
SHADOWKV: KV Cache in Shadows
for High-Throughput Long-Context LLM Inference

Hanshi Sun 1 2 Li-Wen Chang 1 Wenlei Bao 1 Size Zheng 1 Ningxin Zheng 1 Xin Liu 1 Harry Dong 2

Yuejie Chi 2 Beidi Chen 2

Abstract
With the widespread deployment of long-context
large language models (LLMs), there has been
a growing demand for efficient support of high-
throughput inference. However, as the key-value
(KV) cache expands with the sequence length, the
increasing memory footprint and the need to ac-
cess it for decoding both result in low throughput
when serving long-context LLMs. While vari-
ous dynamic sparse attention methods have been
proposed to accelerate inference while maintain-
ing generation quality, they either fail to suffi-
ciently reduce GPU memory usage or introduce
significant decoding latency by offloading the KV
cache to the CPU. We present SHADOWKV, a
high-throughput long-context LLM inference sys-
tem that stores the low-rank key cache and of-
floads the value cache to reduce the memory foot-
print for larger batch sizes and longer sequences.
To minimize decoding latency, SHADOWKV em-
ploys an accurate KV selection strategy that re-
constructs minimal sparse KV pairs on-the-fly.
By evaluating SHADOWKV on benchmarks like
RULER, LongBench, and models such as Llama-
3.1-8B and GLM-4-9B-1M, we demonstrate that
it achieves up to 6× larger batch sizes and 3.04×
higher throughput on an A100 GPU without sacri-
ficing accuracy, even surpassing the performance
achievable with infinite batch size under the as-
sumption of infinite GPU memory.

1. Introduction
Large language models (LLMs) have increasingly demon-
strated their ability to scale and handle long contexts

1ByteDance Seed 2Carnegie Mellon University. Correspon-
dence to: Hanshi Sun <hanshi.s@bytedance.com>, Beidi Chen
<beidic@andrew.cmu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

31.5 GB/s (PCIe) 2 TB/s (A100) 7 TB/s

Theoretical Equivalent Bandwidth for ShadowKV

Figure 1. SHADOWKV effectively utilizes a limited KV budget to
achieve high accuracy, theoretically reaching over 7 TB/s equiva-
lent bandwidth on an A100 GPU.

(Achiam et al., 2023; Team et al., 2023; Microsoft, 2024;
Liu et al., 2024a), enabling them to tackle complex tasks
like multi-document question answering and information re-
trieval from extensive contexts of up to 1M tokens (Achiam
et al., 2023; Wang et al., 2024b). However, efficiently serv-
ing these long-context LLMs presents challenges related
to the key-value (KV) cache (Ge et al., 2023; Liu et al.,
2024b), which stores previous key-value activations to avoid
re-computation. As KV cache scales with sequence length,
its growing memory footprint and the need to access it for
each token generation lead to low throughput during long-
context LLM inference. To address these, KV eviction or
sparse attention methods have been widely explored.

However, existing methods face three primary limitations:
accuracy degradation, inadequate memory reduction, and
significant decoding latency overhead. KV cache eviction
strategies (Zhang et al., 2024d;c) aim to reduce the memory
footprint by discarding KV pairs based on specific poli-
cies, but they often result in information loss and accuracy
degradation in tasks such as multi-turn conversations (Yang

1

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

0 200 400 600 800 1000
Component

10
3

10
2

10
1

10
0

R
el

at
iv

e
S

in
gu

la
r V

al
ue

Low-rank

X
K (pre-RoPE)
K (post-RoPE)

V
WK

WV

0 5 10 15 20 25 30
Layer Index

0.75

0.80

0.85

0.90

0.95

1.00

S
ub

sp
ac

e
S

im
ila

rit
y

Context
Extended Context
Inter-context

64K 128K 192k 256K 384K
Sequence Length

0

1000

2000

3000

4000

5000

6000

7000

Ti
m

e
(m

s)

1

2

3

4

5

SV
D

pe
r c

en
t (

%
)

FFN
Attention
SVD
SVD percentage

Figure 2. Left: For a sample from PG-19 (Rae et al., 2019) fed into Llama-3.1-8B, the pre-RoPE keys are the most low-rank, as indicated
by the sharpest decay in singular values. Middle: Average similarities, defined in Section 3.1, between rank-256 truncated SVD
projections of pre-RoPE keys from PG-19 sequences using Llama-3.1-8B. Similarity is measured between a length 16K “Context” and
either a 16K+2K continuation on “Context” (“Extended context”) or a new length 16K sequence (“Inter-context”). Pre-RoPE keys share
low-rank subspaces within sequences but differ across sequences. Right: The relative overhead of singular value decomposition (SVD)
decreases as sequence length scales for the pre-filling stage.

et al., 2024b; Tang et al., 2024a). Dynamic sparse attention
methods (Tang et al., 2024b) preserve all KV pairs on the
GPU and accelerate inference by computing attention with
selected KV pairs. However, this line of work does not
mitigate the memory footprint, thereby limiting the batch
size and preventing accommodation of extremely long con-
texts (e.g., 1M tokens). A naive solution based on sparse
attention involves offloading the KV cache to the CPU to
reduce memory usage (Lee et al., 2024a; He & Zhai, 2024).
Nonetheless, as shown in Figure 4, this approach incurs sig-
nificant overhead due to the latency of fetching the selected
sparse KV pairs from the CPU during decoding.

Consequently, an ideal system for long-context LLM infer-
ence with sparse attention should: (i) reduce GPU memory
usage, (ii) minimize inference latency, and (iii) maintain ac-
curacy within limited sparse KV cache budgets. Fortunately,
we can potentially overcome these challenges by leveraging
our discovery that pre-Rotary Position Embedding (Su et al.,
2024) (RoPE) keys are exceptionally low-rank compared to
the layer inputs, post-RoPE keys, values, key weight matrix,
and value weight matrix, as indicated in Figure 2. Unlike
prior works that apply low-rank approximations to weights
(Chang et al., 2024; Lee et al., 2024b), we directly compress
pre-RoPE key cache, achieving higher accuracy. Our analy-
sis reveals that pre-RoPE keys lack significant similarities in
low-rank subspaces across different sequences, while a se-
quence and its continuation tend to strongly share low-rank
subspaces, enabling high compression rates within each se-
quence. Motivated by these findings, we developed two key
insights that pave the way for the design of an applicable
system, detailed in Section 3.

Low-rank Keys and Offloaded Values for Storage: In long-
context LLM inference, the quadratic scaling of attention
computation with sequence length makes the linear cost

of low-rank decomposition during pre-filling negligible, as
illustrated in Figure 21. To reduce memory footprint, we
retain the low-rank pre-RoPE key cache on the GPU and
offload the value cache to the CPU since the value cache
does not exhibit low-rank properties, minimizing memory
footprint without sacrificing accuracy. During decoding
with sparse attention, we employ CUDA multi-streams to
overlap the recovery of the selected key cache with the
fetching of the corresponding value cache. This approach
conceals key cache reconstruction and reduces data fetching
overhead by 2× compared to the naive offloading strategy,
thereby decreasing the decoding latency of sparse attention.

Accurate KV Selection for Fast Decoding: To further re-
duce decoding latency in sparse attention, we propose an
accurate KV selection method that maintains accuracy with
minimal number of selected tokens (i.e., the K of TopK),
which we refer to as sparse budgets (1.56%). Our analysis
reveals that most post-RoPE keys exhibit high cosine simi-
larity with adjacent tokens, enabling chunk-level approxi-
mations for selecting important tokens. A minimal number
of outlier chunks (0.3%), which are more challenging to ap-
proximate (Figure 5), are stored as static cache on the GPU
to preserve accuracy. As shown in Figure 1, our method
outperforms the naive sparse attention approach (Tang et al.,
2024b) and achieves higher sparsity, accelerating decoding.

Building on these insights, we present SHADOWKV in Sec-
tion 4, depicted in Figure 3, a high-throughput system for
long-context LLM inference. Specifically, during pre-filling,
we offload the value cache to the CPU, retaining only the
low-rank pre-RoPE keys, along with compressed landmarks
of the key cache and detected outliers for larger batch sizes.

1In practical scenarios, the key cache can be offloaded to the
CPU to perform SVD asynchronously or precomputed and stored
as part of the prefix cache (Juravsky et al., 2024).

2

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

KV
Sel.

Cache
Hit/Miss

Low-rank Key Cache
Reconstruction + RoPE

Value Cache FetchingSelected Missed
Chunk IDs

Sparse
Attention

GPU

CPU

Pre-filling Decoding

Value
Cache

Pre-RoPE
Key Cache

Value Cache
Offload

Low-rank Key Cache (Cached)

Landmarks (Cached)

SVD

RoPE & Reduce

Outliers (Cached)
Find Outliers

Landmarks Low-rank Key Cache Outliers

Figure 3. SHADOWKV enhances long-context LLM inference throughput by offloading the value cache to the CPU while maintaining a
low-rank key cache, landmarks, and outliers on the GPU. During decoding, it employs landmarks for efficient sparse attention, reducing
computation and data movement.

During decoding, landmarks are used to select chunk in-
dices for key cache recovery and value cache fetching. We
perform accurate sparse attention computation with selected
KV pairs and static outliers to achieve high throughput.

Empirically, we conduct extensive experiments and abla-
tion studies to demonstrate the effectiveness and efficiency
of SHADOWKV. In Section 5.1, we evaluate across vari-
ous long-context LLMs, such as Llama-3-8B-1M (Gradi-
ent., 2024), Llama-3.1-8B (Meta AI, 2024), GLM-4-9B-1M
(GLM et al., 2024), Yi-9B-200K (AI et al., 2024), Phi-3-
Mini-128K (Abdin et al., 2024) and Qwen2-7B-128K (Yang
et al., 2024a) using benchmarks including RULER (Hsieh
et al., 2024), LongBench (Bai et al., 2023), and Needle In A
Haystack (Kamradt, 2023) with contexts up to 1M.

In Section 5.2, we demonstrate that SHADOWKV can sup-
port 6× larger batch sizes and boost throughput by up to
3.04× compared to small batches on an A100 using Llama-
3.1-8B. We also present results across different models
and context lengths, increasing throughput up to 2.97×
for Llama-3-8B-1M, 2.56× for GLM-4-9B-1M, and 2.66×
for Yi-9B-200K, even surpassing infinite batch size under
the assumption of infinite GPU memory. The code is avail-
able at https://github.com/ByteDance-Seed/
ShadowKV.

2. Related Works
Token Eviction. To reduce memory footprint, eviction-
based strategies keep a fixed size of KV cache to store
the critical token KV pairs and discard unnecessary tokens.
StreamingLLM (Xiao et al., 2023b) addresses the limita-
tions of window attention by retaining attention sinks and
recent KV pairs. H2O (Zhang et al., 2024d) introduces a
low-cost eviction policy, updating the KV cache based on
cumulative attention scores. LESS (Dong et al., 2024b)
accumulates evicted token information by a constant-sized
low-rank cache, which allows partial access to evicted in-
formation, along with tokens maintained by a sparse policy.
SnapKV (Li et al., 2024) uses the local window of prompts
to select important tokens for future generations. However,

low-rank K Recon.

V Fetching

KV Fetching

KV Fetching

FFNAttn

(a) Prefetch Full KV

(b) Fetch Sparse KV (e.g., Quest w/ CPU offloading)

(c) Prefetch Sparse KV (e.g., InfiniGen)

(d) ShadowKV (Ours) Reduction

FFNAttn Attn

Sel. FFNAttn

FFNAttn

KV Fetching

time

Sel.

Sel.

time

time

time

Figure 4. SHADOWKV outperforms prior works (Tang et al.,
2024b; Lee et al., 2024b) and scales better to larger KV.

they suffer from performance degradation and information
loss since the evicted tokens will never be recovered.

Dynamic Sparse Attention. This line of work retains all
KV cache but performs dynamic sparse attention within
selected KV pairs to reduce inference latency. SparQ (Ribar
et al., 2023) uses the norm of the query to decide an impor-
tant subset of the key cache’s channels to calculate a metric
to select relevant tokens. Quest (Tang et al., 2024b) seg-
ments tokens into pages and selects pages by approximating
the highest attention within each page. Loki (Singhania
et al., 2024) performs principal component analysis on key
caches using a calibration dataset, selecting tokens based on
attention scores computed in low-dimensional space. Tri-
Force (Sun et al., 2024a) combines sparse attention with
speculative decoding (Leviathan et al., 2023) for lossless
acceleration. InfiniGen (Lee et al., 2024a) offloads the entire
KV cache to the CPU and prefetches essential entries using
predefined projections via SVD for KV selection. In con-
trast, SHADOWKV employs an online, prompt-dependent
SVD for key cache compression, reducing data fetching. As
shown in Figure 4, SHADOWKV scales better, as overlap-
ping KV fetching and computation becomes challenging
with larger KV caches. Additionally, InfiniGen suffers per-
formance drops due to inaccurate prefetching KV selection.

3

https://github.com/ByteDance-Seed/ShadowKV
https://github.com/ByteDance-Seed/ShadowKV

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

0 256 512 768 1024
SVD Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Value Cache
Post-RoPE Key Cache
Pre-RoPE Key Cache

0 4096 8192 12288 16384
Chunk Index (Chunk Size=8)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

M
in

im
um

 S
im

ila
rit

y
wi

th
in

 C
hu

nk

Layer-0, Head-1
Layer-16, Head-7
Outlier Chunks

0 50 100 150 200 250
Generated Token Index

0.3

0.4

0.5

0.6

0.7

0.8

0.9

KV
 C

ac
he

 H
it

Ra
te

Layer-5, KV Head-0
Layer-15, KV Head-3
Layer-25, KV Head-7

Figure 5. Left: Accuracy on the needle retrieval across various ranks shows that the pre-RoPE key cache can be compressed by over 6
times without a drop in accuracy. Middle: The number of notable outlier chunks is small, taking only 0.2-0.3%. Right: The KV cache
has a high hit rate, reducing computations and data movements by over 60% for each decoding step.

Quantization. Several methods have been introduced to
optimize KV cache quantization (Hooper et al., 2024; Yue
et al., 2024; Xiao et al., 2023a), reducing memory con-
sumption while retaining accuracy. KIVI (Liu et al., 2024c)
applies different quantization strategies for keys and values,
quantizing the keys per-channel and the values per-token to
2-bit. Palu (Chang et al., 2024) decomposes KV weight ma-
trices offline, caching low-rank KV projections to achieve a
higher compression rate. Quantization methods reduce the
KV cache bit width, which is orthogonal to our approach.

3. Observations
We present two key insights of long-context LLMs that
inspire SHADOWKV’s design, as follows.

3.1. Low-Rank Keys and Offloaded Values for Storage

To reduce memory footprint, the low-rank nature of the KV
cache has been explored by recent studies (DeepSeek-AI,
2024; Xu et al., 2024; Chang et al., 2024; Saxena et al.,
2024; Yu et al., 2024; Lin et al., 2024). However, these
methods focus on data-independent decomposition, either
requiring training or achieving limited compression rates.

Observation. In our study, we visualize the relative sin-
gular value distributions of the model weights Wk, Wv , the
input X , the pre-/post-RoPE key cache, and the value cache
of Llama-3.1-8B by conducting SVD, as shown in Figure 2.
In Figure 5, we further analyze the accuracy impact. We ob-
serve that pre-RoPE keys exhibit the lowest rank, allowing
for 6× compression without performance degradation.

We also identify striking dynamic and static behaviors in
low-rank keys between and within sequences, inspired by
a related investigation in FFN layers (Dong et al., 2024a).
Analogous to cosine similarity, we define D(H1,H2) =
⟨H1,H2⟩/r to be the similarity metric between low-

rank subspaces of two rank-r projection matrices, H1

and H2, where ⟨·, ·⟩ is the Frobenius inner product2.
In our case with truncated SVDs of pre-RoPE keys, let
K1,K2 ∈ Rn×d have rank-r truncated SVDs, Φ1Σ1Ψ

⊤
1

and Φ2Σ2Ψ
⊤
2 , respectively, where Φ1 ∈ Rn×r,Σ1 ∈

Rr×r,Ψ1 ∈ Rd×r, and similarly for Φ2, Σ2, and Ψ2.
Then, D(Ψ1Ψ

⊤
1 ,Ψ2Ψ

⊤
2) can measure the similarity be-

tween the low-rank subspaces of the two right singular
matrices. Depicted in Figure 2, pre-RoPE keys between
sequences do not strongly share similar low-rank subspaces,
but extensions of the same sequence do. Thus, applying low-
rank approximations to weights alone degrades performance.

Insights. Our observation of the low-rank nature in the
pre-RoPE keys indicates that storing the low-rank projec-
tions is sufficient for each sequence. By keeping the low-
rank key cache on the GPU and offloading the value cache
to the CPU since it is not low-rank, we can largely reduce
the memory footprint. During decoding, selected KV pairs
can be reconstructed on-the-fly for computation.

3.2. Accurate KV Selection for Fast Decoding

To further reduce the latency overhead in sparse attention,
including fetching the selected value cache from the CPU
and reconstructing the corresponding key cache, an accurate
KV selection method is needed to minimize the sparse KV
cache budget while maintaining the accuracy.

Observation. We found most post-RoPE key cache ex-
hibits spatial locality, with high cosine similarity to adjacent

2Since H1 and H2 are projection matrices, their squared
Frobenius norms are the sum of their singular values which consist
of r 1’s and d−r 0’s, i.e., ∥H1∥2F = r. Thus, by Cauchy-Schwarz,
|D(H1,H2)| ≤ 1. Additionally, D(H1,H2) ≥ 0 by the cyclic
property of trace and positive semidefiniteness of projection ma-
trices. Together, this shows D(H1,H2) ∈ [0, 1], maximized or
minimized when the projection matrices project onto identical or
orthogonal subspaces, respectively.

4

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

Algorithm 1 SHADOWKV Pre-filling

Input: K,KRoPE,V ∈ Rb×hkv×s×d, SVD rank r,
chunk size c, number of outlier chunks o
▷ Store low-rank projection of pre-RoPE key cache
A ∈ Rb×s×r, B ∈ Rb×hkv×r×d ← SVD(K)
▷ Segment post-RoPE key cache into chunks and compute
the mean of each chunk
C ∈ Rb×hkv×s/c×d ← Reduce(KRoPE)
▷ Compute cosine similarity within each chunk
S ∈ Rb×hkv×s/c×c ← CosineSimilarity(C,KRoPE)
▷ Find lowest cosine similarity as outliers
I ∈ Rb×hkv×o ← ArgTopK(−Min(S, dim = −1), o)
Koutlier,V outlier ← Gather(KRoPE,V , I)
▷ Offload the rest of values to the CPU and store the
non-outlier chunks’ mean as landmarks
V CPU ← V \ V outlier; L← C \ Gather(C, I)

tokens, except for a few outliers. To quantify this, we con-
ducted inference experiments on 128K contexts. We divided
the post-RoPE keys into chunks of eight tokens and visu-
alized the minimum cosine similarity between the chunk’s
mean and its key cache. The results indicate that, apart
from a few outliers, there is generally high cosine similar-
ity, suggesting the mean values can serve as landmarks to
approximate attention well within normal chunks.

Analysis. This finding suggests that for the majority of
chunks, we can maintain the mean value as compressed
landmarks to select minimal important KV pairs (1.56%)
accurately during decoding. Outlier chunks, which may
contain dense or critical information and are difficult to
approximate, are retained to ensure accuracy. Given their
relatively small number (0.2–0.3%), storing them on the
GPU is feasible without affecting memory capacity. Fur-
thermore, as shown in Figure 5, considering the temporal
locality of the KV cache—meaning that the KV pairs se-
lected by the queries of two adjacent decoding steps have
a high repetition rate, a cache policy (Zhang et al., 2024a)
can be leveraged to further reduce the latency overhead by
60% during decoding with optimized CUDA kernels.

4. SHADOWKV
In this section, we introduce SHADOWKV, a novel high-
throughput long-context LLM inference system. We first
elaborate our algorithm in Section 4.1, covering both the pre-
filling and decoding phases. Subsequently, in Section 4.2,
we discuss the concept of theoretical equivalent bandwidth
to illustrate the benefits of our approach.

4.1. Algorithm

The algorithm of SHADOWKV is divided into two main
phases: pre-filling and decoding. The pre-filling phase in-

Algorithm 2 SHADOWKV Decoding

Input: A, B, L, V CPU, Q ∈ Rb×hq×sq×d, Koutlier,
V outlier, K,V ∈ Rb×hkv×sq×d, number of chunks nc,
number of selected chunk budget k
▷ Compute chunk attention score
P ∈ Rb×hq×sq×nc ← MatMul(Q,L⊤)
S ∈ Rb×hq×sq×nc ← Softmax(P /

√
d)

S1 ∈ Rb×hq×nc ← sum(S, dim = −2)
S2 ∈ Rb×hkv×nc ← maxkv group(S1)
▷ Select top-k chunks for each KV head
I ∈ Rb×hkv×k ← ArgTopK(S2, k)
▷ Gather value cache from the CPU
V sparse ← Gather(V CPU, I) ; V ← [V outlier;V sparse;V]
▷ Reconstruct key cache from low-rank projection
Ksparse ← MatMul(Gather(A, I),B)
K ← [Koutlier;RoPE(Ksparse);K]

volves low-rank decomposition of the post-RoPE key cache,
offloading the value cache, and constructing landmarks to
facilitate subsequent high-throughput decoding. The de-
coding phase includes accurate KV selection and efficient
sparse KV cache reconstruction.

Pre-filling. During the pre-filling phase, we optimize GPU
memory usage by performing low-rank compression on the
key cache of each layer and offloading values to the CPU.
Specifically, as demonstrated in Algorithm 1, we apply SVD
on the pre-RoPE key cache and store only the low-rank
representations for each layer. Post-RoPE key cache is seg-
mented into chunks, with the mean of each chunk computed
as landmarks. By computing the cosine similarity within
these chunks, we identify poorly approximated tokens as
outliers. This small set of outliers is gathered and stored on
the GPU as the static cache, while the remaining key cache
is maintained as compact landmarks, with the corresponding
values offloaded to the CPU memory.

High-throughput Decoding. For incoming queries, we
first compute the approximate attention scores using the
landmarks. As detailed in Algorithm 2, by identifying the
top-k scoring chunk indices, the corresponding values are
retrieved from the CPU, and the key cache is simultane-
ously reconstructed from low-rank projections, effectively
concealing the construction of the key cache. Based on the
insight that the KV cache has temporal locality, we conduct
an index scan to detect the missed chunks and only rebuild
the necessary KV pairs on-the-fly, reducing computation
and data fetching by 60% with optimized CUDA kernels.

Based on our observations in Section 3.1, future pre-RoPE
keys within a sequence reside in a shared low-rank subspace
with the context. As a result, an extension of our algorithm
would be to store generated tokens as low-rank states using
the same low-rank projections obtained from pre-filling to

5

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

Table 1. Performance comparison of different models and methods on RULER (left side of the table) and LongBench (right side of the
table). SHADOWKV outperforms other methods and maintains the accuracy.
Methods S1 S2 MK1 MK2 MQ MV QA-1 QA-2 VT FWE Avg. NQA MQA HQA MQue DRead GRep SAM PRetr LCC Avg.

Llama-3-8B-1M 100.00 100.00 98.96 98.96 98.96 95.57 75.00 48.96 78.54 71.85 86.68 18.98 41.84 36.79 21.47 31.93 34.18 35.96 81.50 56.07 39.86
Loki 18.75 1.04 2.08 0.00 1.56 0.78 4.17 13.54 26.04 25.35 9.33 2.26 10.19 5.48 3.16 12.17 28.97 7.84 40.52 31.44 15.78
Loki (V) 41.67 6.25 37.50 1.04 8.07 30.73 10.42 19.79 51.67 37.50 24.46 3.20 21.01 12.41 3.86 17.07 31.24 16.23 52.57 38.10 21.74
InfiniGen 100.00 98.96 84.38 53.13 63.28 54.95 65.63 48.96 81.67 50.35 70.13 14.39 31.46 33.63 17.94 26.65 27.38 21.97 74.30 38.58 31.81
InfiniGen (V) 100.00 98.96 96.88 76.04 81.25 77.08 67.71 50.00 81.67 53.47 78.31 17.83 36.08 35.28 19.64 28.39 29.28 28.12 74.85 45.53 35.00
Quest 100.00 100.00 98.96 77.08 97.65 93.49 60.42 50.00 77.08 65.63 82.03 20.13 36.63 35.00 18.14 24.55 27.11 35.63 79.00 53.64 36.65
Quest (V) 100.00 100.00 98.96 85.42 97.92 95.49 70.83 46.88 78.75 65.63 83.99 17.26 39.51 36.78 18.71 26.41 29.49 35.80 79.50 60.05 38.17
SHADOWKV 100.00 100.00 97.92 98.96 96.88 95.83 72.92 52.08 81.67 72.57 86.88 17.17 39.73 38.29 21.08 31.77 31.62 35.87 80.00 63.93 39.94

GLM-4-9B-1M 100.00 100.00 94.79 87.50 99.74 93.75 67.71 55.21 97.29 72.22 86.82 25.44 51.09 58.67 39.61 32.04 29.97 40.31 99.00 58.02 48.24
Loki 71.88 27.08 22.92 2.08 9.90 11.46 28.13 27.08 31.04 54.17 28.57 5.82 30.60 22.73 9.20 30.09 30.35 22.70 98.92 40.77 32.35
Loki (V) 96.88 55.21 56.25 18.75 51.04 50.52 45.83 39.58 72.71 59.72 54.65 10.89 44.97 45.44 23.51 32.07 30.56 35.34 99.50 50.27 41.39
InfiniGen 100.00 93.75 82.29 0.00 79.43 60.16 57.29 53.13 92.71 57.29 67.60 23.67 46.31 55.69 33.91 27.49 25.44 33.48 91.83 36.96 41.64
InfiniGen (V) 100.00 96.88 87.50 7.29 95.31 75.26 56.25 54.17 95.63 60.76 72.91 25.63 48.44 57.23 36.94 29.77 26.67 36.64 93.58 46.69 44.62
Quest 100.00 95.83 90.62 54.17 94.01 76.30 55.21 52.08 95.83 64.58 77.86 23.81 44.53 56.41 35.49 23.54 21.73 37.39 87.00 43.80 41.52
Quest (V) 100.00 96.88 93.75 72.92 95.83 83.07 56.25 53.13 96.88 65.97 81.47 26.00 46.32 57.54 36.42 24.58 24.52 37.71 93.50 46.52 43.68
SHADOWKV 100.00 100.00 95.83 83.33 98.70 87.76 69.79 55.21 97.50 68.06 85.62 26.50 51.31 59.09 38.87 32.92 28.54 38.70 96.50 58.55 47.89

Llama-3.1-8B 100.00 100.00 98.96 91.67 98.96 95.31 82.29 47.92 68.96 71.18 85.53 31.56 55.10 57.65 29.46 35.26 34.45 29.84 100.00 67.31 48.96
Loki 68.75 32.29 32.29 20.83 42.71 28.65 41.67 33.33 24.79 29.86 35.52 2.31 18.89 10.64 5.47 19.30 31.16 15.91 94.88 44.60 27.02
Loki (V) 95.83 36.46 57.29 62.50 77.86 70.83 69.79 39.58 35.21 37.50 58.29 3.93 38.59 22.85 12.96 27.43 32.22 26.43 98.25 56.11 35.42
InfiniGen 100.00 77.08 78.13 13.54 58.07 47.40 65.63 41.67 60.83 50.35 59.27 27.23 52.72 53.89 26.81 27.72 29.61 24.42 98.93 56.89 44.25
InfiniGen (V) 100.00 88.54 87.50 26.04 79.43 77.08 72.92 43.75 57.08 55.21 68.76 29.73 53.47 55.11 28.72 28.55 31.42 26.76 99.17 62.66 46.18
Quest 100.00 98.96 97.92 34.38 93.49 88.54 70.83 44.79 65.63 68.40 76.29 29.70 49.04 53.96 27.18 27.16 30.43 29.85 98.50 57.35 44.80
Quest (V) 100.00 98.96 98.96 56.25 95.83 90.63 76.04 46.88 66.25 67.36 79.72 30.02 53.97 56.39 27.06 29.06 31.65 30.23 99.00 63.89 46.81
SHADOWKV 100.00 100.00 100.00 83.33 97.92 92.19 81.25 48.96 67.08 64.93 83.57 30.93 55.20 57.32 29.13 31.85 32.79 30.40 99.50 66.03 48.13

reduce the memory usage for the future generations3. We
evaluate it and include the results in Appendix A.1.

4.2. Theoretical Equivalent Bandwidth

The benefit of SHADOWKV in terms of increasing through-
put can be analyzed through the concept of equivalent band-
width. Consider each K or V vector as being M bytes
in size, with a sequence length of S, a chunk size of C,
a selected chunk budget of K, O outliers, and hit rate α.
During KV selection, SHADOWKV loads M × S/C bytes
using the GPU memory bandwidth BGPU. For value cache
fetching, it loads M ×K × C bytes using the PCIe band-
width BPCIe (Sheng et al., 2023). Since value movement
and key cache reconstruction can be overlapped, we do not
need to count key cache reconstruction here. Following
this, SHADOWKV performs standard attention computa-
tion for the top-k chunks and predefined outliers, requiring
2M × (K + O) × C bytes. The equivalent bandwidth of
SHADOWKV is defined as below and the GPU memory
savings is detailed in Appendix A.2.

B̃ =
2SBGPU

S/C + 2(K +O)C + (1− α)KCBGPU/BPCIe

For example, assuming C=8, S=128K, K=256, O=48,
BPCIe=31.5 GB/s, and BGPU=2 TB/s for A100, the equiva-
lent bandwidth of SHADOWKV is calculated as 7.2 TB/s,

3If Ψ ∈ Rd×r is the right singular matrix calculated from the
SVD of pre-RoPE context keys K ∈ Rs×d, new pre-RoPE keys
K′ ∈ Rsq×d can be stored as K′Ψ and projected back up with
Ψ⊤ when needed.

which is 3.6× higher than A100 memory bandwidth. This
result indicates that SHADOWKV theoretically achieves a
high equivalent bandwidth to accelerate attention computa-
tion. System implementation is detailed in Appendix B.1.

5. Empirical Evaluation
In this section, we showcase the effectiveness and efficiency
of SHADOWKV. Specifically,

• In Section 5.1, we show that SHADOWKV can reduce
the GPU memory footprint of the KV cache by over 6×
without accuracy degradation on a wide range of models
and evaluation benchmarks.

• In Section 5.2, we demonstrate SHADOWKV supports 6×
larger batch sizes and increase the inference throughput
by up to 3.04× without compromising model quality.

• In Section 5.3, we present ablation studies that validate
the effectiveness of each component of SHADOWKV in
optimizing GPU memory usage and performance.

5.1. Accuracy Evaluation

We demonstrate that SHADOWKV can reduce GPU memory
usage of the KV cache by 6× while maintaining accuracy
on a range of tasks with a minimal sparse KV budget.

Setup. We choose four widely used long-context mod-
els for our evaluation: Llama-3-8B-1M (Gradient., 2024),
GLM-4-9B-1M (GLM et al., 2024), Llama-3.1-8B (Meta
AI, 2024), and Yi-9B-200K (AI et al., 2024). We evalu-

6

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

ate our approach on three challenging long-context bench-
marks: RULER (Hsieh et al., 2024), LongBench (Bai et al.,
2023), and Needle In A Haystack (NIAH) (Kamradt, 2023),
covering QA, multi-hop, reasoning, summarization, code
completion4. We set the chunk size to 8, the rank to 160,
and the number of outliers to 48 for SHADOWKV.

Baselines. We include three dynamic sparse attention
methods as baselines: Quest (Tang et al., 2024b), Loki
(Singhania et al., 2024), and InfiniGen (Lee et al., 2024b).
For all methods, we retain exact pre-filling and perform
dynamic sparse attention during decoding, where the com-
putation cost is set to 1/16 of full attention for selecting
sparse KV pairs. We include two variants for each baseline:
one where all the KV cache is offloaded, and another where
only the value cache is offloaded. The former has similar
latency to SHADOWKV but a smaller sparse budget since
SHADOWKV only needs to fetch the value cache from the
CPU. The latter aligns with the same sparse KV cache bud-
get but significantly increases GPU memory usage. The
latter one is marked as “(V)” in the table.

RULER. As shown in Table 1, SHADOWKV demon-
strates excellent performance on 128K contexts. With a
fixed sparse budget of 1.56%, other methods experience
performance degradation. In contrast, SHADOWKV is more
robust and even outperforms original full attention on cer-
tain tasks, such as variable tracking. For complex tasks
like multi-document QA or multi-key needle retrieval, other
methods suffer from significant performance degradation
while SHADOWKV does not.

LongBench. On LongBench, we evaluate our method
with a range of realistic scenarios, including single-/multi-
document QA, document summarization, code completion,
information retrieval, etc. We only test on samples longer
than 4K and set the sparse KV cache budget to 256 for this
benchmark since it has shorter inputs compared to RULER.
As shown in Table 1, SHADOWKV outperforms other meth-
ods consistently and maintains the performance.

16
K

87
K

15
7K

22
7K

29
7K

36
8K

43
8K

50
8K

57
8K

64
0K

71
9K

78
9K

85
9K

93
0K 1M

Context Length

0
11
22
33
44
55
67
78
89

100

D
ep

th
 P

er
ce

nt
 (%

) NIAH Llama-3-8B-1M w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6. Needle In A Haystack.

NIAH. On NIAH
dataset, as shown
in Figure 6, SHAD-
OWKV shows the
ability to process in-
formation at differ-
ent positions across
various context win-
dows, ranging from 16K to 1M tokens. More experiments

4We include results for Yi-9B-200K and other models (e.g.,
Llama-3-70B-1M) in Appendix A. Needle In A Haystack is also
tested on Phi-3-Mini-128K (Abdin et al., 2024) and Qwen2-7B-
128K (Yang et al., 2024a).

on a range of models can be found in Appendix B.3.

Integrate with Efficient Pre-filling Methods. We also
combined SHADOWKV with a state-of-the-art efficient pre-
filling method MInference (Jiang et al., 2024). As shown
in Table 2, following the setting of MInference, we tested
it on RULER with contexts scaling from 8K to 256K. This
demonstrates that our method is compatible with pre-filling
acceleration techniques. For some certain context length
settings, we even see a slight performance improvement.

Table 2. Performance of different methods on RULER using MIn-
ference (Jiang et al., 2024) in the pre-filling stage.

Methods 8K 16K 32K 64K 128K 256K Avg.

Llama-3-8B-1M 89.92 88.02 82.81 78.45 78.12 74.57 81.98
SHADOWKV 90.47 88.12 83.28 77.71 78.32 74.31 82.04

#1 #2 #3 #4 #5 #6 #7 #8
Conversation Turn

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
on

 M
ul

ti-
N

IA
H

Full Attention
SnapKV
StreamingLLM
ShadowKV (Ours)

Figure 7. Multi-turn NIAH.

Multi-turn Capability.
To simulate multi-turn
conversations, we chal-
lenged SHADOWKV with
a multi-turn needle re-
trieval task (Multi-turn
NIAH). We also test two
eviction-based methods
in Figure 7, including
SnapKV (Li et al., 2024)
and StreamingLLM (Xiao et al., 2023b). The performance
of SnapKV drops significantly from the second round due
to the required context information being different from the
first round. Since SnapKV inevitably evicted tokens based
on the first-turn conversation, it cannot successfully retrieve
related information for future queries. In contrast, SHAD-
OWKV can maintain accuracy in the multi-turn conversation
setting.

5.2. Efficiency Evaluation

To demonstrate the efficiency of SHADOWKV, we deploy it
into real-world large batch serving scenarios. By measuring
the throughput during decoding across different models on
A100, we show that SHADOWKV can support up to 6×
larger batch sizes and boost throughput by up to 3.04×.

Baselines. The baseline selects the largest batch size that
can fit entirely on the GPU with full attention. We also in-
clude results for the same batch size of SHADOWKV and the
infinite batch size, assuming infinite GPU memory capabili-
ties5. We set the sparse budget to 1.56% for SHADOWKV.

5For the equivalent SHADOWKV batch size, we evaluate a
single Transformer block with FlashAttention and then project the

7

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Multi-keys NIAH, Llama-3-8B-1M

Full (128K)
Quest
ShadowKV

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Multi-keys NIAH, GLM-4-9B-1M

Full (128K)
Quest
ShadowKV

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

QA, Llama-3-8B-1M

Full (128K)
Quest
ShadowKV

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
cc

ur
ac

y

QA, GLM-4-9B-1M

Full (128K)
Quest
ShadowKV

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

A
cc

ur
ac

y

Variable Tracking, Llama-3-8B-1M

Full (128K)
Quest
ShadowKV

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

A
cc

ur
ac

y

Variable Tracking, GLM-4-9B-1M

Full (128K)
Quest
ShadowKV

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

A
cc

ur
ac

y

Frequent Words Extraction, Llama-3-8B-1M

Full (128K)
Quest
ShadowKV

100 3.12 2.73 2.34 1.95 1.56 1.17 0.78 0.39 0.20
Sparse KV Cache Budget (%)

0.62

0.64

0.66

0.68

0.70

0.72

A
cc

ur
ac

y

Frequent Words Extraction, GLM-4-9B-1M

Full (128K)
Quest
ShadowKV

Figure 8. Comparison results between different models on a range of long-context tasks with full cache, our SHADOWKV, and Quest.
SHADOWKV consistently surpasses Quest under the same sparse budgets and achieves higher throughput.

Table 3. Generation throughput (tokens/s) on an A100. The gray
text in brackets denotes batch size.
Model Context Full Attn SHADOWKV Gain Full Attn (Inf)

Llama-3-8B-1M 60K 160.62 (8) 455.14 (48) 2.83× 168.72 (48) / 273.07 (Inf)
(8 KV heads) 122K 80.77 (4) 239.51 (24) 2.97× 83.05 (24) / 134.30 (Inf)

244K 40.37 (2) 119.01 (12) 2.95× 52.00 (12) / 67.15 (Inf)

Llama-3.1-8B 60K 160.93 (8) 472.77 (48) 2.94× 168.72 (48) / 273.07 (Inf)
(8 KV heads) 122K 80.78 (4) 245.90 (24) 3.04× 83.05 (24) / 134.30 (Inf)

GLM-4-9B-1M 60K 241.05 (12) 615.89 (50) 2.56× 266.24 (50) / 436.91 (Inf)
(4 KV heads) 122K 122.67 (6) 293.40 (25) 2.39× 158.83 (25) / 214.87 (Inf)

244K 61.13 (3) 136.51 (12) 2.23× 78.84 (12) / 107.44 (Inf)

Yi-9B-200K 60K 204.81 (10) 544.36 (42) 2.66× 271.21 (42) / 364.09 (Inf)
(4 KV heads) 122K 101.44 (5) 260.03 (21) 2.56× 133.53 (21) / 179.06 (Inf)

244K 46.74 (2) 118.55 (10) 2.54× 65.79 (10) / 89.53 (Inf)

Results. As shown in Table 3, SHADOWKV demonstrates
significant throughput improvements for various models on
an A100, surpassing even those with infinite GPU memory.
Notably, SHADOWKV supports batch sizes up to 6× larger
and enhances throughput by up to 3.04× compared to full
attention, even surpassing infinite batch size assuming infi-
nite GPU memory. While the gains for GLM-4-9B-1M and
Yi-9B-200K are slightly lower, the improvements still reach
up to 2.56× and 2.66× respectively, highlighting SHAD-
OWKV’s adaptability even with fewer KV heads. To further
illustrate scalability, we provide detailed throughput mea-
surements for Llama-3-8B-1M under varying batch sizes
and context lengths in Table 4. As context length increases,
full attention quickly runs out of memory, while SHAD-
OWKV continues to scale up to batch size 48 at 60K context

number to the entire model. For the infinite batch size, we lever-
age A100’s theoretical memory bandwidth (2 TB/s) for attention
computations.

Table 4. Generation throughput (tokens/s) under varying batch
sizes and sequence lengths on Llama-3-8B-1M.
Context 2 3 4 5 6 8 12 16 24 32 48

Full KV

60K 89.19 111.44 126.73 142.62 147.40 160.62 OOM OOM OOM OOM OOM
122K 65.12 75.16 80.77 OOM OOM OOM OOM OOM OOM OOM OOM
244K 40.37 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
488K OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

SHADOWKV

60K 89.69 126.61 159.41 184.92 205.41 244.20 306.09 346.34 399.65 428.63 455.14
122K 65.61 94.28 115.01 132.23 143.77 166.72 196.73 217.24 239.51 OOM OOM
244K 48.39 65.95 78.92 87.83 94.07 104.73 119.01 OOM OOM OOM OOM
488K 29.82 41.01 47.13 50.85 53.46 OOM OOM OOM OOM OOM OOM

and remains functional for extremely longer sequences. Ad-
ditionally, we provide an efficiency comparison with Quest
under 1M contexts in Appendix A.6, demonstrating that
SHADOWKV significantly enhances throughput.

5.3. Ablation Results

In this section, we present extensive ablation studies of
SHADOWKV, focusing on three key points: (1) sparse KV
cache budget variations, (2) chunk size selections, (3) pre-
RoPE key cache rank choices, (4) latency breakdown, and
(5) accuracy contribution of outlier KV Cache. Additional
ablations, including precision sensitivity analysis, are pro-
vided in Appendix A.

Sparse KV Cache Budget. We examine SHADOWKV’s
performance across various tasks with different sparse bud-
gets, as illustrated in Figure 8. SHADOWKV consistently
surpasses Quest under the same sparse budgets and achieves
higher throughput. On most tasks, it maintains accuracy

8

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

1 2 4 8 16 32 64
Chunk Size

0

2

4

6

8

10

B
at

ch
 S

iz
e

S
ca

lin
g

Fa
ct

or

0 250 500 750 1000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

RULER/NIAH-S
RULER/NIAH-MK
RULER/NIAH-MQ
RULER/FWE
RULER/QA

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y
on

 R
U

LE
R

/N
IA

H
-M

K
2

Figure 9. Left: Impact of chunk size on batch size and accuracy.
Right: Accuracy trends across different ranks.

Table 5. Latency breakdown (ms) of a Transformer block of Llama-
3-8B-1M during prefilling.
Context Attention FFN SVD Reduce CosineSimilarity TopK Gather Cost

64K 186.23 96.47 17.19 0.10 1.41 0.08 0.01 6.65%
128K 721.13 193.32 26.62 0.20 2.77 0.14 0.02 3.25%
256K 2880.21 392.77 50.56 0.42 6.11 0.11 0.03 1.75%
512K 11720.30 789.23 108.38 0.84 12.19 0.15 0.06 0.97%

with just a 1.56% sparse budget compared to full attention
and even improves slightly on some tasks.

Chunk Size. As shown in Figure 9, increasing the chunk
size allows for larger batch sizes. However, accuracy de-
clines when the chunk size exceeds eight. Meanwhile, the
chunk size choice has minimal impact on the chunk hit rate,
which remains around 60%.

Rank of Pre-RoPE Keys. We assess SHADOWKV’s per-
formance across various tasks using different ranks for pre-
RoPE keys. As illustrated in Figure 9, accuracy increases
with the rank up to approximately 160, after which it stabi-
lizes near full-rank performance. Interestingly, the trends
vary across tasks, and in some cases, low-rank approxima-
tions achieve better performance.

Scalability for Longer Sequences. As shown in Table 5,
the overhead of SVD, reduce, cosine similarity, topK, and
gather computing is very low and tends to decrease as the
sequence scales, proving that SHADOWKV’s scalability to
longer sequences.

Overlapping Operations for Latency Reduction. In Ta-
ble 6, we demonstrate how overlapping the recomputation
of the key cache with value cache fetching from the CPU
significantly reduces decoding latency. This concurrent
processing approach ensures that SHADOWKV minimizes
overhead when handling long-context models.

Accuracy Contribution of Outlier KV Cache. We con-
duct experiments using different numbers of outlier chunks

Table 6. Latency breakdown (ms) of a Transformer block of Llama-
3-8B-1M during decoding.

Context GEMM+
Softmax Max TopK

Recompute K
(Overlapped) Fetch V Attention FFN QKV

48×64K 0.56 0.07 0.14 1.25 1.84 0.23 0.33 0.05
24×128K 0.58 0.07 0.15 1.36 1.66 0.21 0.29 0.05
12×256K 0.65 0.07 0.16 1.49 1.75 0.19 0.25 0.05
6×512K 0.71 0.07 0.17 1.51 1.69 0.18 0.23 0.05

Table 7. Performance across different number of outlier chunks on
RULER (Hsieh et al., 2024) evaluated at length of 128K.

Outliers N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

0 (0.000 %) 100.00 100.00 96.88 85.42 73.18 70.83 43.75 39.58 73.54 57.29 74.05
1 (0.006 %) 100.00 100.00 97.92 98.96 95.83 94.79 70.83 51.04 70.63 70.14 85.01
2 (0.012 %) 100.00 100.00 97.92 98.96 95.57 95.57 70.83 51.04 72.08 70.49 85.25
4 (0.024 %) 100.00 100.00 97.92 98.96 95.83 95.57 71.88 51.04 74.38 71.18 85.68
8 (0.049 %) 100.00 100.00 97.92 98.96 95.57 95.05 72.92 51.04 78.13 72.57 86.22

16 (0.098 %) 100.00 100.00 97.92 98.96 96.09 95.31 72.92 51.04 80.42 71.53 86.42
32 (0.195 %) 100.00 100.00 97.92 98.96 96.35 95.57 72.92 52.08 81.25 72.22 86.73
48 (0.293 %) 100.00 100.00 97.92 98.96 96.88 95.83 72.92 52.08 81.67 72.57 86.88

Quest (Ref.) 100.00 100.00 98.96 77.08 97.65 93.49 60.42 50.00 77.08 65.63 82.03
Full Attn (Ref.) 100.00 100.00 98.96 98.96 98.96 95.57 75.00 48.96 78.54 71.85 86.68

for Llama-3-8B-1M on the RULER benchmark with 128K
context length. As presented in Table 7, our findings indi-
cate that outliers play a crucial role. For instance, the first
chunk, a significant outlier, has previously been shown to
act as an attention sink (Xiao et al., 2023b), underscoring
its importance in maintaining model accuracy. Remarkably,
with just 8 outliers (0.049%), SHADOWKV outperforms the
Quest baseline and nearly matches the accuracy achieved
by full attention. However, when outliers are not adequately
managed, the performance of the mean-based landmarks in
SHADOWKV may fall below the min-max approach used
by Quest, underscoring the importance of handling outliers
properly.

6. Conclusion
We present SHADOWKV, a high-throughput inference sys-
tem for long-context LLM inference. SHADOWKV opti-
mizes GPU memory usage through the low-rank key cache
and offloaded value cache, allowing for larger batch sizes.
It reduces decoding overhead by accurate sparse attention,
boosting throughput while maintaining accuracy. Our em-
pirical experiments demonstrate SHADOWKV can support
up to 6× larger batch sizes and enhance throughput by up
to 3.04× on an A100 across various long-context models,
including Llama-3.1-8B, Llama-3-8B-1M, GLM-4-9B-1M,
and Yi-9B-200K. SHADOWKV holds great promise for im-
proving long-context LLM inference.

Acknowledgment
We thank Zhuoming Chen, Xinyu Yang, and Yang Zhou
for their helpful discussions and feedback on early drafts of
the paper. This work was partially supported by Li-Auto,
Amazon, Intel, Moffet AI, Cylab seed.

9

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

Impact Statement
The deployment of long-context LLMs is often constrained
by their significant memory and computational demands,
limiting accessibility for real-world applications that require
handling extended contexts. This work introduces SHAD-
OWKV, a high-throughput inference system that addresses
these constraints by optimizing the KV cache. By leverag-
ing low-rank key compression and efficient value offloading,
SHADOWKV reduces GPU memory usage and inference
latency while supporting larger batch sizes and longer se-
quences. These innovations enable more efficient use of
existing hardware, reducing the resource barriers associated
with deploying LLMs.

The societal implications of SHADOWKV are multifaceted.
By making it feasible to deploy LLMs on constrained hard-
ware, this work democratizes access to advanced AI capabil-
ities, empowering smaller organizations and researchers in
resource-limited settings. Furthermore, its ability to main-
tain accuracy while reducing computational overhead con-
tributes to the broader sustainability goals of AI by lowering
energy consumption in large-scale deployments.

No specific ethical concerns or societal risks are associated
with the proposed method. Instead, it provides a path to-
ward equitable and responsible AI deployment, ensuring
that advancements in LLM capabilities are accessible and
sustainable across diverse sectors.

References
Abdin, M., Jacobs, S. A., Awan, A. A., Aneja, J., Awadallah,

A., Awadalla, H., Bach, N., Bahree, A., Bakhtiari, A.,
Behl, H., et al. Phi-3 technical report: A highly capable
language model locally on your phone. arXiv preprint
arXiv:2404.14219, 2024.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

AI, ., :, Young, A., Chen, B., Li, C., Huang, C., Zhang, G.,
Zhang, G., Li, H., Zhu, J., Chen, J., Chang, J., Yu, K.,
Liu, P., Liu, Q., Yue, S., Yang, S., Yang, S., Yu, T., Xie,
W., Huang, W., Hu, X., Ren, X., Niu, X., Nie, P., Xu, Y.,
Liu, Y., Wang, Y., Cai, Y., Gu, Z., Liu, Z., and Dai, Z. Yi:
Open foundation models by 01.ai, 2024.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z., Du,
Z., Liu, X., Zeng, A., Hou, L., Dong, Y., Tang, J., and Li,
J. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508,
2023.

Chang, C.-C., Lin, W.-C., Lin, C.-Y., Chen, C.-Y., Hu, Y.-F.,

Wang, P.-S., Huang, N.-C., Ceze, L., and Wu, K.-C. Palu:
Compressing kv-cache with low-rank projection. arXiv
preprint arXiv:2407.21118, 2024.

Dao, T. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

DeepSeek-AI. Deepseek-v2: A strong, economical, and
efficient mixture-of-experts language model, 2024.

Dong, H., Chen, B., and Chi, Y. Prompt-prompted adaptive
structured pruning for efficient llm generation. In First
Conference on Language Modeling, 2024a.

Dong, H., Yang, X., Zhang, Z., Wang, Z., Chi, Y., and Chen,
B. Get more with less: Synthesizing recurrence with
kv cache compression for efficient llm inference. arXiv
preprint arXiv:2402.09398, 2024b.

Fu, J., Jiang, Y., Chen, J., Fan, J., Geng, X., and Yang, X.
Speculative ensemble: Fast large language model ensem-
ble via speculation. arXiv preprint arXiv:2502.01662,
2025.

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao,
J. Model tells you what to discard: Adaptive kv cache
compression for llms. arXiv preprint arXiv:2310.01801,
2023.

GLM, T., Zeng, A., Xu, B., Wang, B., Zhang, C., Yin, D.,
Rojas, D., Feng, G., Zhao, H., Lai, H., Yu, H., Wang, H.,
Sun, J., Zhang, J., Cheng, J., Gui, J., Tang, J., Zhang, J.,
Li, J., Zhao, L., Wu, L., Zhong, L., Liu, M., Huang, M.,
Zhang, P., Zheng, Q., Lu, R., Duan, S., Zhang, S., Cao, S.,
Yang, S., Tam, W. L., Zhao, W., Liu, X., Xia, X., Zhang,
X., Gu, X., Lv, X., Liu, X., Liu, X., Yang, X., Song, X.,
Zhang, X., An, Y., Xu, Y., Niu, Y., Yang, Y., Li, Y., Bai,
Y., Dong, Y., Qi, Z., Wang, Z., Yang, Z., Du, Z., Hou,
Z., and Wang, Z. Chatglm: A family of large language
models from glm-130b to glm-4 all tools, 2024.

Gradient. Llama-3-8b-instruct gradient 4194k (v0.1), 2024.
URL https://huggingface.co/gradientai/
Llama-3-8B-Instruct-Gradient-1048k.

He, J. and Zhai, J. Fastdecode: High-throughput gpu-
efficient llm serving using heterogeneous pipelines. arXiv
preprint arXiv:2403.11421, 2024.

Hong, K., Dai, G., Xu, J., Mao, Q., Li, X., Liu, J., Chen,
K., Dong, H., and Wang, Y. Flashdecoding++: Faster
large language model inference on gpus. arXiv preprint
arXiv:2311.01282, 2023.

10

https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k
https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length llm in-
ference with kv cache quantization. arXiv preprint
arXiv:2401.18079, 2024.

Hsieh, C.-P., Sun, S., Kriman, S., Acharya, S., Rekesh, D.,
Jia, F., Zhang, Y., and Ginsburg, B. Ruler: What’s the
real context size of your long-context language models?
arXiv preprint arXiv:2404.06654, 2024.

Jiang, H., Li, Y., Zhang, C., Wu, Q., Luo, X., Ahn, S., Han,
Z., Abdi, A. H., Li, D., Lin, C.-Y., et al. Minference 1.0:
Accelerating pre-filling for long-context llms via dynamic
sparse attention. arXiv preprint arXiv:2407.02490, 2024.

Juravsky, J., Brown, B., Ehrlich, R., Fu, D. Y., Ré, C., and
Mirhoseini, A. Hydragen: High-throughput llm inference
with shared prefixes. arXiv preprint arXiv:2402.05099,
2024.

Kamradt, G. Needle in a haystack - pressure testing llms.
2023.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Lee, W., Lee, J., Seo, J., and Sim, J. InfiniGen: Efficient gen-
erative inference of large language models with dynamic
kv cache management. In 18th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
24), 2024a.

Lee, W., Lee, J., Seo, J., and Sim, J. {InfiniGen}: Effi-
cient generative inference of large language models with
dynamic {KV} cache management. In 18th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 24), pp. 155–172, 2024b.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, Y., Dong, B., Lin, C., and Guerin, F. Compressing
context to enhance inference efficiency of large language
models. arXiv preprint arXiv:2310.06201, 2023.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A.,
Ye, H., Cai, T., Lewis, P., and Chen, D. Snapkv: Llm
knows what you are looking for before generation. arXiv
preprint arXiv:2404.14469, 2024.

Lin, B., Zeng, Z., Xiao, Z., Kou, S., Hou, T., Gao, X.,
Zhang, H., and Deng, Z. Matryoshkakv: Adaptive kv
compression via trainable orthogonal projection. arXiv
preprint arXiv:2410.14731, 2024.

Liu, H., Yan, W., Zaharia, M., and Abbeel, P. World model
on million-length video and language with ringattention.
arXiv preprint arXiv:2402.08268, 2024a.

Liu, Z., Desai, A., Liao, F., Wang, W., Xie, V., Xu, Z., Kyril-
lidis, A., and Shrivastava, A. Scissorhands: Exploiting
the persistence of importance hypothesis for llm kv cache
compression at test time. Advances in Neural Information
Processing Systems, 36, 2024b.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman,
V., Chen, B., and Hu, X. Kivi: A tuning-free asym-
metric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024c.

Meta AI. Introducing Llama 3.1, 2024. URL https:
//ai.meta.com/blog/meta-llama-3-1/. Ac-
cessed: 2024-08-21.

Microsoft. Microsoft bingchat, 2024. URL https://
www.bing.com/chat.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Peng, Y., Zhang, G., Zhang, M., You, Z., Liu, J., Zhu, Q.,
Yang, K., Xu, X., Geng, X., and Yang, X. Lmm-r1: Em-
powering 3b lmms with strong reasoning abilities through
two-stage rule-based rl. arXiv preprint arXiv:2503.07536,
2025.

QwenTeam. Qwen2.5: A party of foundation models,
September 2024. URL https://qwenlm.github.
io/blog/qwen2.5/.

Rae, J. W., Potapenko, A., Jayakumar, S. M., and Lillicrap,
T. P. Compressive transformers for long-range sequence
modelling. arXiv preprint arXiv:1911.05507, 2019.

Ribar, L., Chelombiev, I., Hudlass-Galley, L., Blake, C.,
Luschi, C., and Orr, D. Sparq attention: Bandwidth-
efficient llm inference. arXiv preprint arXiv:2312.04985,
2023.

Saxena, U., Saha, G., Choudhary, S., and Roy, K. Eigen
attention: Attention in low-rank space for kv cache com-
pression. arXiv preprint arXiv:2408.05646, 2024.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen,
B., Liang, P., Ré, C., Stoica, I., and Zhang, C. Flexgen:

11

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://www.bing.com/chat
https://www.bing.com/chat
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

High-throughput generative inference of large language
models with a single gpu. In International Conference
on Machine Learning, pp. 31094–31116. PMLR, 2023.

Singhania, P., Singh, S., He, S., Feizi, S., and Bhatele, A.
Loki: Low-rank keys for efficient sparse attention. arXiv
preprint arXiv:2406.02542, 2024.

Song, Z., Yuan, J., and Yang, H. Fmint: Bridging human
designed and data pretrained models for differential equa-
tion foundation model. arXiv preprint arXiv:2404.14688,
2024.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Sun, H., Chen, Z., Yang, X., Tian, Y., and Chen, B. Tri-
force: Lossless acceleration of long sequence generation
with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024a.

Sun, H., Haider, M., Zhang, R., Yang, H., Qiu, J., Yin,
M., Wang, M., Bartlett, P., and Zanette, A. Fast best-
of-n decoding via speculative rejection. arXiv preprint
arXiv:2410.20290, 2024b.

Tang, H., Lin, Y., Lin, J., Han, Q., Hong, S., Yao, Y., and
Wang, G. Razorattention: Efficient kv cache compression
through retrieval heads. arXiv preprint arXiv:2407.15891,
2024a.

Tang, J., Zhao, Y., Zhu, K., Xiao, G., Kasikci, B., and Han,
S. Quest: Query-aware sparsity for efficient long-context
llm inference. arXiv preprint arXiv:2406.10774, 2024b.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Thakkar, V., Ramani, P., Cecka, C., Shivam, A., Lu, H.,
Yan, E., Kosaian, J., Hoemmen, M., Wu, H., Kerr, A.,
Nicely, M., Merrill, D., Blasig, D., Qiao, F., Majcher, P.,
Springer, P., Hohnerbach, M., Wang, J., and Gupta, M.
CUTLASS, January 2023. URL https://github.
com/NVIDIA/cutlass.

Wang, H., Yang, X., Chang, J., Jin, D., Sun, J., Zhang, S.,
Luo, X., and Tian, Q. Parameter-efficient tuning of large-
scale multimodal foundation model. Advances in Neural
Information Processing Systems, 36, 2024a.

Wang, M., Chen, L., Fu, C., Liao, S., Zhang, X., Wu, B., Yu,
H., Xu, N., Zhang, L., Luo, R., et al. Leave no document
behind: Benchmarking long-context llms with extended
multi-doc qa. arXiv preprint arXiv:2406.17419, 2024b.

Wolf, T. Huggingface’s transformers: State-of-the-
art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023a.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
In The Twelfth International Conference on Learning
Representations, 2023b.

Xu, Y., Jie, Z., Dong, H., Wang, L., Lu, X., Zhou, A., Saha,
A., Xiong, C., and Sahoo, D. Think: Thinner key cache by
query-driven pruning. arXiv preprint arXiv:2407.21018,
2024.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., et al. Qwen2 technical
report. arXiv preprint arXiv:2407.10671, 2024a.

Yang, J. Y., Kim, B., Bae, J., Kwon, B., Park, G., Yang, E.,
Kwon, S. J., and Lee, D. No token left behind: Reliable kv
cache compression via importance-aware mixed precision
quantization. arXiv preprint arXiv:2402.18096, 2024b.

Ye, Z., Lai, R., Lu, B.-R., Chien-Yu, L., Zheng, S., Chen,
L., Chen, T., and Ceze, L. Cascade inference: Mem-
ory bandwidth efficient shared prefix batch decoding,
2024. URL https://flashinfer.ai/2024/02/
02/cascade-inference.html. Accessed: 2024-
09-25.

Yu, H., Yang, Z., Li, S., Li, Y., and Wu, J. Effectively com-
press kv heads for llm. arXiv preprint arXiv:2406.07056,
2024.

Yuan, Y., Huang, Y., Ma, Y., Li, X., Li, Z., Shi, Y., and
Zhou, H. Rhyme-aware chinese lyric generator based on
gpt. arXiv preprint arXiv:2408.10130, 2024.

Yue, Y., Yuan, Z., Duanmu, H., Zhou, S., Wu, J., and Nie,
L. Wkvquant: Quantizing weight and key/value cache
for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Zhang, H., Ji, X., Chen, Y., Fu, F., Miao, X., Nie, X., Chen,
W., and Cui, B. Pqcache: Product quantization-based
kvcache for long context llm inference. arXiv preprint
arXiv:2407.12820, 2024a.

Zhang, X., Chen, Y., Hu, S., Xu, Z., Chen, J., Hao, M. K.,
Han, X., Thai, Z. L., Wang, S., Liu, Z., and Sun, M.
∞bench: Extending long context evaluation beyond 100k
tokens, 2024b.

12

https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://flashinfer.ai/2024/02/02/cascade-inference.html
https://flashinfer.ai/2024/02/02/cascade-inference.html

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

Zhang, Y., Gao, B., Liu, T., Lu, K., Xiong, W., Dong, Y.,
Chang, B., Hu, J., Xiao, W., et al. Pyramidkv: Dynamic
kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024c.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36, 2024d.

13

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

A. Additional Experiment Results
In this section, we present additional experiments experiments not covered in the main text, including the handling of newly
generated tokens (as discussed in Section 4.1), scalability analysis for larger models and longer sequences (mentioned in
Section 5.1), additional ablation studies (referenced in Section 5.3), and etc.

A.1. Handling of Newly Generated Tokens

To address the handling of newly generated tokens, we project these tokens’ key cache into a low-rank space using the
same projections applied during the prefilling phase. This approach preserves the benefits of reduced GPU memory usage,
particularly for long output sequences.

As shown in Table 8 and Table 9, we refer to this extension as SHADOWKV+. Our evaluation across various models
demonstrates that SHADOWKV effectively maintains accuracy while optimizing memory usage.

Table 8. Performance of SHADOWKV and SHADOWKV+ across different models on RULER (Hsieh et al., 2024) evaluated at length of
128K.

Methods N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Llama-3-8B-1M 100.00 100.00 98.96 98.96 98.96 95.57 75.00 48.96 78.54 71.85 86.68
SHADOWKV 100.00 100.00 97.92 98.96 96.88 95.83 72.92 52.08 81.67 72.57 86.88
SHADOWKV+ 100.00 100.00 98.96 100.00 95.83 93.49 71.88 50.00 80.21 71.88 86.23

GLM-4-9B-1M 100.00 100.00 94.79 87.50 99.74 93.75 67.71 55.21 97.29 72.22 86.82
SHADOWKV 100.00 100.00 95.83 83.33 98.70 87.76 69.79 55.21 97.50 68.06 85.62
SHADOWKV+ 100.00 100.00 95.83 85.42 98.17 85.16 69.79 56.25 97.92 67.71 85.63

Llama-3.1-8B 100.00 100.00 98.96 91.67 98.96 95.31 82.29 47.92 68.96 71.18 85.53
SHADOWKV 100.00 100.00 100.00 83.33 97.92 92.19 81.25 48.96 67.08 64.93 83.57
SHADOWKV+ 100.00 100.00 100.00 84.38 96.88 91.67 81.25 52.08 65.63 62.85 83.47

Yi-9B-200K 100.00 100.00 86.46 62.50 64.58 32.55 44.79 39.58 36.87 89.93 65.73
SHADOWKV 100.00 100.00 82.29 67.71 63.28 31.51 43.75 38.54 56.04 72.22 65.53
SHADOWKV+ 100.00 100.00 81.25 67.71 61.72 31.51 46.88 38.54 53.54 72.92 65.41

Table 9. Performance of SHADOWKV and SHADOWKV+ on different models with LongBench (Bai et al., 2023) samples exceeding 4K
tokens.

Methods NarratQA MultiFQA HotpotQA MuSiQue DuRead GovRep SAMSum PassRetr LCC Avg.

Llama-3-8B-1M 18.98 41.84 36.79 21.47 31.93 34.18 35.96 81.50 56.07 39.86
SHADOWKV 17.17 39.73 38.29 21.08 31.77 31.62 35.87 80.00 63.93 39.94
SHADOWKV+ 20.42 41.16 37.22 21.03 31.77 31.98 35.80 80.00 63.89 40.36

GLM-4-9B-1M 25.44 51.09 58.67 39.61 32.04 29.97 40.31 99.00 58.02 48.24
SHADOWKV 26.50 51.31 59.09 38.87 32.92 28.54 38.70 96.50 58.55 47.89
SHADOWKV+ 27.59 51.31 59.17 38.34 33.55 31.25 39.46 96.50 55.86 48.11

Llama-3.1-8B 31.56 55.10 57.65 29.46 35.26 34.45 29.84 100.00 67.31 48.96
SHADOWKV 30.93 55.20 57.32 29.13 31.85 32.79 30.40 99.50 66.03 48.13
SHADOWKV+ 32.25 54.29 57.75 28.37 31.07 32.89 28.73 98.75 67.59 47.97

Yi-9B-200K 13.88 30.02 52.46 28.20 22.29 30.25 19.08 67.00 73.50 37.41
SHADOWKV 12.44 30.82 52.43 27.73 20.79 29.83 20.73 64.00 72.89 36.85
SHADOWKV+ 14.08 30.94 51.16 27.00 19.50 29.34 21.16 66.00 73.47 36.96

14

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

A.2. Quantitative Analysis of GPU Memory Savings

The GPU memory savings provided by SHADOWKV can be quantitatively analyzed as follows. Let each K or V vector have
a size of M bytes, with a sequence length S, a chunk size C, a selected chunk budget K, O outliers, and a pre-RoPE key
cache rank r. The GPU memory savings of SHADOWKV can then be expressed as:

Memory Savings =
2SM

SM/C + 2(K +O)C + Sr + rM

For example, assuming M = 1024, C = 8, S = 128K,K = 256, O = 48, r = 160, the memory savings of SHADOWKV
is calculated as 7.08×. This result demonstrates that SHADOWKV can theoretically reduce the KV cache memory footprint
on the GPU by 7.08× for longer sequences and larger batch sizes.

A.3. Accuracy Results for Yi-9B-200K

We present accuracy results for Yi-9B-200K (AI et al., 2024) on RULER (Hsieh et al., 2024) and LongBench (Bai et al.,
2023), highlighting SHADOWKV’s superior performance across diverse tasks compared to other methods.

Table 10. Performance of Yi-9B-200K with different methods on RULER (Hsieh et al., 2024) evaluated at length of 128K. SHADOWKV
outperforms other methods with a 1.56% sparse budget.

Methods N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Yi-9B-200K 100.00 100.00 86.46 62.50 64.58 32.55 44.79 39.58 36.87 89.93 65.73
Loki 34.38 2.08 2.08 0.00 0.00 0.52 22.92 21.88 0.00 25.00 10.89
Loki (V only) 59.38 11.46 18.75 5.21 4.43 2.08 22.92 31.25 0.00 35.07 19.06
InfiniGen 100.00 94.79 77.08 1.04 40.10 20.57 37.50 34.38 41.46 46.18 49.31
InfiniGen (V only) 100.00 98.96 78.13 2.08 58.33 24.48 40.63 35.42 52.92 55.90 54.69
Quest 100.00 98.96 79.17 26.04 56.51 31.77 32.29 31.25 51.04 71.88 57.89
Quest (V only) 100.00 100.00 80.21 45.83 59.37 31.90 36.45 34.37 53.54 71.88 61.36
SHADOWKV 100.00 100.00 82.29 67.71 63.28 31.51 43.75 38.54 56.04 72.22 65.53

Table 11. Performance of Yi-9B-200K with LongBench (Bai et al., 2023) samples exceeding 4K tokens. SHADOWKV outperforms other
methods and maintains the accuracy.

Methods NarrQA MultiFQA HotpotQA MuSiQue DuRead GovRep SAMSum PassRetr LCC Avg.

Yi-9B-200K 13.88 30.02 52.46 28.20 22.29 30.25 19.08 67.00 73.50 37.41
Loki 1.63 2.73 16.21 4.87 4.75 2.13 4.95 0.00 38.72 8.44
Loki (V only) 1.96 10.39 21.31 7.36 6.78 9.15 10.02 4.00 58.75 14.41
InfiniGen 10.01 23.61 50.47 25.91 15.11 27.96 18.97 30.00 56.46 28.72
InfiniGen (V only) 11.31 26.46 51.13 26.77 16.09 28.67 19.33 34.00 62.07 30.65
Quest 10.57 25.83 46.06 23.04 17.09 17.11 20.59 50.50 67.70 30.94
Quest (V only) 14.56 25.73 48.73 24.73 18.44 20.83 20.08 57.50 71.13 33.53
SHADOWKV 12.44 30.82 52.43 27.73 20.79 29.83 20.73 64.00 72.89 36.85

A.4. Precision Sensitivity

In the main experiments, we used BF16 for both model weights and KV cache. To further investigate the impact of precision
on SHADOWKV’s performance, we conducted additional experiments using FP8 precision (torch.float8 e5m2).
These tests aim to determine whether SHADOWKV can retain its accuracy at this lower precision, addressing concerns about
precision sensitivity, particularly in SVD computations.

As detailed in Table 12 and Table 13, SHADOWKV and baseline methods were evaluated using FP8. Results show that
SHADOWKV maintains accuracy and achieves consistently high performance even with FP8 precision. This robustness,
despite FP8’s reduced numerical range, confirms that SHADOWKV can continue to deliver efficiency gains without
compromising accuracy.

15

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

Table 12. Performance comparison of SHADOWKV and baseline methods on the RULER (Hsieh et al., 2024) using FP8 precision,
evaluated at a sequence length of 128K.

Methods N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Llama-3-8B-1M 100.00 100.00 98.96 95.83 97.40 95.57 63.54 48.96 75.83 73.26 84.94
Loki 5.21 1.04 0.00 0.00 0.78 0.26 5.21 13.54 28.33 28.82 8.32
Loki (V only) 36.46 9.38 31.25 0.00 6.25 21.09 11.46 15.63 57.08 35.76 22.44
Quest 100.00 98.96 98.96 71.88 96.61 93.49 63.54 45.83 78.13 67.01 81.44
Quest (V only) 100.00 100.00 98.96 85.42 97.40 93.49 70.83 48.96 78.13 65.63 83.88
SHADOWKV 100.00 100.00 97.92 94.79 95.31 93.49 75.00 48.96 80.42 73.61 85.95

Table 13. Evaluation of SHADOWKV and baseline methods on LongBench (Bai et al., 2023) with sequence lengths exceeding 4K tokens,
using FP8 precision.

Methods NarratQA MultiFQA HotpotQA MuSiQue DuRead GovRep SAMSum PassRetr LCC Avg.

Llama-3-8B-1M 18.69 41.21 35.76 21.59 31.81 33.77 35.29 80.50 56.77 39.49
Loki 2.21 11.12 5.70 1.84 15.42 28.59 11.41 41.91 33.99 16.91
Loki (V only) 2.68 22.33 12.69 3.35 21.43 30.57 16.32 47.68 36.64 21.52
Quest 19.41 38.92 34.02 19.64 23.13 26.40 28.04 78.50 49.81 35.32
Quest (V only) 16.19 36.73 36.64 19.59 25.57 29.46 27.14 79.50 60.05 36.76
SHADOWKV 18.29 39.39 36.06 21.04 30.47 31.87 35.56 78.50 62.11 39.25

A.5. Scalability Analysis for Larger Models and Longer Sequences
16

K
87

K
15

7K
22

7K
29

7K
36

8K
43

8K
50

8K
57

8K
64

9K
71

9K
78

9K
85

9K
93

0K 1M

Context Length

10
20
30
40
50
60
70
80
90

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Llama-3-70B-Instruct-1M w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10. Needle In A Haystack.

To demonstrate the scalability of SHADOWKV, we present experi-
ments with Llama-3-8B-1M on 1M contexts and Llama-3-70B-1M
on 512K contexts, using the RULER benchmark (Hsieh et al., 2024).
Additionally, we evaluate Llama-3-70B-1M on the Needle In A
Haystack dataset, testing context lengths ranging from 16K to 1M
tokens.

As shown in Figure 10 and Table 14, SHADOWKV maintains robust
performance across increasing context lengths and model sizes,
demonstrating its scalability in handling large-scale inputs. This
scalability allows SHADOWKV to process extensive contexts with
high accuracy, making it a valuable solution for real-world applications requiring extensive sequences.

Table 14. Performance of different methods on RULER (Hsieh et al., 2024) evaluated at length of 1M. The Llama-3-8B-1M is evaluated
on 1M contexts while the Llama-3-70B-1M is evaluated on 512K contexts.

Methods N-S1 N-S2 N-MK1 N-MK2 N-MQ N-MV QA-1 QA-2 VT FWE Avg.

Llama-3-70B-1M 100.00 82.29 90.63 54.17 85.16 96.61 69.79 35.42 68.75 69.44 75.23
Loki 100.00 1.04 0.00 0.00 0.00 0.00 13.54 11.46 34.30 22.92 18.33
Loki (V only) 100.00 15.63 26.04 0.00 0.00 0.00 25.00 19.79 40.00 31.94 25.84
Quest 100.00 76.04 78.13 35.42 85.47 92.19 53.21 34.38 38.33 58.33 65.15
Quest (V only) 100.00 77.08 79.17 36.49 86.19 95.31 54.17 36.58 47.70 58.68 67.14
SHADOWKV 100.00 82.29 88.54 53.04 88.02 94.79 67.71 37.50 68.54 68.25 74.87

Llama-3-8B-1M 96.88 100.00 96.88 69.79 91.15 85.68 64.58 42.71 25.00 56.25 72.89
Loki 9.38 1.04 10.42 0.00 2.60 4.43 38.54 11.46 1.67 0.69 8.02
Loki (V only) 68.75 29.17 60.42 1.04 26.56 43.23 59.38 15.63 6.46 0.69 31.13
Quest 94.79 92.71 80.21 4.17 76.30 69.27 57.29 28.13 25.67 30.56 55.91
Quest (V only) 94.79 93.75 81.25 4.17 79.69 69.27 62.50 31.25 26.00 32.99 57.57
SHADOWKV 96.88 100.00 96.88 65.63 89.38 83.16 69.79 42.71 26.04 59.38 72.98

16

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

A.6. Efficiency Comparison with Quest

We present an efficiency comparison with Quest, particularly under long contexts or high batch sizes where the GPU memory
alone cannot accommodate the KV cache. In such cases, both Full Attention and Quest must offload the KV cache to the
CPU. As shown in Table 15, SHADOWKV significantly outperforms both Full Attention and Quest under the same sparse
budget.

The efficiency advantage of SHADOWKV over Quest is due to two key factors: (1) SHADOWKV only fetches the value
cache from the CPU, rather than the entire KV pair, minimizing data transfer and reducing latency, and (2) SHADOWKV
integrates a cache mechanism that leverages the temporal locality of the KV cache.

Table 15. Efficiency comparsion with Quest.

Context Full Attention Full Attention (CPU) Quest Quest (CPU) SHADOWKV

3×1M OOM 0.21 tokens/s OOM 9.34 tokens/s 45.32 tokens/s

A.7. Detailed Comparison with InfiniGen

We provide further clarification on the key distinctions and conduct additional experiments between SHADOWKV and
InfiniGen. These experiments show that SHADOWKV significantly outperforms InfiniGen across a wide range of downstream
tasks.

Differences in SVD Usage. Infinigen performs an offline SVD to get a projection matrix, which is applied to post-RoPE
key and query states for KV selection, while SHADOWKV applies an online, prompt-dependent SVD directly to the
pre-RoPE key cache for compression, not for KV selection.

Methodological Differences. While InfiniGen uses SVD for KV selection, it requires fetching selected, exact KV pairs
from the CPU. In contrast, SHADOWKV only fetches the value cache from the CPU, reconstructing the key cache from
its low-rank storage on the GPU. By overlapping these processes, SHADOWKV reduces data-fetch overhead and achieves
improved efficiency in KV cache management.

Accuracy Comparison. To empirically validate SHADOWKV’s advantages, we conducted accuracy evaluations. Results
confirm SHADOWKV’s effectiveness in maintaining accuracy while optimizing memory usage. Although InfiniGen
performs well on simpler tasks like RULER-N-S1, it shows significant accuracy drops on more complex tasks, such as
RULER-N-MK2, RULER-FWE, LongBench-LCC, and others, where SHADOWKV maintains consistently high accuracy.

17

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

B. Experiment Details
In this section, our goal is to provide the details of the system implementation (mentioned in Section 4.2), experiment
settings, and additional experiments on InfiniteBench (Zhang et al., 2024b) and Needle In A Haystack (Kamradt, 2023).

B.1. System Implementation.

We implement the framework based on PyTorch (Paszke et al., 2019; Wolf, 2019) and dedicated kernels (Thakkar et al.,
2023). FlashAttention (Dao et al., 2022; Dao, 2023; Hong et al., 2023) is used for attention computation and some efficient
fused kernels in Flashinfer (Ye et al., 2024) and vLLM (Kwon et al., 2023) are used, including layer norm. To reduce memory
movement and kernel launch overhead, we fuse some operations into CUDA kernels, including attention approximation,
key cache low-rank reconstruction, value cache fetching, cache mechanism, etc. We leverage multi-streams to overlap the
reconstruction of key cache and value cache fetching. We set the rank of pre-RoPE key cache to 160, chunk size to 8, and
sparse KV cache budget to 1.56% for most cases.

B.2. Dataset Details

LLMs are widely used in various fields (Sun et al., 2024b; Peng et al., 2025; Fu et al., 2025; Li et al., 2023; Yuan et al., 2024;
QwenTeam, 2024; Wang et al., 2024a; Song et al., 2024), and we select three long-context benchmarks, detailed below.

• RULER (Hsieh et al., 2024) consists of 13 complex tasks and supports adjustable context lengths, including retrieval,
multi-hop tracking, aggregation, and QA tasks. For the test with MInference (Jiang et al., 2024), we set up test sets scaling
from 8K to 256K for evaluation.

• LongBench (Bai et al., 2023) is a challenging long-context benchmark that assesses the performance of LLMs in extended
contexts. Featuring Chinese and English languages, LongBench encompasses 6 main categories and 21 diverse tasks,
evaluating LLM capabilities across crucial long-text applications like single-/multi-document QA, summarization, code
completion, etc.

• Needle In A Haystack (Kamradt, 2023) is a long-context retrieval benchmark testing LLM’s performance with context
window scales up to 1M tokens where information placed at various positions. We tested the retrieval capabilities of six
long-context LLMs based on their context length.

B.3. Needle In A Haystack

In addition to the Needle In A Haystack results for Llama-3-8B-1M shown in Figure 6, we also present results for GLM-
4-9B-1M, Llama-3.1-8B, Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-128K, shown in Figure 11. Compared to full
attention, using SHADOWKV has minimal impact on the ability to understand semantic information across different context
windows and needle depths. There is even a slight performance improvement for Yi-9B-200K.

B.4. InfiniteBench

InfiniteBench (Zhang et al., 2024b) is a challenging long-context benchmark that consists of 10 tasks, including QA, coding,
dialogue, summarization, and retrieval, with an average length of 214K.

Table 16. Accuracy of different methods on InfiniteBench (Zhang et al., 2024b).

Methods En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Num

Llama-3-8B-1M 23.05 18.14 65.06 10.50 12.47 24.36 37.14 100.00 100.00
SHADOWKV 21.50 17.73 64.63 10.50 12.45 23.86 37.43 100.00 100.00

GLM-4-9B-1M 28.61 9.25 68.12 39.50 11.77 30.20 40.00 100.00 100.00
SHADOWKV 23.22 8.48 68.56 32.50 11.27 30.46 40.00 100.00 100.00

Llama-3.1-8B 26.42 14.48 66.38 16.00 12.92 21.07 34.00 100.00 99.66
SHADOWKV 24.23 13.83 66.38 16.50 12.76 21.07 34.00 100.00 94.41

Yi-9B-200K 8.88 10.61 61.57 5.50 13.88 21.57 23.71 100.00 99.66
SHADOWKV 8.92 10.06 59.39 6.00 13.89 20.56 24.29 100.00 99.83

18

SHADOWKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

16
K

87
K

15
7K

22
7K

29
7K

36
8K

43
8K

50
8K

57
8K

64
9K

71
9K

78
9K

85
9K

93
0K 1M

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)
Needle in A Haystack GLM-4-9B-1M

0.0

0.2

0.4

0.6

0.8

1.0

16
K

87
K

15
7K

22
7K

29
7K

36
8K

43
8K

50
8K

57
8K

64
9K

71
9K

78
9K

85
9K

93
0K 1M

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack GLM-4-9B-1M w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K

88
K

96
K

10
4K

11
2K

12
0K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Llama-3.1-8B-Instruct

0.0

0.2

0.4

0.6

0.8

1.0

16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K

88
K

96
K

10
4K

11
2K

12
0K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Llama-3.1-8B-Instruct w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

16
K

29
K

43
K

56
K

69
K

82
K

95
K

10
8K

12
1K

13
4K

14
8K

16
1K

17
4K

18
7K

20
0K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Yi-9B-200K

0.0

0.2

0.4

0.6

0.8

1.0
16

K
29

K
43

K
56

K
69

K
82

K
95

K
10

8K
12

1K
13

4K
14

8K
16

1K
17

4K
18

7K
20

0K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Yi-9B-200K w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K

88
K

96
K

10
4K

11
2K

12
0K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Phi-3-Mini-128K-Instruct

0.0

0.2

0.4

0.6

0.8

1.0

16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K

88
K

96
K

10
4K

11
2K

12
0K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Phi-3-Mini-128K-Instruct w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K

88
K

96
K

10
4K

11
2K

12
0K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Qwen2-7B-Instruct

0.0

0.2

0.4

0.6

0.8

1.0

16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K

88
K

96
K

10
4K

11
2K

12
0K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Qwen2-7B-Instruct w/ ShadowKV

0.0

0.2

0.4

0.6

0.8

1.0

Figure 11. Needle In A Haystack (Kamradt, 2023) results using GLM-4-9B-1M (GLM et al., 2024), Llama-3.1-8B-Instruct (Meta AI,
2024), Yi-9B-200K (AI et al., 2024), Phi-3-Mini-128K (Abdin et al., 2024), and Qwen2-7B-128K (Yang et al., 2024a).

19

