
than Wormhole while keeping similar effectiveness. First, we measure training time by training
Wormhole and RG-Wormhole under the same optimizer and schedule, sweeping batch sizes 4–20 and
reporting wall-clock time for training-set sizes N ∈{10, 50, 100, 200}. Second, we assess encoders
via R2/MSE/MAE between learned pairwise distances and exact Wasserstein. Third, we evaluate
decoders via the Wasserstein loss between each input shape and its reconstruction. Fourth, we
examine barycenters by decoding each class’s mean embedding and visualizing results. Finally, we
study interpolation by decoding linear paths between two embeddings and visualizing the trajectories.
Across all experiments, hyperparameters match Wormhole; the only change in RG-Wormhole is
replacing every use of the Wasserstein distance in the encoder and decoder losses with the calibrated
unconstrained RG variants. For RG-Wormhole, we estimate the RG coefficient using 10 random
training samples (M0=10) before plugging into Wormhole. We provide some results in Figures2–3
though the details of experimental settings and full results can be found in Appendix B.5.

Results. Replacing every Wasserstein call in Wormhole with a calibrated RG variants preserves per-
formance while cutting compute. First, in the training-time comparison (Figure 14 in Appendix B.5),
RG-Wormhole is far faster than Wormhole across all batch sizes and training budgets, with a very
large gap. As batch size increases, Wormhole’s time grows almost exponentially, while RG-Wormhole
rises only slightly, close to linear or even flat. Next, we verify that the trained models have similar
quality. For the encoder, Figures 15 and 16 in Appendix B.5 show pairwise distances that align with
the ground-truth Wasserstein and embeddings that match Wormhole, with essentially identical R2,
MSE, and MAE. For the decoder, Figures 17 and 18 in Appendix B.5 evaluate reconstructions against
the original point clouds using the Wasserstein distance, and both RG-Wormhole and Wormhole pro-
duce very small and nearly identical distances. Finally we test whether RG-Wormhole preserves the
geometry needed for downstream use. The decoded class barycenters from RG-Wormhole are clean
and class consistent and they match those from Wormhole, we refer to Figure19 in Appendix B.5.
We also interpolate by moving linearly in the embedding space and decoding along the path, and the
trajectories from RG-Wormhole are smooth and semantically meaningful with no visible artifacts, we
refer to Figure20 in Appendix B.5. Overall RG-Wormhole matches Wormhole while training much
faster, which makes it a practical choice when compute is limited.

5 CONCLUSIONS

We introduced a regression framework mapping Wasserstein to sliced Wasserstein distances under
a meta-distribution of random distribution pairs. Two simple linear models enable lightweight
estimation, leading to the RG framework for few-shot Wasserstein approximation. We derived
constrained and unconstrained forms and validated them through Mixture of Gaussian simulations,
point cloud classification, and metric-space visualizations, where the surrogate closely matched the
exact distance. Compared to Wormhole on MNIST, ShapeNetV2, MERFISH, and scRNA-seq, our
method achieved better performance in low-data regimes. Replacing Wasserstein calls in Wormhole
with our method yielded RG-Wormhole, preserving accuracy while greatly reducing training time.
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Supplement to “Fast Estimation of Wasserstein Distances via
Regression on Sliced Wasserstein Distances"

A DETAILS

A.1 DETAILS OF REMARK 3

We derive the gradient:

∇ωE
[∥∥∥ω⊤S(k)

p (µ, ν)−Wp(µ, ν))
∥∥∥2
2

]
= ∇ωE

[
(ω⊤S(k)

p (µ, ν)−Wp(µ, ν)))
⊤(ω⊤S(k)

p (µ, ν)−Wp(µ, ν)))
]

= ∇ωE
[
ω⊤S(k)

p (µ, ν)S(k)
p (µ, ν)⊤ω

]
− 2∇ωE

[
S(k)
p (µ, ν)⊤ωWp(µ, ν)

]
(13)

= E
[
∇ωω

⊤S(k)
p (µ, ν)S(k)

p (µ, ν)⊤ω
]
− 2E

[
∇ωS

(k)
p (µ, ν)⊤ωWp(µ, ν)

]
(14)

= 2E
[
S(k)
p (µ, ν)S(k)

p (µ, ν)⊤
]
ω − 2E

[
S(k)
p (µ, ν)Wp(µ, ν)

]
(15)

Setting the gradient to 0, we obtain

ω̂LSE = E
[
S(k)
p (µ, ν)S(k)

p (µ, ν)⊤
]−1

E
[
S(k)
p (µ, ν)Wp(µ, ν)

]
, (16)

which completes the proof.

A.2 DETAILS OF REMARK 4

From the definition, we recall the model:

Wp(µ, ν) =

K∑
k=1

ωkSL
(k)
p (µ, ν) +

K∑
k=1

(1− ωk)SU
(k)
p (µ, ν) + ε. (17)

With K = 1, we rewrite the model as follows:

Wp(µ, ν) = ωSLp(µ, ν) + (1− ω)SUp(µ, ν) + ε, (18)

which is equivalent to

Wp(µ, ν)− SUp(µ, ν) = ω(SLp(µ, ν)− SUp(µ, ν)) + ϵ. (19)

Since equation 19 is again an unconstrained linear model, we can obtain the least-squares estimate by
following Appendix A.1:

ω̂CLSE =
E [(SUp(µ, ν)− SLp(µ, ν))(SUp(µ, ν)−Wp(µ, ν))]

E[(SUp(µ, ν)− SLp(µ, ν)2]
, (20)

which concludes the proof.

B EXPERIMENTS

B.1 GAUSSIAN SIMULATION

We study how a lower–upper bound pair approximates the Wasserstein distance as dimension
grows. We simulate 3-component Gaussian mixtures for d=1 . . . 100 (10 seeds), with 200 points per
component. For each pair we compute the exact Wasserstein and six sliced-based metrics. Focusing
on RG-o, RG-s, and RG-e, we fit a constrained weight w ∈ [0, 1] and report the estimated weight ŵ
and R2 versus the exact Wasserstein.

Results. We refer to Figure 4 for the result. The fits are strong for all three methods and all
dimensions: R2 is always above 0.8 and quickly rises to ≈ 0.9-1.0. We also see a clear pattern in the
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weights: as dimension grows, the weight on the lower bound goes down, so the upper-bound metric
gets more weight and eventually dominates. In short, high dimensions favor the upper bound, while
lower dimensions rely more on the lower bound.
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Figure 4: Optimal w∗ and R2 in each dimension

B.2 POINT CLOUD CLASSIFICATION

Experimental settings. We construct a 10-class subset, centralize, normalize each shape so that all
coordinates lie in [−1, 1]3, and uniformly subsample 2,048 points per shape. For each class we select
50 training examples and 100 test examples. We then compute pairwise distance matrices between
train and test sets under different metrics, and evaluate classification accuracy using a k-nearest
neighbor classifier with k ∈ {1, 3, 5, 10, 15}. Besides the six individual sliced-based metrics, we
include all RG variants in unconstrained version. We use 10 samples drawn from the training set to
estimate the linear coefficient of RG variants.

Table 3: k-NN accuracy on point-cloud classification on ShapeNetV2 dataset.

Methods R2 k=1 k=3 k=5 k=10 k=15

WD – 83.6% ± 0.0% 83.5% ± 0.0% 84.2% ± 0.0% 82.9% ± 0.0% 79.2% ± 0.0%
SWD – 72.4% ± 0.0% 71.4% ± 0.0% 70.4% ± 0.0% 69.0% ± 0.0% 66.7% ± 0.0%
PWD – 42.6% ± 0.0% 42.9% ± 0.0% 40.4% ± 0.0% 39.3% ± 0.0% 39.0% ± 0.0%
EBSW – 72.5% ± 0.0% 69.2% ± 0.0% 60.4% ± 0.0% 67.9% ± 0.0% 65.3% ± 0.0%
EST – 39.1% ± 0.0% 40.4% ± 0.0% 40.2% ± 0.0% 38.0% ± 0.0% 36.5% ± 0.0%
Max-SW – 60.3% ± 0.0% 54.6% ± 0.0% 57.7% ± 0.0% 57.6% ± 0.0% 56.8% ± 0.0%
Min-SWGG – 36.4% ± 0.0% 37.6% ± 0.0% 35.0% ± 0.0% 32.9% ± 0.0% 30.8% ± 0.0%

RG-s 0.868± 0.02 82.1% ± 0.1% 81.7% ± 0.1% 80.8% ± 0.1% 79.4% ± 0.2% 75.5% ± 0.2%
RG-e 0.926± 0.04 82.5% ± 0.1% 82.2% ± 0.1% 80.9% ± 0.2% 79.6% ± 0.3% 75.7% ± 0.3%
RG-o 0.774± 0.38 65.1% ± 0.3% 67.7% ± 0.3% 67.6% ± 0.5% 66.7% ± 0.5% 66.0% ± 0.5%
RG-se 0.935± 0.02 82.5% ± 0.4% 82.2% ± 0.4% 82.6% ± 0.5% 81.9% ± 0.5% 76.5% ± 0.5%
RG-seo 0.937± 0.01 82.8% ± 0.4% 83.3% ± 0.5% 83.5% ± 0.7% 82.3% ± 0.7% 77.9% ± 0.7%

B.3 METRIC SPACE VISUALIZATION

Experimental settings. We visualize the geometry each metric induces on ShapeNetV2. From 10
categories, we randomly sample 500 shapes per class, normalize each shape so that all coordinates lie
in [−1, 1]3, and keep 2,048 points per shape. For every method, we compute the pairwise distance
matrix, then feed to UMAP to obtain 2D embeddings. We use 10 samples drawn from the training set
to estimate the linear coefficient of RG variants.

Results. The result is visual in Figures 5. Across methods, the true Wasserstein produces well-
separated class clusters with clear margins. The RG variants produce embeddings that are visually very
close to the Wasserstein embeddings, preserving both local compactness and the global arrangement
of classes. By contrast, single sliced baselines are weaker. SWD and EBSW keep some structure but
blur boundaries, while Max-SW and Min-SWGG show more mixing and noise.
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Figure 5: Embeddings of methods in ShapeNetV2 dataset.
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B.4 COMPARISON OF RG VARIANTS VS. WORMHOLE IN LOW-DATA REGIMES

Experimental Settings. We compare our proposed RG framework against Wormhole, a state-of-the-
art Wasserstein approximation method. To ensure fairness, we follow the exact preprocessing protocol
of Haviv et al. (2024). We consider four datasets spanning a wide range of dimensionalities: (i)
MNIST point clouds, obtained by thresholding 28×28 grayscale images and treating the active pixels
as 2D point coordinates; (ii) ShapeNetV2 point clouds, where each CAD model is uniformly sampled
into 2,048 points in 3D and normalized; (iii) MERFISH Cell Niches, where each cell is represented
by the 50µm neighborhood of its gene-expression profile embedded in a 254-dimensional space; and
(iv) scRNA-seq atlas data, where cells are aggregated into MetaCells that form 2,500-dimensional
gene-expression point clouds. We vary the number of training pairs N ∈ {10, 50, 100, 200} by
drawing pairs uniformly, and evaluate on 10,000 independently sampled test pairs. For each dataset
and training size, we report R2, MSE, and MAE with respect to the exact Wasserstein.

The original Wormhole codebase is built on JAX and TensorFlow, which are not compatible with our
environment. Accordingly, we reimplemented Wormhole in PyTorch.

Data Preprocessing. We follow the same preprocessing pipeline as Haviv et al. (2024).

• MNIST Point Clouds. We turn MNIST 28×28 images into 2D point clouds by thresholding
pixel values at 0.5 and keeping the coordinates of the active pixels.

• ShapeNetV2 Point Clouds. We use ShapeNetCore.v2 with 15k points per shape. Each
shape is normalized to fit inside a unit cube with coordinates in [−1, 1]3. We then split each
shape into 10k training points and 5k test points, and randomly sample 2,048 points from
each point cloud.

• MERFISH Cell Niches. We scale each gene’s expression to [−1, 1] and divide by
√
d,

where d is the number of genes. For each cell, we use spatial positions to find its 11 nearest
neighbors within a 50µm radius, keeping only cells with enough neighbors with its cell-type
label.

• scRNA-seq. We select 2,500 highly variable genes, normalize counts (library-size 104

and log(1+x)), and scale each gene to [−1, 1] divided by
√
d (d=2500). We then cluster

cells with K-means. For each cluster seed, we consider it as a cloud, labeled by the seed’s
annotation.

Wormhole training hyperparameters. We follow the Transformer autoencoder setup of Wormhole
with the configuration below:

Table 4: Wormhole training hyperparameters.

Component Setting
Batch size 10
Optimizer / LR Adam, lr = 10−4

LR schedule ExponentialLR, final factor ≈ 0.1 over all epochs
Epochs 2,000 epochs (20,000 steps)

Transformer depth num_layers = 3
Attention heads num_heads = 4
Embedding dim emb_dim = 128
MLP hidden dim mlp_dim = 512
Attention dropout attention_dropout_rate = 0.1
Decoder coeff. coeff_dec = 0.1
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MNIST Point Cloud: RG-seo (constr.) vs Wasserstein
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Figure 6: MNIST Point Cloud: Wormhole and RG variants (constrained/unconstrained) across training set sizes
of 10, 50, 100 and 200.
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Figure 7: MNIST Point Cloud: Wormhole and RG variants (constrained/unconstrained) across training set sizes
of 10, 50, 100 and 200.
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Figure 8: ShapeNetV2 Point Cloud: Wormhole and RG variants (constrained/unconstrained) across training set
sizes of 10, 50, 100, and 200.
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Figure 9: ShapeNetV2 Point Cloud: Wormhole and RG variants (constrained/unconstrained) across training set
sizes of 10, 50, 100, and 200.
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Figure 10: MERFISH Cell Niches: Wormhole and RG variants (constrained/unconstrained) across training set
sizes of 10, 50, 100, and 200.
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Figure 11: MERFISH Cell Niches: Wormhole and RG variants (constrained/unconstrained) across training set
sizes of 10, 50, 100, and 200.
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Figure 12: scRNA-seq: Wormhole and RG variants (constrained/unconstrained) across training set sizes of 10,
50, 100, and 200.
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Figure 13: scRNA-seq: Wormhole and RG variants (constrained/unconstrained) across training set sizes of 10,
50, 100, and 200.
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B.5 RG-WORMHOLE: ACCELERATING WORMHOLE WITH REGRESSION OF WASSERSTEIN

Experimental Settings. We run five experiments to show that RG-Wormhole is much faster than
Wormhole with similar effectiveness. First, we measure training time by training both models under
the same optimizer and schedule, sweeping batch sizes from 4 to 20 and reporting wall-clock time for
training sets of 10, 50, 100, and 200 pairs. Second, we assess encoders by computing R2/MSE/MAE
between pairwise distances in the learned embedding space and exact Wasserstein. Third, we evaluate
decoders by reporting the Wasserstein loss between each input and its reconstruction. Fourth, we
examine barycenters by decoding the mean embedding of each class and visualizing results. Fifth,
we study interpolation by decoding linear paths between two embeddings and illustrating trajectories.
Across all experiments, hyperparameters match Wormhole; the only change in RG-Wormhole is
replacing Wasserstein in encoder and decoder losses with the calibrated unconstrained RG. We use 10
samples from the training set to estimate RG coefficients. Except for embedding experiment which
uses ShapeNetV2 dataset, other experiments use ModelNet40 dataset, same as (Haviv et al., 2024).
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Figure 14: Training time comparison of Wormhole and RG-Wormhole methods on point cloud datasets with
varying number of training samples.

Figure 15: ShapeNetV2: RG-Wormhole (constrained model) vs. Wormhole

Figure 16: ShapeNetV2: RG-Wormhole (unconstrained model) vs. Wormhole
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Figure 17: ModelNet40: RG-Wormhole vs Wormhole reconstruction experiment
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Figure 18: ModelNet40: RG-Wormhole reconstruction experiment
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Figure 19: ModelNet40: RG-Wormhole barycenter experiment
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Figure 20: ModelNet40: RG-Wormhole barycenter experiment
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Figure 21: MNIST Point Cloud: Optimal weight of RG variants (constrained) across different training samples.
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Figure 22: MNIST Point Cloud: Optimal weight of RG variants (unconstrained) across different training
samples.
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Figure 23: ShapeNetV2: Optimal weight of RG variants (constrained) across different training samples.
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Figure 24: ShapeNetV2: Optimal weight of RG variants (unconstrained) across different training samples.

RG-e
RG-o

RG-s
RG-se

RG-se
o

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t

MERFISH Cell Niches: Optimal weights of RG (constr.)
Component

SW
PWD
EBSW
EST
MaxSW
MinSWGG

Figure 25: MERFISH Cell Niches: Optimal weight of RG variants (constrained) across different training
samples.
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Figure 26: MERFISH Cell Niches: Optimal weight of RG variants (unconstrained) across different training
samples.
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Figure 27: scRNA-seq Atlas: Optimal weight of RG variants (constrained) across different training samples.
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Figure 28: scRNA-seq Atlas: Optimal weight of RG variants (unconstrained) across different training samples.
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Figure 29: ModelNet40 Intra class

0.2 0.4 0.6 0.8 1.0
Wasserstein

0.2

0.4

0.6

0.8

1.0

RG
-s

 (1
0 

tra
in

in
g 

sa
m

pl
es

)

R² = 0.805
MSE = 4.963e-03
MAE = 0.056

ModelNet40: RG-s (airplane, cup) -> (airplane, airplane)

y = x

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Wasserstein

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RG
-s

 (1
0 

tra
in

in
g 

sa
m

pl
es

)

R² = 0.703
MSE = 3.371e-03
MAE = 0.047

ModelNet40: RG-s (chair, airplane) -> (chair, chair)

y = x

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Wasserstein

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RG
-s

 (1
0 

tra
in

in
g 

sa
m

pl
es

)

R² = 0.803
MSE = 2.729e-03
MAE = 0.042

ModelNet40: RG-s (cup, chair) -> (cup, cup)

y = x

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Wasserstein

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RG
-s

 (1
0 

tra
in

in
g 

sa
m

pl
es

)

R² = 0.932
MSE = 1.354e-03
MAE = 0.029

ModelNet40: RG-s (toilet, bed) -> (toilet, toilet)

y = x

0.2 0.4 0.6 0.8 1.0
Wasserstein

0.2

0.4

0.6

0.8

1.0

RG
-s

 (1
0 

tra
in

in
g 

sa
m

pl
es

)

R² = 0.805
MSE = 4.963e-03
MAE = 0.056

ModelNet40: RG-s (airplane, cup) -> (airplane, airplane)

y = x

Figure 30: ModelNet40 Inter class
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