
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FAST ESTIMATION OF WASSERSTEIN DISTANCES VIA
REGRESSION ON SLICED WASSERSTEIN DISTANCES

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the problem of efficiently computing Wasserstein distances for multiple
pairs of distributions drawn from a meta-distribution. To this end, we propose a fast
estimation method based on regressing Wasserstein distance on sliced Wasserstein
(SW) distances. Specifically, we leverage both standard SW distances, which
provide lower bounds, and lifted SW distances, which provide upper bounds, as
predictors of the true Wasserstein distance. To ensure parsimony, we introduce two
linear models: an unconstrained model with a closed-form least-squares solution,
and a constrained model that uses only half as many parameters. We show that
accurate models can be learned from a small number of distribution pairs. Once es-
timated, the model can predict the Wasserstein distance for any pair of distributions
via a linear combination of SW distances, making it highly efficient. Empirically,
we validate our approach on diverse tasks, including Gaussian mixtures, point-
cloud classification, and Wasserstein-space visualizations for 3D point clouds.
Across various datasets such as MNIST point clouds, ShapeNetV2, MERFISH Cell
Niches, and scRNA-seq, our method consistently provides a better approximation
of Wasserstein distance than the state-of-the-art Wasserstein embedding model,
Wasserstein Wormhole, particularly in low-data regimes. Finally, we demonstrate
that our estimator can also accelerate Wormhole training, yielding RG-Wormhole.

1 INTRODUCTION

Optimal Transport (OT) and Wasserstein distances (Villani, 2009; Peyré & Cuturi, 2019) have be-
come essential tools in machine learning, widely used for quantifying the similarity or dissimilarity
between probability distributions. Fundamentally, the Wasserstein distance measures the minimum
cost required to "transport" mass from one distribution to another, effectively capturing the un-
derlying geometry of the data. Thanks to their clear geometric interpretation and mathematical
robustness, Wasserstein distances have found applications across various fields, such as generative
modeling Genevay et al. (2018), computational biology Bunne et al. (2023), chemistry Wu et al.
(2023), and image processing Feydy et al. (2017). Despite its utility, computing the exact Wasserstein
distance is computationally expensive. It typically requires solving a large-scale linear program to
find an optimal transport plan, with a time complexity of O(n3 log n) for discrete distributions of
size n. This high cost severely limits its use in large-scale or real-time settings.

In many applications, Wasserstein distances are computed (repeatedly) for many pairs of distributions,
e.g., dataset comparisons (Alvarez-Melis & Fusi, 2020), 3D point-cloud autoencoder (Achlioptas
et al., 2018), point-cloud nearest neighbor classification/regression (Rubner et al., 1998), learning
embeddings for distributions (Kolouri et al., 2021), density-density regression (Chen et al., 2023),
and so on. Therefore, the high computational complexities of the Wasserstein distance become the
main bottleneck to scaling up these applications. As a result, speeding up the computation of the
Wasserstein distance has become a vital task in practice.

To address this bottleneck, a straightforward improvement is to speed up the computation of the
Wasserstein distance. For example, entropic regularization (Cuturi, 2013) enables fast approximation
via Sinkhorn iterations, while other methods exploit the structure in the transport plan, such as low-
rank approximations (Scetbon et al., 2021). In addition, some approaches rely on strong structural
assumptions, such as the Bures-Wasserstein metric (Dowson & Landau, 1982) gives a closed-form
solution for the exact 2-Wasserstein distance (W2) under the Gaussian assumption on distributions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Another approach is to cast computing Wasserstein distances for many pairs of distributions as a
learning problem, i.e., learning a model first to predict the Wasserstein distance given any pair of
distributions, then use the model later for the mentioned downstream tasks. For example, Deep
Wasserstein Embedding (DWE) (Courty et al., 2018) trains a Siamese convolutional network to
match OT distances between 2D images, while Wasserstein Wormhole (Haviv et al., 2024) employs
transformer-based architectures to learn embeddings of distributions, allowing Euclidean distances
in the learned space to approximate Wasserstein distances efficiently. While effective, these deep
learning-based methods require significant computational resources and time to train, and their
performance may degrade when limited training data are available. Moreover, these approaches are
limited to empirical distributions because of the use of neural networks.

In this work, we propose a novel approach to predict the Wasserstein distance without relying on any
neural networks or learned embeddings. Moreover, the proposed approach relies on a parsimonious
model and can handle both continuous and discrete distributions. In particular, we propose to regress
the Wasserstein distance on sliced Wasserstein (SW) distances (Rabin et al., 2010; Mahey et al.,
2023; Nguyen & Ho, 2023; Liu et al., 2025; Deshpande et al., 2019; Rowland et al., 2019). In greater
detail, we introduce linear models with Wasserstein distances as the response and SW distances as the
predictors. We provide estimates of the models via efficient least-squares estimates. In addition, since
sliced Wasserstein distances have low computational complexity, the resulting Wasserstein regressor
is computationally efficient.

Contribution: In summary, our main contributions are three-fold:

1. We introduce the first regression framework where the Wasserstein distance serves as the response
variable and various sliced Wasserstein (SW) distances act as predictors, in the setting of random
pairs of distributions. This framework not only uncovers the relationship between the Wasserstein
distance and its SW-based approximations but also enables efficient estimation of the Wasserstein
distance. Specifically, we use SW distance (Bonneel et al., 2015), Max-SW (Deshpande et al., 2019),
and energy-based SW (Nguyen & Ho, 2023), all of which provide lower bounds on the Wasserstein
distance, as predictors. In addition, we incorporate lifted SW distances, which provide upper bounds,
including projected Wasserstein (Rowland et al., 2019), Minimum SW generalized geodesics (Mahey
et al., 2023), and expected sliced distance (Liu et al., 2025).

2. We propose two linear models for the regression problem and describe their estimation via
least-squares. The first model is unconstrained and admits a closed-form least-squares solution. The
second model incorporates constraints that leverage the known bounds between SW distances and the
Wasserstein distance, thereby reducing the number of parameters by half. Based on these estimations,
we obtain a fast method to approximate the Wasserstein distance for any pair of distributions, with
the same computational complexity as that of computing SW distances.

3. Empirically, we demonstrate that our approach yields accurate estimates of the Wasserstein
distance, particularly in low-data regimes. We first evaluate its accuracy through simulations with
Gaussian mixtures. We then apply the estimated distances to visualize distributional data and to
perform k-NN classification on ShapeNetV2 point clouds. Next, we benchmark our method against
Wasserstein Wormhole, the state-of-the-art Wasserstein embedding model, across four datasets of
increasing dimensionality: MNIST point clouds, ShapeNetV2, MERFISH cell niches, and scRNA-seq.
Finally, we propose RG-Wormhole, a variant of Wasserstein Wormhole that replaces its Wasserstein
computations with our estimates, preserving accuracy while substantially reducing training time.

Organization. Section 2 reviews preliminaries on the Wasserstein distance, its sliced variants, and
their computation. Section 3 introduces our regression framework for approximating Wasserstein dis-
tances from sliced variants, together with both constrained and unconstrained linear models. Section 4
reports the experimental results. The appendices provide supplementary experiments (mixtures of
Gaussians and distributional space visualizations), detailed experimental settings, theoretical proofs,
and additional related work.

Notations. For any d ≥ 2, let Sd−1 := {θ ∈ Rd : ∥θ∥2 = 1} denote the unit sphere in Rd, and
let U(Sd−1) denote the uniform distribution on it. For p ≥ 1, we write Pp(X) for the set of all
probability measures on X with the finite p th moment. Given two sequences an and bn, the notation
an = O(bn) means that an ≤ Cbn for all n ≥ 1, for some universal constant C > 0. For a
measurable map P , the notation P♯µ denotes the push-forward of µ through P . Additional notation
will be introduced as needed.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

We first review definitions and computational aspects of the Wasserstein distance and its related
properties in one dimension.

Wasserstein distance. Wasserstein-p (p ≥ 1) distance Villani (2008); Peyré et al. (2019) between
two distributions µ ∈ Pp(Rd) and ν ∈ Pp(Rd) (dimension d ≥ 1) is defined as:

W p
p (µ, ν) = inf

π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥ppdπ(x, y), (1)

where Π(µ, ν) =
{
π ∈ P(Rd × Rd)} |

∫
Rd dπ(x, y) = µ(x),

∫
Rd dπ(x, y) = ν(y)

}
is the set of all

transportation plans i.e., joint distributions which have marginals be two comparing distributions.
When µ and ν are discrete distributions i.e., µ =

∑n
i=1 αiδxi

(n ≥ 1) and ν =
∑m

j=1 βjδyj
(m ≥ 1)

where
∑N

i=1 αi =
∑m

j=1 βj = 1 and αi ≥ 0, βj ≥ 0 for all i = 1, . . . , n and j = 1, . . . ,m,
Wasserstein distance between µ and ν defined as: W p

p (µ, ν) = minγ∈Γ(α,β)

∑n
i=1

∑m
j=1 ∥xi −

yj∥ppγij , where Γ(α, β) = {γ ∈ Rn×m
+ | γ1 = α, γ⊤1 = β}. Without loss of generality, we assume

that n ≥ m. Therefore, the time complexity for solving this linear programming is O(n3 log n) Peyré
& Cuturi (2019) and O(n2), which are expensive.

One-dimensional Case. When d = 1, the Wasserstein distance can be efficiently calculated. For
the continuous case, Wasserstein-2 distance has the following form: W p

p (µ, ν) =
∫ 1

0
|F−1

µ (t) −
F−1
ν (t)|pdt, where F−1

µ and F−1
ν denote the quantile functions of µ and ν respectively. Here, the

transportation plan is π(µ,ν) = (F−1
µ , F−1

ν)♯U([0, 1]). When µ and ν are discrete distributions, i.e.
µ =

∑n
i=1 αiδxi

(n ≥ 1) and ν =
∑m

j=1 βjδyj
, quantile functions of µ and ν are:

F−1
µ (t) =

n∑
i=1

x(i)I

i−1∑
j=1

α(j) < t ≤
i∑

j=1

α(j)

 , F−1
ν (t) =

m∑
j=1

y(j)I

(
j−1∑
i=1

β(i) < t ≤
j∑

i=1

β(i)

)
,

where x(1) ≤ . . . ≤ x(n) and y(1) ≤ . . . ≤ y(m) are the sorted supports (or order statistics).
Therefore, the one-dimensional Wasserstein distance can be computed in O(n log n) in time and
O(n) in space (assuming that n > m).

Random Projection. A key technique that plays a vital role in later discussion is random projection.
We consider a function Pθ : Rd → R where θ ∼ σ(θ) (σ(θ) ∼ P(Sd−1)) is a random variable.
For simplicity, we consider the traditional setup where θ ∼ U(Sd−1) and Pθ(x) = ⟨θ, x⟩ (Bonneel
et al., 2015; Rabin et al., 2012). However, the following discussion holds for any other types of
projections (Kolouri et al., 2019; Bonet et al., 2023b; 2025; 2023c). For µ ∈ Pp(Rd) and ν ∈ Pp(Rd),
one-dimensional projected Wasserstein distance with Pθ is defined as:

W p
p(µ, ν;Pθ) = W p

p (Pθ♯µ, Pθ♯ν) =

∫ 1

0

|F−1
Pθ♯µ

(t)− F−1
Pθ♯ν

(t)|pdt. (2)

The second approach to construct a Wasserstein-type discrepancy from one-dimensional projection is
using lifted transportation plan. There are many ways to construct such lifted plan using disintegration
of measures (Muzellec & Cuturi, 2019; Tanguy et al., 2025). In practice, the most used way (Liu
et al., 2025; Tanguy et al., 2025) is:

W
p

p(µ, ν;Pθ) =

∫
Rd×Rd

∥x− y∥ppdπθ(x, y) (3)

=

∫
R×R

∫
P−1

θ (t1)×P−1
θ (t2)

∥x− y|ppdµt1 ⊗ νt2(x, y)dπ(Pθ♯µ,Pθ♯ν)(t1, t2), (4)

where πθ ∈ Π(µ, ν) is the lifted transportation plan, π(Pθ♯µ,Pθ♯ν) is the optimal transport plan
between Pθ♯µ and Pθ♯ν, µt1 and νt2 are disintegration of µ and ν at t1 and t2 the function Pθ, and
⊗ denotes the product of measures. When dealing with discrete measures µ and ν, W

p

p(µ, ν;Pθ)
can still be computed efficiently (Mahey et al., 2023; Liu et al., 2025) i.e., O(n log n) in time and
O(n) in space (assumed that n > m). The quantity W

p

p(µ, ν;Pθ) is known as lifted cost (Tanguy
et al., 2025) or sliced Wasserstein generalized geodesic (Mahey et al., 2023; Liu et al., 2025). From
previous work (Nguyen & Ho, 2023; Mahey et al., 2023; Tanguy, 2023), we know the following
relationship W p(µ, ν;Pθ) ≤ Wp(µ, ν) ≤ W p(µ, ν;Pθ).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 REGRESSION OF WASSERSTEIN DISTANCE ONTO SLICED OPTIMAL
TRANSPORT DISTANCES

In this section, we present a framework for regressing the Wasserstein distance onto sliced Wasserstein
distances, propose some models, and discuss related computational properties.

3.1 SLICED WASSERSTEIN AND LIFTED SLICED WASSERSTEIN

Sliced Wasserstein distances. Given µ ∈ Pp(Rd) and ν ∈ Pp(Rd), a sliced Wasserstein-p distance
can be defined as follows (Rabin et al., 2012; Nguyen, 2025):

SW p
p (µ, ν;σ) = Eθ∼σ

[
W p

p(µ, ν;Pθ)
]
, (5)

where Pθ : Rd → R is the projection function, W p
p(µ, ν;Pθ) is the one-dimensional projected

Wasserstein distance (equation 2), and σ ∈ P(Sd−1) is the slicing distribution. By changing the
slicing distribution, we can obtain variants of SW. There are three main ways: 1. Fixed prior: The
simplest way is to choose σ to be a fixed and known distribution, e.g., the uniform distribution
U(Sd−1) as in the conventional SW (Rabin et al., 2012). 2. Optimization-based: We can also find
σ that prioritizes some realizations of θ that satisfies a notion of informativeness. For example, σ
can put more masses to realizations of θ where W p

p(µ, ν;Pθ) have high value, i.e., setting infor-
mativeness as discriminativeness. For example, we can find σ by solving (Nguyen et al., 2021):
supσ∈M(Sd−1) Eθ∼σ[W

p
p(µ, ν;Pθ)], where M(Sd−1) ⊂ P(Sd−1) be a set of probability measures

on Sd−1. When M(Sd−1) = {δθ | θ ∈ Sd−1}, max sliced Wasserstein distance (Deshpande et al.,
2019) is obtained: Max-SW (µ, ν) = maxθ∈Sd−1 W p(µ, ν;Pθ)]. 3. Energy-based: An optimization-
free way to select σ is to design it as an energy-based distribution with the unnormalized density:
pσ(θ) ∝ f(W p

p(µ, ν;Pθ)), where f is often chosen to be an increasing function on the positive
real line, i.e., an exponential function. This choice of slicing distribution leads to energy-based SW
(EBSW) (Nguyen & Ho, 2023).

Empirical estimation. For SW, Monte Carlo estimation is used to approximate the distance:
ŜW

p

p(µ, ν; θ1, . . . , θL) = 1
L

∑L
l=1 W

p
p(µ, ν;Pθl), where θ1, . . . , θL

i.i.d∼ U(Sd−1) (L > 0) are
projecting directions (other sampling techniques can also be used (Nguyen et al., 2024; Nguyen
& Ho, 2024; Sisouk et al., 2025)). For Max-SW, we can use θ̂T which is the solution of an
optimization algorithm with T > 0 iterations, e.g., projected gradient ascent (Nietert et al., 2022) or
Riemannian gradient ascent Lin et al. (2020): ̂Max-SW

p

p(µ, ν; θ̂T) = W p
p(µ, ν;Pθ̂T

). For EBSW,

one simple way to estimate the distance is to use importance sampling: ÊBSW
p

p(µ, ν; θ1, . . . , θL) =∑L
l=1 ŵlW

p
p(µ, ν;Pθl), where ŵl =

f(Wp
p(µ,ν;Pθl

))∑L
l′=1

f(Wp
p(µ,ν;Pθ

l′
)

and θ1, . . . , θL ∼ U(Sd−1).

Lower bounds. We summarize the connection between SW, Max-SW, EBSW, and Wasserstein
distance in the following remark. The detail of the proof can be found in Nguyen & Ho (2023).

Remark 1. Given any µ ∈ Pp(Rd) and ν ∈ Pp(Rd), we have:

(a) SWp(µ, ν) ≤ EBSWp(µ, ν) ≤ Max-SWp(µ, ν) ≤ Wp(µ, ν),

(b) ŜW p(µ, ν; θ1, . . . , θL) ≤ ÊBSW p(µ, ν; θ1, . . . , θL) ≤ Wp(µ, ν) for any θ1, . . . , θL ∈ Sd−1,

(c) ̂Max-SW
p

p(µ, ν; θ̂T) ≤ Wp(µ, ν) for any θ̂T ∈ Sd−1.

Lifted sliced Wasserstein distances. Given µ ∈ Pp(Rd) and ν ∈ Pp(Rd), a lifted sliced Wasserstein-
p distance can be defined as follows (Rowland et al., 2019):

LSW p
p (µ, ν;σ) = Eθ∼σ

[
W

p

p(µ, ν;Pθ)
]
, (6)

where Pθ : Rd → R is the projection function, W
p

p(µ, ν;Pθ) is the SWGG (equation 3), and
σ ∈ P(Sd−1) is the slicing distribution. Similar to SW, we can obtain variants of PW by choosing
σ. 1. Fixed prior: The original LSW is introduced as in projected Wasserstein (PW) in Rowland
et al. (2019), which uses the uniform distribution U(Sd−1). 2. Optimization-based: In contrast to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the case of one-dimensional projected Wasserstein, which is always a lower bound of Wasserstein
distance, SWGG is always an upper bound of Wasserstein distance. Therefore, it is desirable
to select θ that can minimize the corresponding lifted cost, that leads to min SWGG distance:
Min-SWGGp(µ, ν) = minθ∈Sd−1 W p(µ, ν;Pθ). 3. Energy-based: Similar to the case of EBSW,
authors in Liu et al. (2025) proposes to choose σ as an energy-based distribution with the unnormalized
density: pσ(θ) ∝ f(−W p

p(µ, ν;Pθ)), where f is often chosen to be an exponential function with
temperature. The authors name the distance as expected sliced transport (EST).

Empirical estimation. For PW, Monte Carlo samples are used to approximate the distance:
P̂W

p

p(µ, ν; θ1, . . . , θL) = 1
L

∑L
l=1 W

p

p(µ, ν;Pθl), where θ1, . . . , θL
i.i.d∼ U(Sd−1). For Min-

SWGG, we can use θ̂T which is the solution of an optimization algorithm with T > 0 iterations,
e.g., simulated annealing (Mahey et al., 2023), gradient ascent with a surrogate objective (Mahey
et al., 2023), and differentiable approximation (Chapel et al., 2025): ̂Min-SWGG

p

p(µ, ν; θ̂T) =

W
p

p(µ, ν;Pθ̂T
). For EST, importance sampling estimation is used: ÊST

p

p(µ, ν; θ1, . . . , θL)) =∑L
l=1 ŵlW

p

p(µ, ν;Pθl), where ŵl =
f(−W

p
p(µ,ν;Pθl

))∑L
l′=1

f(−W
p
p(µ,ν;Pθ

l′
)

and θ1, . . . , θL ∼ U(Sd−1).

Upper bounds. We summarize the connection between PW, Min-SWGG, EST, and Wasserstein
distance in the following remark. The connection between Min-SWGG, EST, and Wasserstein
distance is discussed in Mahey et al. (2023); Liu et al. (2025). The connection between EST and PW
can be generalized from the connection between EBSW and SW in Nguyen & Ho (2023).
Remark 2. Given any µ ∈ Pp(Rd) and ν ∈ Pp(Rd), we have:

(a) Wp(µ, ν) ≤ Min-SWGGp(µ, ν) ≤ ESTp(µ, ν) ≤ PWp(µ, ν),

(b) Wp(µ, ν) ≤ ÊST p(µ, ν; θ1, . . . , θL) ≤ P̂W p(µ, ν; θ1, . . . , θL) for any θ1, . . . , θL ∈ Sd−1,

(c) Wp(µ, ν) ≤ ̂Min-SWGG
p

p(µ, ν; θ̂T) for any θ̂T ∈ Sd−1.

3.2 REGRESSION OF WASSERSTEIN DISTANCE ON SLICED WASSERSTEIN DISTANCES

We consider the setting where we observe pairs of distributions (µ1, ν1), . . . , (µN , νN) ∼ P(µ, ν).
Here, P(µ, ν) is the meta distribution, and we are interested in relating Wp(µi, νi) with K > 0 SW
distances S(1)

p (µi, νi), . . . , S
(K)
p (µi, νi) for i = 1, . . . , N . We first start with a general model.

Definition 1 (Regression of Wasserstein distance onto SW distances). Given a meta distribution
P(µ, ν) ∈ P(Pp(Rd) × Pp(Rd)), K > 0 SW distances S

(1)
p , . . . , S

(K)
p , a regression model of

Wasserstein distance onto SW distances is defined as follows:

Wp(µ, ν) = f(S(1)
p (µ, ν), . . . , S(K)

p (µ, ν)) + ε, (7)

where (µ, ν) ∼ P(µ, ν), f ∈ F is the regression function, and ε is a noise model such that E[ε] = 0.

To estimate f , one natural estimator is the least square estimate:

fLSE = argmin
f∈F

E
[(

f(S(1)
p (µ, ν), . . . , S(K)

p (µ, ν))−Wp(µ, ν))
)2]

. (8)

It is worth noting that the function f can be constructed in both parametric ways (e.g., deep neural
networks) or non-parametric ways (e.g., using kernels). However, in order to have a simple and
explainable model, we consider linear functions in this work.

Linear Regression of Wasserstein distance onto SW distances. We now propose linear estimations
of Wasserstein distances from SW distances.
Definition 2 (Linear Regression of Wasserstein distance onto SW distances). Given a meta distri-
bution P(µ, ν) ∈ P(Pp(Rd)× Pp(Rd)), K > 0 SW distances S(1)

p , . . . , S
(K)
p , the linear regression

model of Wasserstein distance onto SW distances is defined as follows:

Wp(µ, ν) =

K∑
k=1

ωkS
(k)
p (µ, ν) + ε, (9)

where (µ, ν) ∼ P(µ, ν) and ε is a noise model such that E[ε] = 0.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: Linear regression of the Wasserstein distance vector Ŵ on sliced Wasserstein (SW) distances
Ŝ(1), . . . , Ŝ(K). The left figure illustrates a linear model, interpreted as the L2 projection of the Wasserstein
distance onto the linear span of the SW distances. The right figure depicts a special case of a constrained linear
model with only two SW distances as predictors, which can be seen as a midpoint method.

Again, we use least-squares estimation to obtain an estimate of ω.
Remark 3. The least square estimator admits the following closed form:

ωLSE = E
[
Sp(µ, ν)Sp(µ, ν)

⊤]−1 E [Sp(µ, ν)Wp(µ, ν)] , (10)

where Sp(µ, ν) = (S
(1)
p (µ, ν), . . . , S

(K)
p (µ, ν))⊤.

The detail of Remark 3 in given in Appendix A.1. In practice, we can sample
(µ1, ν1), . . . , (µM , νM) ∼ P(µ, ν) to approximate the expectation in equation 10. Let Ŝ ∈ RM×K

+ be
the SW distances matrix i.e., Ŝik = S

(k)
p (µi, νi) for i = 1, . . . ,M , and Ŵ ∈ RM

+ be the Wasserstein
distances vector i.e., Ŵi = Wp(µi, νi) for i = 1, . . . ,M , we have the sample-based least-squares
estimate: ω̂LSE = (Ŝ⊤Ŝ)−1Ŝ⊤Ŵ , which is an unbiased estimate of ω. It is well-known that the
linear model can be seen as L2 projection of the Wasserstein distances vector Ŵ onto the linear span
of the SW distances vectors Ŝ(1), . . . , Ŝ(K). We illustrate the idea in the left figure in Figure 1.

From Section 3.1, we know that SW distances are either lower bounds or upper bounds of Wasserstein
distance. Therefore, natural estimation can be formed using midpoint method. In particular, given a
lower bound SLp(µ, ν) and a upper bound SUp(µ, ν), we can predict the Wasserstein distance as
ω1SLp(µ, ν) + ω2SUp(µ, ν) with 0 ≤ ω1 ≤ 1 and ω2 = 1− ω1.
Definition 3 (Constrained Linear Regression of Wasserstein distance onto SW distances). Given a
meta distribution P(µ, ν) ∈ P(Pp(Rd)× Pp(Rd)), K > 0 SW distances SL(1)

p , . . . , SL
(K)
p which

are lower bounds of Wp and K > 0 SW distances SU (1)
p , . . . , SU

(K)
p which are lower bounds of Wp,

the constrained linear regression model is defined as follows:

Wp(µ, ν) =
1

K

K∑
k=1

ωkSL
(k)
p (µ, ν) +

1

K

K∑
k=1

(1− ωk)SU
(k)
p (µ, ν) + ε, (11)

where 0 ≤ ωk ≤ 1, (µ, ν) ∼ P(µ, ν) and ε is a noise model such that E[ε] = 0.

To estimate ω = (ω1, . . . , ωK) under the constrained model, we again form the least square estimate,
which can be solved using quadratic programming and Monte Carlo estimation. In a special case
where K = 1, i.e., having one lower bound and one upper bound, we can have a closed-form.
Remark 4. For the case K = 1 with a lower bound SLp(µ, ν) and an upper bound SUp(µ, ν), a
closed-form of the least square estimate under the constrained model can be formed:

ω̂CLSE =
E [(SUp(µ, ν)− SLp(µ, ν))(SUp(µ, ν)−Wp(µ, ν))]

E[(SUp(µ, ν)− SLp(µ, ν)2]
. (12)

The detail of Remark 4 in given in Appendix A.2. The corresponding sample-based estimator for the
model is: ω̂CLSE =

1
M

∑m
i=1(SUp(µi,νi)−SLp(µi,νi))(SUp(µi,νi)−Wp(µi,νi))

1
M

∑M
i=1(SUp(µi,νi)−SLp(µi,νi)2

. We show the idea in the
right figure in Figure 1. Compared to the unconstrained model, the constrained model has half of
the parameters. In addition, it adds inductive bias to the model, which is often helpful when having
limited observed samples.

Wasserstein Distance Estimation with Few-Shot Regression. We recall that we observe
(µ1, ν1), . . . , (µN , νN) ∼ P(µ, ν) in practice. It is not computationally efficient to compute the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: k-NN accuracy on point-cloud classification on ShapeNetV2 dataset.

Methods R2 k=1 k=3 k=5 k=10 k=15

WD – 83.6% ± 0.0% 83.5% ± 0.0% 84.2% ± 0.0% 82.9% ± 0.0% 79.2% ± 0.0%

RG-s 0.868± 0.02 82.1% ± 0.1% 81.7% ± 0.1% 80.8% ± 0.1% 79.4% ± 0.2% 75.5% ± 0.2%
RG-e 0.926± 0.04 82.5% ± 0.1% 82.2% ± 0.1% 80.9% ± 0.2% 79.6% ± 0.3% 75.7% ± 0.3%
RG-o 0.774± 0.38 65.1% ± 0.3% 67.7% ± 0.3% 67.6% ± 0.5% 66.7% ± 0.5% 66.0% ± 0.5%
RG-se 0.935± 0.02 82.5% ± 0.4% 82.2% ± 0.4% 82.6% ± 0.5% 81.9% ± 0.5% 76.5% ± 0.5%
RG-seo 0.937± 0.01 82.8% ± 0.4% 83.3% ± 0.5% 83.5% ± 0.7% 82.3% ± 0.7% 77.9% ± 0.7%

discussed least square estimates using all N pairs of distributions since those estimates require
evaluation of Wasserstein distances. We then sample a subset (µ′

1, ν
′
1), . . . , (µ

′
N , ν′M) from the

original set with M << N . After obtaining an estimate ω̂ from (µ′
1, ν

′
1), . . . , (µ

′
N , ν′M), we can

form estimations of the Wasserstein distances for other pairs and any new pair of distributions given
their SW distances. -

Computational complexities. We assume that N pairs of distributions have the number of supports
be at most n and in d dimensions. For fitting the estimate on M pairs, we need to compute MK
SW distances (using L projecting directions) which costs O(MKLn(log n + d)) in time and M
Wasserstein distances which costs O(Mn2(n log n+ d)). Computing the least square estimate has
the time complexity of O(MK2 +K3). Then, we compute (N −M)K SW distances which costs
O((N−M)KLn(log n+d)) and predict (N−M) Wasserstein distances which costs O((N−M)K).
Total time complexity is O(NKLn(log n+d))+Mn2(n log n+d))+MK2+K3+(N −M)K)
compared to O(Nn2(n log n+ d)) of computing Wasserstein distances for all N pairs.

Extensions on regression. In this work, we focus on regressing the Wasserstein-p distance. If
other ground metrics are used e.g., geodesic distances on manifolds, variants of SW distances
such as spherical sliced Wasserstein distances (Bonet et al., 2023a; Tran et al., 2024; Quellmalz
et al., 2023), hyperbolic sliced Wasserstein distances (Bonet et al., 2023b), sliced Wasserstein for
distributions over positive definite matrices (Bonet et al., 2023c), and other non-linear variants
of sliced Wasserstein (Bonet et al., 2025; Chapel et al., 2025; Tanguy et al., 2025; Kolouri et al.,
2019). However, they might not be upper/lower bounds of the corresponding Wasserstein distances.
Moreover, to incorporate uncertainty quantification, we can also perform Bayesian inference (Box &
Tiao, 2011), e.g., putting a prior on the regression function.

4 EXPERIMENTS

We define some specific model instances: RG-o uses Max-SW and Min-SWGG as predictors; RG-s
uses SW and PWD as predictors; RG-e uses EBSW and EST as predictors. We also consider two
extensions: RG-se combines SW, EBSW, PWD, and EST, and RG-seo combines all six variants. For
each instance, we have a constrained version and an unconstrained version as discussed.

We evaluate our methods in five parts, each with a distinct goal. First, in Section 4.1, we test practical
use via k-NN on ShapeNetV2, reporting accuracy under different metrics. Second, in Section 4.2, we
benchmark RG variants against Wormhole across MNIST point clouds, ShapeNetV2, MERFISH Cell
Niches Zhang et al. (2021), and scRNA-seq atlas Persad et al. (2023), reporting R2/MSE/MAE in
low-data regimes. Third, in Section 4.3, we combine our framework with Wormhole to introduce
RG-Wormhole, a hybrid that matches Wormhole’s performance while requiring far less training time.
We compare training time under varying batch sizes and epochs, as well as embedding, reconstruction,
barycenter, and interpolation quality. In Appendix B.1, we run Mixture of Gaussian simulations to
verify that our methods approximate the true Wasserstein distance from low to high dimensions. In
Appendix B.3, we visualize metric-induced geometry with UMAP McInnes et al. (2018). Throughout,
N denotes the number of training-set sizes, and M0 the number of samples drawn from the training
set, yielding M = M0(M0−1)

2 pairs used to estimate RG coefficients.

4.1 POINT CLOUD CLASSIFICATION

We evaluate unconstrained RG variants over a classification task over 10-class ShapeNetV2 with
500 training samples (N=500) and estimate RG weights from 10 samples (M0=10) drawn from the
training set. The details of the experimental setting and full results are provided in Appendix B.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Approximation quality of Wormhole and RG variants across four datasets under a training set size of
100 samples. Each cell reports R2, MSE, and MA) with respect to the exact Wasserstein distance.

Methods MNIST Point Cloud ShapeNetV2 MERFISH scRNA-seq
R2 MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE

Wormhole 0.28 4.3 × 10−1 5.1 × 10−1 0.65 6.6 × 10−2 1.8 × 10−1 -3.6 8.0 × 10−4 2.1 × 10−2 0.04 7.0 × 10−3 7.8 × 10−2

RG-s (constr.) 0.84 8.9 × 10−2 2.3 × 10−1 0.88 2.0 × 10−2 1.1 × 10−1 0.91 1.6 × 10−5 3.0 × 10−3 1.00 3.7 × 10−5 3.0 × 10−3

RG-e (constr.) 0.86 8.7 × 10−2 2.3 × 10−1 0.90 1.7 × 10−2 1.0 × 10−1 0.92 1.3 × 10−5 3.0 × 10−3 1.00 1.3 × 10−5 1.0 × 10−3

RG-o (constr.) 0.77 1.4 × 10−1 2.8 × 10−1 0.66 5.2 × 10−2 1.8 × 10−1 0.75 4.8 × 10−5 6.0 × 10−3 0.99 6.1 × 10−5 6.0 × 10−3

RG-se (constr.) 0.84 9.8 × 10−2 2.4 × 10−1 0.92 1.4 × 10−2 9.3 × 10−2 0.91 1.5 × 10−5 3.0 × 10−3 1.00 2.4 × 10−5 2.0 × 10−3

RG-seo (constr.) 0.85 9.0 × 10−2 2.3 × 10−1 0.91 1.7 × 10−2 1.0 × 10−1 0.92 1.3 × 10−5 3.0 × 10−3 1.00 2.2 × 10−5 2.0 × 10−3

RG-s (unconstr.) 0.93 4.5 × 10−2 1.6 × 10−1 0.94 1.1 × 10−2 8.2 × 10−2 0.96 6.3 × 10−6 2.0 × 10−3 0.99 8.6 × 10−5 7.0 × 10−3

RG-e (unconstr.) 0.92 5.4 × 10−2 1.8 × 10−1 0.92 1.5 × 10−2 9.8 × 10−2 0.96 6.9 × 10−6 2.0 × 10−3 0.99 7.0 × 10−5 6.0 × 10−3

RG-o (unconstr.) 0.77 1.4 × 10−1 3.0 × 10−1 0.75 3.8 × 10−2 1.6 × 10−1 0.89 8.7 × 10−4 2.9 × 10−2 0.82 2.9 × 10−3 5.2 × 10−2

RG-se (unconstr.) 0.93 4.0 × 10−2 1.5 × 10−1 0.95 9.9 × 10−3 7.8 × 10−2 0.98 2.9 × 10−6 1.0 × 10−3 1.00 3.0 × 10−5 4.0 × 10−3

RG-seo (unconstr.) 0.93 4.0 × 10−2 1.5 × 10−1 0.95 9.8 × 10−3 7.8 × 10−2 0.97 6.8 × 10−6 2.0 × 10−3 0.99 6.8 × 10−5 7.0 × 10−3

airplane cup lamp vase chair

W = 0.071 W = 0.138 W = 0.088 W = 0.152 W = 0.103

RG
-s

eo
 W

or
m

ho
le

da
ta

re
co

ns
tr

uc
ti

on

Figure 2: ModelNet40: a RG-Wormhole variant in reconstruction experiment.

Lamp A Lamp B

RG
-s

eo
 W

or
m

ho
le

Figure 3: ModelNet40: a RG-Wormhole variant in interpolation experiment.

Results. Table 1 reports k-NN accuracy on ShapeNetV2 under different metrics. As expected, WD
achieves the best accuracy, with 84.2% at k=5. Among single sliced-based metrics, SW and EBSW,
are the strongest, though they cap at about 72.5% top-1. Our RG methods close much of the gap
to Wasserstein. Both RG-s and RG-e consistently achieve around 82.5% top-1 accuracy with high
correlation to Wasserstein (R2 ≈ 0.9). The multi-metric extensions further improve stability: RG-se
and RG-seo reach up to 83.5% accuracy with R2 as high as 0.93, essentially matching Wasserstein.

4.2 COMPARISONS OF RG VARIANTS VS. WORMHOLE IN LOW-DATA REGIMES

We compare our RG framework with Wormhole within the same training sizes, matching the pre-
processing of (Haviv et al., 2024) across four datasets spanning dimensionality: MNIST pixel
point clouds (2D), ShapeNetV2 point clouds (3D), MERFISH Niche Cells (254D), and scRNA-seq
(2,500D). We train on N ∈{10, 50, 100, 200} random pairs and evaluate R2/MSE/MAE against exact
WD. For fairness, the number of training pairs for Wormhole equals the number used to estimate the
linear coefficients for RG variants, i.e., M0=N . Full results appear in Figures 6–13 with settings in
Appendix B.4; Table 2 summarizes the M0=100 case, and other M0 follow the same pattern.

Results. Across all four datasets, RG variants consistently outperform Wormhole at small training
sizes. Wormhole is weaker primarily because it is data hungry and its performance improves as
we add samples, yet under comparable budgets it still trails our methods. By contrast, RG variants
are already accurate with few pairs, with unconstrained variants are slightly stronger, whereas
constrained variants converge faster and are preferable at the very smallest sizes. RG-se and RG-seo
are the strongest when given sufficient samples though the latter can lag at the tiniest sizes before its
weights settle but becomes top-performing quickly and still requires far fewer pairs than Wormhole.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3 RG-WORMHOLE: ACCELERATING WORMHOLE WITH REGRESSION OF WASSERSTEIN

The previous comparison reveals a clear trade-off. RG framework is lightweight and data-efficient,
but it does not produce Euclidean embeddings and therefore cannot support interpolation experiments.
Wormhole, in contrast, learns Euclidean embeddings that enable interpolation and reconstruction,
but it is computationally heavy because training requires many Wasserstein evaluations (pairwise
distances within each mini-batch and reconstruction losses), which slows and raises training cost.

RG-Wormhole. To combine the strengths of both, we introduce RG-Wormhole. We first calibrate
a RG surrogate on a small set of exact Wasserstein pairs from the same data domain and freeze
its weights. We then keep the Wormhole architecture, optimizer, and schedule unchanged, and
simply replace every use of the Wasserstein distance with the calibrated surrogate in both the encoder
(pairwise distances in the batch) and the decoder (reconstruction loss). No other component is
modified. This substitution makes each training step much faster while preserving the performance.

We run five experiments of both models to empirically show that RG-Wormhole is much faster
than Wormhole while keeping similar effectiveness. First, we measure training time by training
Wormhole and RG-Wormhole under the same optimizer and schedule, sweeping batch sizes 4–20 and
reporting wall-clock time for training-set sizes N ∈{10, 50, 100, 200}. Second, we assess encoders
via R2/MSE/MAE between learned pairwise distances and exact Wasserstein. Third, we evaluate
decoders via the Wasserstein loss between each input shape and its reconstruction. Fourth, we
examine barycenters by decoding each class’s mean embedding and visualizing results. Finally, we
study interpolation by decoding linear paths between two embeddings and visualizing the trajectories.
Across all experiments, hyperparameters match Wormhole; the only change in RG-Wormhole is
replacing every use of the Wasserstein distance in the encoder and decoder losses with the calibrated
unconstrained RG variants. For RG-Wormhole, we estimate the RG coefficient using 10 random
training samples (M0=10) before plugging into Wormhole. We provide some results in Figures2–3
though the details of experimental settings and full results can be found in Appendix B.5.

Results. Replacing every Wasserstein call in Wormhole with a calibrated RG variants preserves per-
formance while cutting compute. First, in the training-time comparison (Figure 14 in Appendix B.5),
RG-Wormhole is far faster than Wormhole across all batch sizes and training budgets, with a very
large gap. As batch size increases, Wormhole’s time grows almost exponentially, while RG-Wormhole
rises only slightly, close to linear or even flat. Next, we verify that the trained models have similar
quality. For the encoder, Figures 15 and 16 in Appendix B.5 show pairwise distances that align with
the ground-truth Wasserstein and embeddings that match Wormhole, with essentially identical R2,
MSE, and MAE. For the decoder, Figures 17 and 18 in Appendix B.5 evaluate reconstructions against
the original point clouds using the Wasserstein distance, and both RG-Wormhole and Wormhole pro-
duce very small and nearly identical distances. Finally we test whether RG-Wormhole preserves the
geometry needed for downstream use. The decoded class barycenters from RG-Wormhole are clean
and class consistent and they match those from Wormhole, we refer to Figure19 in Appendix B.5.
We also interpolate by moving linearly in the embedding space and decoding along the path, and the
trajectories from RG-Wormhole are smooth and semantically meaningful with no visible artifacts, we
refer to Figure20 in Appendix B.5. Overall RG-Wormhole matches Wormhole while training much
faster, which makes it a practical choice when compute is limited.

5 CONCLUSIONS

We introduced a regression framework mapping Wasserstein to sliced Wasserstein distances under
a meta-distribution of random distribution pairs. Two simple linear models enable lightweight
estimation, leading to the RG framework for few-shot Wasserstein approximation. We derived
constrained and unconstrained forms and validated them through Mixture of Gaussian simulations,
point cloud classification, and metric-space visualizations, where the surrogate closely matched the
exact distance. Compared to Wormhole on MNIST, ShapeNetV2, MERFISH, and scRNA-seq, our
method achieved better performance in low-data regimes. Replacing Wasserstein calls in Wormhole
with our method yielded RG-Wormhole, preserving accuracy while greatly reducing training time.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations
and generative models for 3d point clouds. In International conference on machine learning, pp.
40–49. PMLR, 2018.

David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. Advances
in Neural Information Processing Systems, 33:21428–21439, 2020.

Clément Bonet, Paul Berg, Nicolas Courty, François Septier, Lucas Drumetz, and Minh-Tan Pham.
Spherical sliced-Wasserstein. International Conference on Learning Representations, 2023a.

Clément Bonet, Laetitia Chapel, Lucas Drumetz, and Nicolas Courty. Hyperbolic sliced-Wasserstein
via geodesic and horospherical projections. In Topological, Algebraic and Geometric Learning
Workshops 2023, pp. 334–370. PMLR, 2023b.

Clément Bonet, Benoıt Malézieux, Alain Rakotomamonjy, Lucas Drumetz, Thomas Moreau, Matthieu
Kowalski, and Nicolas Courty. Sliced-Wasserstein on symmetric positive definite matrices for
m/eeg signals. In International Conference on Machine Learning, pp. 2777–2805. PMLR, 2023c.

Clément Bonet, Lucas Drumetz, and Nicolas Courty. Sliced-wasserstein distances and flows on
cartan-hadamard manifolds. Journal of Machine Learning Research, 26(32):1–76, 2025.

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and Radon Wasserstein
barycenters of measures. Journal of Mathematical Imaging and Vision, 1(51):22–45, 2015.

George EP Box and George C Tiao. Bayesian inference in statistical analysis. John Wiley & Sons,
2011.

Charlotte Bunne, Stefan G Stark, Gabriele Gut, Jacobo Sarabia Del Castillo, Mitch Levesque,
Kjong-Van Lehmann, Lucas Pelkmans, Andreas Krause, and Gunnar Rätsch. Learning single-cell
perturbation responses using neural optimal transport. Nature methods, 20(11):1759–1768, 2023.

Laetitia Chapel, Romain Tavenard, and Samuel Vaiter. Differentiable generalized sliced Wasserstein
plans. arXiv preprint arXiv:2505.22049, 2025.

Yaqing Chen, Zhenhua Lin, and Hans-Georg Müller. Wasserstein regression. Journal of the American
Statistical Association, 118(542):869–882, 2023.

Nicolas Courty, Rémi Flamary, and Mélanie Ducoffe. Learning Wasserstein embeddings. In
International Conference on Learning Representations, 2018.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in
Neural Information Processing Systems, pp. 2292–2300, 2013.

Ishan Deshpande, Yuan-Ting Hu, Ruoyu Sun, Ayis Pyrros, Nasir Siddiqui, Sanmi Koyejo, Zhizhen
Zhao, David Forsyth, and Alexander G Schwing. Max-sliced Wasserstein distance and its use for
GANs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
10648–10656, 2019.

DC Dowson and BV666017 Landau. The fréchet distance between multivariate normal distributions.
Journal of multivariate analysis, 12(3):450–455, 1982.

Jean Feydy, Benjamin Charlier, François-Xavier Vialard, and Gabriel Peyré. Optimal transport for
diffeomorphic registration. In Medical Image Computing and Computer Assisted Intervention-
MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017,
Proceedings, Part I 20, pp. 291–299. Springer, 2017.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with Sinkhorn
divergences. In International Conference on Artificial Intelligence and Statistics, pp. 1608–1617.
PMLR, 2018.

Doron Haviv, Russell Zhang Kunes, Thomas Dougherty, Cassandra Burdziak, Tal Nawy, Anna Gilbert,
and Dana Pe’er. Wasserstein wormhole: Scalable optimal transport distance with Transformer. In
Forty-first International Conference on Machine Learning, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde. Generalized
sliced Wasserstein distances. In Advances in Neural Information Processing Systems, pp. 261–272,
2019.

Soheil Kolouri, Navid Naderializadeh, Gustavo K. Rohde, and Heiko Hoffmann. Wasserstein
embedding for graph learning. In International Conference on Learning Representations, 2021.

Tianyi Lin, Chenyou Fan, Nhat Ho, Marco Cuturi, and Michael Jordan. Projection robust Wasserstein
distance and Riemannian optimization. Advances in Neural Information Processing Systems, 33:
9383–9397, 2020.

Xinran Liu, Rocio Diaz Martin, Yikun Bai, Ashkan Shahbazi, Matthew Thorpe, Akram Aldroubi,
and Soheil Kolouri. Expected sliced transport plans. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
P7O1Vt1BdU.

Guillaume Mahey, Laetitia Chapel, Gilles Gasso, Clément Bonet, and Nicolas Courty. Fast optimal
transport through sliced generalized wasserstein geodesics. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 35350–35385, 2023.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Boris Muzellec and Marco Cuturi. Subspace detours: Building transport plans that are optimal on
subspace projections. In Advances in Neural Information Processing Systems, pp. 6917–6928,
2019.

Khai Nguyen. An introduction to sliced optimal transport. arXiv preprint arXiv:2508.12519, 2025.

Khai Nguyen and Nhat Ho. Energy-based sliced Wasserstein distance. Advances in Neural Informa-
tion Processing Systems, 2023.

Khai Nguyen and Nhat Ho. Sliced Wasserstein estimator with control variates. International
Conference on Learning Representations, 2024.

Khai Nguyen, Nhat Ho, Tung Pham, and Hung Bui. Distributional sliced-Wasserstein and applications
to generative modeling. In International Conference on Learning Representations, 2021.

Khai Nguyen, Nicola Bariletto, and Nhat Ho. Quasi-monte carlo for 3d sliced Wasserstein. In
International Conference on Learning Representations, 2024.

Sloan Nietert, Ziv Goldfeld, Ritwik Sadhu, and Kengo Kato. Statistical, robustness, and computational
guarantees for sliced wasserstein distances. Advances in Neural Information Processing Systems,
35:28179–28193, 2022.

Sitara Persad, Zi-Ning Choo, Christine Dien, Noor Sohail, Ignas Masilionis, Ronan Chaligné, Tal
Nawy, Chrysothemis C Brown, Roshan Sharma, Itsik Pe’er, et al. Seacells infers transcriptional
and epigenomic cellular states from single-cell genomics data. Nature biotechnology, 41(12):
1746–1757, 2023.

Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Michael Quellmalz, Robert Beinert, and Gabriele Steidl. Sliced optimal transport on the sphere.
Inverse Problems, 39(10):105005, 2023.

Julien Rabin, Julie Delon, and Yann Gousseau. Regularization of transportation maps for color and
contrast transfer. In 2010 IEEE International Conference on Image Processing, pp. 1933–1936.
IEEE, 2010.

11

https://openreview.net/forum?id=P7O1Vt1BdU
https://openreview.net/forum?id=P7O1Vt1BdU

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its application
to texture mixing. In Scale Space and Variational Methods in Computer Vision: Third International
Conference, SSVM 2011, Ein-Gedi, Israel, May 29–June 2, 2011, Revised Selected Papers 3, pp.
435–446. Springer, 2012.

Mark Rowland, Jiri Hron, Yunhao Tang, Krzysztof Choromanski, Tamas Sarlos, and Adrian Weller.
Orthogonal estimation of Wasserstein distances. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 186–195. PMLR, 2019.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. A metric for distributions with applications to
image databases. In Sixth international conference on computer vision (IEEE Cat. No. 98CH36271),
pp. 59–66. IEEE, 1998.

Meyer Scetbon, Marco Cuturi, and Gabriel Peyré. Low-rank sinkhorn factorization. In International
Conference on Machine Learning, pp. 9344–9354. PMLR, 2021.

Keanu Sisouk, Julie Delon, and Julien Tierny. A user’s guide to sampling strategies for sliced optimal
transport. Transactions on Machine Learning Research, 2025. ISSN 2835-8856.

Eloi Tanguy. Convergence of sgd for training neural networks with sliced Wasserstein losses. arXiv
preprint arXiv:2307.11714, 2023.

Eloi Tanguy, Laetitia Chapel, and Julie Delon. Sliced optimal transport plans. arXiv preprint
arXiv:2508.01243, 2025.

Huy Tran, Yikun Bai, Abihith Kothapalli, Ashkan Shahbazi, Xinran Liu, Rocio Diaz Martin, and
Soheil Kolouri. Stereographic spherical sliced Wasserstein distances. International Conference on
Machine Learning, 2024.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media,
2008.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Fang Wu, Nicolas Courty, Shuting Jin, and Stan Z Li. Improving molecular representation learning
with metric learning-enhanced optimal transport. Patterns, 4(4), 2023.

Meng Zhang, Stephen W Eichhorn, Brian Zingg, Zizhen Yao, Kaelan Cotter, Hongkui Zeng, Hongwei
Dong, and Xiaowei Zhuang. Spatially resolved cell atlas of the mouse primary motor cortex by
merfish. Nature, 598(7879):137–143, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Supplement to “Fast Estimation of Wasserstein Distances via
Regression on Sliced Wasserstein Distances"

A DETAILS

A.1 DETAILS OF REMARK 3

We derive the gradient:

∇ωE
[∥∥∥ω⊤S(k)

p (µ, ν)−Wp(µ, ν))
∥∥∥2
2

]
= ∇ωE

[
(ω⊤S(k)

p (µ, ν)−Wp(µ, ν)))
⊤(ω⊤S(k)

p (µ, ν)−Wp(µ, ν)))
]

= ∇ωE
[
ω⊤S(k)

p (µ, ν)S(k)
p (µ, ν)⊤ω

]
− 2∇ωE

[
S(k)
p (µ, ν)⊤ωWp(µ, ν)

]
(13)

= E
[
∇ωω

⊤S(k)
p (µ, ν)S(k)

p (µ, ν)⊤ω
]
− 2E

[
∇ωS

(k)
p (µ, ν)⊤ωWp(µ, ν)

]
(14)

= 2E
[
S(k)
p (µ, ν)S(k)

p (µ, ν)⊤
]
ω − 2E

[
S(k)
p (µ, ν)Wp(µ, ν)

]
(15)

Setting the gradient to 0, we obtain

ω̂LSE = E
[
S(k)
p (µ, ν)S(k)

p (µ, ν)⊤
]−1

E
[
S(k)
p (µ, ν)Wp(µ, ν)

]
, (16)

which completes the proof.

A.2 DETAILS OF REMARK 4

From the definition, we recall the model:

Wp(µ, ν) =

K∑
k=1

ωkSL
(k)
p (µ, ν) +

K∑
k=1

(1− ωk)SU
(k)
p (µ, ν) + ε. (17)

With K = 1, we rewrite the model as follows:

Wp(µ, ν) = ωSLp(µ, ν) + (1− ω)SUp(µ, ν) + ε, (18)

which is equivalent to

Wp(µ, ν)− SUp(µ, ν) = ω(SLp(µ, ν)− SUp(µ, ν)) + ϵ. (19)

Since equation 19 is again an unconstrained linear model, we can obtain the least-squares estimate by
following Appendix A.1:

ω̂CLSE =
E [(SUp(µ, ν)− SLp(µ, ν))(SUp(µ, ν)−Wp(µ, ν))]

E[(SUp(µ, ν)− SLp(µ, ν)2]
, (20)

which concludes the proof.

B EXPERIMENTS

B.1 GAUSSIAN SIMULATION

We study how a lower–upper bound pair approximates the Wasserstein distance as dimension
grows. We simulate 3-component Gaussian mixtures for d=1 . . . 100 (10 seeds), with 200 points per
component. For each pair we compute the exact Wasserstein and six sliced-based metrics. Focusing
on RG-o, RG-s, and RG-e, we fit a constrained weight w ∈ [0, 1] and report the estimated weight ŵ
and R2 versus the exact Wasserstein.

Results. We refer to Figure 4 for the result. The fits are strong for all three methods and all
dimensions: R2 is always above 0.8 and quickly rises to ≈ 0.9-1.0. We also see a clear pattern in the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

weights: as dimension grows, the weight on the lower bound goes down, so the upper-bound metric
gets more weight and eventually dominates. In short, high dimensions favor the upper bound, while
lower dimensions rely more on the lower bound.

20 40 60 80 100
Dimension

0.2

0.4

0.6

0.8

Op
tim

al
 w

*

Components & Metric
max_sw min_swgg R2

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Optimal w * and R2 per dimension: RG-o

20 40 60 80 100
Dimension

0.2

0.4

0.6

0.8

Op
tim

al
 w

*

Components & Metric
sw pwd R2

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Optimal w * and R2 per dimension: RG-s

20 40 60 80 100
Dimension

0.2

0.4

0.6

0.8

Op
tim

al
 w

*

Components & Metric
ebsw est R2

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Optimal w * and R2 per dimension: RG-e

Figure 4: Optimal w∗ and R2 in each dimension

B.2 POINT CLOUD CLASSIFICATION

Experimental settings. We construct a 10-class subset, centralize, normalize each shape so that all
coordinates lie in [−1, 1]3, and uniformly subsample 2,048 points per shape. For each class we select
50 training examples and 100 test examples. We then compute pairwise distance matrices between
train and test sets under different metrics, and evaluate classification accuracy using a k-nearest
neighbor classifier with k ∈ {1, 3, 5, 10, 15}. Besides the six individual sliced-based metrics, we
include all RG variants in unconstrained version. We use 10 samples drawn from the training set to
estimate the linear coefficient of RG variants.

Table 3: k-NN accuracy on point-cloud classification on ShapeNetV2 dataset.

Methods R2 k=1 k=3 k=5 k=10 k=15

WD – 83.6% ± 0.0% 83.5% ± 0.0% 84.2% ± 0.0% 82.9% ± 0.0% 79.2% ± 0.0%
SWD – 72.4% ± 0.0% 71.4% ± 0.0% 70.4% ± 0.0% 69.0% ± 0.0% 66.7% ± 0.0%
PWD – 42.6% ± 0.0% 42.9% ± 0.0% 40.4% ± 0.0% 39.3% ± 0.0% 39.0% ± 0.0%
EBSW – 72.5% ± 0.0% 69.2% ± 0.0% 60.4% ± 0.0% 67.9% ± 0.0% 65.3% ± 0.0%
EST – 39.1% ± 0.0% 40.4% ± 0.0% 40.2% ± 0.0% 38.0% ± 0.0% 36.5% ± 0.0%
Max-SW – 60.3% ± 0.0% 54.6% ± 0.0% 57.7% ± 0.0% 57.6% ± 0.0% 56.8% ± 0.0%
Min-SWGG – 36.4% ± 0.0% 37.6% ± 0.0% 35.0% ± 0.0% 32.9% ± 0.0% 30.8% ± 0.0%

RG-s 0.868± 0.02 82.1% ± 0.1% 81.7% ± 0.1% 80.8% ± 0.1% 79.4% ± 0.2% 75.5% ± 0.2%
RG-e 0.926± 0.04 82.5% ± 0.1% 82.2% ± 0.1% 80.9% ± 0.2% 79.6% ± 0.3% 75.7% ± 0.3%
RG-o 0.774± 0.38 65.1% ± 0.3% 67.7% ± 0.3% 67.6% ± 0.5% 66.7% ± 0.5% 66.0% ± 0.5%
RG-se 0.935± 0.02 82.5% ± 0.4% 82.2% ± 0.4% 82.6% ± 0.5% 81.9% ± 0.5% 76.5% ± 0.5%
RG-seo 0.937± 0.01 82.8% ± 0.4% 83.3% ± 0.5% 83.5% ± 0.7% 82.3% ± 0.7% 77.9% ± 0.7%

B.3 METRIC SPACE VISUALIZATION

Experimental settings. We visualize the geometry each metric induces on ShapeNetV2. From 10
categories, we randomly sample 500 shapes per class, normalize each shape so that all coordinates lie
in [−1, 1]3, and keep 2,048 points per shape. For every method, we compute the pairwise distance
matrix, then feed to UMAP to obtain 2D embeddings. We use 10 samples drawn from the training set
to estimate the linear coefficient of RG variants.

Results. The result is visual in Figures 5. Across methods, the true Wasserstein produces well-
separated class clusters with clear margins. The RG variants produce embeddings that are visually very
close to the Wasserstein embeddings, preserving both local compactness and the global arrangement
of classes. By contrast, single sliced baselines are weaker. SWD and EBSW keep some structure but
blur boundaries, while Max-SW and Min-SWGG show more mixing and noise.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: Embeddings of methods in ShapeNetV2 dataset.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.4 COMPARISON OF RG VARIANTS VS. WORMHOLE IN LOW-DATA REGIMES

Experimental Settings. We compare our proposed RG framework against Wormhole, a state-of-the-
art Wasserstein approximation method. To ensure fairness, we follow the exact preprocessing protocol
of Haviv et al. (2024). We consider four datasets spanning a wide range of dimensionalities: (i)
MNIST point clouds, obtained by thresholding 28×28 grayscale images and treating the active pixels
as 2D point coordinates; (ii) ShapeNetV2 point clouds, where each CAD model is uniformly sampled
into 2,048 points in 3D and normalized; (iii) MERFISH Cell Niches, where each cell is represented
by the 50µm neighborhood of its gene-expression profile embedded in a 254-dimensional space; and
(iv) scRNA-seq atlas data, where cells are aggregated into MetaCells that form 2,500-dimensional
gene-expression point clouds. We vary the number of training pairs N ∈ {10, 50, 100, 200} by
drawing pairs uniformly, and evaluate on 10,000 independently sampled test pairs. For each dataset
and training size, we report R2, MSE, and MAE with respect to the exact Wasserstein.

The original Wormhole codebase is built on JAX and TensorFlow, which are not compatible with our
environment. Accordingly, we reimplemented Wormhole in PyTorch.

Data Preprocessing. We follow the same preprocessing pipeline as Haviv et al. (2024).

• MNIST Point Clouds. We turn MNIST 28×28 images into 2D point clouds by thresholding
pixel values at 0.5 and keeping the coordinates of the active pixels.

• ShapeNetV2 Point Clouds. We use ShapeNetCore.v2 with 15k points per shape. Each
shape is normalized to fit inside a unit cube with coordinates in [−1, 1]3. We then split each
shape into 10k training points and 5k test points, and randomly sample 2,048 points from
each point cloud.

• MERFISH Cell Niches. We scale each gene’s expression to [−1, 1] and divide by
√
d,

where d is the number of genes. For each cell, we use spatial positions to find its 11 nearest
neighbors within a 50µm radius, keeping only cells with enough neighbors with its cell-type
label.

• scRNA-seq. We select 2,500 highly variable genes, normalize counts (library-size 104

and log(1+x)), and scale each gene to [−1, 1] divided by
√
d (d=2500). We then cluster

cells with K-means. For each cluster seed, we consider it as a cloud, labeled by the seed’s
annotation.

Wormhole training hyperparameters. We follow the Transformer autoencoder setup of Wormhole
with the configuration below:

Table 4: Wormhole training hyperparameters.

Component Setting
Batch size 10
Optimizer / LR Adam, lr = 10−4

LR schedule ExponentialLR, final factor ≈ 0.1 over all epochs
Epochs 2,000 epochs (20,000 steps)

Transformer depth num_layers = 3
Attention heads num_heads = 4
Embedding dim emb_dim = 128
MLP hidden dim mlp_dim = 512
Attention dropout attention_dropout_rate = 0.1
Decoder coeff. coeff_dec = 0.1

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7
Wasserstein

1

2

3

4

5

6

7

RG
-s

e
(c

on
st

r.)
 (1

0
tra

in
in

g
pa

irs
)

R² = 0.830
MSE = 1.030e-01
MAE = 0.252

MNIST Point Cloud: RG-se (constr.) vs Wasserstein

y = x

1 2 3 4 5 6 7
Wasserstein

1

2

3

4

5

6

7

RG
-s

e
(c

on
st

r.)
 (5

0
tra

in
in

g
pa

irs
)

R² = 0.814
MSE = 1.123e-01
MAE = 0.259

MNIST Point Cloud: RG-se (constr.) vs Wasserstein

y = x

1 2 3 4 5 6 7
Wasserstein

1

2

3

4

5

6

7

RG
-s

e
(c

on
st

r.)
 (1

00
 tr

ai
ni

ng
 p

ai
rs

)

R² = 0.838
MSE = 9.826e-02
MAE = 0.246

MNIST Point Cloud: RG-se (constr.) vs Wasserstein

y = x

1 2 3 4 5 6 7
Wasserstein

1

2

3

4

5

6

7

RG
-s

e
(c

on
st

r.)
 (2

00
 tr

ai
ni

ng
 p

ai
rs

)

R² = 0.838
MSE = 9.816e-02
MAE = 0.245

MNIST Point Cloud: RG-se (constr.) vs Wasserstein

y = x

1 2 3 4 5 6 7
Wasserstein

1

2

3

4

5

6

7

RG
-s

eo
 (c

on
st

r.)
 (1

0
tra

in
in

g
pa

irs
)

R² = 0.836
MSE = 9.922e-02
MAE = 0.250

MNIST Point Cloud: RG-seo (constr.) vs Wasserstein

y = x

1 2 3 4 5 6 7
Wasserstein

1

2

3

4

5

6

7

RG
-s

eo
 (c

on
st

r.)
 (5

0
tra

in
in

g
pa

irs
)

R² = 0.832
MSE = 1.015e-01
MAE = 0.247

MNIST Point Cloud: RG-seo (constr.) vs Wasserstein

y = x

1 2 3 4 5 6 7
Wasserstein

1

2

3

4

5

6

7

RG
-s

eo
 (c

on
st

r.)
 (1

00
 tr

ai
ni

ng
 p

ai
rs

)

R² = 0.850
MSE = 9.062e-02
MAE = 0.237

MNIST Point Cloud: RG-seo (constr.) vs Wasserstein

y = x

1 2 3 4 5 6 7
Wasserstein

1

2

3

4

5

6

7

RG
-s

eo
 (c

on
st

r.)
 (2

00
 tr

ai
ni

ng
 p

ai
rs

)

R² = 0.851
MSE = 9.027e-02
MAE = 0.235

MNIST Point Cloud: RG-seo (constr.) vs Wasserstein

y = x

Figure 6: MNIST Point Cloud: Wormhole and RG variants (constrained/unconstrained) across training set sizes
of 10, 50, 100 and 200.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 7: MNIST Point Cloud: Wormhole and RG variants (constrained/unconstrained) across training set sizes
of 10, 50, 100 and 200.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 2 3 4 5
Wasserstein

1

2

3

4

5

RG
-s

e
(c

on
st

r.)
 (1

0
tra

in
in

g
pa

irs
)

R² = 0.871
MSE = 2.311e-02
MAE = 0.119

ShapeNetV2: RG-se (constr.) vs Wasserstein

y = x

1 2 3 4 5
Wasserstein

1

2

3

4

5

RG
-s

e
(c

on
st

r.)
 (5

0
tra

in
in

g
pa

irs
)

R² = 0.897
MSE = 1.855e-02
MAE = 0.108

ShapeNetV2: RG-se (constr.) vs Wasserstein

y = x

1 2 3 4 5
Wasserstein

1

2

3

4

5

RG
-s

e
(c

on
st

r.)
 (1

00
 tr

ai
ni

ng
 p

ai
rs

)

R² = 0.917
MSE = 1.440e-02
MAE = 0.095

ShapeNetV2: RG-se (constr.) vs Wasserstein

y = x

1 2 3 4 5
Wasserstein

1

2

3

4

5

RG
-s

e
(c

on
st

r.)
 (2

00
 tr

ai
ni

ng
 p

ai
rs

)

R² = 0.923
MSE = 1.304e-02
MAE = 0.091

ShapeNetV2: RG-se (constr.) vs Wasserstein

y = x

1 2 3 4 5 6
Wasserstein

1

2

3

4

5

6

RG
-s

eo
 (c

on
st

r.)
 (1

0
tra

in
in

g
pa

irs
)

R² = 0.892
MSE = 1.929e-02
MAE = 0.109

ShapeNetV2: RG-seo (constr.) vs Wasserstein

y = x

1 2 3 4 5 6 7
Wasserstein

1

2

3

4

5

6

7

RG
-s

eo
 (c

on
st

r.)
 (5

0
tra

in
in

g
pa

irs
)

R² = 0.903
MSE = 1.991e-02
MAE = 0.111

ShapeNetV2: RG-seo (constr.) vs Wasserstein

y = x

1 2 3 4 5 6
Wasserstein

1

2

3

4

5

6

RG
-s

eo
 (c

on
st

r.)
 (1

00
 tr

ai
ni

ng
 p

ai
rs

)

R² = 0.912
MSE = 1.748e-02
MAE = 0.104

ShapeNetV2: RG-seo (constr.) vs Wasserstein

y = x

1 2 3 4 5 6
Wasserstein

1

2

3

4

5

6

RG
-s

eo
 (c

on
st

r.)
 (2

00
 tr

ai
ni

ng
 p

ai
rs

)

R² = 0.921
MSE = 1.589e-02
MAE = 0.099

ShapeNetV2: RG-seo (constr.) vs Wasserstein

y = x

Figure 8: ShapeNetV2 Point Cloud: Wormhole and RG variants (constrained/unconstrained) across training set
sizes of 10, 50, 100, and 200.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 9: ShapeNetV2 Point Cloud: Wormhole and RG variants (constrained/unconstrained) across training set
sizes of 10, 50, 100, and 200.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.06 0.08 0.10 0.12 0.14 0.16
Wasserstein

0.06

0.08

0.10

0.12

0.14

0.16

RG
-s

e
(c

on
st

r.)
 (1

0
tra

in
in

g
sa

m
pl

es
)

R² = 0.910
MSE = 1.580e-05
MAE = 0.003

MERFISH Cell Niches: RG-se (constr.) vs Wasserstein

y = x

0.06 0.08 0.10 0.12 0.14 0.16
Wasserstein

0.06

0.08

0.10

0.12

0.14

0.16

RG
-s

e
(c

on
st

r.)
 (5

0
tra

in
in

g
sa

m
pl

es
)

R² = 0.907
MSE = 1.629e-05
MAE = 0.003

MERFISH Cell Niches: RG-se (constr.) vs Wasserstein

y = x

0.06 0.08 0.10 0.12 0.14 0.16
Wasserstein

0.06

0.08

0.10

0.12

0.14

0.16

RG
-s

e
(c

on
st

r.)
 (1

00
 tr

ai
ni

ng
 sa

m
pl

es
)

R² = 0.911
MSE = 1.546e-05
MAE = 0.003

MERFISH Cell Niches: RG-se (constr.) vs Wasserstein

y = x

0.06 0.08 0.10 0.12 0.14 0.16
Wasserstein

0.06

0.08

0.10

0.12

0.14

0.16

RG
-s

e
(c

on
st

r.)
 (2

00
 tr

ai
ni

ng
 sa

m
pl

es
)

R² = 0.911
MSE = 1.549e-05
MAE = 0.003

MERFISH Cell Niches: RG-se (constr.) vs Wasserstein

y = x

0.06 0.08 0.10 0.12 0.14
Wasserstein

0.06

0.08

0.10

0.12

0.14

RG
-s

eo
 (c

on
st

r.)
 (1

0
tra

in
in

g
sa

m
pl

es
)

R² = 0.921
MSE = 1.128e-05
MAE = 0.003

MERFISH Cell Niches: RG-seo (constr.) vs Wasserstein

y = x

0.06 0.08 0.10 0.12 0.14
Wasserstein

0.06

0.08

0.10

0.12

0.14

RG
-s

eo
 (c

on
st

r.)
 (5

0
tra

in
in

g
sa

m
pl

es
)

R² = 0.921
MSE = 1.128e-05
MAE = 0.003

MERFISH Cell Niches: RG-seo (constr.) vs Wasserstein

y = x

0.06 0.08 0.10 0.12 0.14
Wasserstein

0.06

0.08

0.10

0.12

0.14

RG
-s

eo
 (c

on
st

r.)
 (1

00
 tr

ai
ni

ng
 sa

m
pl

es
)

R² = 0.921
MSE = 1.128e-05
MAE = 0.003

MERFISH Cell Niches: RG-seo (constr.) vs Wasserstein

y = x

0.06 0.08 0.10 0.12 0.14
Wasserstein

0.06

0.08

0.10

0.12

0.14

RG
-s

eo
 (c

on
st

r.)
 (2

00
 tr

ai
ni

ng
 sa

m
pl

es
)

R² = 0.921
MSE = 1.128e-05
MAE = 0.003

MERFISH Cell Niches: RG-seo (constr.) vs Wasserstein

y = x

Figure 10: MERFISH Cell Niches: Wormhole and RG variants (constrained/unconstrained) across training set
sizes of 10, 50, 100, and 200.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 11: MERFISH Cell Niches: Wormhole and RG variants (constrained/unconstrained) across training set
sizes of 10, 50, 100, and 200.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.2 0.3 0.4 0.5 0.6
Wasserstein

0.2

0.3

0.4

0.5

0.6

RG
-s

e
(c

on
st

r.)
 (1

0
tra

in
in

g
sa

m
pl

es
)

R² = 0.997
MSE = 2.357e-05
MAE = 0.002

scRNA-seq Atlas: RG-se (constr.) vs Wasserstein

y = x

0.2 0.3 0.4 0.5 0.6
Wasserstein

0.2

0.3

0.4

0.5

0.6

RG
-s

e
(c

on
st

r.)
 (5

0
tra

in
in

g
sa

m
pl

es
)

R² = 0.997
MSE = 2.517e-05
MAE = 0.002

scRNA-seq Atlas: RG-se (constr.) vs Wasserstein

y = x

0.2 0.3 0.4 0.5 0.6
Wasserstein

0.2

0.3

0.4

0.5

0.6

RG
-s

e
(c

on
st

r.)
 (1

00
 tr

ai
ni

ng
 sa

m
pl

es
)

R² = 0.997
MSE = 2.494e-05
MAE = 0.002

scRNA-seq Atlas: RG-se (constr.) vs Wasserstein

y = x

0.2 0.3 0.4 0.5 0.6
Wasserstein

0.2

0.3

0.4

0.5

0.6

RG
-s

e
(c

on
st

r.)
 (2

00
 tr

ai
ni

ng
 sa

m
pl

es
)

R² = 0.997
MSE = 2.243e-05
MAE = 0.002

scRNA-seq Atlas: RG-se (constr.) vs Wasserstein

y = x

0.2 0.3 0.4 0.5 0.6
Wasserstein

0.2

0.3

0.4

0.5

0.6

RG
-s

eo
 (c

on
st

r.)
 (1

0
tra

in
in

g
sa

m
pl

es
)

R² = 0.997
MSE = 2.127e-05
MAE = 0.002

scRNA-seq Atlas: RG-seo (constr.) vs Wasserstein

y = x

0.2 0.3 0.4 0.5 0.6
Wasserstein

0.2

0.3

0.4

0.5

0.6

RG
-s

eo
 (c

on
st

r.)
 (5

0
tra

in
in

g
sa

m
pl

es
)

R² = 0.997
MSE = 2.272e-05
MAE = 0.002

scRNA-seq Atlas: RG-seo (constr.) vs Wasserstein

y = x

0.2 0.3 0.4 0.5 0.6
Wasserstein

0.2

0.3

0.4

0.5

0.6

RG
-s

eo
 (c

on
st

r.)
 (1

00
 tr

ai
ni

ng
 sa

m
pl

es
)

R² = 0.997
MSE = 2.251e-05
MAE = 0.002

scRNA-seq Atlas: RG-seo (constr.) vs Wasserstein

y = x

0.2 0.3 0.4 0.5 0.6
Wasserstein

0.2

0.3

0.4

0.5

0.6

RG
-s

eo
 (c

on
st

r.)
 (2

00
 tr

ai
ni

ng
 sa

m
pl

es
)

R² = 0.997
MSE = 2.025e-05
MAE = 0.002

scRNA-seq Atlas: RG-seo (constr.) vs Wasserstein

y = x

Figure 12: scRNA-seq: Wormhole and RG variants (constrained/unconstrained) across training set sizes of 10,
50, 100, and 200.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 13: scRNA-seq: Wormhole and RG variants (constrained/unconstrained) across training set sizes of 10,
50, 100, and 200.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.5 RG-WORMHOLE: ACCELERATING WORMHOLE WITH REGRESSION OF WASSERSTEIN

Experimental Settings. We run five experiments to show that RG-Wormhole is much faster than
Wormhole with similar effectiveness. First, we measure training time by training both models under
the same optimizer and schedule, sweeping batch sizes from 4 to 20 and reporting wall-clock time for
training sets of 10, 50, 100, and 200 pairs. Second, we assess encoders by computing R2/MSE/MAE
between pairwise distances in the learned embedding space and exact Wasserstein. Third, we evaluate
decoders by reporting the Wasserstein loss between each input and its reconstruction. Fourth, we
examine barycenters by decoding the mean embedding of each class and visualizing results. Fifth,
we study interpolation by decoding linear paths between two embeddings and illustrating trajectories.
Across all experiments, hyperparameters match Wormhole; the only change in RG-Wormhole is
replacing Wasserstein in encoder and decoder losses with the calibrated unconstrained RG. We use 10
samples from the training set to estimate RG coefficients. Except for embedding experiment which
uses ShapeNetV2 dataset, other experiments use ModelNet40 dataset, same as (Haviv et al., 2024).

4 6 8 10 12 14 16 18 20
Batch size (10 training samples)

0

50

100

150

200

250

300

350

400

450

50

To
ta

l t
ra

in
in

g
tim

e
(s

ec
)

Time Comparison: RG-Wormhole vs. Wormhole
Wormhole
RG-e Wormhole
RG-o Wormhole

RG-s Wormhole
RG-se Wormhole
RG-seo Wormhole

4 6 8 10 12 14 16 18 20
Batch size (50 training samples)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

100

To
ta

l t
ra

in
in

g
tim

e
(s

ec
)

Time Comparison: RG-Wormhole vs. Wormhole
Wormhole
RG-e Wormhole
RG-o Wormhole

RG-s Wormhole
RG-se Wormhole
RG-seo Wormhole

4 6 8 10 12 14 16 18 20
Batch size (100 training samples)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

250

To
ta

l t
ra

in
in

g
tim

e
(s

ec
)

Time Comparison: RG-Wormhole vs. Wormhole
Wormhole
RG-e Wormhole
RG-o Wormhole

RG-s Wormhole
RG-se Wormhole
RG-seo Wormhole

4 6 8 10 12 14 16 18 20
Batch size (200 training samples)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

400

To
ta

l t
ra

in
in

g
tim

e
(s

ec
)

Time Comparison: RG-Wormhole vs. Wormhole
Wormhole
RG-e Wormhole
RG-o Wormhole

RG-s Wormhole
RG-se Wormhole
RG-seo Wormhole

Figure 14: Training time comparison of Wormhole and RG-Wormhole methods on point cloud datasets with
varying number of training samples.

Figure 15: ShapeNetV2: RG-Wormhole (constrained model) vs. Wormhole

Figure 16: ShapeNetV2: RG-Wormhole (unconstrained model) vs. Wormhole

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 17: ModelNet40: RG-Wormhole vs Wormhole reconstruction experiment

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 18: ModelNet40: RG-Wormhole reconstruction experiment

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 19: ModelNet40: RG-Wormhole barycenter experiment

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 20: ModelNet40: RG-Wormhole barycenter experiment

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

RG-e
RG-o

RG-s
RG-se

RG-se
o

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t

MNIST Point Cloud: Optimal weights of RG (constr.)
Component

SW
PWD
EBSW
EST
MaxSW
MinSWGG

Figure 21: MNIST Point Cloud: Optimal weight of RG variants (constrained) across different training samples.

RG-e
RG-o

RG-s
RG-se

RG-se
o

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W
ei

gh
t

MNIST Point Cloud: Optimal weights of RG (unconstr.)
Component

SW
PWD
EBSW
EST
MaxSW
MinSWGG

Figure 22: MNIST Point Cloud: Optimal weight of RG variants (unconstrained) across different training
samples.

RG-e
RG-o

RG-s
RG-se

RG-se
o

0.0

0.2

0.4

0.6

0.8

W
ei

gh
t

ShapeNetV2: Optimal weights of RG (constr.)
Component

SW
PWD
EBSW
EST
MaxSW
MinSWGG

Figure 23: ShapeNetV2: Optimal weight of RG variants (constrained) across different training samples.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

RG-e
RG-o

RG-s
RG-se

RG-se
o

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

W
ei

gh
t

ShapeNetV2: Optimal weights of RG (unconstr.)
Component

SW
PWD
EBSW
EST
MaxSW
MinSWGG

Figure 24: ShapeNetV2: Optimal weight of RG variants (unconstrained) across different training samples.

RG-e
RG-o

RG-s
RG-se

RG-se
o

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t

MERFISH Cell Niches: Optimal weights of RG (constr.)
Component

SW
PWD
EBSW
EST
MaxSW
MinSWGG

Figure 25: MERFISH Cell Niches: Optimal weight of RG variants (constrained) across different training
samples.

RG-e
RG-o

RG-s
RG-se

RG-se
o

100

80

60

40

20

0

20

40

60

W
ei

gh
t

MERFISH Cell Niches: Optimal weights of RG (unconstr.)
Component

SW
PWD
EBSW
EST
MaxSW
MinSWGG

Figure 26: MERFISH Cell Niches: Optimal weight of RG variants (unconstrained) across different training
samples.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

RG-e
RG-o

RG-s
RG-se

RG-se
o

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t

scRNA-seq Atlas: Optimal weights of RG (constr.)
Component

SW
PWD
EBSW
EST
MaxSW
MinSWGG

Figure 27: scRNA-seq Atlas: Optimal weight of RG variants (constrained) across different training samples.

RG-e
RG-o

RG-s
RG-se

RG-se
o

10

5

0

5

10

15

W
ei

gh
t

scRNA-seq Atlas: Optimal weights of RG (unconstr.)
Component

SW
PWD
EBSW
EST
MaxSW
MinSWGG

Figure 28: scRNA-seq Atlas: Optimal weight of RG variants (unconstrained) across different training samples.

0.2 0.4 0.6 0.8 1.0 1.2
Wasserstein

0.2

0.4

0.6

0.8

1.0

1.2

RG
-s

 (1
0

tra
in

in
g

sa
m

pl
es

)

R² = 0.902
MSE = 3.369e-03
MAE = 0.046

ModelNet40: RG-s (bed, bed) -> (bed, airplane)

y = x

0.2 0.4 0.6 0.8 1.0
Wasserstein

0.2

0.4

0.6

0.8

1.0

RG
-s

 (1
0

tra
in

in
g

sa
m

pl
es

)

R² = 0.706
MSE = 1.097e-02
MAE = 0.089

ModelNet40: RG-s (chair, chair) -> (chair, airplane)

y = x

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Wasserstein

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RG
-s

 (1
0

tra
in

in
g

sa
m

pl
es

)

R² = 0.729
MSE = 3.857e-03
MAE = 0.051

ModelNet40: RG-s (cup, cup) -> (cup, chair)

y = x

0.2 0.4 0.6 0.8 1.0 1.2
Wasserstein

0.2

0.4

0.6

0.8

1.0

1.2

RG
-s

 (1
0

tra
in

in
g

sa
m

pl
es

)

R² = 0.846
MSE = 3.745e-03
MAE = 0.046

ModelNet40: RG-s (toilet, toilet) -> (toilet, bed)

y = x

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Wasserstein

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RG
-s

 (1
0

tra
in

in
g

sa
m

pl
es

)

R² = 0.774
MSE = 1.170e-02
MAE = 0.088

ModelNet40: RG-s (airplane, airplane) -> (airplane, cup)

y = x

Figure 29: ModelNet40 Intra class

0.2 0.4 0.6 0.8 1.0
Wasserstein

0.2

0.4

0.6

0.8

1.0

RG
-s

 (1
0

tra
in

in
g

sa
m

pl
es

)

R² = 0.805
MSE = 4.963e-03
MAE = 0.056

ModelNet40: RG-s (airplane, cup) -> (airplane, airplane)

y = x

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Wasserstein

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RG
-s

 (1
0

tra
in

in
g

sa
m

pl
es

)

R² = 0.703
MSE = 3.371e-03
MAE = 0.047

ModelNet40: RG-s (chair, airplane) -> (chair, chair)

y = x

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Wasserstein

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RG
-s

 (1
0

tra
in

in
g

sa
m

pl
es

)

R² = 0.803
MSE = 2.729e-03
MAE = 0.042

ModelNet40: RG-s (cup, chair) -> (cup, cup)

y = x

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Wasserstein

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RG
-s

 (1
0

tra
in

in
g

sa
m

pl
es

)

R² = 0.932
MSE = 1.354e-03
MAE = 0.029

ModelNet40: RG-s (toilet, bed) -> (toilet, toilet)

y = x

0.2 0.4 0.6 0.8 1.0
Wasserstein

0.2

0.4

0.6

0.8

1.0

RG
-s

 (1
0

tra
in

in
g

sa
m

pl
es

)

R² = 0.805
MSE = 4.963e-03
MAE = 0.056

ModelNet40: RG-s (airplane, cup) -> (airplane, airplane)

y = x

Figure 30: ModelNet40 Inter class

32

	Introduction
	Preliminaries
	Regression of Wasserstein distance onto Sliced Optimal Transport distances
	Sliced Wasserstein and Lifted Sliced Wasserstein
	Regression of Wasserstein distance on sliced Wasserstein distances

	Experiments
	Point Cloud Classification
	Comparisons of RG variants vs. Wormhole in low-data regimes
	RG-Wormhole: Accelerating Wormhole with Regression of Wasserstein

	Conclusions
	Details
	Details of Remark 3
	Details of Remark 4

	Experiments
	Gaussian Simulation
	Point Cloud Classification
	Metric Space Visualization
	Comparison of RG variants vs. Wormhole in low-data regimes
	RG-Wormhole: Accelerating Wormhole with Regression of Wasserstein

